201
|
Garrido-Treviño LF, López-Martínez M, Flores-Hinojosa JA, Tijerina-Rodríguez L, Bosques-Padilla F. Empiric treatment vs susceptibility-guided treatment for eradicating H. pylori: Is it possible to change that paradigm using modern molecular methods? REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2022; 87:330-341. [PMID: 35778343 DOI: 10.1016/j.rgmx.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2025]
Abstract
Helicobacter pylori (H. pylori) infection is the most widespread infectious-contagious disease worldwide, reaching a prevalence of 50-80% in developing countries. Chronic infection is considered the main cause of chronic gastritis and has been related to other diseases, such as peptic ulcer, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. The most common treatment is with eradication regimens that utilize three or four drugs, including a proton pump inhibitor (PPI) and the antibiotics, clarithromycin and amoxycillin or metronidazole. Empiric antibiotic use for eradicating the bacterium has led to a growing resistance to those drugs, reducing regimen efficacy and increasing costs for both the patient and the healthcare sector. In such a context, the development of noninvasive next-generation molecular methods holds the promise of revolutionizing the treatment of H. pylori. The genotypic and phenotypic detection of the resistance of the bacterium to antibiotics enables personalized treatment regimens to be provided, reducing costs and implementing an antibiotic stewardship program. The aims of the present narrative review were to analyze and compare the traditional and next-generation methods for diagnosing H. pylori, explain the different factors associated with eradication failure, and emphasize the impact of the increasing antibiotic resistance on the reversal and prevention of H. pylori-associated diseases.
Collapse
Affiliation(s)
- L F Garrido-Treviño
- Instituto de Salud Digestiva, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - M López-Martínez
- Instituto de Salud Digestiva, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - J A Flores-Hinojosa
- Instituto de Salud Digestiva, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | | | - F Bosques-Padilla
- Instituto de Salud Digestiva, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico; Hospital Universitario, Departamento de Gastroenterología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
202
|
Martini MC, Hicks ND, Xiao J, Alonso MN, Barbier T, Sixsmith J, Fortune SM, Shell SS. Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1010705. [PMID: 35830479 PMCID: PMC9312406 DOI: 10.1371/journal.ppat.1010705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.
Collapse
Affiliation(s)
- Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Junpei Xiao
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria Natalia Alonso
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Thibault Barbier
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
203
|
Empiric treatment vs susceptibility-guided treatment for eradicating H. pylori: Is it possible to change that paradigm using modern molecular methods? REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2022; 87:330-341. [DOI: 10.1016/j.rgmxen.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
|
204
|
Sivaranjani M, McCarthy MC, Sniatynski MK, Wu L, Dillon JAR, Rubin JE, White AP. Biofilm Formation and Antimicrobial Susceptibility of E. coli Associated With Colibacillosis Outbreaks in Broiler Chickens From Saskatchewan. Front Microbiol 2022; 13:841516. [PMID: 35783405 PMCID: PMC9247541 DOI: 10.3389/fmicb.2022.841516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The global poultry industry has grown to the extent that the number of chickens now well exceeds the number of humans on Earth. Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. We obtained 94 E. coli isolates from 12 colibacillosis outbreaks on Saskatchewan farms and screened them for antimicrobial resistance and biofilm formation. Fifty-six isolates were from broilers with confirmed colibacillosis, and 38 isolates were from healthy broilers in the same flocks (cecal E. coli). Resistance to penicillins, tetracyclines, and aminoglycosides was common in isolates from all 12 outbreaks, while cephalosporin resistance varied by outbreak. Most E. coli were able to form biofilms in at least one of three growth media (1/2 TSB, M63, and BHI broth). There was an overall trend that disease-causing E. coli had more antibiotic resistance and were more likely to form biofilms in nutrient-rich media (BHI) as compared to cecal strains. However, on an individual strain basis, there was no correlation between antimicrobial resistance and biofilm formation. The 21 strongest biofilm forming strains consisted of both disease-causing and cecal isolates that were either drug resistant or susceptible. Draft whole genome sequencing indicated that many known antimicrobial resistance genes were present on plasmids, with disease-causing E. coli having more plasmids on average than their cecal counterparts. We tested four common disinfectants for their ability to kill 12 of the best biofilm forming strains. All disinfectants killed single cells effectively, but biofilm cells were more resistant, although the difference was less pronounced for the disinfectants that have multiple modes of action. Our results indicate that there is significant diversity and complexity in E. coli poultry isolates, with different lifestyle pressures affecting disease-causing and cecal isolates.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Madeline C. McCarthy
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle K. Sniatynski
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linzhi Wu
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Aaron P. White,
| |
Collapse
|
205
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
206
|
Martín-Escolano J, Marín C, Rosales MJ, Tsaousis AD, Medina-Carmona E, Martín-Escolano R. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infect Dis 2022; 8:1107-1115. [PMID: 35652513 PMCID: PMC9194904 DOI: 10.1021/acsinfecdis.2c00123] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chagas disease (CD)
is a parasitic, systemic, chronic, and often
fatal illness caused by infection with the protozoan Trypanosoma
cruzi. The World Health Organization classifies CD as the
most prevalent of poverty-promoting neglected tropical diseases, the
most important parasitic one, and the third most infectious disease
in Latin America. Currently, CD is a global public health issue that
affects 6–8 million people. However, the current approved treatments
are limited to two nitroheterocyclic drugs developed more than 50
years ago. Many efforts have been made in recent decades to find new
therapies, but our limited understanding of the infection process,
pathology development, and long-term nature of this disease has made
it impossible to develop new drugs, effective treatment, or vaccines.
This Review aims to provide a comprehensive update on our understanding
of the current life cycle, new morphological forms, and genetic diversity
of T. cruzi, as well as identify intervention points
in the life cycle where new drugs and treatments could achieve a parasitic
cure.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - María J. Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
207
|
Ichikawa S, Okazaki M, Okamura M, Nishimura N, Miyake H. Rare UV-resistant cells in clonal populations of Escherichia coli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112448. [PMID: 35490545 DOI: 10.1016/j.jphotobiol.2022.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Water disinfection is one of the most important applications of ultraviolet light-emitting diodes (UV-LEDs), though bacterial regrowth remains a serious problem. In this study, we showed that UV-resistant cells, though rare, exist in an Escherichia coli clonal population. The UV-resistance of stationary phase cells was higher than that of exponential phase cells. Regrowth cell populations showed identical UV sensitivity before and after UV treatment, indicating that UV resistance is not acquired genetically, but is generated stochastically. The characteristics of these UV-resistant cells are similar to those of non-heritable antibiotic-resistant cells, termed persisters. The induction of persister formation increased the number of viable cells after UV treatment. The toxin-antitoxin system gene hipA (high persistence A) is a key factor in persister cell formation. We observed that hipA was strongly expressed in the stationary phase cells, while regrowth cells after UV treatment lost hipA expression, suggesting that the regrowth cells lost their persistence. Compared to UV batch radiation, we demonstrated that intermittent UV irradiation, which included the induction of regrowth between UV treatments, significantly reduced the number of viable E. coli cells.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan.
| | - Mika Okazaki
- Strategic Planning Office for Regional Revitalization, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Mina Okamura
- Strategic Planning Office for Regional Revitalization, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Hideto Miyake
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| |
Collapse
|
208
|
Shtykova EV, Petoukhov MV, Mozhaev AA. Formation of Iron Oxide Nanoparticles in the Internal Cavity of Ferritin-Like Dps Protein: Studies by Anomalous X-Ray Scattering. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:511-523. [PMID: 35790408 DOI: 10.1134/s0006297922060037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
DNA-binding protein from starved cells (Dps) takes a special place among dodecamer mini-ferritins. Its most important function is protection of bacterial genome from various types of destructive external factors via in cellulo Dps-DNA co-crystallization. This protective response results in the emergence of bacterial resistance to antibiotics and other drugs. The protective properties of Dps have attracted a significant attention of researchers. However, Dps has another equally important functional role. Being a ferritin-like protein, Dps acts as an iron depot and protects bacterial cells from the oxidative damage initiated by the excess of iron. Here we investigated formation of iron oxide nanoparticles in the internal cavity of the Dps dodecamer. We used anomalous small-angle X-ray scattering as the main research technique, which allows to examine the structure of metal-containing biological macromolecules and to analyze the size distribution of metal nanoparticles formed in them. The contributions of protein and metal components to total scattering were distinguished by varying the energy of the incident X-ray radiation near the edge of the metal atom absorption band (the K-band for iron). We examined Dps specimens containing 50, 500, and 2000 iron atoms per protein dodecamer. Analysis of the particle size distribution showed that, depending on the iron content in the solution, the size of the nanoparticles formed inside the protein molecule was 2 to 4 nm and the growth of metal nanoparticles was limited by the size of the protein inner cavity. We also found some amount of iron ions in the Dps surface layer. This layer is very important for the protein to perform its protective functions, since the surface-located N-terminal domains determine the nature of interactions between Dps and DNA. In general, the results obtained in this work can be useful for the next step in studying the Dps phenomenon, as well as in creating biocompatible and solution-stabilized metal nanoparticles.
Collapse
Affiliation(s)
- Eleonora V Shtykova
- Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences, Moscow, 119333, Russia.
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences, Moscow, 119333, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Andrey A Mozhaev
- Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences, Moscow, 119333, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
209
|
Huo W, Busch LM, Hernandez-Bird J, Hamami E, Marshall CW, Geisinger E, Cooper VS, van Opijnen T, Rosch JW, Isberg RR. Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nat Microbiol 2022; 7:796-809. [PMID: 35618774 PMCID: PMC9159950 DOI: 10.1038/s41564-022-01126-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Acinetobacter baumannii is increasingly refractory to antibiotic treatment in healthcare settings. As is true of most human pathogens, the genetic path to antimicrobial resistance (AMR) and the role that the immune system plays in modulating AMR during disease are poorly understood. Here we reproduced several routes to fluoroquinolone resistance, performing evolution experiments using sequential lung infections in mice that are replete with or depleted of neutrophils, providing two key insights into the evolution of drug resistance. First, neutropenic hosts acted as reservoirs for the accumulation of drug resistance during drug treatment. Selection for variants with altered drug sensitivity profiles arose readily in the absence of neutrophils, while immunocompetent animals restricted the appearance of these variants. Secondly, antibiotic treatment failure in the immunocompromised host was shown to occur without clinically defined resistance, an unexpected result that provides a model for how antibiotic failure occurs clinically in the absence of AMR. The genetic mechanism underlying both these results is initiated by mutations activating the drug egress pump regulator AdeL, which drives persistence in the presence of antibiotic. Therefore, antibiotic persistence mutations present a two-pronged risk during disease, causing drug treatment failure in the immunocompromised host while simultaneously increasing the emergence of high-level AMR.
Collapse
Affiliation(s)
- Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Lindsay M Busch
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Christopher W Marshall
- Department of Microbiology and Molecular Genetics and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | | | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
210
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
211
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
212
|
Zhang P, Qiu Y, Wang Y, Xiao L, Yu S, Shi M, Ni Y, Miron RJ, Pu Y, Zhang Y. Nanoparticles Promote Bacterial Antibiotic Tolerance via Inducing Hyperosmotic Stress Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105525. [PMID: 35398987 DOI: 10.1002/smll.202105525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
With the rapid development of nanotechnology, nanoparticles (NPs) are widely used in all fields of life. Nowadays, NPs have shown extraordinary antimicrobial activities and become one of the most popular strategies to combat antibiotic resistance. Whether they are equally effective in combating bacterial persistence, another important reason leading to antibiotic treatment failure, remains unknown. Persister cells are a small subgroup of phenotypic drug-tolerant cells in an isogenic bacterial population. Here, various types of NPs are used in combination with different antibiotics to destroy persisters. Strikingly, rather than eradicating persister cells, a wide range of NPs promote the formation of bacterial persistence. It is uncovered by PCR, thermogravimetric analysis, intracellular potassium ion staining, and molecular dynamics simulation that the persister promotion effect is achieved through exerting a hyperosmotic pressure around the cells. Moreover, protein mass spectrometry, fluorescence microscope images, and SDS-PAGE indicate NPs can further hijack cell osmotic regulatory circuits by inducing aggregation of outer membrane protein OmpA and OmpC. These findings question the efficacy of using NPs as antimicrobial agents and raise the possibility that widely used NPs may facilitate the global emergence of bacterial antibiotic tolerance.
Collapse
Affiliation(s)
- Peng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shimin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yueqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
213
|
Stincone P, Fonseca Veras F, Micalizzi G, Donnarumma D, Vitale Celano G, Petras D, de Angelis M, Mondello L, Brandelli A. Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response. Cell Mol Life Sci 2022; 79:263. [PMID: 35482131 PMCID: PMC11071860 DOI: 10.1007/s00018-022-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
With the onset of Listeria monocytogenes resistance to the bacteriocin nisin, the search for alternative antimicrobial treatments is of fundamental importance. In this work, we set out to investigate proteins and lipids involved in the resistance mechanisms of L. monocytogenes against the antimicrobial peptides (AMPs) nisin and fengycin. The effect of sub-lethal concentrations of nisin and lipopeptide fengycin secreted by Bacillus velezensis P34 on L. monocytogenes was investigated by mass spectrometry-based lipidomics and proteomics. Both AMPs caused a differential regulation of biofilm formation, confirming the promotion of cell attachment and biofilm assembling after treatment with nisin, whereas growth inhibition was observed after fengycin treatment. Anteiso branched-chain fatty acids were detected in higher amounts in fengycin-treated samples (46.6%) as compared to nisin-treated and control samples (39.4% and 43.4%, respectively). In addition, a higher relative abundance of 30:0, 31:0 and 32:0 phosphatidylglycerol species was detected in fengycin-treated samples. The lipidomics data suggest the inhibition of biofilm formation by the fengycin treatment, while the proteomics data revealed downregulation of important cell wall proteins involved in the building of biofilms, such as the lipoteichoic acid backbone synthesis (Lmo0927) and the flagella-related (Lmo0718) proteins among others. Together, these results provide new insights into the modification of lipid and protein profiles and biofilm formation in L. monocytogenes upon exposure to antimicrobial peptides.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Giuseppe Micalizzi
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Danilo Donnarumma
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Gaetano Vitale Celano
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, Valenzano, 70010, Bari, Italy
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Maria de Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Luigi Mondello
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, viale Annunziata, 98168, Messina, Italy
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
214
|
Cancer: More than a geneticist’s Pandora’s box. J Biosci 2022. [DOI: 10.1007/s12038-022-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
215
|
Yu S, Wang Y, Shen F, Fang H, Yu Y. Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152885. [PMID: 34998765 DOI: 10.1016/j.scitotenv.2021.152885] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The extensive use of copper-based fungicides in orchards, especially in vineyards, leads to the accumulation of copper, which has caused growing concern. However, data on the acquisition of antibiotic resistance in opportunistic pathogens under copper-based fungicides are scarce. In this study, we investigated the potential development of antibiotic resistance in Escherichia coli K12 under selective copper hydroxide pressure. The results indicated that copper hydroxide at concentrations of 100 mg/L and 200 mg/L evolved resistance against chloramphenicol and tolerance against tetracycline to 4-8 and 2.00-2.67 times than the initial minimal inhibitory concentrations (MICs), respectively. Whole-genome sequencing analysis showed that the obtained resistant strains carried gene mutations including AcrAB-TolC multidrug efflux pump (acrB and marR), outer membrane porin (evZ), and another indirect pathways. Furthermore, the expression of multidrug efflux pump genes and oxidative stress-related genes were significantly upregulated, whereas outer membrane porin genes were downregulated. Thus, our results could well explain the emergence of antibiotic resistance and resistance mechanisms selected by copper-based fungicide, and provide a basis for the management of copper-based fungicide in agriculture to avoid the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
216
|
Matan O, Jurkevitch E. Predation of antibiotic persister bacteria by the predatory bacterium Bdellovibrio bacteriovorus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:239-244. [PMID: 35247032 DOI: 10.1111/1758-2229.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
217
|
Liu X, Tang R, Li H, Wang L, Wan C. The physiological and ecological properties of bacterial persisters discovered from municipal sewage sludge and the potential risk. ENVIRONMENTAL RESEARCH 2022; 205:112481. [PMID: 34871595 DOI: 10.1016/j.envres.2021.112481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Bacterial persisters are a special microbial population and are considered to be the bacterial reservoir of antibiotic-resistant bacteria. They can survive antibiotic treatment even in high concentrations of antibiotics and revive in the appropriate conditions. However, the characteristics of bacterial persisters in the municipal sewage sludge and their potential environmental risks have not yet been paid much attention to. In this study, bacterial persisters were discovered from the sludge of wastewater treatment plants in four different regions (Jilin, Lhasa, Shenzhen, and Yili), and the metagenomic analysis confirmed that bacterial persisters were ubiquitous in all four municipal sewage sludge and positively related to the protobacterium populations. At the taxonomic genus level, a total of 57 genera of bacterial persisters were shared by the four sewage sludge, and the genera with abundance exceeding 2% were Acinetobacter, Lysinibacillus, Aeromonas, Brevundimonas, Pseudomonas, and Alcaligenes, among which Acinetobacter accounted for 57.24%. Genus Lysinibacillus and Aeromonas were significant in Jilin and Lhasa, respectively. The persistence mechanism of bacterial persisters derived from sludge was also clarified, among which, Aeromonas, Brevundimonas, and Alcaligenes rely on the hipBA toxin-antitoxin system, while Acinetobacter enters the persistence state mainly through the stringent response system based on (p)ppGpp. Moreover, it was found that a typical bacterial persister originated from Acinetobacter, named T9-9, could tolerate a variety of antibiotics, such as 1000 μg/mL of kanamycin, 160 μg/mL of tetracycline, and 30 μg/mL of ciprofloxacin. Even if the ultraviolet intensity was 6-36 times the usual dosage of ultraviolet disinfection in wastewater treatment plants, it could not completely kill T9-9, but the killing efficiency by chlorine disinfection technology could reach 100%. This study pointed out an environmental risk of bacterial persisters that existed in sewage sludge that had been neglected and strongly recommended to improve the disinfection process in the wastewater treatment plant.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, Shanghai, 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
218
|
La Rosa R, Johansen HK, Molin S. Persistent Bacterial Infections, Antibiotic Treatment Failure, and Microbial Adaptive Evolution. Antibiotics (Basel) 2022; 11:419. [PMID: 35326882 PMCID: PMC8944626 DOI: 10.3390/antibiotics11030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is expected by the WHO to be the biggest threat to human health before 2050. In this overview, we argue that this prediction may in fact be too optimistic because it is often overlooked that many bacterial infections frequently 'go under the radar' because they are difficult to diagnose and characterize. Due to our lifestyle, persistent infections caused by opportunistic bacteria-well-known or emerging-show increasing success of infecting patients with reduced defense capacity, and often antibiotics fail to be sufficiently effective, even if the bacteria are susceptible, leaving small bacterial populations unaffected by treatment in the patient. The mechanisms behind infection persistence are multiple, and therefore very difficult to diagnose in the laboratory and to treat. In contrast to antibiotic resistance associated with acute infections caused by traditional bacterial pathogens, genetic markers associated with many persistent infections are imprecise and mostly without diagnostic value. In the absence of effective eradication strategies, there is a significant risk that persistent infections may eventually become highly resistant to antibiotic treatment due to the accumulation of genomic mutations, which will transform colonization into persistence.
Collapse
Affiliation(s)
- Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
219
|
Hu J, Chen S, Yang Y, Li L, Cheng X, Cheng Y, Huang Q. A Smart Hydrogel with Anti-Biofilm and Anti-Virulence Activities to Treat Pseudomonas aeruginosa Infections. Adv Healthc Mater 2022; 11:e2200299. [PMID: 35306745 DOI: 10.1002/adhm.202200299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Indexed: 01/04/2023]
Abstract
Biofilm is the main culprit of refractory infections and seriously threaten to the human health. Here, a smart hydrogel consisted of norspermidine, aminoglycosides, and oxidized polysaccharide is prepared via the formation of acid-labile imine linkage to treat Pseudomonas aeruginosa biofilm infections in several animal models. The increased acidity caused by bacterial infection triggers the release of norspermidine and aminoglycosides covalently bound with the polymer scaffold. The released norspermidine inhibits biofilm formation and virulence production by regulating the quorum sensing of P. aeruginosa, while the aminoglycoside antibiotics effectively kill the released bacteria. The gel thoroughly inhibits biofilm formation on various medical devices and decreases bacteria pathogenicity. It efficiently inhibits implantation-associated biofilm infections and chronic wound infections, and shows great promise to prevent and treat biofilm-induced refractory infection in clinics.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Sijia Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongxin Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lin Li
- Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Xuejing Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Quan Huang
- Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| |
Collapse
|
220
|
The Error-Prone Polymerase DnaE2 Mediates the Evolution of Antibiotic Resistance in Persister Mycobacterial Cells. Antimicrob Agents Chemother 2022; 66:e0177321. [PMID: 35156855 DOI: 10.1128/aac.01773-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Applying antibiotics to susceptible bacterial cultures generates a minor population of persisters that remain susceptible to antibiotics but can endure them for extended periods. Recent reports suggest that antibiotic persisters (APs) of mycobacteria experience oxidative stress and develop resistance upon treatment with lethal doses of ciprofloxacin or rifampicin. However, the mechanisms driving the de novo emergence of resistance remained unclear. Here, we show that mycobacterial APs activate the SOS response, resulting in the upregulation of the error-prone DNA polymerase DnaE2. The sustained expression of dnaE2 in APs led to mutagenesis across the genome and resulted in the rapid evolution of resistance to antibiotics. Inhibition of RecA by suramin, an anti-Trypanosoma drug, reduced the rate of conversion of persisters to resistors in a diverse group of bacteria. Our study highlights suramin's novel application as a broad-spectrum agent in combating the development of drug resistance.
Collapse
|
221
|
Yousuf M, Ali A, Khan P, Anjum F, Elasbali AM, Islam A, Yadav DK, Shafie A, Rizwanul Haque QM, Hassan MI. Insights into the Antibacterial Activity of Prolactin-Inducible Protein against the Standard and Environmental MDR Bacterial Strains. Microorganisms 2022; 10:microorganisms10030597. [PMID: 35336169 PMCID: PMC8950685 DOI: 10.3390/microorganisms10030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Prolactin inducible protein (PIP) is a small secretary glycoprotein present in most biological fluids and contributes to various cellular functions, including cell growth, fertility, antitumor, and antifungal activities. Objectives: The present study evaluated the antibacterial activities of recombinant PIP against multiple broad-spectrum MDR bacterial strains. Methods: The PIP gene was cloned, expressed and purified using affinity chromatography. Disk diffusion, broth microdilution, and growth kinetic assays were used to determine the antibacterial activities of PIP. Results: Disk diffusion assay showed that PIP has a minimum and maximum zone of inhibition against E. coli and P. aeruginosa, respectively, compared to the reference drug ampicillin. Furthermore, growth kinetics studies also suggested that PIP significantly inhibited the growth of E. coli and P. aeruginosa. The minimum inhibitory concentration of PIP was 32 µg/mL for E. coli (443), a standard bacterial strain, and 64 µg/mL for Bacillus sp. (LG1), an environmental multidrug-resistant (MDR) strain. The synergistic studies of PIP with ampicillin showed better efficacies towards selected bacterial strains having MDR properties. Conclusion: Our findings suggest that PIP has a broad range of antibacterial activities with important implications in alleviating MDR problems.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah 42421, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon City 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Qazi Mohd. Rizwanul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
222
|
Chin JHC, Samian MR, Normi YM. Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by Burkholderia cepacia JC-1 from various carbon sources. Heliyon 2022; 8:e09174. [PMID: 35368536 PMCID: PMC8971576 DOI: 10.1016/j.heliyon.2022.e09174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polymers that have received widespread attention in recent decades as potential alternatives to some petrochemical-based plastics. However, widespread use of PHA is often impeded by its cost of production. Therefore, the search for and systematic investigation of versatile microbial PHA producers capable of using various carbon sources, even in the form of animal fats, for PHA biosynthesis is desirable. This study highlights the PHA production capacity, monomer composition and molecular weight synthesized by Burkholderia cepacia JC-1, a locally isolated strain from soil, from various carbon sources. In the category of simple sugars and plant oils, the use of glucose and palm oil at C:N ratio of 40 resulted in the highest accumulation of 52 wt% and 36 wt% poly(3-hydroxybutyrate) [P(3HB)] homopolymer and dry cell weight of 2.56 g/L and 3.17 g/L, respectively. Interestingly, B. cepacia JC-1 was able to directly utilize animal-derived lipid in the form of crude and extracted chicken fat, resulting in appreciable dry cell weight and PHA contents of up to 3.19 g/L and 47 wt% respectively, surpassing even that of palm oil in the group of triglycerides as substrates. The presence of antibiotics (streptomycin) in cultivation medium did not significantly affect cell growth and polymer production. The supply of sodium pentanoate as a co-substrate resulted in the incorporation of 3-hydroxyvalerate (3HV) monomer at fractions up to 37 mol%. The molecular weight of polymers produced from glucose, palm oil and chicken fat were in the range of 991–2118 kDa, higher than some reported studies involving native strains. The results from this study form an important basis for possible improvements in using B. cepacia JC-1 and crude chicken fats in solid form for PHA production in the future.
Collapse
Affiliation(s)
- Julian Hock-Chye Chin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mohd Razip Samian
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
223
|
|
224
|
Abstract
Persisters are transiently nongrowing and antibiotic-tolerant phenotypic variants identified in major human pathogens, including intracellular Staphylococcus aureus. Due to their capacity to regrow once the environmental stress is relieved and to promote resistance, persisters possibly contribute to therapeutic failures. While persistence and its related quiescence have been mostly studied under starvation, little is known within host cell environments. Here, we examined how the level of reactive oxygen species (ROS) in different host cells affects dormancy depth of intracellular S. aureus. Using single-cell approaches, we found that host ROS induce variable dormant states in S. aureus persisters, displaying heterogeneous and increased lag times for resuscitation in liquid medium. Dormant persisters displayed decreased translation and energy metabolism, but remained infectious, exiting from dormancy and resuming growth when reinoculated in low-oxidative-stress cells. In high-oxidative-stress cells, ROS-induced ATP depletion was associated with the formation of visible dark foci similar to those induced by the protein aggregation inducer CCCP (carbonyl cyanide m-chlorophenylhydrazone) and with the recruitment of the DnaK-ClpB chaperone system involved in the clearance of protein aggregates. ATP depletion led to higher fractions of dormant persisters than ROS, due to a counterbalancing effect of ROS-induced translational repression, suggesting a pivotal role of translation in the dormant phenotype. Consistently, protein synthesis inhibition limited dormancy to levels similar to those observed in low-oxidative-stress cells. This study supports the hypothesis that intracellular S. aureus persisters can reach heterogeneous dormancy depths and highlights the link between ROS, ATP depletion, dark focus formation, and subsequent dormancy state. IMPORTANCE By their capacity to survive to antibiotic pressure and to regrow and give rise to a susceptible population once this pressure is relieved, intracellular persisters of S. aureus may contribute to explain therapeutic failures and recurrent infections. Here, we show that the level of dormancy and the subsequent capacity to resuscitate from this resting state are dependent on the level of oxidative stress in the host cells where bacteria survive. This observation nourishes the debate as whether the most appropriate strategy to cope with S. aureus intracellular infections would consist of trying to push persisters to a deep dormancy state from which wakening is improbable or, on the contrary, to prevent ROS-induced dormancy and force bacteria to maintain regular metabolism in order to restore their responsiveness to antibiotics. Importantly also, our data highlight the interest in single-cell analyses with conventional enumeration of CFU to quantify persisters and study host-pathogen interactions.
Collapse
|
225
|
Abstract
Mycobacterium tuberculosis can cocatabolize a range of carbon sources. Fatty acids are among the carbons available inside the host's macrophages. Here, we investigated the metabolic changes of the fatty acid-induced dormancy-like state of M. tuberculosis and its involvement in the acquisition of drug tolerance. We conducted metabolomics profiling using a phosphoenolpyruvate carboxykinase (PEPCK)-deficient M. tuberculosis strain in an acetate-induced dormancy-like state, highlighting an overaccumulation of methylcitrate cycle (MCC) intermediates that correlates with enhanced drug tolerance against isoniazid and bedaquiline. Further metabolomics analyses of two M. tuberculosis mutants, an ICL knockdown (KD) strain and PrpD knockout (KO) strain, each lacking an MCC enzyme-isocitrate lyase (ICL) and 2-methylcitrate dehydratase (PrpD), respectively-were conducted after treatment with antibiotics. The ICL KD strain, which lacks the last enzyme of the MCC, showed an overaccumulation of MCC intermediates and a high level of drug tolerance. The PrpD KO strain, however, failed to accumulate MCC intermediates as it lacks the second step of the MCC and showed only a minor level of drug tolerance compared to the ICL KD mutant and its parental strain (CDC1551). Notably, addition of authentic 2-methylisocitrate, an MCC intermediate, improved the M. tuberculosis drug tolerance against antibiotics even in glycerol medium. Furthermore, wild-type M. tuberculosis displayed levels of drug tolerance when cultured in acetate medium significantly greater than those in glycerol medium. Taken together, the fatty acid-induced dormancy-like state remodels the central carbon metabolism of M. tuberculosis that is functionally relevant to acquisition of M. tuberculosis drug tolerance. IMPORTANCE Understanding the mechanisms underlying M. tuberculosis adaptive strategies to achieve drug tolerance is crucial for the identification of new targets and the development of new drugs. Here, we show that acetate medium triggers a drug-tolerant state in M. tuberculosis when challenged with antituberculosis (anti-TB) drugs. This carbon-induced drug-tolerant state is linked to an accumulation of the methylcitrate cycle (MCC) intermediates, whose role was previously known as a detox pathway for propionate metabolism. Three mutant strains with mutations in gluconeogenesis and MCC were used to investigate the correlation between drug tolerance and the accumulation of MCC metabolites. We herein report a new role of the MCC used to provide a survival advantage to M. tuberculosis as a species against both anti-TB drugs upon specific carbon sources.
Collapse
|
226
|
Zou J, Peng B, Qu J, Zheng J. Are Bacterial Persisters Dormant Cells Only? Front Microbiol 2022; 12:708580. [PMID: 35185807 PMCID: PMC8847742 DOI: 10.3389/fmicb.2021.708580] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial persisters are a sub-population of phenotypic variants that tolerate high concentrations of antibiotics within the genetically homogeneous cells. They resume division upon the removal of drugs. Bacterial persistence is one of major causes of antibiotic treatment failure and recurrent infection. Cell dormancy, triggered by toxin/antitoxin pair, (p)ppGpp, SOS response and ATP levels, is known to be the mechanistic basis for persistence. However, recent studies have demonstrated that bacteria with active metabolism can maintain persistence by lowering intracellular antibiotic concentration via an efflux pump. Additionally, others and our work have showed that cell wall deficient bacteria (CWDB), including both L-form and spheroplasts that produced by β-lactam antibiotics, are associated with antibiotic persistence. They are not dormant cells as their cell walls have been completely damaged. In this review, we discuss the various types of persisters and highlight the contribution of non-walled bacteria on bacterial persistence.
Collapse
Affiliation(s)
- Jin Zou
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Zhuhai, Macau SAR, China
| |
Collapse
|
227
|
Yamamoto N, Ohno Y, Tsuneda S. ldhA-induced persister in Escherichia coli is formed through accidental SOS response via intracellular metabolic perturbation. Microbiol Immunol 2022; 66:225-233. [PMID: 35174526 DOI: 10.1111/1348-0421.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Persisters are a subpopulation that exhibit growth suppression, antibiotic tolerance, and regrowth post antibiotic removal, without any genetic mutations, which causes the recalcitrance and recurrence of infectious diseases. Persisters are majorly induced through the repression of energy metabolism, but some exceptions have been reported. We have previously shown that ldhA, which encodes lactate dehydrogenase, induces Escherichia coli persisters, resulting in a state of high-energy metabolism. However, the detailed mechanism of persister formation upon ldhA expression remains elusive. In the present study, we focused on the SOS response pathway via the DNA repair pathway that consumes ATP and revealed that the SOS response pathway is activated upon ldhA expression even before antimicrobial treatment. Metabolome analysis of ldhA-overexpressing cells revealed that nucleotide metabolic pathways, such as de novo purine biosynthesis, were activated to prepare a nucleotide pool, as substrate for repairing ofloxacin-induced DNA damage. We provide a novel persister model that contributes to survival as a species by "accidentally" activating the SOS response even before receiving antimicrobial stress. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yurino Ohno
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
228
|
Lv B, Zeng Y, Zhang H, Li Z, Xu Z, Wang Y, Gao Y, Chen Y, Fu X. Mechanosensitive Channels Mediate Hypoionic Shock-Induced Aminoglycoside Potentiation against Bacterial Persisters by Enhancing Antibiotic Uptake. Antimicrob Agents Chemother 2022; 66:e0112521. [PMID: 34902270 PMCID: PMC8846477 DOI: 10.1128/aac.01125-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Improving the efficacy of existing antibiotics is a promising strategy for combating antibiotic-resistant/tolerant bacterial pathogens that have become a severe threat to human health. We previously reported that aminoglycoside antibiotics could be dramatically potentiated against stationary-phase Escherichia coli cells under hypoionic shock conditions (i.e., treatment with ion-free solutions), but the underlying molecular mechanism remains unknown. Here, we show that mechanosensitive (MS) channels, a ubiquitous protein family sensing mechanical forces of cell membrane, mediate such hypoionic shock-induced aminoglycoside potentiation. Two-minute treatment under conditions of hypoionic shock (e.g., in pure water) greatly enhances the bactericidal effects of aminoglycosides against both spontaneous and triggered E. coli persisters, numerous strains of Gram-negative pathogens in vitro, and Pseudomonas aeruginosa in mice. Such potentiation is achieved by hypoionic shock-enhanced bacterial uptake of aminoglycosides and is linked to hypoionic shock-induced destabilization of the cytoplasmic membrane in E. coli. Genetic and biochemical analyses reveal that MscS-family channels directly and redundantly mediate aminoglycoside uptake upon hypoionic shock and thus potentiation, with MscL channel showing reduced effect. Molecular docking and site-directed mutagenesis analyses reveal a putative streptomycin-binding pocket in MscS, critical for streptomycin uptake and potentiation. These results suggest that hypoionic shock treatment destabilizes the cytoplasmic membrane and thus changes the membrane tension, which immediately activates MS channels that are able to effectively transport aminoglycosides into the cytoplasm for downstream killing. Our findings reveal the biological effects of hypoionic shock on bacteria and can help to develop novel adjuvants for aminoglycoside potentiation to combat bacterial pathogens via activating MS channels.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Youhui Zeng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zhongyan Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zhaorong Xu
- Fujian Burn Institute, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yajuan Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| |
Collapse
|
229
|
Lv B, Bian M, Huang X, Sun F, Gao Y, Wang Y, Fu Y, Yang B, Fu X. n-Butanol Potentiates Subinhibitory Aminoglycosides against Bacterial Persisters and Multidrug-Resistant MRSA by Rapidly Enhancing Antibiotic Uptake. ACS Infect Dis 2022; 8:373-386. [PMID: 35100802 DOI: 10.1021/acsinfecdis.1c00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potentiation of traditional antibiotics is of significance for combating antibiotic-resistant bacteria that have become a severe threat to human and animal health. Here, we report that 1 min co-treatment with n-butanol greatly and specifically enhances the bactericidal action of aminoglycosides by 5 orders of magnitude against stationary-phase Staphylococcus aureus cells, with n-propanol and isobutanol showing less potency. This combined treatment also rapidly kills various S. aureus persisters, methicillin-resistant S. aureus (MRSA) cells, and numerous Gram-positive and -negative pathogens including some clinically isolated multidrug-resistant pathogens (e.g., S. aureus, Staphylococcus epidermidis, and Enterococcus faecalis) in vitro, as well as S. aureus in mice. Mechanistically, the potentiation results from the actions of aminoglycosides on their conventional target ribosome rather than the antiseptic effect of n-butanol and is achieved by rapidly enhancing the bacterial uptake of aminoglycosides, while salts and inhibitors of proton motive force (e.g., CCCP) can diminish this uptake. Importantly, such n-butanol-enhanced antibiotic uptake even enables subinhibitory concentrations of aminoglycosides to rapidly kill both MRSA and conventional S. aureus cells. Given n-butanol is a non-metabolite in the pathogens we tested, our work may open avenues to develop a metabolite-independent strategy for aminoglycoside potentiation to rapidly eliminate antibiotic-resistant/tolerant pathogens, as well as for reducing the toxicity associated with aminoglycoside use.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Mengmeng Bian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Xuebing Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Fengqi Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yajuan Fu
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350117, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| |
Collapse
|
230
|
Sulaima JE, Lam H. Proteomics in antibiotic resistance and tolerance research: Mapping the resistome and the tolerome of bacterial pathogens. Proteomics 2022; 22:e2100409. [PMID: 35143120 DOI: 10.1002/pmic.202100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance, the ability of a microbial pathogen to evade the effects of antibiotics thereby allowing them to grow under elevated drug concentrations, is an alarming health problem worldwide and has attracted the attention of scientists for decades. On the other hand, the clinical importance of persistence and tolerance as alternative mechanisms for pathogens to survive prolonged lethal antibiotic doses has recently become increasingly appreciated. Persisters and high-tolerance populations are thought to cause the relapse of infectious diseases, and provide opportunities for the pathogens to evolve resistance during the course of antibiotic therapy. Although proteomics and other omics methodology have long been employed to study resistance, its applications in studying persistence and tolerance are still limited. However, due to the growing interest in the topic and recent progress in method developments to study them, there have been some proteomic studies that yield fresh insights into the phenomenon of persistence and tolerance. Combined with the studies on resistance, these collectively guide us to novel molecular targets for the potential drugs for the control of these dangerous pathogens. In this review, we surveyed previous proteomic studies to investigate resistance, persistence, and tolerance mechanisms, and discussed emerging experimental strategies for studying these phenotypes with a combination of adaptive laboratory evolution and high-throughput proteomics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jordy Evan Sulaima
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
231
|
Cell density-dependent antibiotic tolerance to inhibition of the elongation machinery requires fully functional PBP1B. Commun Biol 2022; 5:107. [PMID: 35115684 PMCID: PMC8813938 DOI: 10.1038/s42003-022-03056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023] Open
Abstract
The peptidoglycan (PG) cell wall provides shape and structure to most bacteria. There are two systems to build PG in rod shaped organisms: the elongasome and divisome, which are made up of many proteins including the essential MreB and PBP2, or FtsZ and PBP3, respectively. The elongasome is responsible for PG insertion during cell elongation, while the divisome is responsible for septal PG insertion during division. We found that the main elongasome proteins, MreB and PBP2, can be inhibited without affecting growth rate in a quorum sensing-independent density-dependent manner. Before cells reach a particular cell density, inhibition of the elongasome results in different physiological responses, including intracellular vesicle formation and an increase in cell size. This inhibition of MreB or PBP2 can be compensated for by the presence of the class A penicillin binding protein, PBP1B. Furthermore, we found this density-dependent growth resistance to be specific for elongasome inhibition and was consistent across multiple Gram-negative rods, providing new areas of research into antibiotic treatment.
Collapse
|
232
|
Sun X, Bieber JM, Hammerlindl H, Chalkley RJ, Li KH, Burlingame AL, Jacobson MP, Wu LF, Altschuler SJ. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. SCIENCE ADVANCES 2022; 8:eabi7711. [PMID: 35089788 PMCID: PMC8797778 DOI: 10.1126/sciadv.abi7711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Cancer persister cells are able to survive otherwise lethal doses of drugs through nongenetic mechanisms, which can lead to cancer regrowth and drug resistance. The broad spectrum of molecular differences observed between persisters and their treatment-naïve counterparts makes it challenging to identify causal mechanisms underlying persistence. Here, we modulate environmental signals to identify cellular mechanisms that promote the emergence of persisters and to pinpoint actionable vulnerabilities that eliminate them. We found that interferon-γ (IFNγ) can induce a pro-persistence signal that can be specifically eliminated by inhibition of type I protein arginine methyltransferase (PRMT) (PRMTi). Mechanistic investigation revealed that signal transducer and activator of transcription 1 (STAT1) is a key component connecting IFNγ's pro-persistence and PRMTi's antipersistence effects, suggesting a previously unknown application of PRMTi to target persisters in settings with high STAT1 expression. Modulating environmental signals can accelerate the identification of mechanisms that promote and eliminate cancer persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lani F. Wu
- Corresponding author. (S.J.A.); (L.F.W.)
| | | |
Collapse
|
233
|
Kaushik V, Sharma S, Tiwari M, Tiwari V. Anti-persister strategies against stress induced bacterial persistence. Microb Pathog 2022; 164:105423. [PMID: 35092834 DOI: 10.1016/j.micpath.2022.105423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023]
Abstract
The increase in antibiotic non-responsive bacteria is the leading concern in current research-oriented to eliminate pathogens. Nowadays, the excess use of antibiotics without specifically understanding the potentiality of killing pathogens and bacterial survival patterns has helped bacteria emerge indefatigably. Bacteria use various mechanisms such as resistance, persistence, and tolerance to ensure survival. Among these, persistence is a mechanism by which bacteria reside in their dormant state, bypassing the effects of treatments, making it crucial for bacterial survival. Persistent bacterial cells arise from the normal bacterial population as a slow-growing subset of bacteria with no metabolic flux. This behavior renders it to survive for a longer duration and at higher concentrations of antibiotics. They are one of the underlying causes of recurrence of bacterial infections. The present article explains the detailed molecular mechanisms and strategies of bacterial persistence, including the toxin-antitoxin modules, DNA damage, the formation of inactive ribosomal complexes, (p)ppGpp network, antibiotic-induced persistence, which are triggered by drug-induced stress. The article also comprehensively covers the epigenetic memory of persistence in bacteria, and anti-persistent therapeutics like antimicrobial molecules, synthetic peptides, acyldepsipeptide antibiotics, and endolysin therapy to reduce persister cell formation and control their frequency. These strategies could be utilized in combating the pathogenic bacteria undergoing persistence.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
234
|
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:366-393. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial resistance caused by the overuse of antibiotics and the shelter of biofilms has evolved into a global health crisis, which drives researchers to continuously explore antimicrobial molecules and strategies to fight against drug-resistant bacteria and biofilm-associated infections. Cationic antimicrobial peptides (AMPs) are considered to be a category of potential alternative for antibiotics owing to their excellent bactericidal potency and lesser likelihood of inducing drug resistance through their distinctive antimicrobial mechanisms. In this review, the hitherto reported plentiful action modes of AMPs are systematically classified into 15 types and three categories (membrane destructive, nondestructive membrane disturbance, and intracellular targeting mechanisms). Besides natural AMPs, cationic polypeptides, synthetic polymers, and biopolymers enable to achieve tunable antimicrobial properties by optimizing their structures. Subsequently, the applications of these cationic antimicrobial agents at the biointerface as contact-active surface coatings and multifunctional wound dressings are also emphasized here. At last, we provide our perspectives on the development of clinically significant cationic antimicrobials and related challenges in the translation of these materials.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Haoyu Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
235
|
Bhattacharjee A, Sarma S, Sen T, Singh AK. Alterations in molecular response of Mycobacterium tuberculosis against anti-tuberculosis drugs. Mol Biol Rep 2022; 49:3987-4002. [PMID: 35066765 DOI: 10.1007/s11033-021-07095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, has plagued humans since the early middle-ages. More than one million deaths are recorded annually due to TB, even in present times. These deaths are primarily attributed to the constant appearance of resistant TB strains. Even with the advent of new therapeutics and diagnostics techniques, tuberculosis remains challenging to control due to resistant M. tuberculosis strains. Aided by various molecular changes, these strains adapt to stress created by anti-tuberculosis drugs. MATERIALS AND METHODS The review thus is an overview of ongoing research in the genome and transcriptome of antibiotic-resistant TB. It explores omics-based research to identify mutation and utilization of differential gene expression. CONCLUSIONS This study shows several mutations distinctive in the first- and second-line drug-resistant M. tuberculosis strains. It also explores the expressional differences of genes involved in the fundamental process of the cells and how they help in drug resistance. With the development of transcriptomics-based studies, a new insight has developed to inquire about gene expression changes in drug resistance. This information on expressional pattern changes can be utilized to design the basic platform of anti-TB treatments and therapeutic approaches. These novel insights can be instrumental in disease diagnosis and global containment of resistant TB.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
236
|
Malik AA, Bouskill NJ. Drought impacts on microbial trait distribution and feedback to soil carbon cycling. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ashish A. Malik
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | - Nicholas J. Bouskill
- Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
237
|
Abstract
In recent years, there has been increased appreciation that a whole category of proteins, small proteins of around 50 amino acids or fewer in length, has been missed by annotation as well as by genetic and biochemical assays. With the increased recognition that small proteins are stable within cells and have regulatory functions, there has been intensified study of these proteins. As a result, important questions about small proteins in bacteria and archaea are coming to the fore. Here, we give an overview of these questions, the initial answers, and the approaches needed to address these questions more fully. More detailed discussions of how small proteins can be identified by ribosome profiling and mass spectrometry approaches are provided by two accompanying reviews (N. Vazquez-Laslop, C. M. Sharma, A. S. Mankin, and A. R. Buskirk, J Bacteriol 204:e00294-21, 2022, https://doi.org/10.1128/JB.00294-21; C. H. Ahrens, J. T. Wade, M. M. Champion, and J. D. Langer, J Bacteriol 204:e00353-21, 2022, https://doi.org/10.1128/JB.00353-21). We are excited by the prospects of new insights and possible therapeutic approaches coming from this emerging field.
Collapse
Affiliation(s)
- Todd Gray
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Microverse Cluster, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
238
|
Fernandes S, Gomes IB, Sousa SF, Simões M. Antimicrobial Susceptibility of Persister Biofilm Cells of Bacillus cereus and Pseudomonas fluorescens. Microorganisms 2022; 10:160. [PMID: 35056610 PMCID: PMC8779418 DOI: 10.3390/microorganisms10010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
The present study evaluates the antimicrobial susceptibility of persister cells of Bacillus cereus and Pseudomonas fluorescens after their regrowth in suspension and as biofilms. Two conventional (benzalkonium chloride-BAC and peracetic acid-PAA) and two emerging biocides (glycolic acid-GA and glyoxal-GO) were selected for this study. Persister cells resulted from biofilms subjected to a critical treatment using the selected biocides. All biocide treatments developed B. cereus persister cells, except PAA that effectively reduced the levels of vegetative cells and endospores. P. fluorescens persister cells comprise viable and viable but non-culturable cells. Afterwards, persister cells were regrown in suspension and in biofilms and were subjected to a second biocide treatment. In general, planktonic cultures of regrown persister cells in suspension lost their antimicrobial tolerance, for both bacteria. Regrown biofilms of persister cells had antimicrobial susceptibility close to those regrown biofilms of biocide-untreated cells, except for regrown biofilms of persister P. fluorescens after BAC treatment, which demonstrated increased antimicrobial tolerance. The most active biocide against persister cells was PAA, which did not promote changes in susceptibility after their regrowth. In conclusion, persister cells are ubiquitous within biofilms and survive after critical biocide treatment. The descendant planktonic and biofilms populations showed similar properties as the original ones.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (I.B.G.)
| | - Inês B. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (I.B.G.)
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (I.B.G.)
| |
Collapse
|
239
|
Lactobacillus rhamnosus Ameliorates Multi-Drug-Resistant Bacillus cereus-Induced Cell Damage through Inhibition of NLRP3 Inflammasomes and Apoptosis in Bovine Endometritis. Microorganisms 2022; 10:microorganisms10010137. [PMID: 35056585 PMCID: PMC8777719 DOI: 10.3390/microorganisms10010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.
Collapse
|
240
|
Tate AT, Van Cleve J. Bet-hedging in innate and adaptive immune systems. Evol Med Public Health 2022; 10:256-265. [PMID: 35712085 PMCID: PMC9195227 DOI: 10.1093/emph/eoac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune system evolution is shaped by the fitness costs and trade-offs associated with mounting an immune response. Costs that arise mainly as a function of the magnitude of investment, including energetic and immunopathological costs, are well-represented in studies of immune system evolution. Less well considered, however, are the costs of immune cell plasticity and specialization. Hosts in nature encounter a large diversity of microbes and parasites that require different and sometimes conflicting immune mechanisms for defense, but it takes precious time to recognize and correctly integrate signals for an effective polarized response. In this perspective, we propose that bet-hedging can be a viable alternative to plasticity in immune cell effector function, discuss conditions under which bet-hedging is likely to be an advantageous strategy for different arms of the immune system, and present cases from both innate and adaptive immune systems that suggest bet-hedging at play.
Collapse
Affiliation(s)
- Ann T Tate
- Department of Biological Sciences, Vanderbilt University , 465 21st Ave S. , Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation , Nashville, TN, USA
- Evolutionary Studies Institute, Vanderbilt University , Nashville, TN, USA
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky , 101 T.H. Morgan Building , Lexington, KY 40506, USA
| |
Collapse
|
241
|
Qiu Y, Yu S, Wang Y, Xiao L, Pei L, Pu Y, Zhang Y. Photothermal Therapy may be a Double-edge Sword by Inducing the Formation of Bacterial Antibiotic Tolerance. Biomater Sci 2022; 10:1995-2005. [PMID: 35266929 DOI: 10.1039/d1bm01740c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal nanoparticles are thought to be the most potential candidates against infectious disease, by disrupting cell membrane and inhibiting metabolism. However, subpopulation survived with this low-activity state may be endowed...
Collapse
Affiliation(s)
- Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Shimin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linsen Pei
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| |
Collapse
|
242
|
Wang X, Li W, Wang W, Wang S, Xu T, Chen J, Zhang W. Involvement of Small Colony Variant-Related Heme Biosynthesis Genes in Staphylococcus aureus Persister Formation in vitro. Front Microbiol 2021; 12:756809. [PMID: 35003000 PMCID: PMC8733728 DOI: 10.3389/fmicb.2021.756809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Persisters are important reasons for persistent infections, and they can lead to antibiotic treatment failure in patients and consequently chronic infection. Staphylococcus aureus small colony variants (SCVs) have been shown to be related to persistent infection. Mutations in the genes of the heme biosynthesis pathway lead to the formation of SCVs. However, the relationship between heme production genes and persister has not been tested. Methods: HemA and hemB were knocked out by allelic replacement from S. aureus strain USA500 separately, and then, the heme deficiency was complemented by overexpression of related genes and the addition of hemin. The stress-related persister assay was conducted. RNA-sequencing was performed to find genes and pathways involved in heme-related persister formation, and relative genes and operons were further knocked out and overexpressed to confirm their role in each process. Results: We found that heme biosynthesis deficiency can lead to decreased persister. After complementing the corresponding genes or hemin, the persister levels could be restored. RNA-seq on knockout strains showed that various metabolic pathways were influenced, such as energy metabolism, amino acid metabolism, carbohydrate metabolism, and membrane transport. Overexpression of epiF and operon asp23 could restore USA500∆hemA persister formation under acid stress. Knocking out operon arc in USA500∆hemA could further reduce USA500∆hemA persister formation under acid and oxidative stress. Conclusion: Heme synthesis has a role in S. aureus persister formation.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weizheng Li
- Department of Infectious Diseases, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjie Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH) Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
243
|
Yashiro Y, Zhang C, Sakaguchi Y, Suzuki T, Tomita K. Molecular basis of glycyl-tRNA Gly acetylation by TacT from Salmonella Typhimurium. Cell Rep 2021; 37:110130. [PMID: 34936863 DOI: 10.1016/j.celrep.2021.110130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Bacterial toxin-antitoxin modules contribute to the stress adaptation, persistence, and dormancy of bacteria for survival under environmental stresses and are involved in bacterial pathogenesis. In Salmonella Typhimurium, the Gcn5-related N-acetyltransferase toxin TacT reportedly acetylates the α-amino groups of the aminoacyl moieties of several aminoacyl-tRNAs, inhibits protein synthesis, and promotes persister formation during the infection of macrophages. Here, we show that TacT exclusively acetylates Gly-tRNAGlyin vivo and in vitro. The crystal structure of the TacT:acetyl-Gly-tRNAGly complex and the biochemical analysis reveal that TacT specifically recognizes the discriminator U73 and G71 in tRNAGly, a combination that is only found in tRNAGly isoacceptors, and discriminates tRNAGly from other tRNA species. Thus, TacT is a Gly-tRNAGly-specific acetyltransferase toxin. The molecular basis of the specific aminoacyl-tRNA acetylation by TacT provides advanced information for the design of drugs targeting Salmonella.
Collapse
Affiliation(s)
- Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chuqiao Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
244
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
245
|
Dang C, Liu S, Chen Q, Sun W, Zhong H, Hu J, Liang E, Ni J. Response of microbial nitrogen transformation processes to antibiotic stress in a drinking water reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149119. [PMID: 34303244 DOI: 10.1016/j.scitotenv.2021.149119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Effects of antibiotics on microbial nitrogen transformation processes in natural aquatic ecosystems are largely unknown. In this study, we utilized the 15N stable isotope tracers and metagenomic sequencing to identify how antibiotics drive nitrogen transformation processes in Danjiangkou Reservoir, which is the largest artificial drinking water reservoir in China. We retrieved 51 nitrogen functional genes, and found that the highest abundances of nitrate reduction and denitrification-related genes occurred in dissimilatory nitrogen transformation pathways. 15N-labelling analysis substantiated that denitrification was the main pathway for nitrogen removal, accounting for 57.1% of nitrogen loss. Nitrogen functional genes and antibiotic resistance genes co-occurred in Danjiangkou Reservoir, and they were mainly carried by the denitrifying bacteria such as Rhodoferax, Polaromonas, Limnohabitans, Pararheinheimera, Desulfobulbus, and Pseudopelobacter. Genome annotation revealed that antibiotic deactivation, Resistance-Nodulation-Division and facilitator superfamily efflux pumps were responsible for the multiple-resistance to antibiotics in these bacteria. Moreover, antibiotics showed non-significant effects on nitrogen transformation processes. It is speculated that denitrifying bacteria harboring ARGs played crucial roles in protecting nitrogen transformation from low-level antibiotics stress in the reservoir. Our results highlight that denitrifying bacteria are important hosts of ARGs, which provides a novel perspective for evaluating the effects of antibiotics on nitrogen cycle in natural aquatic ecosystems.
Collapse
Affiliation(s)
- Chenyuan Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shufeng Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China.
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Haohui Zhong
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Jinyun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Enhang Liang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| |
Collapse
|
246
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
247
|
Nordholt N, Kanaris O, Schmidt SBI, Schreiber F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat Commun 2021; 12:6792. [PMID: 34815390 PMCID: PMC8611074 DOI: 10.1038/s41467-021-27019-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials.
Collapse
Affiliation(s)
- Niclas Nordholt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | - Orestis Kanaris
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Selina B I Schmidt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| |
Collapse
|
248
|
Svenningsen MS, Svenningsen SL, Sørensen MA, Mitarai N. Existence of log-phase Escherichia coli persisters and lasting memory of a starvation pulse. Life Sci Alliance 2021; 5:5/2/e202101076. [PMID: 34795016 PMCID: PMC8605324 DOI: 10.26508/lsa.202101076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
The authors characterize the growth condition dependence of survival of bacteria exposed to lethal antibiotics for a week. 1-h starvation pulse is shown to cause an increase in survival for days. The vast majority of a bacterial population is killed when treated with a lethal concentration of antibiotics. The time scale of this killing is often comparable with the bacterial generation time before the addition of antibiotics. Yet, a small subpopulation typically survives for an extended period. However, the long-term killing dynamics of bacterial cells has not been fully quantified even in well-controlled laboratory conditions. We constructed a week-long killing assay and followed the survival fraction of Escherichia coli K12 exposed to a high concentration of ciprofloxacin. We found that long-term survivors were formed during exponential growth, with some cells surviving at least 7 d. The long-term dynamics contained at least three time scales, which greatly enhances predictions of the population survival time compared with the biphasic extrapolation from the short-term behavior. Furthermore, we observed a long memory effect of a brief starvation pulse, which was dependent on the (p)ppGpp synthase relA. Specifically, 1 h of carbon starvation before antibiotics exposure increased the surviving fraction by nearly 100-fold even after 4 d of ciprofloxacin treatment.
Collapse
Affiliation(s)
| | | | | | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
249
|
Takada K, Hama K, Sasaki T, Otsuka Y. The hokW-sokW Locus Encodes a Type I Toxin-Antitoxin System That Facilitates the Release of Lysogenic Sp5 Phage in Enterohemorrhagic Escherichia coli O157. Toxins (Basel) 2021; 13:toxins13110796. [PMID: 34822580 PMCID: PMC8621323 DOI: 10.3390/toxins13110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
The toxin-antitoxin (TA) genetic modules control various bacterial events, such as plasmid maintenance, persister cell formation, and phage defense. They also exist in mobile genetic elements, including prophages; however, their physiological roles remain poorly understood. Here, we demonstrate that hokW-sokW, a putative TA locus encoded in Sakai prophage 5 (Sp5) in enterohemorrhagic Escherichia coli O157: H7 Sakai strain, functions as a type I TA system. Bacterial growth assays showed that the antitoxic activity of sokW RNA against HokW toxin partially requires an endoribonuclease, RNase III, and an RNA chaperone, Hfq. We also demonstrated that hokW-sokW assists Sp5-mediated lysis of E. coli cells when prophage induction is promoted by the DNA-damaging agent mitomycin C (MMC). We found that MMC treatment diminished sokW RNA and increased both the expression level and inner membrane localization of HokW in a RecA-dependent manner. Remarkably, the number of released Sp5 phages decreased by half in the absence of hokW-sokW. These results suggest that hokW-sokW plays a novel role as a TA system that facilitates the release of Sp5 phage progeny through E. coli lysis.
Collapse
|
250
|
Wang M, Chan EWC, Xu C, Chen K, Yang C, Chen S. Econazole as adjuvant to conventional antibiotics is able to eradicate starvation-induced tolerant bacteria by causing proton motive force dissipation. J Antimicrob Chemother 2021; 77:425-432. [PMID: 34747463 DOI: 10.1093/jac/dkab384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Bacterial antibiotic tolerance is responsible for the recalcitrance of chronic infections. This study aims to investigate a potential drug that can effectively kill antibiotic-tolerant bacteria and evaluate the ability of this drug on the eradication of tolerant cells both in vitro and in vivo. METHODS The in vitro effect of econazole on eradicating starvation-induced tolerant bacterial populations was studied by testing the amount of survival bacteria in the presence of econazole combining conventional antibiotics. Proton motive force (PMF) was determined after econazole treatment by DiOC2(3). Finally, mouse infection models were used to detect the ability of econazole on killing the tolerant populations in vivo. RESULTS Econazole eradicated starvation-induced tolerant cells of various bacterial species within 24 or 96 h when used in combination with conventional antibiotics. Moreover, mouse survival rate drastically increased along with the decrease of in vivo bacterial count after treatment of infected mice with the econazole and ceftazidime combination for 72 h. PMF was found to have dissipated almost completely in econazole-treated cells. CONCLUSIONS Econazole could act in combination with conventional antibiotics to effectively eradicate bacterial tolerant cells. The combined use of econazole and ceftazidime was shown to be effective for eradicating tolerant cells in a mouse infection model. The ability of econazole to eradicate tolerant cells was due to its ability to cause dissipation of bacterial transmembrane PMF. Econazole-mediated PMF disruption is a feasible strategy for the treatment of chronic and recurrent bacterial infections.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|