201
|
Zhao S, Zettler ER, Bos RP, Lin P, Amaral-Zettler LA, Mincer TJ. Large quantities of small microplastics permeate the surface ocean to abyssal depths in the South Atlantic Gyre. GLOBAL CHANGE BIOLOGY 2022; 28:2991-3006. [PMID: 35048454 DOI: 10.1111/gcb.16089] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 05/22/2023]
Abstract
Hundreds of studies have surveyed plastic debris in surface ocean gyre and convergence zones, however, comprehensive microplastics (MPs, ≤5 mm) assessments beneath these surface accumulation areas are lacking. Using in situ high-volume filtration, Manta net and MultiNet sampling, combined with micro-Fourier-transform-infrared imaging, we discovered a high abundance (up to 244.3 pieces per cubic meter [n m-3 ]) of small microplastics (SMPs, characteristically <100 μm) from the surface to near-sea floor waters of the remote South Atlantic Subtropical Gyre. Large horizontal and vertical variations in the abundances of SMP were observed, displaying inverse vertical trends in some cases. SMP abundances in pump samples were more than two orders of magnitude higher than large microplastics (LMPs, >300 μm) concurrently collected in MultiNet samples. Higher-density polymers (e.g., alkyd resins and polyamide) comprised >65% of the total pump sample count, highlighting a discrepancy between polymer compositions from previous ocean surface-based surveys, typically dominated by buoyant polymers such as polyethylene and polypropylene. Contrary to previous reports stating LMP preferentially accumulated at density gradients, SMP with presumably slower sinking rates are much less influenced by density gradients, thus resulting in a more even vertical distribution in the water column, and potentially longer residence times. Overall, our findings suggest that SMP is a critical and largely underexplored constituent of the oceanic plastic inventory. Additionally, our data support that weak current systems contribute to the formation of SMP hotspots at depth, implying a higher encounter rate for subsurface particle feeders. Our study unveils the prevalence of plastics in the entire water column, highlighting the urgency for more quantification of the deep-ocean MP, particularly the smaller size fraction, to better understand ecosystem exposure and to predict MP fate and impacts.
Collapse
Affiliation(s)
- Shiye Zhao
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Peigen Lin
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
202
|
Justino AKS, Ferreira GVB, Schmidt N, Eduardo LN, Fauvelle V, Lenoble V, Sempéré R, Panagiotopoulos C, Mincarone MM, Frédou T, Lucena-Frédou F. The role of mesopelagic fishes as microplastics vectors across the deep-sea layers from the Southwestern Tropical Atlantic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118988. [PMID: 35157937 DOI: 10.1016/j.envpol.2022.118988] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea environment. However, there is little information on ecological mechanisms driving MP uptake by deep-sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). Interestingly, individuals caught in the lower mesopelagic zone (500-1000 m depth) were less contaminated with MPs than those captured in the upper mesopelagic layer (200-500 m). Our results highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport in the deep waters of the SWTA.
Collapse
Affiliation(s)
- Anne K S Justino
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil; Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France.
| | - Guilherme V B Ferreira
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil
| | - Natascha Schmidt
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Leandro N Eduardo
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil; Institut de Recherche pour le Développement (IRD), MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Vincent Fauvelle
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Richard Sempéré
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Michael M Mincarone
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brazil
| | - Thierry Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil
| | - Flávia Lucena-Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil
| |
Collapse
|
203
|
Ocean Current Prediction Using the Weighted Pure Attention Mechanism. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ocean current (OC) prediction plays an important role for carrying out ocean-related activities. There are plenty of studies for OC prediction with deep learning to pursue better prediction performance, and the attention mechanism was widely used for these studies. However, the attention mechanism was usually combined with deep learning models rather than purely used to predict OC, or, if it was purely used, did not further optimize the attention weight. Therefore, a deep learning model based on weighted pure attention mechanism is proposed in this paper. This model uses the pure attention mechanism, introduces a weight parameter for the generated attention weight, and moves more attentions from other elements to the key elements based on weight parameter setting. To our knowledge, it is the first attempt to use the weighted pure attention mechanism to improve the OC prediction performance, and it is an innovation for OC prediction. The experiment results indicate that the proposed model can fully take advantage of the strengths from the pure attention mechanism; it can further optimize the pure attention mechanism and significantly improve the prediction performance, and is reliable for OC prediction with high performance for a wide time range and large spatial scope.
Collapse
|
204
|
Li X, Sun W. The formation of deep sea plastic biotas. Sci Bull (Beijing) 2022; 67:674-675. [PMID: 36546129 DOI: 10.1016/j.scib.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaohua Li
- Center of Deep Sea Research, Center of Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Sun
- Center of Deep Sea Research, Center of Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
205
|
Ge J, Yang Q, Fang Z, Liu S, Zhu Y, Yao J, Ma Z, Gonçalves RJ, Guan W. Microplastics impacts in seven flagellate microalgae: Role of size and cell wall. ENVIRONMENTAL RESEARCH 2022; 206:112598. [PMID: 34953887 DOI: 10.1016/j.envres.2021.112598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of microplastic particles (MPs) on aquatic environments has been widely reported; however, their effects on protists are still contradictory. For example, it is unclear if cell size and cell wall have a role in shaping the response of flagellates to MPs. In this study, seven marine flagellated microalgae (six Dinoflagellates and one Raphidophyceae) were incubated with 10 mg L-1 MPs (polystyrene plastic micro-spheres, 1 μm diameter) to address the above question by measuring different response variables, i.e., growth, optimal photochemical efficiency (Fv/Fm), chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, and cell morphology. The effect of MPs on growth and Fv/Fm showed species-specificity effects. Maximum and minimum MPs-induced inhibitions were detected in Karenia mikimotoi (76.43%) and Akashiwo sanguinea (10.16%), respectively, while the rest of the species showed intermediate responses. The presence of MPs was associated with an average reduction of Chl-a content in most cases and with a higher superoxide dismutase activity in all cases. Seven species were classified into two groups by the variation of Chl-a under MPs treatment. One group (Prorocentrum minimum and Karenia mikimotoi) showed increased Chl-a, while the other (P. donghaiense, P. micans, Alexandrium tamarense, Akashiwo sanguinea, Heterosigma akashiwo) showed decreased Chl-a content. The MPs-induced growth inhibition was negatively correlated with cell size in the latter group. SEM images further indicated that MPs-induced malformation in the smaller cells (e.g., P. donghaiense and K. mikimotoi) was more severe than the bigger cells (e.g., A. sanguinea and P. micans), probably due to a relatively higher ratio of the cell surface to cell volume in the former. These results implicate that the effect of MPs on marine flagellated microalgae was related to the cell size among most species but not cell wall. Thus plastic pollution may have size-dependent effects on phytoplankton in future scenarios.
Collapse
Affiliation(s)
- Jingke Ge
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qiongying Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zhouxi Fang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Shuqi Liu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Yue Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China.
| |
Collapse
|
206
|
Uribe-Echeverría T, Beiras R. Acute toxicity of bioplastic leachates to Paracentrotus lividus sea urchin larvae. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105605. [PMID: 35316651 DOI: 10.1016/j.marenvres.2022.105605] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
In an attempt to ensure that bioplastics, progressively replacing petrochemical-derived plastics, do not release any harmful compound to the environment, the study assessed the toxic effects of three innovative bioplastic products: polyhydroxybutyrate resin (PHB), polylactic acid cups (PLA) and a polylactic acid/polyhydroxyalkanoate 3D printing filament (PLA/PHA), together with a synthetic polyvinyl chloride (PVC) toy in Paracentrotus lividus sea urchin larvae. PVC toy was the most toxic material, likely due to the added plasticizers; remarkably, even if PHB is conceived as a nontoxic polymer, it showed a slight toxicity and Gas Chromatography-Mass Spectometry analysis (GC-MS) revealed the presence of a wide range of additives. Conversely, PLA cups and PLA/PHA filament were innocuous for the larvae, a positive outcome for these renewable solutions. Proven that additives are also used in some bioplastic formulations, they should be carefully addressed to ensure that they are as safe as regarded.
Collapse
Affiliation(s)
- Teresa Uribe-Echeverría
- Centro de Investigación Mariña, Universidade de Vigo, 36331 Vigo, Galicia, Spain; Institute of Environment and Marine Science Research (IMEDMAR), Universidad Católica de Valencia SVM, Avda. del Puerto s/n, 03710, Calpe, Alicante, Spain.
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36310, Vigo, Galicia, Spain.
| |
Collapse
|
207
|
Dai L, Wang Z, Guo T, Hu L, Chen Y, Chen C, Yu G, Ma LQ, Chen J. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. CHEMOSPHERE 2022; 293:133576. [PMID: 35016956 DOI: 10.1016/j.chemosphere.2022.133576] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution resulting from industrialization and urbanization is increasingly serious. Hangzhou is a city with high industrial/urban growth in Southeast China. Focusing on the microplastic pollution in the Hangzhou section Qiantang River, six samples were collected and analyzed during different hydrological periods (normal, wet, and dry periods) and the relationship between microplastic pollution and economic development was investigated. Results showed that more microplastics were found during the dry period than that of the wet period (49.8 vs. 13.2%). Microplastic abundance was 1.5-9.4 items L-1, showing significant spatial differences in sampling sites. Among the collecting microplastics, debris and fibers accounted for 36.4 and 30.9%. Polyethylene terephthalate and polyvinyl chloride were the main polymers, accounting for 48.3 and 31.8%, respectively. Microplastics with size <1 mm accounted for 60% of the microplastics in surface water samples. Spatially, microplastic abundance was the highest in the middle of the river. Redundant analysis revealed that the per capita GDP (p = 0.002), high-end equipment industry (p = 0.028) and fashion manufacturing (p = 0.006) influenced microplastic abundance. Urbanization coupled with rapid economic development led to increase in local microplastic pollution. Our results provide insight into microplastic distribution patterns in urban river systems in China.
Collapse
Affiliation(s)
- Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guogang Yu
- Bureau of Hangzhou Port and Navigation Administration, Hangzhou, 310005, China
| | - Lena Qiying Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
208
|
Distribution Characteristics and Source Analysis of Microplastics in Urban Freshwater Lakes: A Case Study in Songshan Lake of Dongguan, China. WATER 2022. [DOI: 10.3390/w14071111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current studies on microplastic pollution mainly focus on marine systems. However, few studies have investigated microplastics in an urban lake. This research intends to use an urban lake (Songshan Lake) as an example to explore the pollution characteristics of microplastics and use the principal component as well as the heat map analysis to discuss the relationships between different shapes of microplastics. According to this study, the average abundance of microplastics in the surface water and surface sediments of Songshan Lake were, respectively, 2.29 ± 0.98 items/m3 and 244 ± 121 items/kg; thin films were the major microplastics in both media; transparent this type of color has the most microplastic content. The particle size of microplastics was mainly 0.18–0.6 mm (43.3%) in surface water and 1–2 mm (48.3%) in surface sediments. The composition included five polymers: polyethylene (PE), polypropylene (PP), polypropylene–polyethylene copolymer (PP–PE copolymer), polystyrene (PS), and polyvinyl chloride (PVC), among which PE (47%) and PP (36%) were the main components. Principal component analysis (PCA) showed that there was a positive correlation among the four shapes of microplastics: films, fragments, foams, and fibers. The heat map analysis showed that the same category of shape distribution features may be similar for each sampling site.
Collapse
|
209
|
Waltmann C, Mills CE, Wang J, Qiao B, Torkelson JM, Tullman-Ercek D, de la Cruz MO. Functional enzyme-polymer complexes. Proc Natl Acad Sci U S A 2022; 119:e2119509119. [PMID: 35312375 PMCID: PMC9060439 DOI: 10.1073/pnas.2119509119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Jeremy Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - John M. Torkelson
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
210
|
Jorquera A, Castillo C, Murillo V, Araya J, Pinochet J, Narváez D, Pantoja-Gutiérrez S, Urbina MA. Physical and anthropogenic drivers shaping the spatial distribution of microplastics in the marine sediments of Chilean fjords. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152506. [PMID: 34968600 DOI: 10.1016/j.scitotenv.2021.152506] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Several studies have focused on the presence and distribution of microplastics within the water column of coastal waters, but the dynamics of these particles in sediments have received little attention. Here we examine the concentrations and characteristics of microplastics in sediment samples collected from 35 stations within the Inner Sea of Chiloé, Chilean Patagonia. Current velocity, grain size, intensity of salmon farming activities, and human population density were all evaluated as factors potentially explaining concentrations and distribution of microplastic particles within these sediments. Microplastics were detected in all samples, with the highest abundance represented by fibers (88%), fragments (10%) and films (2%). Across the sampled sites, microplastic concentrations averaged 72.2 ± 32.4 (SD) items per kg dw (dry weight) sediment, with the principal polymers identified as polyethylene terephthalate (PET), acrylic, polypropylene (PP) and polyurethane (PUR). Approximately 40% of the variability in distribution and abundance of microplastics was explained by current velocity combined with proximity and intensity of local salmon production activities. SYNOPSIS: Marine currents and aquaculture intensity explain abundance and dynamics of microplastics in marine sediments.
Collapse
Affiliation(s)
- Alberto Jorquera
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cristóbal Castillo
- Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile; Departamento de Oceanografía, Centros de Investigación Oceanográfica COPAS Sur-Austral and COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Vladimir Murillo
- CTPA Putemún, Departamento de Medio Ambiente, Instituto de Fomento Pesquero (IFOP), Castro, Chile
| | - Juan Araya
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Javier Pinochet
- Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Diego Narváez
- Departamento de Oceanografía, Centros de Investigación Oceanográfica COPAS Sur-Austral and COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Silvio Pantoja-Gutiérrez
- Departamento de Oceanografía, Centros de Investigación Oceanográfica COPAS Sur-Austral and COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
211
|
Yang M, Zhang B, Xin X, Liu B, Zhu Z, Dong G, Zhao Y, Lee K, Chen B. Microplastic-oil-dispersant agglomerates in the marine environment: Formation mechanism and impact on oil dispersion. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127825. [PMID: 34836687 DOI: 10.1016/j.jhazmat.2021.127825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) can interact with spilled oil to form MP-oil-dispersant agglomerates (MODAs) in oceans. This study investigated the MODA formation mechanism and its impact on oil dispersion during marine oil spill responses. Two types of agglomerates, MODA-1 (MP-in-oil) and MODA-2 (MP-oil droplet-embedded), were identified. The 12 µm-MPs only formed MODA-1, while 45 µm-MPs and 125 µm-MPs formed MODA-1 and MODA-2 due to the surface free energy minimization principle. Impacts of MODA on oil dispersion under different mixing energy levels and seawater salinities were explored. We found that MODA reduced oil dispersion effectiveness under different mixing energy levels. Among three MP sizes, 12 µm-MPs caused the greatest reduction in dispersion effectiveness due to the formation of MODA-1. Pristine 12 µm-MPs reduced dispersion effectiveness by 21.95% under 5.62 × 10-1 W/kg, while pristine 45 µm-MPs and pristine 125 µm-MPs decreased it by 5.85% and 1.83%, respectively. In addition, MODA formed by pristine MPs has a larger impact on oil dispersion effectiveness than that of aged MPs under different salinities. Under 20psu, pristine 12 µm-MPs reduced dispersion effectiveness by 33.68%, while aged 12 µm-MPs decreased it by 24.61%. This study is the first report on the MODA formation mechanism, which is essential for exploring MODA transport and toxicity through marine trophic levels.
Collapse
Affiliation(s)
- Min Yang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5.
| | - Xiaying Xin
- School of Energy and Environment, State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X7
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON, Canada K1A 0E6
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X5
| |
Collapse
|
212
|
The accumulation of microplastic pollution in a commercially important fishing ground. Sci Rep 2022; 12:4217. [PMID: 35273306 PMCID: PMC8913702 DOI: 10.1038/s41598-022-08203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/03/2022] [Indexed: 11/08/2022] Open
Abstract
The Irish Sea is an important area for Norway Lobster Nephrops norvegicus fisheries, which are the most valuable fishing resource in the UK. Norway lobster are known to ingest microplastic pollution present in the sediment and have displayed reduced body mass when exposed to microplastic pollution. Here, we identified microplastic pollution in the Irish Sea fishing grounds through analysis of 24 sediment samples from four sites of differing proximity to the Western Irish Sea Gyre in both 2016 and 2019. We used µFTIR spectroscopy to identify seven polymer types, and a total of 77 microplastics consisting of fibres and fragments. The mean microplastics per gram of sediment ranged from 0.13 to 0.49 and 0 to 1.17 MP/g in 2016 and 2019, respectively. There were no differences in the microplastic counts across years, and there was no correlation of microplastic counts with proximity to the Western Irish Sea Gyre. Considering the consistently high microplastic abundance found in the Irish Sea, and the propensity of N. norvegicus to ingest and be negatively impacted by them, we suggest microplastic pollution levels in the Irish Sea may have adverse impacts on N. norvegicus and negative implications for fishery sustainability in the future.
Collapse
|
213
|
Zhang Z, Gao SH, Luo G, Kang Y, Zhang L, Pan Y, Zhou X, Fan L, Liang B, Wang A. The contamination of microplastics in China's aquatic environment: Occurrence, detection and implications for ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118737. [PMID: 34954308 DOI: 10.1016/j.envpol.2021.118737] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 05/26/2023]
Abstract
The widespread occurrence of microplastics in aquatic ecosystems that resulted in environmental contamination has attracted worldwide attention. Microplastics pose a potential threat to the growth and health of aquatic organisms, thereby affecting the function of the ecosystems. As one of the top ten countries producing and consuming plastic products globally, China's aquatic ecosystems have been profoundly affected by microplastics. In this review, we have summarized the microplastics contamination in three typical water environments (marine environment, freshwater environment, and wastewater treatment plants) in China, elaborated on the adverse impacts of microplastics on the ecological environment, and evaluated the potential ecological risks exposed to the ecosystem. In addition, the progress of microplastics extraction methods, as the important basis of microplastics related research, in aquatic ecosystems was introduced, especially the difference between the extraction of microplastics from wastewater and sludge samples. At present, most of the research on microplastics focuses on "one point", such as a certain river or wastewater treatment plant. Research on the mitigation and transfer of microplastics among different connected water environments is still lacking. Also, the microscale ecotoxicity caused by microplastics is poorly understood. In the end, we proposed suggestions and perspectives for future research regarding microplastics in the aquatic ecosystems in China.
Collapse
Affiliation(s)
- Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
214
|
Murano C, Vaccari L, Casotti R, Corsi I, Palumbo A. Occurrence of microfibres in wild specimens of adult sea urchin Paracentrotus lividus (Lamarck, 1816) from a coastal area of the central Mediterranean Sea. MARINE POLLUTION BULLETIN 2022; 176:113448. [PMID: 35217421 DOI: 10.1016/j.marpolbul.2022.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the occurrence of anthropogenic fibres inside wild Paracentrotus lividus at a Mediterranean coastal area in 2020. From each sea urchin, the coelomic fluid was directly analysed while digestive tracts and gonads were removed, pre-treated with trypsin (0.3%) and digested with H2O2 (10%) before analysis. A total of 260 fibres and 1 fragment were found in 100 specimens, with an average of 2.6 items/individual. Fibres were more abundant in the digestive system, less in gonads and in the coelomic fluid, respectively. Fourier transform infrared (FTIR) analysis of representative fibres identified 67% natural (cotton-based) and 33% synthetic polymers (polyester) suggesting their origin from textiles, possibly released from laundry sewages. Overall, these results encourage further in-depth investigations on fibres accumulation and potential transfer through the trophic chain up to humans.
Collapse
Affiliation(s)
- Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy.
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
215
|
Guo B, Vanga SR, Lopez-Lorenzo X, Saenz-Mendez P, Ericsson SR, Fang Y, Ye X, Schriever K, Bäckström E, Biundo A, Zubarev RA, Furó I, Hakkarainen M, Syrén PO. Conformational Selection in Biocatalytic Plastic Degradation by PETase. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05548] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Boyang Guo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sudarsana Reddy Vanga
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ximena Lopez-Lorenzo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sara Rönnblad Ericsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Yuan Fang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xinchen Ye
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Karen Schriever
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Eva Bäckström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Antonino Biundo
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
- SciLifeLab, SE-171 21 Solna, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - István Furó
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
216
|
Xu D, Gao B, Wan X, Peng W, Zhang B. Influence of catastrophic flood on microplastics organization in surface water of the Three Gorges Reservoir, China. WATER RESEARCH 2022; 211:118018. [PMID: 35021122 DOI: 10.1016/j.watres.2021.118018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The Three Gorges Dam (TGD) is the world's largest hydropower project. It could potentially influence the footprint and transport of microplastics (MPs) in Yangtze River, which is the largest riverine input of oceanic MPs worldwide. In addition to analyzing the MP particles of all size categories and polymer groups, we also evaluated the stability, pollution risk and source identification of MPs after the catastrophic flood of 2020 in the Three Gorges Reservoir (TGR) and downstream of the TGD. We found that the MP abundance (6214 ± 5394 particles/m3) in the TGR water increased by a 57.9% growth after this catastrophic flood. Interestingly, we observed the small-sized MPs (SMPs; < 300 μm) were dominant in the TGR (accounting for ∼65.4% of the total MP particles). After flooding, the main morphological types were fragment and fiber, while the major polymer was polyethylene (PE). Although the MP level was at a low pollution risk, 13.6% of the sampling sites in the TGR water faced potential ecological risks driven by SMPs. In particular, there was no significant difference in the abundances, morphological types, and polymer composition of MPs between upstream and downstream of the TGD (p > 0.05), indicating flooding control operation could weaken the barrier effect of the dam on MPs. Further, based on the conditional fragmentation model, the PE fragments in SMPs of the TGR remained at a stable state. MPs in the TGR mainly originated from anthropogenic activities (wastewater, containers, and agriculture films), with atmospheric deposition as a potential transport pathway for polymers. Our study demonstrates that dam operation during the flood period can influence the MP organization in TGR, providing new insights of the global land-sea transportation of MPs in the Yangtze River.
Collapse
Affiliation(s)
- Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Xiaohong Wan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Baohao Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
217
|
Cutroneo L, Capello M, Domi A, Consani S, Lamare P, Coyle P, Bertin V, Dornic D, Reboa A, Geneselli I, Anghinolfi M. Microplastics in the abyss: a first investigation into sediments at 2443-m depth (Toulon, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9375-9385. [PMID: 35001272 DOI: 10.1007/s11356-021-17997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Plastic and microplastic pollutions are known to be widespread across the planet in all types of environments. However, relatively little about microplastic quantities in the deeper areas of the oceans is known, due to the difficulty to reach these environments. In this work, we present an investigation of microplastic (<5 mm) distribution performed in the bottom sediments of the abyssal plain off the coast and the canyon of Toulon (France). Four samples of deep-sea sediment were collected at the depth of 2443 m during the sea operations carried out by the French oceanographic cruises for the KM3NeT project. The chemical and physical characterisation of the sediment was carried out, and items were extracted from sediments by density separation and analysed by optical microscope and µRaman spectroscopy. Results show microplastics in the deep-sea sediments with a concentration of about 80 particles L-1, confirming the hypothesis of microplastics spread to abyssal sediments in the Mediterranean Sea.
Collapse
Affiliation(s)
- Laura Cutroneo
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Marco Capello
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy.
| | - Alba Domi
- DIFI, University of Genoa, Via Dodecaneso, 33, 16146, Genoa, Italy
- National Institute for Nuclear Physics, 33 Via Dodecaneso, I-16146, Genoa, Italy
| | - Sirio Consani
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Patrick Lamare
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Paschal Coyle
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Vincent Bertin
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Damien Dornic
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Anna Reboa
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Irene Geneselli
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Marco Anghinolfi
- DIFI, University of Genoa, Via Dodecaneso, 33, 16146, Genoa, Italy
- National Institute for Nuclear Physics, 33 Via Dodecaneso, I-16146, Genoa, Italy
| |
Collapse
|
218
|
Gérigny O, Pedrotti ML, El Rakwe M, Brun M, Pavec M, Henry M, Mazeas F, Maury J, Garreau P, Galgani F. Characterization of floating microplastic contamination in the bay of Marseille (French Mediterranean Sea) and its impact on zooplankton and mussels. MARINE POLLUTION BULLETIN 2022; 175:113353. [PMID: 35121214 DOI: 10.1016/j.marpolbul.2022.113353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) were sampled in three seasons from 2016 to 2018 in the Bay of Marseille, northwestern Mediterranean Sea, adjacent to a highly urbanized area. Six sites were selected according to their different characteristics (river mouth, treatment plants, protected marine area). Surface floating MPs were characterized (number, weight, typology and polymer) as was zooplankton. In addition, mussels were submerged and used to investigate ingestion. Finally, a hydrodynamic model was used to improve understanding of dispersion mechanisms. The annual averages of floating MPs values ranged from 39,217 to 514,817 items/km2. The MPs collected were mainly fragments principally composed of polyethylene and polypropylene. The mean abundance ratio (MPs/zooplankton) was 0.09. On average 87% of mussel pools were contaminated and ingested 18.73 items/100 g of flesh. Two hydrodynamic patterns were identified: the first retaining the MPs in the harbor, and the second dispersing them outside.
Collapse
Affiliation(s)
- O Gérigny
- Ifremer, ODE/LITTORAL/LER-PAC, La Seine-sur-Mer, France.
| | - M-L Pedrotti
- Sorbonne Universités, CNRS, UMR 7093, LOV, Villefranche sur mer, France
| | | | - M Brun
- Ifremer, ODE/VIGIES, Nantes, France
| | - M Pavec
- Actimar, Université de Bretagne Occidentale, Brest, France
| | - M Henry
- Ifremer, ODE/LITTORAL/LER-PAC, La Seine-sur-Mer, France
| | - F Mazeas
- Ifremer, REM/RDT/LDCM, Brest, France
| | - J Maury
- Sorbonne Universités, CNRS, UMR 7093, LOV, Villefranche sur mer, France
| | - P Garreau
- Ifremer, Univ. Brest, CNRS UMR 6523, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280 Plouzané, France
| | - F Galgani
- Ifremer, ODE/LITTORAL/LER-PAC, La Seine-sur-Mer, France
| |
Collapse
|
219
|
Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, Fantke P, Hassellöv M, MacLeod M, Ryberg MW, Søgaard Jørgensen P, Villarrubia-Gómez P, Wang Z, Hauschild MZ. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1510-1521. [PMID: 35038861 PMCID: PMC8811958 DOI: 10.1021/acs.est.1c04158] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 05/04/2023]
Abstract
We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We propose several complementary control variables to capture the complexity of this boundary, while acknowledging major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies' ability to conduct safety related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many novel entities and/or their associated effects will continue to pose a threat.
Collapse
Affiliation(s)
- Linn Persson
- Stockholm
Environment Institute, Linnégatan 87D, Box 24218, 104
51 Stockholm, Sweden
| | - Bethanie M. Carney Almroth
- Department
of Biology and Environmental Sciences, University
of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Christopher D. Collins
- Department
of Geography and Environmental Sciences, University of Reading, PO Box 217, Reading, Berkshire, RG6 6AH, United Kingdom
| | - Sarah Cornell
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Miriam L. Diamond
- Department
of Earth Sciences; and School of the Environment, University of Toronto, Toronto, Canada M5S 3B1
| | - Peter Fantke
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Martin Hassellöv
- Department
of Marine Sciences, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
| | - Matthew MacLeod
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Morten W. Ryberg
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Peter Søgaard Jørgensen
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Global
Economic Dynamics and the Biosphere, Royal
Swedish Academy of Sciences, Lilla Frescativägen 4A, 104
05 Stockholm, Sweden
| | | | - Zhanyun Wang
- Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Zwicky Hauschild
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
220
|
Chen J, Wu J, Sherrell PC, Chen J, Wang H, Zhang W, Yang J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103764. [PMID: 34989178 PMCID: PMC8867153 DOI: 10.1002/advs.202103764] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Microplastics are an emergent yet critical issue for the environment because of high degradation resistance and bioaccumulation. Unfortunately, the current technologies to remove, recycle, or degrade microplastics are insufficient for complete elimination. In addition, the fragmentation and degradation of mismanaged plastic wastes in environment have recently been identified as a significant source of microplastics. Thus, the developments of effective microplastics removal methods, as well as, plastics recycling strategies are crucial to build a microplastics-free environment. Herein, this review comprehensively summarizes the current technologies for eliminating microplastics from the environment and highlights two key aspects to achieve this goal: 1) Catalytic degradation of microplastics into environmentally friendly organics (carbon dioxide and water); 2) catalytic recycling and upcycling plastic wastes into monomers, fuels, and valorized chemicals. The mechanisms, catalysts, feasibility, and challenges of these methods are also discussed. Novel catalytic methods such as, photocatalysis, advanced oxidation process, and biotechnology are promising and eco-friendly candidates to transform microplastics and plastic wastes into environmentally benign and valuable products. In the future, more effort is encouraged to develop eco-friendly methods for the catalytic conversion of plastics into valuable products with high efficiency, high product selectivity, and low cost under mild conditions.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jing Wu
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNew South Wales2522Australia
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Wei‐xian Zhang
- College of Environmental Science and EngineeringState Key Laboratory of Pollution Control and Resources ReuseTongji UniversityShanghai200092P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
221
|
Fang C, Zhang Y, Zheng R, Hong F, Zhang M, Zhang R, Mou J, Mu J, Lin L, Bo J. Spatio-temporal variation of microplastic pollution in the sediment from the Chukchi Sea over five years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150530. [PMID: 34844325 DOI: 10.1016/j.scitotenv.2021.150530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Sediment has been considered as an important sink for microplastics (MPs), but there are limited reports about the spatial and temporal variability of MPs in sediment from the Arctic Ocean. Furthermore, understanding is lacking on the correlation between Arctic sea ice variation and MP abundance in sediment. This study aimed to assess the MP contamination in the sediment from the Chukchi Sea over five years through three voyages (in 2016, 2018, and 2020). The MP abundances in the sediments from the Chukchi Plateau and Chukchi Shelf over five years ranged from 33.66 ± 15.08 to 104.54 ± 28.07 items kg-1 dry weight (DW) and 20.63 ± 6.71 to 55.64 ± 22.61 items kg-1 DW, respectively. The MP levels from the Chukchi Sea were lower than those from the Eastern Arctic Ocean. Our findings suggest that the Chukchi Plateau is an accumulation zone for fibers related to fishing gear and textiles under the dual influence of the Pacific and Atlantic Ocean currents. However, the reduction of these fibers in the sediment from the Chukchi Shelf might be related to bottom currents, sediment resuspension, and biomass. Moreover, the MP abundance in the sediment from the Chukchi Sea was positively correlated with the reduction of Arctic sea ice, suggesting that the melting sea ice contributes to the increase in MP levels in the sediment. The increase in blue MPs from the Chukchi Plateau over time might be attributed to melting sea ice or intense fishing activity, whereas the increase of the smallest MPs in this region could be owing to the breakdown of larger plastics during long-distance transport or the easier settlement of smaller MPs. Further time-series investigations are urgently required to improve the understanding of the environmental fate and transport of MPs among the different Arctic environmental compartments.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Yusheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Ronghui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Fukun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Min Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Ran Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Jianfeng Mou
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Longshan Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China.
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China.
| |
Collapse
|
222
|
Rosenboom JG, Langer R, Traverso G. Bioplastics for a circular economy. NATURE REVIEWS. MATERIALS 2022; 7:117-137. [PMID: 35075395 PMCID: PMC8771173 DOI: 10.1038/s41578-021-00407-8] [Citation(s) in RCA: 469] [Impact Index Per Article: 156.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 05/19/2023]
Abstract
Bioplastics - typically plastics manufactured from bio-based polymers - stand to contribute to more sustainable commercial plastic life cycles as part of a circular economy, in which virgin polymers are made from renewable or recycled raw materials. Carbon-neutral energy is used for production and products are reused or recycled at their end of life (EOL). In this Review, we assess the advantages and challenges of bioplastics in transitioning towards a circular economy. Compared with fossil-based plastics, bio-based plastics can have a lower carbon footprint and exhibit advantageous materials properties; moreover, they can be compatible with existing recycling streams and some offer biodegradation as an EOL scenario if performed in controlled or predictable environments. However, these benefits can have trade-offs, including negative agricultural impacts, competition with food production, unclear EOL management and higher costs. Emerging chemical and biological methods can enable the 'upcycling' of increasing volumes of heterogeneous plastic and bioplastic waste into higher-quality materials. To guide converters and consumers in their purchasing choices, existing (bio)plastic identification standards and life cycle assessment guidelines need revision and homogenization. Furthermore, clear regulation and financial incentives remain essential to scale from niche polymers to large-scale bioplastic market applications with truly sustainable impact.
Collapse
Affiliation(s)
- Jan-Georg Rosenboom
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
223
|
Li P, Liu J, Zhang H. Insights into the interaction of microplastic with silver nanoparticles in natural surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150315. [PMID: 34537696 DOI: 10.1016/j.scitotenv.2021.150315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The combined pollution induced by microplastics (MPs) and other pollutants, such as nanomaterials, has received increasing attention. The interaction between MPs and silver nanoparticles (AgNPs) may affect both their behaviors in natural environments, however, knowledge on these effects remains limited. In this study, AgNPs and three common MPs, polypropylene (PP), polyethylene (PE), and polystyrene (PS), were co-exposed to natural freshwater and brackish water to investigate the interaction between MPs and AgNPs in natural surface water. The results showed that the environmental behaviour of AgNPs in natural freshwater and brackish water is first of all affected by water chemistry and only in second instance affected by MPs. In natural freshwater, AgNPs remained stable largely dominated by dissolved organic matter (DOM), parts of which were subsequently captured by three MPs in the form of single particles without significant difference. In contrast, both ionic strength and DOM contributed to the aggregation of AgNPs in natural brackish water. PE and PP captured a small amount of AgNPs in the form of aggregates in natural brackish water, while the majority of AgNP aggregates were trapped by PS in natural brackish water. Therefore, both water chemistry and MPs types were found to play crucial roles in the interaction between MPs and AgNPs. These observations also revealed that MPs could serve as carriers for AgNP transport and advance the current understanding of combined pollution between MPs and engineered nanomaterials in natural aquatic environments.
Collapse
Affiliation(s)
- Penghui Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwu Zhang
- School of Chemistry and Material Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
224
|
Microplastics (Polystyrene) Exposure Induces Metabolic Changes in the Liver of Rare Minnow ( Gobiocypris rarus). Molecules 2022; 27:molecules27030584. [PMID: 35163849 PMCID: PMC8840292 DOI: 10.3390/molecules27030584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Microplastics are environmental contaminants and an emergent concern. Microplastics are abundant in freshwater and can cause biochemical stress in freshwater organisms. In the current study, rare minnows (Gobiocypris rarus) were exposed to 1μm polystyrene microplastics at 200 μg/L concentration. We observed various sublethal effects after four weeks of exposure but no mortality. Numerous cellular and tissue alterations were observed in the liver. Differential metabolites and differentially expressed genes between control and exposure groups were identified and mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes. The combination of transcriptomic and metabolomic analyses revealed significantly varied metabolic pathways between the two groups. These pathways were involved in glucolipid, amino acid, and nucleotide metabolism. Results demonstrated that MP exposure induced immune reaction, oxidative stress, and disturbed glycolipid and energy metabolism. The current study provided novel insights into the molecular and metabolic mechanisms of microplastic ecotoxicology in rare minnow.
Collapse
|
225
|
Reichert J, Arnold AL, Hammer N, Miller IB, Rades M, Schubert P, Ziegler M, Wilke T. Reef-building corals act as long-term sink for microplastic. GLOBAL CHANGE BIOLOGY 2022; 28:33-45. [PMID: 34710272 DOI: 10.1111/gcb.15920] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The pollution of the marine environment with microplastics is pervasive. However, microplastic concentrations in the seawater are lower than the number of particles entering the oceans, suggesting that plastic particles accumulate in environmental sinks. Yet, the exact long-term sinks related to the "missing plastic" phenomenon are barely explored. Sediments in nearshore biogenic habitats are known to trap large amounts of microplastics, but also the three-dimensional structures of coral reefs might serve as unique, living long-term sinks. The main framework builders, reef-building corals, have been shown to ingest and overgrow microplastics, potentially leading to a deposition of particles in reef structures. However, little is known about the number of deposited particles and the underlying processes determining the permanent deposition in the coral skeletons. To test whether corals may act as living long-term sink for microplastic, we exposed four reef-building coral species to polyethylene microplastics (200 particles L-1 ) in an 18-month laboratory experiment. We found microplastics in all treatment specimens, with low numbers of particles trapped in the coral tissue (up to 2 particles per cm2 ) and much higher numbers in the skeleton (up to 84 particles per cm3 ). The numbers of particles accumulated in the coral skeletons were mainly related to coral growth (i.e., skeletal growth in volume), suggesting that deposition is a regularly occurring stochastic process. We estimate that reef-building corals may remove 0.09%-2.82% of the bioavailable microplastics from tropical shallow-reef waters per year. Our study shows for the first time that microplastic particles accumulate permanently in a biological sink, helping to explain the "missing plastic" phenomenon. This highlights the importance of coral reefs for the ecological balance of the oceans and reinforces the need to protect them, not only to mitigate the effects of climate change but also to preserve their ecosystem services as long-term sink for microplastic.
Collapse
Affiliation(s)
- Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Angelina L Arnold
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Nils Hammer
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Ingo B Miller
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Marvin Rades
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Patrick Schubert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| |
Collapse
|
226
|
Jones ES, Ross SW, Robertson CM, Young CM. Distributions of microplastics and larger anthropogenic debris in Norfolk Canyon, Baltimore Canyon, and the adjacent continental slope (Western North Atlantic Margin, U.S.A.). MARINE POLLUTION BULLETIN 2022; 174:113047. [PMID: 34871899 DOI: 10.1016/j.marpolbul.2021.113047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic debris has been reported in all studied marine environments, including the deepest parts of the sea. Finding areas of accumulation and methods of transport for debris are important to determine potential impacts on marine life. This study analyzed both sediment cores and Remotely Operated Vehicle video to determine the density and distribution of debris, including both micro- and macroplastics, in Norfolk and Baltimore canyons. The average microplastic density in Norfolk Canyon sediment was 37.30 plastic particles m-2 within the canyon and 21.03 particles m-2 on the adjacent slope, suggesting that microplastics could accumulate within submarine canyons. In video transects from both Norfolk and Baltimore canyons, the largest amounts of macroplastic were recorded near the canyon heads. Our findings contribute to a growing evidence base that canyons and their associated benthic invertebrate communities are important repositories and conduits for debris to the deep sea.
Collapse
Affiliation(s)
- Ellie S Jones
- Oregon Institute of Marine Biology, University of Oregon, U.S.A..
| | - Steve W Ross
- Center for Marine Science, University of North Carolina Wilmington, U.S.A
| | - Craig M Robertson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, U.K..
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, U.S.A
| |
Collapse
|
227
|
Du Y, Liu X, Dong X, Yin Z. A review on marine plastisphere: biodiversity, formation, and role in degradation. Comput Struct Biotechnol J 2022; 20:975-988. [PMID: 35242288 PMCID: PMC8861569 DOI: 10.1016/j.csbj.2022.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
The pollution of plastic waste has become an increasingly serious environmental crisis. Recently, plastic has been detected in various kinds of environments, even in human tissues, which is an increasing threat to the ecosystems and humans. In the ocean, the plastic waste is eventually fragmentized into microplastics (MPs) under the disruption of physical and chemical processes. MPs are colonized by microbial communities such as fungi, diatoms, and bacteria, which form biofilms on the surface of the plastic called “plastisphere”. In this review, we summarize the studies related to microorganisms in the plastisphere in recent years and describe the microbial species in the plastisphere, mainly including bacteria, fungi, and autotrophs. Secondly, we explore the interactions between MPs and the plastisphere. The depth of MPs in the ocean and the nutrients in the surrounding seawater can have a great impact on the community structure of microorganisms in the plastisphere. Finally, we discuss the types of MP-degrading bacteria in the ocean, and use the “seed bank” theory to speculate on the potential sources of MP-degrading microorganisms. Challenges and future research prospects are also discussed.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
| | - Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, PR China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
- Corresponding author.
| |
Collapse
|
228
|
Esposito G, Prearo M, Renzi M, Anselmi S, Cesarani A, Barcelò D, Dondo A, Pastorino P. Occurrence of microplastics in the gastrointestinal tract of benthic by-catches from an eastern Mediterranean deep-sea environment. MARINE POLLUTION BULLETIN 2022; 174:113231. [PMID: 34933217 DOI: 10.1016/j.marpolbul.2021.113231] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Concern about microplastic pollution little is known about levels in deep-sea species; to fill this knowledge gap, levels of microplastics in the gastrointestinal (GI) tracts of 34 fish from eight different deep-sea by-catches: blackmouth catshark, lesser spotted dogfish, and velvet belly, armless snake eel, hollowsnout grenadier, phaeton dragonet, royal flagfin, and slender snipe eel were measured. All were collected at the same site (east Sardinia, Mediterranean Sea; 40°10'12.49″N, 9°44'12.31″E) using a bottom gillnet at depths between -820/250 and -1148 ft./350 m. Microplastics (MPs) were retrieved in 16 out of 34 fish. At least one microplastic item was found in 48% (33%, E. spinax - 75%, G. melastomus) of the samples. The most frequent was polyethylene (PE), with nine items (filaments, films, fragments) found in five specimens. This preliminary study of by-catches adds new data on MPs ingestion by species inhabiting a deep-sea environment of the Mediterranean.
Collapse
Affiliation(s)
- Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research, IDAEA - CSIC, C/ Jordi Girona 18 - 26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA - CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
229
|
Di Cesare A, Pinnell LJ, Brambilla D, Elli G, Sabatino R, Sathicq MB, Corno G, O'Donnell C, Turner JW. Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118161. [PMID: 34537596 DOI: 10.1016/j.envpol.2021.118161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The oceans are increasingly polluted with plastic debris, and several studies have implicated plastic as a reservoir for antibiotic resistance genes and a potential vector for antibiotic-resistant bacteria. Bioplastic is widely regarded as an environmentally friendly replacement to conventional petroleum-based plastic, but the effects of bioplastic pollution on marine environments remain largely unknown. Here, we present the first evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments. Biofilms fouling ceramic, polyethylene terephthalate (PET), and polyhydroxyalkanoate (PHA) were investigated by shotgun metagenomic sequencing. Four ARG groups were more abundant in PHA: trimethoprim resistance (TMP), multidrug resistance (MDR), macrolide-lincosamide-streptogramin resistance (MLS), and polymyxin resistance (PMR). One MRG group was more abundant in PHA: multimetal resistance (MMR). The relative abundance of ARGs and MRGs were strongly correlated based on a Mantel test between the Bray-Curtis dissimilarity matrices (R = 0.97, p < 0.05) and a Pearson's analysis (R = 0.96, p < 0.05). ARGs were detected in more than 40% of the 57 metagenome-assembled genomes (MAGs) while MRGs were detected in more than 90% of the MAGs. Further investigation (e.g., culturing, genome sequencing, antibiotic susceptibility testing) revealed that PHA biofilms were colonized by hemolytic Bacillus cereus group bacteria that were resistant to beta-lactams, vancomycin, and bacitracin. Taken together, our findings indicate that bioplastic, like conventional petroleum-based plastic, is a reservoir for resistance genes and a potential vector for antibiotic-resistant bacteria in coastal marine sediments.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Water Research Institute, National Research Council of Italy (CNR-IRSA), MEG - Molecular Ecology Group, Largo Tonolli 50, 28922, Verbania, Italy
| | - Lee J Pinnell
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Diego Brambilla
- Water Research Institute, National Research Council of Italy (CNR-IRSA), MEG - Molecular Ecology Group, Largo Tonolli 50, 28922, Verbania, Italy
| | - Giulia Elli
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Raffaella Sabatino
- Water Research Institute, National Research Council of Italy (CNR-IRSA), MEG - Molecular Ecology Group, Largo Tonolli 50, 28922, Verbania, Italy
| | - María B Sathicq
- Water Research Institute, National Research Council of Italy (CNR-IRSA), MEG - Molecular Ecology Group, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute, National Research Council of Italy (CNR-IRSA), MEG - Molecular Ecology Group, Largo Tonolli 50, 28922, Verbania, Italy
| | - Colin O'Donnell
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Jeffrey W Turner
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States.
| |
Collapse
|
230
|
Alava JJ, Kazmiruk TN, Douglas T, Schuerholz G, Heath B, Flemming SA, Bendell L, Drever MC. Occurrence and size distribution of microplastics in mudflat sediments of the Cowichan-Koksilah Estuary, Canada: A baseline for plastic particles contamination in an anthropogenic-influenced estuary. MARINE POLLUTION BULLETIN 2021; 173:113033. [PMID: 34653884 DOI: 10.1016/j.marpolbul.2021.113033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Documenting the prevalence of microplastics in marine-coastal ecosystems serves as a first step towards understanding their impacts and risks presented to higher trophic levels. Estuaries exist at the interface between freshwater and marine systems, and provide habitats for a diverse suite of species, including shellfish, fish, and birds. We provide baseline values for estuarine mudflats using sediment samples collected at Cowichan-Koksilah Estuary in British Columbia, Canada, a biologically-rich estuary. The estuary also contains a marine shipping terminal, forestry log sort area, and input of contaminants from nearby residential and agricultural areas. Microplastics, both fragments and fibers, occurred in 93% (13/14) of sediment samples. A mean of 6.8 microfibers/kg dw (range: 0-12 microfibers/kg dw) and 7.9 microfragments/kg (range: 0-19 fragments/kg dw) occurred in individual samples, and counts of fibers and fragments were strongly correlated (r = 0.78, p = 0.008, n = 14). The abundance of microplastics tended to be higher on the north side of the estuary that receives greater inputs from upland sources relative to the south side. Size distributions of microplastic fragments and fibers were similar to sediment grain size distribution with size categories 0.063 to 0.25 mm and 0.25 to 0.6 mm being the most common for plastics and sediment, indicating the occurrence of microplastics likely followed existing depositional processes within the estuary. Microplastics in sediments were composed of a variety of polymers, including high density polyethylene (HDPE), Nylon 6/6 (polyhexamethylene adipamide), and polyethylene terephthalate-PETE (poly(1,4-cyclohexylene dimethylene terephthalate)). This study indicates that microplastics occur throughout most of the Cowichan-Koksilah Estuary, and future studies should focus on the exposure risk and potential for bioaccumulation for wildlife species that feed on the surface of intertidal mudflats.
Collapse
Affiliation(s)
- Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Tamara N Kazmiruk
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada
| | - Tristan Douglas
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada; School of Earth and Ocean Sciences, University of Victoria, 9882 Ring Rd, Victoria, British Columbia V8P 3E6, Canada
| | - Goetz Schuerholz
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Bill Heath
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Scott A Flemming
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Rd, Delta, British Columbia V4K 3N2, Canada
| | - Leah Bendell
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada
| | - Mark C Drever
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Rd, Delta, British Columbia V4K 3N2, Canada
| |
Collapse
|
231
|
|
232
|
Abdillah AA, Charles AL. Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int J Biol Macromol 2021; 191:618-626. [PMID: 34582908 DOI: 10.1016/j.ijbiomac.2021.09.141] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Future food packaging trends are shifting to natural and eco-friendly materials developed from biopolymers such as starch and other hydrocolloids, to reduce pollution from synthetic polymers. Arrowroot starch (AS) (3.5, 3, 2.5, and 2%) and iota-carrageenan (IC) (0.5, 1, 1.5, and 2%) were blended to develop biodegradable edible films (AS/IC-BEF), which were compared against AS-BEF (4%, control). All films were characterized based on their physico-mechanical and barrier properties, functional group properties, crystallinity properties, thermal properties, and soil and seawater biodegradation. AS-BEF exhibited smooth surface, high transparency, and completed composting soil biodegradation in 7 days whereas AS/IC-BEF samples exhibited higher tensile strength, water solubility, swelling properties, and barrier properties, but completed biodegradation after 30 days. XRD analysis indicated IC fractions contributed to increase in degree of crystallinity (28.35°) and FTIR signaled strong hydrogen bond interactions between polymers. AS/IC-BEF samples demonstrated melting temperatures between 158 and 190 °C while glass transition temperatures ranged from 153 to 176 °C, which resulted in maximum weight loss around 50-55% at melting temperatures. Finally, AS/IC-BEF samples successfully inhibited weight loss of cherry tomatoes at room temperature and extended their shelf life to 10 days, which indicated that the AS/IC composite material produced a BEF with potential food and industrial applications.
Collapse
Affiliation(s)
- Annur Ahadi Abdillah
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu 91201, Pingtung, Taiwan; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu 91201, Pingtung, Taiwan; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
233
|
Oliveira MM, Proenca AM, Moreira-Silva E, Dos Santos FM, Marconatto L, de Castro AM, Medina-Silva R. Biochemical features and early adhesion of marine Candida parapsilosis strains on high-density polyethylene. J Appl Microbiol 2021; 132:1954-1966. [PMID: 34787949 DOI: 10.1111/jam.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
AIMS Plastic debris are constantly released into oceans where, due to weathering processes, they suffer fragmentation into micro- and nanoplastics. Diverse microbes often colonize these persisting fragments, contributing to their degradation. However, there are scarce reports regarding the biofilm formation of eukaryotic decomposing microorganisms on plastics. Here, we evaluated five yeast isolates from deep-sea sediment for catabolic properties and early adhesion ability on high-density polyethylene (HDPE). METHODS AND RESULTS We assessed yeast catabolic features and adhesion ability on HDPE fragments subjected to abiotic weathering. Adhered cells were evaluated through Crystal Violet Assay, Scanning Electron Microscopy, Atomic Force Microscopy and Infrared Spectroscopy. Isolates were identified as Candida parapsilosis and exhibited wide catabolic capacity. Two isolates showed high adhesion ability on HDPE, consistently higher than the reference C. parapsilosis strain, despite an increase in fragment roughness due to weathering. Isolate Y5 displayed the most efficient colonization, with production of polysaccharides and lipids after 48 h of incubation. CONCLUSION This work provides insights on catabolic metabolism and initial yeast-HDPE interactions of marine C. parapsilosis strains. SIGNIFICANCE AND IMPACT OF THE STUDY Our findings represent an essential contribution to the characterization of early interactions between deep-sea undescribed yeast strains and plastic pollutants found in oceans.
Collapse
Affiliation(s)
- Maiara Monteiro Oliveira
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Audrey Menegaz Proenca
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Eduardo Moreira-Silva
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Francine Melise Dos Santos
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Letícia Marconatto
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Aline Machado de Castro
- Biotechnology Division, Research and Development Center (CENPES), PETROBRAS, Rio de Janeiro, RJ, Brazil
| | - Renata Medina-Silva
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
234
|
Sarda P, Hanan JC, Lawrence JG, Allahkarami M. Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Parikshit Sarda
- Polymer Institute, Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Jay C. Hanan
- Mechanical and Aerospace Engineering Oklahoma State University Tulsa Oklahoma USA
| | - Joseph G. Lawrence
- Polymer Institute, Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Masoud Allahkarami
- Mechanical and Aerospace Engineering Oklahoma State University Tulsa Oklahoma USA
| |
Collapse
|
235
|
Khatmullina L, Chubarenko I. Thin synthetic fibers sinking in still and convectively mixing water: laboratory experiments and projection to oceanic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117714. [PMID: 34265557 DOI: 10.1016/j.envpol.2021.117714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Synthetic fibers with diameters of several tens of micrometers are the most abundant type of microplastics in the marine environment, yet the most unknown regarding dynamics in the water column. Experiments proposed here are a proof-of-concept of qualitative and quantitative characteristics of fibers' motion in still water and in the presence of thermal convection. For 12 sets of fine fibers (nylon (1.12 g/cm3) and polyester (1.35 g/cm3), 1.9-14.8 mm long, diameters 13 and 20 μm), 84 measurements of sinking velocity in still water were acquired. In still conditions, fibers settled smoothly and slowly, preserving their initial (accidental) orientation. Sinking rates of fibers with lengths <5 mm varied between 0.5 and 3.7 mm/s (the bulk mean of 1.6 mm/s). Fibers with similar properties showed 4-fold different sinking velocity, which is supposed to be the effect of their different orientation while settling: vertically oriented fibers (19% in the experiments) settled faster than those with inclined orientation (48%), and horizontally oriented fibers (33%) settled with the smallest velocities. Convective mixing of water, heated from below, principally changed the manner of sinking of fibers: their motions became unsteady and 3-dimensional. In 78 measurements for 4-mm long nylon fibers (using the "light knife" technique), only about 56% of fibers showed downward velocity component (mean 1.33 ± 0.78 mm/s), which was twice as small as in still water, however the ratio of max/min values increased up to 14. Fibers could move in different directions and follow circular motions of a convective cell. Our findings suggest two possible mechanisms retaining fibers in the water column: entrainment of some particles in horizontal and vertical motions and slowed sinking due to unsteady flow around the fiber. The retention of fibers leads to decrease in integral downward particle flux (up to 4 times in our experiments).
Collapse
Affiliation(s)
- Liliya Khatmullina
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy Prospect, Moscow, 117997, Russia.
| | - Irina Chubarenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy Prospect, Moscow, 117997, Russia
| |
Collapse
|
236
|
Royer SJ, Wiggin K, Kogler M, Deheyn DD. Degradation of synthetic and wood-based cellulose fabrics in the marine environment: Comparative assessment of field, aquarium, and bioreactor experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148060. [PMID: 34119782 DOI: 10.1016/j.scitotenv.2021.148060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
As global production of textiles rapidly grows, there is urgency to understand the persistence of fabrics in the marine environment, particularly from the microfibers they shed during wearing and washing. Here, we show that fabrics containing polyester (one of the most common plastics) remained relatively intact (viz., with a limited biofilm) after >200 days in seawater off the Scripps Oceanography pier (La Jolla, CA), in contrast to wood-based cellulose fabrics that fell apart within 30 days. We also show similar results under experimental aquaria (in open circuit with the pier waters) as well as bioreactor settings (in close circuit, using microbial inoculum from the North Sea, off Belgium), using nonwoven fabrics and individual fibers, respectively. The fact that fibers released from synthetic textiles remain persistent and non-biodegradable despite their small (invisible) size, highlights concern for the growing industry that uses polyester from recycled plastics to make clothing.
Collapse
Affiliation(s)
- Sarah-Jeanne Royer
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Kara Wiggin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
237
|
Morgana S, Casentini B, Amalfitano S. Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126507. [PMID: 34323718 PMCID: PMC8234265 DOI: 10.1016/j.jhazmat.2021.126507] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 05/14/2023]
Abstract
Wearing face masks is a fundamental prevention and control measure to limit the spread of COVID-19. The universal use and improper disposal of single-use face masks are raising serious concerns for their environmental impact, owing to the foregone contribution to plastic water pollution during and beyond the pandemic. This study aims to uncover the release of micro/nanoplastics generated from face mask nonwoven textiles once discarded in the aquatic environment. As assessed by microscopy and flow cytometry, the exposure to different levels of mechanical stress forces (from low to high shear stress intensities) was proved effective in breaking and fragmenting face mask fabrics into smaller debris, including macro-, micro-, and nano-plastics. Even at the low level of fabric deterioration following the first second of treatment, a single mask could release in water thousands of microplastic fibers and up to 108 submicrometric particles, mostly comprised in the nano-sized domain. By contributing to the current lack of knowledge regarding the potential environmental hazards posed by universal face masking, we provided novel quantitative data, through a suitable technological approach, on the release of micro/nanoplastics from single-use face masks that can threaten the aquatic ecosystems to which they finally end-up.
Collapse
Affiliation(s)
- Silvia Morgana
- Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (IAS-CNR), Via della Vasca Navale, 00146 Rome, Italy.
| | - Barbara Casentini
- Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy
| | - Stefano Amalfitano
- Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
238
|
|
239
|
Chen L, Li J, Tang Y, Wang S, Lu X, Cheng Z, Zhang X, Wu P, Chang X, Xia Y. Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. WATER RESEARCH 2021; 204:117580. [PMID: 34469810 DOI: 10.1016/j.watres.2021.117580] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 05/20/2023]
Abstract
The increasing microplastic pollution together with the plastisphere-associated ecological threats in coastal areas have aroused global concern. Tropical cyclones have been increased in both frequency and intensity under global warming, causing intense impact on the microplastics distribution and the structure of coastal ecosystems. However, until most currently, the extent to which typhoon impacts the microplastics and plastisphere community remains poorly known. This study analyzed the effects of Typhoon Wipha (Code: 1907) on microplastics abundance and composition in surface water and sediment crossed coastal areas of Shenzhen. Here we found a significant typhoon-induced increase in microplastics abundance in surface water, whereas an opposite trend was observed in sediment. Despite the evident transportation of microplastics from sediment to surface water by agitation, a possible microplastics influx was introduced by typhoon as evidenced by the large attribution of unknown force in source tracking analysis. Furthermore, typhoon had adeptly uniformed the plastisphere community in the sediment along the 190 km costal line overnight. A significant increase of nitrogen fixer, Bradyrhizobiaceae, was observed ubiquitously after typhoon, which might alter the nitrogen cycling and increase eutrophic condition of the coastal ecological system. Together, this study expanded the knowledge about the impact of typhoon-induced influx of the microplastics on coastal biogeochemical cycling. Moreover, the microplastics and the plastisphere compositional pattern revealed here will underpin future studies on adsorption behavior, interfacial processes and ecotoxicity of the coastal microplastic pollution.
Collapse
Affiliation(s)
- Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiangpeng Li
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siqing Wang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Lu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuyang Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyi Chang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
240
|
First Evidence of Contourite Drifts in the North-Western Sicilian Active Continental Margin (Southern Tyrrhenian Sea). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present the results of an integrated geomorphological and seismo-stratigraphic study based on high resolution marine data acquired in the north-western Sicilian continental margin. We document for the first time five contourite drifts (marked as EM1a, EM2b, EM2, EM3a, and EM3b), located in the continental slope at depths between ca. 400 and 1500 m. EM1a,b have been interpreted as elongated mounded drifts. EM1a,b are ca. 3 km long, 1.3 km wide, and have a maximum thickness of 36 m in their center that thins northwards, while EM1b is smaller with a thickness up to 24 m. They are internally characterized by mounded seismic packages dominated by continuous and parallel reflectors. EM2 is located in the upper slope at a depth of ca. 1470 m, and it is ca. 9.3 km long, more than 3.9 km wide, and has a maximum thickness of ca. 65 m. It consists of an internal aggradational stacking pattern with elongated mounded packages of continuous, moderate to high amplitude seismic reflectors. EM2 is internally composed by a mix of contourite deposits (Holocene) interbedded with turbiditic and/or mass flow deposits. EM1a,b and EM2 are deposited at the top of an erosional truncation aged at 11.5 ka, so they mostly formed during the Holocene. EM3a,b are ca. 16 km long, more than 6.7 km wide, and have a thickness up to 350 m. Both EM2 and EM3a,b have been interpreted as sheeted drift due to their morphology and seismic features. The spatial distribution of the contourite drifts suggests that the drifts are likely generated by the interaction of the LIW, and deep Tyrrhenian water (TDW) on the seafloor, playing an important role in the shaping this continental margin since the late Pleistocene-Holocene. The results may help to understand the deep oceanic processes affecting the north-western Sicilian continental margin.
Collapse
|
241
|
Vega-Moreno D, Abaroa-Pérez B, Rein-Loring PD, Presas-Navarro C, Fraile-Nuez E, Machín F. Distribution and transport of microplastics in the upper 1150 m of the water column at the Eastern North Atlantic Subtropical Gyre, Canary Islands, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147802. [PMID: 34034192 DOI: 10.1016/j.scitotenv.2021.147802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Nowadays it is widely known that pollution by microplastics (MP) at the open ocean covers immense areas. Buoyant plastics tend to accumulate in areas of convergence at the sea surface such as subtropical gyres, while non-buoyant plastics accumulate at the seafloor. However, previous studies have revealed that the total amount of plastic in the different oceans is not well correlated with the concentrations measured at the sea surface and the sea floor, evidencing a significant amount of missing plastic in the oceans. This deviation could be related to an underestimation of the role played by small fragments of plastic and fibers in the oceans. Furthermore, microplastic fragments with a density lower than the density of seawater have been gathered hundreds of meters below the sea surface in the Pacific Ocean due to their size and shape. The main objective of this study is to carry out, for the first time, an equivalent analysis along the water column for the Atlantic Ocean. In that sense, a total number of 51 samples were collected during four different oceanographic cruises between February and December 2019, from the sea surface down to 1150 m depth at the open ocean waters of the Canary Islands region (Spain). For each sample, 72 l of seawater were filtered on board with a mesh size of 100 μm, where the presence of microplastics has been clearly observed. Our results reveal the presence of microplastics at least up to 1150 m depth, at the Northeastern Atlantic Subtropical Gyre with noticeable seasonal differences. The spatial distribution of these small fragments and fibers at the water column is mainly related to the oceanic dynamics and mesoscale convective flows, overcoming the MP motion induced by their own buoyancy. Moreover, these microplastics have being transported by the ocean dynamics as passive drifters.
Collapse
Affiliation(s)
- Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain.
| | - Bárbara Abaroa-Pérez
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | | | - Carmen Presas-Navarro
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Spain.
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| |
Collapse
|
242
|
Angiolillo M, Gérigny O, Valente T, Fabri MC, Tambute E, Rouanet E, Claro F, Tunesi L, Vissio A, Daniel B, Galgani F. Distribution of seafloor litter and its interaction with benthic organisms in deep waters of the Ligurian Sea (Northwestern Mediterranean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147745. [PMID: 34134397 DOI: 10.1016/j.scitotenv.2021.147745] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/10/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The Mediterranean Sea is one of the most polluted marine basins and currently serves as a hotspot for marine litter. The seafloor represents the ultimate sink for most litter worldwide. Nevertheless, the knowledge about litter distribution and its interactions with benthic organisms in deep water is poorly understood. In 2018, we investigated spatial patterns of macro- and micro-litter distribution, and their effects on benthic communities in the Ligurian Sea. An oceanographic survey was carried out with a remotely operated vehicle and a multibeam echosounder on seven seamounts and canyons, at depths ranging from 350 to 2200 m. High litter accumulations were discovered at the mouth of the Monaco canyon, where estimated densities of up to 3.8 × 104 items km-2 were found at 2200 m depth. The highest abundance of urban litter items was found on the soft substrate, at the bottom of the deeper parts of the submarine canyons, which seem to act as conduits carrying litter from the shelf towards deeper areas. In contrast, fishing-related items were most abundant in the upper layer of the seamounts (300-600 m depths). Furthermore, more than 10% of the observed deep gorgonian colonies were entangled by lost longlines, indicating the detrimental effects of this fishing gear on benthic habitats. The discovery of new litter hotspots and the evaluation of how deep-sea species interact with litter contribute to increasing the knowledge about litter distribution and its effects on the deep ecosystem of the Mediterranean basin. All the observations recorded in this study showed substantial and irreversible changes in the deep and remote areas of marine environments, and these changes were found to be caused by humans. Our findings further stress the need for urgent and specific measures for the management of deep-sea pollution and the reduction of litter inputs in the environment.
Collapse
Affiliation(s)
- Michela Angiolillo
- Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA), Via Vitaliano Brancati, 60, 00144 Rome, Italy.
| | - Olivia Gérigny
- Institut Français de Recherche pour l'Exploitation de la MER (Ifremer), Centre Méditerranée, Z.P. de Brégaillon, 83507, La Seyne-sur-Mer and Bastia, France
| | - Tommaso Valente
- Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA), Via Vitaliano Brancati, 60, 00144 Rome, Italy; Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Marie-Claire Fabri
- Institut Français de Recherche pour l'Exploitation de la MER (Ifremer), Centre Méditerranée, Z.P. de Brégaillon, 83507, La Seyne-sur-Mer and Bastia, France
| | - Eric Tambute
- Centre Scientifique de Monaco, Avenue Saint Martin, 98000 Monaco, Monaco
| | - Elodie Rouanet
- GIS Posidonie, Aix-Marseille University, OSU Pytheas, campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | - Francoise Claro
- Muséum National d'Histoire Naturelle-UMS PATRINAT, CP41, 57 rue Cuvier, 75231 Paris, France
| | - Leonardo Tunesi
- Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA), Via Vitaliano Brancati, 60, 00144 Rome, Italy
| | - Anne Vissio
- Secrétaire exécutif RAMOGE, Av. de l'Annonciade, 98000 Monaco, Monaco
| | - Boris Daniel
- Agence française pour la biodiversité, rue de la République 26, Marseille, France
| | - François Galgani
- Institut Français de Recherche pour l'Exploitation de la MER (Ifremer), Centre Méditerranée, Z.P. de Brégaillon, 83507, La Seyne-sur-Mer and Bastia, France
| |
Collapse
|
243
|
Berlino M, Mangano MC, De Vittor C, Sarà G. Effects of microplastics on the functional traits of aquatic benthic organisms: A global-scale meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117174. [PMID: 33957511 DOI: 10.1016/j.envpol.2021.117174] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are widespread in the aquatic environment and thus available for many organisms at different trophic levels. Many scientific papers focus their attention on the study of the effects of microplastics on different species at individual level. Here we performed a global scale meta-analysis focusing our work on the study of the effect of microplastics on the functional traits of aquatic benthic organisms. Overall, microplastics showed a moderate negative effect on the examined functional traits of benthic organisms. Our results show that some crucial functional traits, such as those linked to behaviour and feeding, appear to be unaffected by microplastics. In contrast, traits related to the capacity of organisms to assimilate energy are affected. Moreover, traits with possible effects at population level appear to be negatively affected by microplastics. We discuss how the direct impact of organismal performance may have indirect repercussions at higher levels in the ecological hierarchy and represent a risk for the stability and functioning of the ecosystem.
Collapse
Affiliation(s)
- M Berlino
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, via A. Piccard 54, 34151, Trieste, Italy
| | - M C Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy.
| | - C De Vittor
- National Institute of Oceanography and Applied Geophysics - OGS, via A. Piccard 54, 34151, Trieste, Italy
| | - G Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy
| |
Collapse
|
244
|
Zhang X, Li Y, Ouyang D, Lei J, Tan Q, Xie L, Li Z, Liu T, Xiao Y, Farooq TH, Wu X, Chen L, Yan W. Systematical review of interactions between microplastics and microorganisms in the soil environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126288. [PMID: 34102358 DOI: 10.1016/j.jhazmat.2021.126288] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Terrestrial ecosystems are widely contaminated by microplastics due to extensive usage and poor handling of plastic materials, but the subsequent fate and remediate strategy of these pollutants are far from fully understood. In soil environments, microplastics pose a potential threat to the survival, growth, and reproduction of soil microbiota that in turn threaten the biodiversity, function, and services of terrestrial ecosystems. Meanwhile, microorganisms are sensitive to microplastics due to the adaptability to changes in substrates and soil properties. Through the metabolic and mineralization processes, microorganisms are also crucial participator to the plastic biodegradation. In this review, we present current knowledges and research results of interactions between microplastics and microorganisms (both fungi and bacteria) in soil environments and mainly discuss the following: (1) effects of microplastics on microbial habitats via changes in soil physical, chemical, and biological properties; (2) effects of microplastics on soil microbial communities and functions; and (3) soil microbial-mediated plastic degradation with the likely mechanisms and potential remediation strategies. We aim to analyze the mechanisms driving these interactions and subsequent ecological effects, propose future directives for the study of microplastic in soils, and provide valuable information on the plastic bioremediation in contaminated soils.
Collapse
Affiliation(s)
- Xuyuan Zhang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China
| | - Yong Li
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China.
| | - Dan Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junjie Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qianlong Tan
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lingli Xie
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ziqian Li
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Liu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunmu Xiao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Taimoor Hassan Farooq
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Bangor College China, a joint unit of Bangor University, Wales, UK and Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaohong Wu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China
| | - Wende Yan
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China.
| |
Collapse
|
245
|
Sun T, Zhan J, Li F, Ji C, Wu H. Effect of microplastics on aquatic biota: A hormetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117206. [PMID: 33971425 DOI: 10.1016/j.envpol.2021.117206] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
As emerging pollutants, microplastics (MPs) have been found globally in various freshwater and marine matrices. This study recompiled 270 endpoints of 3765 individuals from 43 publications, reporting the onset of enhanced biological performance and reduced oxidative stress biomarkers induced by MPs in aquatic organisms at environmentally relevant concentrations (≤1 mg/L, median = 0.1 mg/L). The stimulatory responses of consumption, growth, reproduction and survival ranged from 131% to 144% of the control, with a combined response of 136%. The overall inhibitory response of 9 oxidative stress biomarkers was 71% of the control, and commonly below 75%. The random-effects meta-regression indicated that the extents of MPs-induced responses were independent of habitat, MP composition, morphology, particle size and exposure duration. The results implied that the exposure to MPs at low and high concentrations might induce opposite/non-monotonic responses in aquatic biota. Correspondingly, the hormetic dose response relationships were found at various endpoints, such as reproduction, genotoxicity, immunotoxicity, neurotoxicity and behavioral alteration. Hormesis offers a novel perspective for understanding the dose response mode of aquatic organisms exposed to low and high concentrations of MPs, highlighting the necessity to incorporate the hormetic dose response model into the ecological/environmental risk assessment of MPs.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Junfei Zhan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China.
| |
Collapse
|
246
|
Yang X, Wang H, Zhang L, Kong L, Chen Y, He Q, Li L, Grossart HP, Ju F. Marine algae facilitate transfer of microplastics and associated pollutants into food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147535. [PMID: 33991910 DOI: 10.1016/j.scitotenv.2021.147535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Hui Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhuette 2, 16775 Stechlin, Germany; Institute of Biogeochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
247
|
Semcesen PO, Wells MG. Biofilm growth on buoyant microplastics leads to changes in settling rates: Implications for microplastic retention in the Great Lakes. MARINE POLLUTION BULLETIN 2021; 170:112573. [PMID: 34144395 DOI: 10.1016/j.marpolbul.2021.112573] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 05/28/2023]
Abstract
Buoyant microplastic pollution disperses widely from sources via strong wind-driven water currents in lakes and oceans. This ability for dispersal depends critically upon the particle's density, which can change over time due to microbial growth (biofilm). This study quantifies biofilm-induced sinking rates of irregularly-shaped polypropylene granules (~125-2000 μm) via ex-situ experiments emulating a Great Lakes freshwater environment. Biofilm development increases particle density and lowers microplastic rise velocities, eventually causing sinking. We observed sinking for 100% of small and intermediate microplastics, and 95% of large microplastics. Under constant environmental conditions, sinking onset was observed sooner for smaller particles (~125-212 μm, 18 days) than for larger particles (~1000-2000 μm, 50 days). Differences in settling onset would lead to size-fractionation of particle sedimentation, whereby smaller particles are deposited closer to their sources relative to larger particles. Our study demonstrates a novel mechanism by which buoyant microplastics can selectively sink from the lake surface.
Collapse
Affiliation(s)
- Patricia O Semcesen
- University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada.
| | - Mathew G Wells
- University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
248
|
Ballerstedt H, Tiso T, Wierckx N, Wei R, Averous L, Bornscheuer U, O’Connor K, Floehr T, Jupke A, Klankermayer J, Liu L, de Lorenzo V, Narancic T, Nogales J, Perrin R, Pollet E, Prieto A, Casey W, Haarmann T, Sarbu A, Schwaneberg U, Xin F, Dong W, Xing J, Chen GQ, Tan T, Jiang M, Blank LM. MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:99. [PMID: 34458054 PMCID: PMC8380104 DOI: 10.1186/s12302-021-00536-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/31/2021] [Indexed: 05/16/2023]
Abstract
This article introduces the EU Horizon 2020 research project MIX-UP, "Mixed plastics biodegradation and upcycling using microbial communities". The project focuses on changing the traditional linear value chain of plastics to a sustainable, biodegradable based one. Plastic mixtures contain five of the top six fossil-based recalcitrant plastics [polyethylene (PE), polyurethane (PUR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS)], along with upcoming bioplastics polyhydroxyalkanoate (PHA) and polylactate (PLA) will be used as feedstock for microbial transformations. Consecutive controlled enzymatic and microbial degradation of mechanically pre-treated plastics wastes combined with subsequent microbial conversion to polymers and value-added chemicals by mixed cultures. Known plastic-degrading enzymes will be optimised by integrated protein engineering to achieve high specific binding capacities, stability, and catalytic efficacy towards a broad spectrum of plastic polymers under high salt and temperature conditions. Another focus lies in the search and isolation of novel enzymes active on recalcitrant polymers. MIX-UP will formulate enzyme cocktails tailored to specific waste streams and strives to enhance enzyme production significantly. In vivo and in vitro application of these cocktails enable stable, self-sustaining microbiomes to convert the released plastic monomers selectively into value-added products, key building blocks, and biomass. Any remaining material recalcitrant to the enzymatic activities will be recirculated into the process by physicochemical treatment. The Chinese-European MIX-UP consortium is multidisciplinary and industry-participating to address the market need for novel sustainable routes to valorise plastic waste streams. The project's new workflow realises a circular (bio)plastic economy and adds value to present poorly recycled plastic wastes where mechanical and chemical plastic recycling show limits.
Collapse
Affiliation(s)
- Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Research Center Jülich, Wilhelm Johnen Straße, 52428 Jülich, Germany
| | - Ren Wei
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Uwe Bornscheuer
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kevin O’Connor
- BiOrbic Bioeconomy SFI Research Centre, UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tilman Floehr
- everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Luo Liu
- College of Life Science and Technology (CLST), Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang District, Beijing, 100029 PR China
| | - Victor de Lorenzo
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Haarmann
- AB Enzymes GmbH, Feldbergstraße 78, 64293 Darmstadt, Germany
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Jiamin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190 PR China
| | - Guo-Qiang Chen
- School of Life Sciences (SLS), Tsinghua University, Beijing, 100084 PR China
| | - Tianwei Tan
- College of Life Science and Technology (CLST), Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang District, Beijing, 100029 PR China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
249
|
Gao F, Li J, Hu J, Sui B, Wang C, Sun C, Li X, Ju P. The seasonal distribution characteristics of microplastics on bathing beaches along the coast of Qingdao, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146969. [PMID: 33866158 DOI: 10.1016/j.scitotenv.2021.146969] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Microplastics pollution in nearshore marine environment has become increasingly prominent and has received widespread attention. As a major leisure and entertainment place in coastal cities, bathing beaches not only provide an environment for microplastics to enter the ocean, but also provide a place for the retention of microplastics. In this paper, the distribution, composition and seasonal variation of microplastics in seawater and sediments of six bathing beaches along the coast of Qingdao were studied. The results showed that the average abundance of microplastics in the sediments of the Qingdao bathing beach was 91.11 ± 26.76 items/m2 (13.77 ± 4.39 items/kg) in the winter and 147.78 ± 34.80 items/m2 (21.98 ± 5.97 items/kg) in the summer. The microplastic abundance in the seawater in the summer (average: 567.50 ± 101.06 items/m3) was significantly higher than that in the winter (average: 326.11 ± 49.03 items/m3, p < 0.05). The abundance of microplastics at the six bathing beaches increased from east to west, consistent with the transport direction of coastal currents. The microplastic abundance in the sediment of non-swimming zone of the bathing beach was significantly higher than that in swimming zone (p < 0.05), and the microplastic abundance in the seawater of the swimming zone was slightly higher than that of the non-swimming zone but with no significant difference (p > 0.05). To an extent, it can reflect the correlation between the abundance of microplastics and human recreational activities. The microplastics detected at the bathing beaches were mainly lines (80.5%) and fragments (7.9%) with a size range of 100 to 1000 μm. Rayon (41.8%) and polyethylene terephthalate (PET, 16.9%) were the main polymer types. The microplastic characteristics showed significant seasonal differences, more diversity in summer than in winter. These results emphasized that the distribution and movement of microplastics in bathing beaches were affected by seasons, human activities and coastal currents.
Collapse
Affiliation(s)
- Fenglei Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jun Hu
- Research Vessel Operation Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Baolu Sui
- Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanxing Wang
- Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chengjun Sun
- Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Peng Ju
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
250
|
Zhou H, Ren Y, Li Z, Xu M, Wang Y, Ge R, Kong X, Zheng L, Duan H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H 2 fuel. Nat Commun 2021; 12:4679. [PMID: 34404779 PMCID: PMC8371182 DOI: 10.1038/s41467-021-25048-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/09/2021] [Indexed: 01/19/2023] Open
Abstract
Plastic wastes represent a largely untapped resource for manufacturing chemicals and fuels, particularly considering their environmental and biological threats. Here we report electrocatalytic upcycling of polyethylene terephthalate (PET) plastic to valuable commodity chemicals (potassium diformate and terephthalic acid) and H2 fuel. Preliminary techno-economic analysis suggests the profitability of this process when the ethylene glycol (EG) component of PET is selectively electrooxidized to formate (>80% selectivity) at high current density (>100 mA cm-2). A nickel-modified cobalt phosphide (CoNi0.25P) electrocatalyst is developed to achieve a current density of 500 mA cm-2 at 1.8 V in a membrane-electrode assembly reactor with >80% of Faradaic efficiency and selectivity to formate. Detailed characterizations reveal the in-situ evolution of CoNi0.25P catalyst into a low-crystalline metal oxy(hydroxide) as an active state during EG oxidation, which might be responsible for its advantageous performances. This work demonstrates a sustainable way to implement waste PET upcycling to value-added products.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Lirong Zheng
- Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|