201
|
Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int J Mol Sci 2023; 24:ijms24098290. [PMID: 37175995 PMCID: PMC10179575 DOI: 10.3390/ijms24098290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
| | - Ornella Fiorillo Moreno
- Clínica Iberoamerica, Barranquilla 080001, Colombia
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Eloina Zarate Peñata
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Lisandro Pacheco Lugo
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Antonio Acosta Hoyos
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Roberto Navarro Quiroz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, 08028 Barcelona, Spain
| | | | - Gustavo Aroca Martinez
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
- School of Medicine, Universidad del Norte, Barranquilla 080001, Colombia
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
202
|
Kumar N, Taily IM, Singh C, Kumar S, Rajmani RS, Chakraborty D, Sharma A, Singh P, Thakur KG, Varadarajan R, Ringe RP, Banerjee P, Banerjee I. Identification of diphenylurea derivatives as novel endocytosis inhibitors that demonstrate broad-spectrum activity against SARS-CoV-2 and influenza A virus both in vitro and in vivo. PLoS Pathog 2023; 19:e1011358. [PMID: 37126530 PMCID: PMC10174524 DOI: 10.1371/journal.ppat.1011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) poses enormous challenge in the development of broad-spectrum antivirals that are effective against the existing and emerging viral strains. Virus entry through endocytosis represents an attractive target for drug development, as inhibition of this early infection step should block downstream infection processes, and potentially inhibit viruses sharing the same entry route. In this study, we report the identification of 1,3-diphenylurea (DPU) derivatives (DPUDs) as a new class of endocytosis inhibitors, which broadly restricted entry and replication of several SARS-CoV-2 and IAV strains. Importantly, the DPUDs did not induce any significant cytotoxicity at concentrations effective against the viral infections. Examining the uptake of cargoes specific to different endocytic pathways, we found that DPUDs majorly affected clathrin-mediated endocytosis, which both SARS-CoV-2 and IAV utilize for cellular entry. In the DPUD-treated cells, although virus binding on the cell surface was unaffected, internalization of both the viruses was drastically reduced. Since compounds similar to the DPUDs were previously reported to transport anions including chloride (Cl-) across lipid membrane and since intracellular Cl- concentration plays a critical role in regulating vesicular trafficking, we hypothesized that the observed defect in endocytosis by the DPUDs could be due to altered Cl- gradient across the cell membrane. Using in vitro assays we demonstrated that the DPUDs transported Cl- into the cell and led to intracellular Cl- accumulation, which possibly affected the endocytic machinery by perturbing intracellular Cl- homeostasis. Finally, we tested the DPUDs in mice challenged with IAV and mouse-adapted SARS-CoV-2 (MA 10). Treatment of the infected mice with the DPUDs led to remarkable body weight recovery, improved survival and significantly reduced lung viral load, highlighting their potential for development as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nirmal Kumar
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Charandeep Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Sahil Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Anshul Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Priyanka Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Krishan Gopal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Rajesh P. Ringe
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| |
Collapse
|
203
|
van der Klaauw AA, Horner EC, Pereyra-Gerber P, Agrawal U, Foster WS, Spencer S, Vergese B, Smith M, Henning E, Ramsay ID, Smith JA, Guillaume SM, Sharpe HJ, Hay IM, Thompson S, Innocentin S, Booth LH, Robertson C, McCowan C, Kerr S, Mulroney TE, O'Reilly MJ, Gurugama TP, Gurugama LP, Rust MA, Ferreira A, Ebrahimi S, Ceron-Gutierrez L, Scotucci J, Kronsteiner B, Dunachie SJ, Klenerman P, Park AJ, Rubino F, Lamikanra AA, Stark H, Kingston N, Estcourt L, Harvala H, Roberts DJ, Doffinger R, Linterman MA, Matheson NJ, Sheikh A, Farooqi IS, Thaventhiran JED. Accelerated waning of the humoral response to COVID-19 vaccines in obesity. Nat Med 2023; 29:1146-1154. [PMID: 37169862 PMCID: PMC10202802 DOI: 10.1038/s41591-023-02343-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/07/2023] [Indexed: 05/13/2023]
Abstract
Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Utkarsh Agrawal
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Sarah Spencer
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Bensi Vergese
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Isobel D Ramsay
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jack A Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Iain M Hay
- Babraham Institute, Babraham Research Campus, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sam Thompson
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | - Lucy H Booth
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Chris Robertson
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Colin McCowan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Steven Kerr
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Maria A Rust
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Alex Ferreira
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Soraya Ebrahimi
- Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jacopo Scotucci
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Adrian J Park
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Francesco Rubino
- Department of Diabetes, King's College London and King's College Hospital NHS Foundation Trust, London, UK
| | - Abigail A Lamikanra
- NHS Blood and Transplant, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah Stark
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lise Estcourt
- NHS Blood and Transplant, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - David J Roberts
- NHS Blood and Transplant, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rainer Doffinger
- Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Aziz Sheikh
- Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
204
|
Forst CV, Zeng L, Wang Q, Zhou X, Vatansever S, Xu P, Song W, Tu Z, Zhang B. Multiscale network analysis identifies potential receptors for SARS-CoV-2 and reveals their tissue-specific and age-dependent expression. FEBS Lett 2023; 597:1384-1402. [PMID: 36951513 PMCID: PMC10294276 DOI: 10.1002/1873-3468.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected tens of millions of individuals and caused hundreds of thousands of deaths worldwide. Here, we present a comprehensive, multiscale network analysis of the transcriptional response to the virus. In particular, we focused on key regulators, cell receptors, and host processes that were hijacked by the virus for its advantage. ACE2-controlled processes involved CD300e (a TYROBP receptor) as a key regulator and the activation of IL-2 pro-inflammatory cytokine signaling. We further investigated the age dependency of such receptors in different tissues. In summary, this study provides novel insights into the gene regulatory organization during the SARS-CoV-2 infection and the tissue-specific, age-dependent expression of the cell receptors involved in COVID-19.
Collapse
Affiliation(s)
- Christian V. Forst
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Lu Zeng
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qian Wang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Xianxiao Zhou
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Sezen Vatansever
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peng Xu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Won‐Min Song
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Zhidong Tu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
205
|
Chothe SK, Jakka P, Boorla VS, Ramasamy S, Gontu A, Nissly RH, Brown J, Turner G, Sewall BJ, Reeder DM, Field KA, Engiles JB, Amirthalingam S, Ravichandran A, LaBella L, Nair MS, Maranas CD, Kuchipudi SV. Little Brown Bats ( Myotis lucifugus) Support the Binding of SARS-CoV-2 Spike and Are Likely Susceptible to SARS-CoV-2 Infection. Viruses 2023; 15:v15051103. [PMID: 37243189 DOI: 10.3390/v15051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Padmaja Jakka
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Santhamani Ramasamy
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ruth H Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Justin Brown
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Pennsylvania Game Commission, 2001 Elmerton Ave, Harrisburg, PA 17110, USA
| | - Gregory Turner
- Pennsylvania Game Commission, 2001 Elmerton Ave, Harrisburg, PA 17110, USA
| | - Brent J Sewall
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Julie B Engiles
- Departments of Pathobiology and Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - Saranya Amirthalingam
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abirami Ravichandran
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey LaBella
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
206
|
Godbold GD, Hewitt FC, Kappell AD, Scholz MB, Agar SL, Treangen TJ, Ternus KL, Sandbrink JB, Koblentz GD. Improved understanding of biorisk for research involving microbial modification using annotated sequences of concern. Front Bioeng Biotechnol 2023; 11:1124100. [PMID: 37180048 PMCID: PMC10167326 DOI: 10.3389/fbioe.2023.1124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation of research on microbes that cause disease in humans has historically been focused on taxonomic lists of 'bad bugs'. However, given our increased knowledge of these pathogens through inexpensive genome sequencing, 5 decades of research in microbial pathogenesis, and the burgeoning capacity of synthetic biologists, the limitations of this approach are apparent. With heightened scientific and public attention focused on biosafety and biosecurity, and an ongoing review by US authorities of dual-use research oversight, this article proposes the incorporation of sequences of concern (SoCs) into the biorisk management regime governing genetic engineering of pathogens. SoCs enable pathogenesis in all microbes infecting hosts that are 'of concern' to human civilization. Here we review the functions of SoCs (FunSoCs) and discuss how they might bring clarity to potentially problematic research outcomes involving infectious agents. We believe that annotation of SoCs with FunSoCs has the potential to improve the likelihood that dual use research of concern is recognized by both scientists and regulators before it occurs.
Collapse
Affiliation(s)
| | | | | | | | - Stacy L. Agar
- Signature Science, LLC, Charlottesville, VA, United States
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, United States
| | | | - Jonas B. Sandbrink
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gregory D. Koblentz
- Schar School of Policy and Government, George Mason University, Arlington, VA, United States
| |
Collapse
|
207
|
Pal D, De K, Yates TB, Kolape J, Muchero W. Mutating novel interaction sites in NRP1 reduces SARS-CoV-2 spike protein internalization. iScience 2023; 26:106274. [PMID: 36910328 PMCID: PMC9957656 DOI: 10.1016/j.isci.2023.106274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The global pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a severe global health problem because of its rapid spread. Both Ace2 and NRP1 provide initial viral binding sites for SARS-CoV-2. Here, we show that cysteine residues located in the vestigial plasminogen-apple-nematode (PAN) domain of NRP1 are necessary for SARS-CoV-2 spike protein internalization. Mutating novel cysteine residues in the PAN altered NRP1 stability and downstream activation of extracellular signal-regulated kinase (ERK) signaling pathway and impaired its interaction with the spike protein. This resulted in a significant reduction in spike protein abundance in Vero-E6 cells for the original, alpha, and delta SARS-CoV-2 variants even in the presence of the Ace2. Moreover, mutating these cysteine residues in NRP1 significantly lowered its association with Plexin-A1. As the spike protein is a critical component for targeted therapy, our biochemical study may represent a distinct mechanism to develop a path for future therapeutic discovery.
Collapse
Affiliation(s)
- Debjani Pal
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Timothy B. Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
| | - Jaydeep Kolape
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
- Corresponding author
| |
Collapse
|
208
|
Gonzalez-Garcia P, Muñoz-Miranda JP, Fernandez-Cisnal R, Olvera L, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F. Specific Activation of T Cells by an ACE2-Based CAR-Like Receptor upon Recognition of SARS-CoV-2 Spike Protein. Int J Mol Sci 2023; 24:ijms24087641. [PMID: 37108807 PMCID: PMC10145580 DOI: 10.3390/ijms24087641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus Disease 2019 (COVID-19) pandemic, which is still a health issue worldwide mostly due to a high rate of contagiousness conferred by the high-affinity binding between cell viral receptors, Angiotensin-Converting Enzyme 2 (ACE2) and SARS-CoV-2 Spike protein. Therapies have been developed that rely on the use of antibodies or the induction of their production (vaccination), but despite vaccination being still largely protective, the efficacy of antibody-based therapies wanes with the advent of new viral variants. Chimeric Antigen Receptor (CAR) therapy has shown promise for tumors and has also been proposed for COVID-19 treatment, but as recognition of CARs still relies on antibody-derived sequences, they will still be hampered by the high evasion capacity of the virus. In this manuscript, we show the results from CAR-like constructs with a recognition domain based on the ACE2 viral receptor, whose ability to bind the virus will not wane, as Spike/ACE2 interaction is pivotal for viral entry. Moreover, we have developed a CAR construct based on an affinity-optimized ACE2 and showed that both wild-type and affinity-optimized ACE2 CARs drive activation of a T cell line in response to SARS-CoV-2 Spike protein expressed on a pulmonary cell line. Our work sets the stage for the development of CAR-like constructs against infectious agents that would not be affected by viral escape mutations and could be developed as soon as the receptor is identified.
Collapse
Affiliation(s)
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | | | - Lucia Olvera
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
209
|
Li L, Sottas CM, Chen HY, Li Y, Cui H, Villano JS, Mankowski JL, Cannon PM, Papadopoulos V. SARS-CoV-2 Enters Human Leydig Cells and Affects Testosterone Production In Vitro. Cells 2023; 12:1198. [PMID: 37190107 PMCID: PMC10136776 DOI: 10.3390/cells12081198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a SARS-like coronavirus, continues to produce mounting infections and fatalities all over the world. Recent data point to SARS-CoV-2 viral infections in the human testis. As low testosterone levels are associated with SARS-CoV-2 viral infections in males and human Leydig cells are the main source of testosterone, we hypothesized that SARS-CoV-2 could infect human Leydig cells and impair their function. We successfully detected SARS-CoV-2 nucleocapsid in testicular Leydig cells of SARS-CoV-2-infected hamsters, providing evidence that Leydig cells can be infected with SARS-CoV-2. We then employed human Leydig-like cells (hLLCs) to show that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 is highly expressed in hLLCs. Using a cell binding assay and a SARS-CoV-2 spike-pseudotyped viral vector (SARS-CoV-2 spike pseudovector), we showed that SARS-CoV-2 could enter hLLCs and increase testosterone production by hLLCs. We further combined the SARS-CoV-2 spike pseudovector system with pseudovector-based inhibition assays to show that SARS-CoV-2 enters hLLCs through pathways distinct from those of monkey kidney Vero E6 cells, a typical model used to study SARS-CoV-2 entry mechanisms. We finally revealed that neuropilin-1 and cathepsin B/L are expressed in hLLCs and human testes, raising the possibility that SARS-CoV-2 may enter hLLCs through these receptors or proteases. In conclusion, our study shows that SARS-CoV-2 can enter hLLCs through a distinct pathway and alter testosterone production.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal M. Sottas
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Haoyi Cui
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jason S. Villano
- Departments of Molecular and Comparative Pathobiology, Pathology and Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joseph L. Mankowski
- Departments of Molecular and Comparative Pathobiology, Pathology and Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
210
|
Marin GH, Murail S, Andrini L, Garcia M, Loisel S, Tuffery P, Rebollo A. In Silico and In Vivo Studies of a Tumor-Penetrating and Interfering Peptide with Antitumoral Effect on Xenograft Models of Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15041180. [PMID: 37111665 PMCID: PMC10142558 DOI: 10.3390/pharmaceutics15041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The combination of a tumor-penetrating peptide (TPP) with a peptide able to interfere with a given protein-protein interaction (IP) is a promising strategy with potential clinical application. Little is known about the impact of fusing a TPP with an IP, both in terms of internalization and functional effect. Here, we analyze these aspects in the context of breast cancer, targeting PP2A/SET interaction, using both in silico and in vivo approaches. Our results support the fact that state-of-the-art deep learning approaches developed for protein-peptide interaction modeling can reliably identify good candidate poses for the IP-TPP in interaction with the Neuropilin-1 receptor. The association of the IP with the TPP does not seem to affect the ability of the TPP to bind to Neuropilin-1. Molecular simulation results suggest that peptide IP-GG-LinTT1 in a cleaved form interacts with Neuropilin-1 in a more stable manner and has a more helical secondary structure than the cleaved IP-GG-iRGD. Surprisingly, in silico investigations also suggest that the non-cleaved TPPs can bind the Neuropilin-1 in a stable manner. The in vivo results using xenografts models show that both bifunctional peptides resulting from the combination of the IP and either LinTT1 or iRGD are effective against tumoral growth. The peptide iRGD-IP shows the highest stability to serum proteases degradation while having the same antitumoral effect as Lin TT1-IP, which is more sensitive to proteases degradation. Our results support the development of the TPP-IP strategy as therapeutic peptides against cancer.
Collapse
Affiliation(s)
- Gustavo H Marin
- Department of Pharmacology/Histology and Embryology, FMC, National University of La Plata, CONICET, La Plata 1900, Argentina
| | - Samuel Murail
- BFA, Université Paris Cite, CNRS UMR 8251, Inserm U1133, 75013 Paris, France
| | - Laura Andrini
- Department of Pharmacology/Histology and Embryology, FMC, National University of La Plata, CONICET, La Plata 1900, Argentina
| | - Marcela Garcia
- Department of Pharmacology/Histology and Embryology, FMC, National University of La Plata, CONICET, La Plata 1900, Argentina
| | | | - Pierre Tuffery
- BFA, Université Paris Cite, CNRS UMR 8251, Inserm U1133, 75013 Paris, France
| | - Angelita Rebollo
- Faculté de Pharmacie, UTCBS, Université Paris Cite, Inserm U1267, 75006 Paris, France
| |
Collapse
|
211
|
Goswami S, Samanta D, Duraivelan K. Molecular mimicry of host short linear motif-mediated interactions utilised by viruses for entry. Mol Biol Rep 2023; 50:4665-4673. [PMID: 37016039 PMCID: PMC10072811 DOI: 10.1007/s11033-023-08389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Viruses are obligate intracellular parasites that depend on host cellular machinery for performing even basic biological functions. One of the many ways they achieve this is through molecular mimicry, wherein the virus mimics a host sequence or structure, thereby being able to hijack the host's physiological interactions for its pathogenesis. Such adaptations are specific recognitions that often confer tissue and species-specific tropisms to the virus, and enable the virus to utilise previously existing host signalling networks, which ultimately aid in further steps of viral infection, such as entry, immune evasion and spread. A common form of sequence mimicry utilises short linear motifs (SLiMs). SLiMs are short-peptide sequences that mediate transient interactions and are major elements in host protein interaction networks. This work is aimed at providing a comprehensive review of current literature of some well-characterised SLiMs that play a role in the attachment and entry of viruses into host cells, which mimic physiological receptor-ligand interactions already present in the host. Considering recent trends in emerging diseases, further research on such motifs involved in viral entry can help in the discovery of previously unknown cellular receptors utilised by viruses, as well as help in the designing of targeted therapeutics such as vaccines or inhibitors directed towards these interactions.
Collapse
Affiliation(s)
- Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kheerthana Duraivelan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
212
|
Strong MJ. SARS-CoV-2, aging, and Post-COVID-19 neurodegeneration. J Neurochem 2023; 165:115-130. [PMID: 36458986 PMCID: PMC9877664 DOI: 10.1111/jnc.15736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
As the world continues to experience the effects of SARS-CoV-2, there is evidence to suggest that the sequelae of viral infection (the post-COVID-19 condition; PCC) at both an individual and population level will be significant and long-lasting. The history of pandemics or epidemics in the last 100 years caused by members of the RNA virus family, of which coronaviruses are a member, provides ample evidence of the acute neurological effects. However, except for the H1N1 influenza pandemic of 1918/1919 (the Spanish flu) with its associated encephalitis lethargica, there is little information on long-term neurological sequelae. COVID-19 is the first pandemic that has occurred in a setting of an aging population, especially in several high-income countries. Its survivors are at the greatest risk for developing neurodegenerative conditions as they age, rendering the current pandemic a unique paradigm not previously witnessed. The SARS-CoV-2 virus, among the largest of the RNA viruses, is a single-stranded RNA that encodes for 29 proteins that include the spike protein that contains the key domains required for ACE2 binding, and a complex array of nonstructural proteins (NSPs) and accessory proteins that ensure the escape of the virus from the innate immune response, allowing for its efficient replication, translation, and exocytosis as a fully functional virion. Increasingly, these proteins are also recognized as potentially contributing to biochemical and molecular processes underlying neurodegeneration. In addition to directly being taken up by brain endothelium, the virus or key protein constituents can be transported to neurons, astrocytes, and microglia by extracellular vesicles and can accelerate pathological fibril formation. The SARS-CoV-2 nucleocapsid protein is intrinsically disordered and can participate in liquid condensate formation, including as pathological heteropolymers with neurodegenerative disease-associated RNA-binding proteins such as TDP-43, FUS, and hnRNP1A. As the SARS-CoV-2 virus continues to mutate under the immune pressure exerted by highly efficacious vaccines, it is evolving into a virus with greater transmissibility but less severity compared with the original strain. The potential of its lingering impact on the nervous system thus has the potential to represent an ongoing legacy of an even greater global health challenge than acute infection.
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Clinical Neurological Sciences and The Robarts Research InstituteWestern UniversityLondonCanada
| |
Collapse
|
213
|
Mobley JA, Molyvdas A, Kojima K, Ahmad I, Jilling T, Li JL, Garantziotis S, Matalon S. The SARS-CoV-2 spike S1 protein induces global proteomic changes in ATII-like rat L2 cells that are attenuated by hyaluronan. Am J Physiol Lung Cell Mol Physiol 2023; 324:L413-L432. [PMID: 36719087 PMCID: PMC10042596 DOI: 10.1152/ajplung.00282.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.
Collapse
Affiliation(s)
- James A Mobley
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam Molyvdas
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kyoko Kojima
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
214
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
215
|
López-Farfán D, Irigoyen N, Gómez-Díaz E. Exploring SARS-CoV-2 and Plasmodium falciparum coinfection in human erythrocytes. Front Immunol 2023; 14:1120298. [PMID: 36993979 PMCID: PMC10041564 DOI: 10.3389/fimmu.2023.1120298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
The co-occurrence and the similarities between malaria and COVID-19 diseases raise the question of whether SARS-CoV-2 is capable of infecting red blood cells and, if so, whether these cells represent a competent niche for the virus. In this study, we first tested whether CD147 functions as an alternative receptor of SARS-CoV-2 to infect host cells. Our results show that transient expression of ACE2 but not CD147 in HEK293T allows SARS-CoV-2 pseudoviruses entry and infection. Secondly, using a SARS-CoV-2 wild type virus isolate we tested whether the new coronavirus could bind and enter erythrocytes. Here, we report that 10,94% of red blood cells had SARS-CoV-2 bound to the membrane or inside the cell. Finally, we hypothesized that the presence of the malaria parasite, Plasmodium falciparum, could make erythrocytes more vulnerable to SARS-CoV-2 infection due to red blood cell membrane remodelling. However, we found a low coinfection rate (9,13%), suggesting that P. falciparum would not facilitate the entry of SARS-CoV-2 virus into malaria-infected erythrocytes. Besides, the presence of SARS-CoV-2 in a P. falciparum blood culture did not affect the survival or growth rate of the malaria parasite. Our results are significant because they do not support the role of CD147 in SARS-CoV-2 infection, and indicate, that mature erythrocytes would not be an important reservoir for the virus in our body, although they can be transiently infected.
Collapse
Affiliation(s)
- Diana López-Farfán
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
- *Correspondence: Diana López-Farfán,
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
216
|
Bhowmik R, Pardasani M, Mahajan S, Magar R, Joshi SV, Nair GA, Bhattacharjee AS, Abraham NM. Persistent olfactory learning deficits during and post-COVID-19 infection. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100081. [PMID: 36919010 PMCID: PMC9985517 DOI: 10.1016/j.crneur.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
Quantifying olfactory impairments can facilitate early detection of Coronavirus disease 2019 (COVID-19). Despite being a debated topic, many reports provide evidence for the neurotropism of SARS-CoV-2. However, a sensitive, specific, and accurate non-invasive method for quantifying persistent neurological impairments is missing to date. To quantify olfactory detectabilities and neurocognitive impairments in symptomatic COVID-19 patients during and post-infection periods, we used a custom-built olfactory-action meter (OAM) providing accurate behavioral readouts. Ten monomolecular odors were used for quantifying olfactory detectabilities and two pairs of odors were employed for olfactory matching tests. We followed cohorts of healthy subjects, symptomatic patients, and recovered subjects for probing olfactory learning deficits, before the Coronavirus Omicron variant was reported in India. Our method identifies severe and persistent olfactory dysfunctions in symptomatic patients during COVID-19 infection. Symptomatic patients and recovered subjects showed significant olfactory learning deficits during and post-infection periods, 4-18 months, in comparison to healthy subjects. On comparing olfactory fitness, we found differential odor detectabilities and olfactory function scores in symptomatic patients and asymptomatic carriers. Our results indicate probable long-term neurocognitive deficits in COVID-19 patients imploring the necessity of long-term tracking during post-infection period. Differential olfactory fitness observed in symptomatic patients and asymptomatic carriers demand probing mechanisms of potentially distinct infection routes.
Collapse
Affiliation(s)
- Rajdeep Bhowmik
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Sarang Mahajan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Rahul Magar
- Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals (BJGMC & SGH), Pune, Maharashtra, 411001, India
| | - Samir V. Joshi
- Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals (BJGMC & SGH), Pune, Maharashtra, 411001, India
| | - Ganesh Ashish Nair
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Anindya S. Bhattacharjee
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Nixon M. Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| |
Collapse
|
217
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
218
|
Yang C, Cai L, Xiao SY. Pathologic Characteristics of Digestive Tract and Liver in Patients with Coronavirus Disease 2019. Gastroenterol Clin North Am 2023; 52:201-214. [PMID: 36813426 PMCID: PMC9531645 DOI: 10.1016/j.gtc.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
With the high prevalence of coronavirus disease-2019 (COVID-19), there has been increasing understanding of the pathologic changes associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review summarizes the pathologic changes in the digestive system and liver associated with COVID-19, including the injuries induced by SARS-CoV2 infection of GI epithelial cells and the systemic immune responses. The common digestive manifestations associated with COVID-19 include anorexia, nausea, vomiting, and diarrhea; the clearance of the viruses in COVID-19 patients with digestive symptoms is usually delayed. COVID-19-associated gastrointestinal histopathology is characterized by mucosal damage and lymphocytic infiltration. The most common hepatic changes are steatosis, mild lobular and portal inflammation, congestion/sinusoidal dilatation, lobular necrosis, and cholestasis.
Collapse
Affiliation(s)
- Chunxiu Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijun Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, University of Chicago Medicine, MC6101, Anatomic Pathology, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
219
|
Ostermann PN, Schaal H. Human brain organoids to explore SARS-CoV-2-induced effects on the central nervous system. Rev Med Virol 2023; 33:e2430. [PMID: 36790825 DOI: 10.1002/rmv.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). In less than three years, an estimated 600 million infections with SARS-CoV-2 occurred worldwide, resulting in a pandemic with tremendous impact especially on economic and health sectors. Initially considered a respiratory disease, COVID-19, along with its long-term sequelae (long-COVID) rather is a systemic disease. Neurological symptoms like dementia or encephalopathy were reported early during the pandemic as concomitants of the acute phase and as characteristics of long-COVID. An excessive inflammatory immune response is hypothesized to play a major role in this context. However, direct infection of neural cells may also contribute to the neurological aspects of (long)-COVID-19. To mainly explore such direct effects of SARS-CoV-2 on the central nervous system, human brain organoids provide a useful platform. Infecting these three-dimensional tissue cultures allows the study of viral neurotropism as well as of virus-induced effects on single cells or even the complex cellular network within the organoid. In this review, we summarize the experimental studies that used SARS-CoV-2-infected human brain organoids to unravel the complex nature of (long)-COVID-19-related neurological manifestations.
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
220
|
Maria NI, Rapicavoli RV, Alaimo S, Bischof E, Stasuzzo A, Broek JA, Pulvirenti A, Mishra B, Duits AJ, Ferro A, RxCOVEA Framework. Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing. Heliyon 2023; 9:e14115. [PMID: 36911878 PMCID: PMC9986505 DOI: 10.1016/j.heliyon.2023.e14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which -by leveraging available transcriptomic and proteomic databases-allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both>96%) the viral effects on cellular host-immune response, resulting in specific cellular SARS-CoV-2 signatures and ii) utilize these cell-specific signatures to identify promising repurposable therapeutics. Powered by this tool, coupled with domain expertise, we identify several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential druggable targets in COVID-19 pathogenesis.
Collapse
Key Words
- 2DG, 2-Deoxy-Glucose
- ACE2, Angiotensin-converting enzyme 2
- COVID-19
- COVID-19, Coronavirus disease 2019
- Caco-2, Human colon epithelial carcinoma cell line
- Calu-3, Epithelial cell line
- Cellular SARS-CoV-2 signatures
- Cellular host-immune response
- Cellular simulation models
- DEGs, Differentially Expressed Genes
- DEPs, Differentially expressed proteins
- Drug repurposing
- HCQ-CQ, (Hydroxy)chloroquine
- IFN, Interferon
- ISGs, IFN-stimulated genes
- MITHrIL, Mirna enrIched paTHway Impact anaLysis
- MOI, Multiplicity of infection
- MP, Methylprednisolone
- NHBE, Normal human bronchial epithelial cells
- PHENSIM, PHENotype SIMulator
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- Systems biology
- TLR, Toll-like Receptor
Collapse
Affiliation(s)
- Naomi I. Maria
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, USA
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
- Department of Medical Microbiology and Immunology, St. Antonius Ziekenhuis, Niewegein, the Netherlands
- Corresponding author. Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA.
| | - Rosaria Valentina Rapicavoli
- Department of Physics and Astronomy, University of Catania, Italy
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Evelyne Bischof
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, Naples, Italy
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Pudong, Shanghai, China
- Insilico Medicine, Hong Kong Special Administrative Region, China
| | | | - Jantine A.C. Broek
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Bud Mishra
- Department of Computer Science, Mathematics, Engineering and Cell Biology, Courant Institute, Tandon and School of Medicine, New York University, New York, USA
- Simon Center for Quantitative Biology, Cold Spring Harbor Lab, Long Island, USA
- Corresponding author. Courant Institute of Mathematical Sciences, Room 405, 251 Mercer Street, NY, USA.
| | - Ashley J. Duits
- Red Cross Blood Bank Foundation Curaçao, Willemstad, Curaçao
- Curaçao Biomedical Health Research Institute, Willemstad, Curaçao
- Institute for Medical Education, University Medical Center Groningen, Groningen, the Netherlands
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | | |
Collapse
|
221
|
Matsumoto C, Shibata S, Kishi T, Morimoto S, Mogi M, Yamamoto K, Kobayashi K, Tanaka M, Asayama K, Yamamoto E, Nakagami H, Hoshide S, Mukoyama M, Kario K, Node K, Rakugi H. Long COVID and hypertension-related disorders: a report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertens Res 2023; 46:601-619. [PMID: 36575228 PMCID: PMC9793823 DOI: 10.1038/s41440-022-01145-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
The coronavirus disease 2019 (COVID-19) affects infected patients even after the acute phase and impairs their health and quality of life by causing a wide variety of symptoms, referred to as long COVID. Although the evidence is still insufficient, hypertension is suspected to be a potential risk factor for long COVID, and the occurrence of cardiovascular diseases seems to be a key facet of multiple conditions observed in long COVID. Nonetheless, there are few reports that comprehensively review the impacts of long COVID on hypertension and related disorders. As a sequel to our previous report in 2020 which reviewed the association of COVID-19 and hypertension, we summarize the possible influences of long COVID on hypertension-related organs, including the cardiovascular system, kidney, and endocrine system, as well as the pathophysiological mechanisms associated with the disorders in this review. Given that the clinical course of COVID-19 is highly affected by age and sex, we also review the impacts of these factors on long COVID. Lastly, we discuss areas of uncertainty and future directions, which may lead to better understanding and improved prognosis of clinical problems associated with COVID-19.
Collapse
Affiliation(s)
- Chisa Matsumoto
- Department of Cardiology, Preventive medicine, Tokyo Medical University, Tokyo, Japan.
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Okawa, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuo Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Kobayashi Internal Medicine Clinic, Sagamihara, Japan
| | - Masami Tanaka
- Department of Internal Medicine, Adachi Medical Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
222
|
Sabki A, Khelifi L, Kameli A, Baali S. Identification of Four New Chemical Series of Small Drug-Like Natural Products as Potential Neuropilin-1 Inhibitors by Structure-Based Virtual Screening: Pharmacophore-Based Molecular Docking and Dynamics Simulation. Chem Biodivers 2023; 20:e202200933. [PMID: 36799050 DOI: 10.1002/cbdv.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Neuropilin-1 (NRP-1), a surface transmembrane glycoprotein, is one of the most important co-receptors of VEGF-A165 (vascular endothelial growth factor) responsible for pathological angiogenesis. In general, NRP-1 overexpression in cancer correlates with poor prognosis and more tumor aggressiveness. NRP-1 role in cancer has been mainly explained by mediating VEGF-A165-induced effects on tumor angiogenesis. NRP-1 was recently identified as a co-receptor and an independent gateway for SARS-CoV-2 through binding subunit S2 of Spike protein in the same way as VEGF-A165. Thus, NRP-1 is of particular value as a target for cancer therapy and other angiogenesis-dependent diseases as well as for SARS-CoV-2 antiviral intervention. Herein, The Super Natural II, the largest available database of natural products (∼0.33 M), pre-filtered with drug-likeness criteria (absorption, distribution, metabolism and excretion/toxicity), was screened against NRP-1. NRP-1/VEGF-A165 interaction is one of protein-protein interfaces (PPIs) known to be challenging when approached in-silico. Thus, a PPI-suited multi-step virtual screening protocol, incorporating a derived pharmacophore with molecular docking and followed by MD (molecular dynamics) simulation, was designed. Two stages of pharmacophorically constrained molecular docking (standard and extra precisions), a mixed Torsional/Low-mode conformational search and MM-GBSA ΔG binding affinities calculation, resulted in the selection of 100 hits. These 100 hits were subjected to 20 ns MD simulation, that was extended to 100 ns for top hits (20) and followed by post-dynamics analysis (atomic ligand-protein contacts, RMSD, RMSF, MM-GBSA ΔG, Rg, SASA and H-bonds). Post-MD analysis showed that 19 small drug-like nonpeptide natural molecules, grouped in four chemical scaffolds (purine, thiazole, tetrahydropyrimidine and dihydroxyphenyl), well verified the derived pharmacophore and formed stable and compact complexes with NRP-1. The discovered molecules are promising and can serve as a base for further development of new NRP-1 inhibitors.
Collapse
Affiliation(s)
- Abdellah Sabki
- Laboratory of Genetic Resources & Biotechnology, National School of Agricultural Sciences (ENSA), 16004, Algiers, Algeria
| | - Lakhdar Khelifi
- Laboratory of Genetic Resources & Biotechnology, National School of Agricultural Sciences (ENSA), 16004, Algiers, Algeria
| | - Abdelkrim Kameli
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, ENS Kouba, 16050, Algiers, Algeria
| | - Salim Baali
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, ENS Kouba, 16050, Algiers, Algeria
| |
Collapse
|
223
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
224
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
225
|
Avdonin PP, Rybakova EY, Trufanov SK, Avdonin PV. SARS-CoV-2 Receptors and Their Involvement in Cell Infection. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023; 17:1-11. [PMID: 37008884 PMCID: PMC10050803 DOI: 10.1134/s1990747822060034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 03/30/2023]
Abstract
The new coronavirus infection (COVID-19) pandemic caused by SARS-CoV-2 has many times surpassed the epidemics caused by SARS-CoV and MERS-CoV. The reason for this was the presence of sites in the protein sequence of SARS-CoV-2 that provide interaction with a broader range of receptor proteins on the host cell surface. In this review, we consider both already known receptors common to SARS-CoV and SARS-CoV-2 and new receptors specific to SARS-CoV-2.
Collapse
Affiliation(s)
- P. P. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - E. Yu. Rybakova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - S. K. Trufanov
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - P. V. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
226
|
Folic Acid and Leucovorin Have Potential to Prevent SARS-CoV-2-Virus Internalization by Interacting with S-Glycoprotein/Neuropilin-1 Receptor Complex. Molecules 2023; 28:molecules28052294. [PMID: 36903540 PMCID: PMC10005443 DOI: 10.3390/molecules28052294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.
Collapse
|
227
|
Sahin AT, Yurtseven A, Dadmand S, Ozcan G, Akarlar BA, Kucuk NEO, Senturk A, Ergonul O, Can F, Tuncbag N, Ozlu N. Plasma proteomics identify potential severity biomarkers from COVID-19 associated network. Proteomics Clin Appl 2023; 17:e2200070. [PMID: 36217943 PMCID: PMC9874836 DOI: 10.1002/prca.202200070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection. EXPERIMENTAL DESIGN We systematically analyzed plasma proteomes of COVID-19 patients from Turkey by using mass spectrometry. Different severity grades (moderate, severe, and critical) and periods of disease (early, inflammatory, and recovery) are monitored. Significant alterations in protein expressions are used to reconstruct the COVID-19 associated network that was further extended to connect viral and host proteins. RESULTS Across all COVID-19 patients, 111 differentially expressed proteins were found, of which 28 proteins were unique to our study mainly enriching in immunoglobulin production. By monitoring different severity grades and periods of disease, CLEC3B, MST1, and ITIH2 were identified as potential early predictors of COVID-19 severity. Most importantly, we extended the COVID-19 associated network with viral proteins and showed the connectedness of viral proteins with human proteins. The most connected viral protein ORF8, which has a role in immune evasion, targets many host proteins tightly connected to the deregulated human plasma proteins. CONCLUSIONS AND CLINICAL RELEVANCE Plasma proteomes from critical patients are intrinsically clustered in a distinct group than severe and moderate patients. Importantly, we did not recover any grouping based on the infection period, suggesting their distinct proteome even in the recovery phase. The new potential early severity markers can be further studied for their value in the clinics to monitor COVID-19 prognosis. Beyond the list of plasma proteins, our disease-associated network unravels altered pathways, and the possible therapeutic targets in SARS-CoV-2 infection by connecting human and viral proteins. Follow-up studies on the disease associated network that we propose here will be useful to determine molecular details of viral perturbation and to address how the infection affects human physiology.
Collapse
Affiliation(s)
- Ayse Tugce Sahin
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| | - Ali Yurtseven
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| | - Sina Dadmand
- Graduate School of Science and Engineering, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Gulin Ozcan
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Busra A Akarlar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Nazli Ezgi Ozkan Kucuk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Aydanur Senturk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Onder Ergonul
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Koc University Is Bank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Fusun Can
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Infectious Diseases, School of Medicine, Koc University, Istanbul, Turkey
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Department of Medical Microbiology, School of Medicine, Koc University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
228
|
Polypharmacology of ambroxol in the treatment of COVID-19. Biosci Rep 2023; 43:232463. [PMID: 36651548 PMCID: PMC9970826 DOI: 10.1042/bsr20221927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still underway. Due to the growing development of severe symptoms, it is necessary to promote effective therapies. Ambroxol [2-amino-3,5-dibromo-N-(trans-4-hydroxycyclohexyl) benzylamine] has long been used as one of the over-the-counter mucolytic agents to treat various respiratory diseases. Therefore, we focused on the mechanism of action of ambroxol in COVID-19 treatment. In vitro and in silico screening revealed that ambroxol may impede cell entry of SARS-CoV-2 by binding to neuropilin-1. Ambroxol could also interact with multiple inflammatory factors and signaling pathways, especially nuclear factor kappa B (NF-κB), to interfere cytokines cascade activated by SARS-CoV-2 internalization. Furthermore, multipathways and proteins, such as the cell cycle and matrix metalloproteinases (MMPs), were identified as significant ambroxol-targeting pathways or molecules in PBMC and lung of severe COVID-19 patients by bioinformatics analysis. Collectively, these results suggested that ambroxol may serve as a promising therapeutic candidate for the treatment of severe SARS-CoV-2 infection.
Collapse
|
229
|
Zhang P, Chen L, Zhou F, He Z, Wang G, Luo Y. NRP1 promotes prostate cancer progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis 2023; 14:159. [PMID: 36841806 PMCID: PMC9958327 DOI: 10.1038/s41419-023-05696-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor with a high global incidence in males. The mechanism underlying PCa progression is still not clear. This study observed that NRP1 was highly expressed in PCa and associated with poor prognosis in PCa patients. Functionally, NRP1 depletion attenuated the proliferation and migration ability of PCa cells in vitro and in vivo, while NRP1 overexpression promoted PCa cell proliferation and migration. Moreover, it was observed that NRP1 depletion induced G1 phase arrest in PCa cells. Mechanistically, HIF1α is bound to the specific promoter region of NRP1, thereby regulating its transcriptional activation. Subsequently, NRP1 interacted with EGFR, leading to EGFR phosphorylation. This study also provided evidence that the b1/b2 domain of NRP1 was responsible for the interaction with the extracellular domain of EGFR. Moreover, EGFR mediated NRP1-induced activation of the AKT signaling pathway, which promoted the malignant progression of PCa. In addition, the administration of NRP1 inhibitor EG01377 significantly inactivated the EGFR/AKT signaling axis, thereby suppressing PCa progression. In conclusion, the findings from this study highlighted the molecular mechanism underlying NRP1 expression in PCa and provide a potential predictor and therapeutic target for clinical prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Peng Zhang
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwen He
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
230
|
Thieulent CJ, Dittmar W, Balasuriya UBR, Crossland NA, Wen X, Richt JA, Carossino M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023; 8:e0055822. [PMID: 36728430 PMCID: PMC9942576 DOI: 10.1128/msphere.00558-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Several models were developed to study the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the in vivo efficacy of vaccines and therapeutics. Since wild-type mice are naturally resistant to infection by ancestral SARS-CoV-2 strains, several transgenic mouse models expressing human angiotensin-converting enzyme 2 (hACE2) were developed. An alternative approach has been to develop mouse-adapted SARS-CoV-2 strains. Here, we compared the clinical progression, viral replication kinetics and dissemination, pulmonary tropism, and host innate immune response dynamics between the mouse-adapted MA10 strain and its parental strain (USA-WA1/2020) following intranasal inoculation of K18-hACE2 mice, a widely used model. Compared to its parental counterpart, the MA10 strain induced earlier clinical decline with significantly higher viral replication and earlier neurodissemination. Importantly, the MA10 strain also showed a wider tropism, with infection of bronchiolar epithelia. While both SARS-CoV-2 strains induced comparable pulmonary cytokine/chemokine responses, many proinflammatory and monocyte-recruitment chemokines, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10/CXCL10, and MCP-1/CCL2, showed an earlier peak in MA10-infected mice. Furthermore, both strains induced a similar downregulation of murine Ace2, with only a transient downregulation of Tmprss2 and no alterations in hACE2 expression. Overall, these data demonstrate that in K18-hACE2 mice, the MA10 strain has a pulmonary tropism that more closely resembles SARS-CoV-2 tropism in humans (airways and pneumocytes) than its parental strain. Its rapid replication and neurodissemination and early host pulmonary responses can have a significant impact on the clinical outcomes of infection and are, therefore, critical features to consider for study designs using these strains and mouse model. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, is still significantly impacting health care systems around the globe. Refined animal models are needed to study SARS-CoV-2 pathogenicity as well as efficacy of vaccines and therapeutics. In line with this, thorough evaluation of animal models and virus strains/variants are paramount for standardization and meaningful comparisons. Here, we demonstrated differences in replication dynamics between the Wuhan-like USA-WA1/2020 strain and the derivative mouse-adapted MA10 strain in K18-hACE2 mice. The MA10 strain showed accelerated viral replication and neurodissemination, differential pulmonary tropism, and earlier pulmonary innate immune responses. The observed differences allow us to better refine experimental designs when considering the use of the MA10 strain in the widely utilized K18-hACE2 murine model.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xue Wen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
231
|
Izumi H, Aoki H, Nafie LA, Dukor RK. Effect of Conformational Variability on Seasonable Thermal Stability and Cell Entry of Omicron Variants. ACS OMEGA 2023; 8:7111-7118. [PMID: 36844510 PMCID: PMC9948215 DOI: 10.1021/acsomega.2c08075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The Omicron BA.1 variant of SARS-CoV-2 preferentially infects through the cathepsin-mediated endocytic pathway, but the mechanism of cell entry has not been solved yet because BA.4/5 is more fusogenic and more efficiently spread in human lung cells than BA.2. It has been unclear why the Omicron spike is inefficiently cleaved in virions compared with Delta, and how the relatively effective reproduction proceeds without the cell entry through plasma membrane fusion. Conformational variability from deep neural network-based prediction correlates well with the thermodynamic stability of variants. The difference of seasonable pandemic variants in summer and those in winter is distinguishable by this conformational stability, and the geographical optimization of variants is also traceable. Further, the predicted conformational variability maps rationalize the less efficient S1/S2 cleavage of Omicron variants and provide a valuable insight into the cell entry through the endocytic pathway. It is concluded that conformational variability prediction is able to complement transformation information on motifs in protein structures for drug discovery.
Collapse
Affiliation(s)
- Hiroshi Izumi
- National
Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Aoki
- National
Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, Tsukuba, Ibaraki 305-8569, Japan
| | - Laurence A. Nafie
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244-4100, United
States
- BioTools,
Inc., Bee Line Hwy, Jupiter, Florida 33458, United States
| | - Rina K. Dukor
- BioTools,
Inc., Bee Line Hwy, Jupiter, Florida 33458, United States
| |
Collapse
|
232
|
Liao Y, Wang J, Zou J, Liu Y, Liu Z, Huang Z. Multi-omics analysis reveals genomic, clinical and immunological features of SARS-CoV-2 virus target genes in pan-cancer. Front Immunol 2023; 14:1112704. [PMID: 36875081 PMCID: PMC9982007 DOI: 10.3389/fimmu.2023.1112704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
The SARS-CoV-2 virus, also known as the severe acute respiratory syndrome coronavirus 2, has raised great threats to humans. The connection between the SARS-CoV-2 virus and cancer is currently unclear. In this study, we thus evaluated the multi-omics data from the Cancer Genome Atlas (TCGA) database utilizing genomic and transcriptomic techniques to fully identify the SARS-CoV-2 target genes (STGs) in tumor samples from 33 types of cancers. The expression of STGs was substantially linked with the immune infiltration and may be used to predict survival in cancer patients. STGs were also substantially associated with immunological infiltration, immune cells, and associated immune pathways. At the molecular level, the genomic changes of STGs were frequently related with carcinogenesis and patient survival. In addition, pathway analysis revealed that STGs were involved in the control of signaling pathways associated with cancer. The prognostic features and nomogram of clinical factors of STGs in cancers have been developed. Lastly, by mining the cancer drug sensitivity genomics database, a list of potential STG-targeting medicines was compiled. Collectively, this work demonstrated comprehensively the genomic alterations and clinical characteristics of STGs, which may offer new clues to explore the mechanisms on a molecular level between SARS-CoV-2 virus and cancers as well as provide new clinical guidance for cancer patients who are threatened by the COVID-19 epidemic.
Collapse
Affiliation(s)
- Yong Liao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Wang
- Center of Scientific Research, Department of Cardiology, Maoming People's Hospital, Maoming, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiami Zou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
233
|
Exploring the Role of ACE2 as a Connecting Link between COVID-19 and Parkinson's Disease. Life (Basel) 2023; 13:life13020536. [PMID: 36836893 PMCID: PMC9961012 DOI: 10.3390/life13020536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is frequently accompanied by neurological manifestations such as headache, delirium, and epileptic seizures, whereas ageusia and anosmia may appear before respiratory symptoms. Among the various neurological COVID-19-related comorbidities, Parkinson's disease (PD) has gained increasing attention. Some cases of PD disease have been linked to COVID-19, and both motor and non-motor symptoms in Parkinson's disease patients frequently worsen following SARS-CoV-2 infection. Although it is still unclear whether PD increases the susceptibility to SARS-CoV-2 infection or whether COVID-19 increases the risk of or unmasks future cases of PD, emerging evidence sheds more light on the molecular mechanisms underlying the relationship between these two diseases. Among them, angiotensin-converting enzyme 2 (ACE2), a significant component of the renin-angiotensin system (RAS), seems to play a pivotal role. ACE2 is required for the entry of SARS-CoV-2 to the human host cells, and ACE2 dysregulation is implicated in the severity of COVID-19-related acute respiratory distress syndrome (ARDS). ACE2 imbalance is implicated in core shared pathophysiological mechanisms between PD and COVID-19, including aberrant inflammatory responses, oxidative stress, mitochondrial dysfunction, and immune dysregulation. ACE2 may also be implicated in alpha-synuclein-induced dopaminergic degeneration, gut-brain axis dysregulation, blood-brain axis disruption, autonomic dysfunction, depression, anxiety, and hyposmia, which are key features of PD.
Collapse
|
234
|
Kuhn CC, Basnet N, Bodakuntla S, Alvarez-Brecht P, Nichols S, Martinez-Sanchez A, Agostini L, Soh YM, Takagi J, Biertümpfel C, Mizuno N. Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike protein. Nat Commun 2023; 14:620. [PMID: 36739444 PMCID: PMC9898865 DOI: 10.1038/s41467-023-36279-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging shows that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Cellular cryo-electron tomography reveals dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and find that S protein recognizes integrin αvβ3. Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.
Collapse
Affiliation(s)
- Christopher Cyrus Kuhn
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Nirakar Basnet
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Pelayo Alvarez-Brecht
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA.,Department of Computer Sciences, Faculty of Sciences - Campus Llamaquique, University of Oviedo, Oviedo, 33007, Spain
| | - Scott Nichols
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Antonio Martinez-Sanchez
- Department of Computer Sciences, Faculty of Sciences - Campus Llamaquique, University of Oviedo, Oviedo, 33007, Spain.,Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Spain
| | - Lorenzo Agostini
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Young-Min Soh
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Junichi Takagi
- Osaka University Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA. .,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
235
|
Tang AT, Buchholz DW, Szigety KM, Imbiakha B, Gao S, Frankfurter M, Wang M, Yang J, Hewins P, Mericko-Ishizuka P, Leu NA, Sterling S, Monreal IA, Sahler J, August A, Zhu X, Jurado KA, Xu M, Morrisey EE, Millar SE, Aguilar HC, Kahn ML. Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biol 2023; 21:e3001989. [PMID: 36745682 PMCID: PMC9934376 DOI: 10.1371/journal.pbio.3001989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 01/04/2023] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.
Collapse
Affiliation(s)
- Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Katherine M. Szigety
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian Imbiakha
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Siqi Gao
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maxwell Frankfurter
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Min Wang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Patricia Mericko-Ishizuka
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Julie Sahler
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Edward E. Morrisey
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Sarah E. Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
236
|
Monte ER, O'Neill D, Abitorabi KM. A risk assessment study of SARS-CoV-2 propagation in the manufacturing of cellular products. Regen Med 2023; 18:169-180. [PMID: 36453030 PMCID: PMC9724788 DOI: 10.2217/rme-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The potential infection of cellular therapies by SARS-CoV-2 present high risks, as the target patients for these treatments are often immunocompromised or have chronic diseases associated with a higher risk of serious illness and death by COVID-19. The multicellular tropism of this virus presents challenges for the manufacturing of cell therapies, whereby the material could potentially become infected at the source or during cell processing. In this review we assess the risk of a SARS-CoV-2 propagation in cell types used to date in cellular therapies. Altogether, the risk of SARS-CoV-2 contamination of cellular products remains low. This risk should be evaluated on an individual basis, considering ACE2 and TMPRSS2 expression, existing literature regarding the susceptibility to infection, and single cell RNA sequencing data of COVID-19 patients. This analysis should ideally be performed for both the cells being manufactured and the cells used to produce the vector to ensure patient safety.
Collapse
Affiliation(s)
| | - David O'Neill
- Minaris Regenerative Medicine, LLC. 4 Pearl Ct, Allendale, NJ 07401, USA
| | - Karin M Abitorabi
- Minaris Regenerative Medicine GmbH. Haidgraben 5, Ottobrunn, 85521, Germany
| |
Collapse
|
237
|
Shilts J, Crozier TWM, Teixeira-Silva A, Gabaev I, Gerber PP, Greenwood EJD, Watson SJ, Ortmann BM, Gawden-Bone CM, Pauzaite T, Hoffmann M, Nathan JA, Pöhlmann S, Matheson NJ, Lehner PJ, Wright GJ. LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike protein. PLoS Biol 2023; 21:e3001959. [PMID: 36735681 PMCID: PMC9897555 DOI: 10.1371/journal.pbio.3001959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.
Collapse
Affiliation(s)
- Jarrod Shilts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Thomas W. M. Crozier
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ana Teixeira-Silva
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ildar Gabaev
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Pehuén Pereyra Gerber
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Edward J. D. Greenwood
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Samuel James Watson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Brian M. Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Christian M. Gawden-Bone
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Tekle Pauzaite
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen, Germany
| | - James A. Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen, Germany
| | - Nicholas J. Matheson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
238
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
239
|
Jiang H, Liu R, Wang L, Wang X, Zhang M, Lin S, Cao Z, Wu F, Liu Y, Liu J. Chiral-Selective Antigen-Presentation by Supramolecular Chiral Polymer Micelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208157. [PMID: 36398497 DOI: 10.1002/adma.202208157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Chirality is ubiquitous in biological systems, which is closely related to biological functions, life processes, and even the pathogenesis of diseases. However, the interface between the chirality of synthetic materials and organisms, particularly the immune system, remains poorly understood. Here, supramolecular chiral polymer micelles (SCPMs) are prepared by complexing antigenic proteins with chiral amino acid-modified polyethyleneimine. The introduction of chirality not only reduces the toxicity of cationic polymer, but also benefits cell uptake and antigen presentation. Especially, D-chirality presents the lowest cytotoxicity, while promoting the highest expression level of costimulatory molecules on dendritic cells compared to L-chirality and achirality. The superiority of D-chirality to stimulate dendritic cell maturation is supported by immunization with D-SCPMs, which achieves significant antigen-specific proliferation of T cells in the spleen, lymph nodes, and tumor of mice. Chirality-mediated antigen processing and presentation are demonstrated by D-SCPMs self-assembled from chiral alkaline histidine or neutral phenylalanine modified polyethyleneimine and tumor associated ovalbumin or severe acute respiratory syndrome coronavirus 2 spike 1 antigenic protein. Immunoactivation enabled by D-chirality opens a window to prepare potent nanotherapeutics for disease prevention and treatment.
Collapse
Affiliation(s)
- Hejin Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rui Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyue Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Feng Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
240
|
Stocker N, Radzikowska U, Wawrzyniak P, Tan G, Huang M, Ding M, Akdis CA, Sokolowska M. Regulation of angiotensin-converting enzyme 2 isoforms by type 2 inflammation and viral infection in human airway epithelium. Mucosal Immunol 2023; 16:5-16. [PMID: 36642382 PMCID: PMC9836991 DOI: 10.1016/j.mucimm.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 messenger RNA (mRNA) and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full-length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that interleukin-13 and rhinovirus significantly regulated mRNA, but not protein of transmembrane serine protease 2 and neuropilin 1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining the lack of intrinsic differences but dependence on the inflammatory milieu in the airways.
Collapse
Affiliation(s)
- Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
241
|
Valyaeva AA, Zharikova AA, Sheval EV. SARS-CoV-2 cellular tropism and direct multiorgan failure in COVID-19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biol Int 2023; 47:308-326. [PMID: 36229927 PMCID: PMC9874490 DOI: 10.1002/cbin.11928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/24/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has led to an unprecedented public health emergency worldwide. While common cold symptoms are observed in mild cases, COVID-19 is accompanied by multiorgan failure in severe patients. Organ damage in COVID-19 patients is partially associated with the indirect effects of SARS-CoV-2 infection (e.g., systemic inflammation, hypoxic-ischemic damage, coagulopathy), but early processes in COVID-19 patients that trigger a chain of indirect effects are connected with the direct infection of cells by the virus. To understand the virus transmission routes and the reasons for the wide-spectrum of complications and severe outcomes of COVID-19, it is important to identify the cells targeted by SARS-CoV-2. This review summarizes the major steps of investigation and the most recent findings regarding SARS-CoV-2 cellular tropism and the possible connection between the early stages of infection and multiorgan failure in COVID-19. The SARS-CoV-2 pandemic is the first epidemic in which data extracted from single-cell RNA-seq (scRNA-seq) gene expression data sets have been widely used to predict cellular tropism. The analysis presented here indicates that the SARS-CoV-2 cellular tropism predictions are accurate enough for estimating the potential susceptibility of different cells to SARS-CoV-2 infection; however, it appears that not all susceptible cells may be infected in patients with COVID-19.
Collapse
Affiliation(s)
- Anna A. Valyaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Anastasia A. Zharikova
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Eugene V. Sheval
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- Department of Cell Biology and Histology, School of BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
242
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
243
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
244
|
N Al‐Rasheedi A, D Alotaibi A, Alshalan A, Muteb Alshalan K, Muharib R Alruwaili K, Hamdan R Alruwaili A, Talal Alruwaili A, Abdulhamid Alanazi A, Khalid Alshalan M, Fahid ALtimani A. Epidemiological Characteristics, Pathogenesis and Clinical Implications of Sinusitis in the Era of COVID-19: A Narrative Review. J Asthma Allergy 2023; 16:201-211. [PMID: 36733455 PMCID: PMC9888400 DOI: 10.2147/jaa.s398686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Sinusitis is a common condition with various forms and different etiologies. In the era of COVID-19, a large number of studies covered the association between sinusitis and COVID-19, while others reported the impact of COVID-19 on the development of acute invasive fungal rhinosinusitis (AIFR), together with the most commonly associated predisposing factors. Fungal sinusitis, particularly AIFR, can be life-threatening. It is important to dissect this association and improve current evidence and management. Therefore, we conducted this literature review to highlight the association between COVID-19 and sinusitis based on evidence from the available studies in the literature. Evidence shows that chronic sinusitis might have a negative impact on COVID-19 outcomes. However, current results are conflicting, and further studies are needed. On the other hand, COVID-19 can also cause olfactory dysfunction, which is usually temporary. In addition, we found several studies that indicated the association between COVID-19 and AIFR. The condition is usually associated with severe morbidities, as affected patients are usually immunocompromised, including those with uncontrolled diabetes, malignancy, immunosuppression, AIDS, the administration of chemotherapy and other immunosuppressive drugs, and COVID-19.
Collapse
Affiliation(s)
- Abdullah N Al‐Rasheedi
- Department of Otolaryngology, Head & Neck Surgery, College of Medicine, Jouf University, Sakaka, Aljouf, Saudi Arabia,Correspondence: Abdullah N Al‐Rasheedi, Saudi Board (Otolaryngology-Head & Neck Surgery), College of Medicine, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia, Tel +966591009005, Email
| | - Abdullah D Alotaibi
- Department of Otolaryngology, Head & Neck Surgery, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Afrah Alshalan
- Department of Otolaryngology, Head & Neck Surgery, College of Medicine, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, Liu K, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KM, Commisso C, Smith DM, Sun X, Carlin AF, Croker BA, Snyder EY. The lung employs an intrinsic surfactant-mediated inflammatory response for viral defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525578. [PMID: 36747824 PMCID: PMC9900938 DOI: 10.1101/2023.01.26.525578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.
Collapse
|
246
|
Bräutigam K, Reinhard S, Wartenberg M, Forster S, Greif K, Granai M, Bösmüller H, Klingel K, Schürch CM. Comprehensive analysis of SARS-CoV-2 receptor proteins in human respiratory tissues identifies alveolar macrophages as potential virus entry site. Histopathology 2023; 82:846-859. [PMID: 36700825 DOI: 10.1111/his.14871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
AIMS COVID-19 has had enormous consequences on global health-care and has resulted in millions of fatalities. The exact mechanism and site of SARS-CoV-2 entry into the body remains insufficiently understood. Recently, novel virus receptors were identified, and alveolar macrophages were suggested as a potential viral entry cell type and vector for intra-alveolar virus transmission. Here, we investigated the protein expression of 10 well-known and novel virus entry molecules along potential entry sites in humans using immunohistochemistry. METHODS AND RESULTS Samples of different anatomical sites from up to 93 patients were incorporated into tissue microarrays. Protein expression of ACE2, TMPRSS2, furin, CD147, C-type lectin receptors (CD169, CD209, CD299), neuropilin-1, ASGR1 and KREMEN1 were analysed. In lung tissues, at least one of the three receptors ACE2, ASGR1 or KREMEN1 was expressed in the majority of cases. Moreover, all the investigated molecules were found to be expressed in alveolar macrophages, and co-localisation with SARS-CoV-2 N-protein was demonstrated using dual immunohistochemistry in lung tissue from a COVID-19 autopsy. While CD169 and CD209 showed consistent protein expression in sinonasal, conjunctival and bronchiolar tissues, neuropilin-1 and ASGR1 were mostly absent, suggesting a minor relevance of these two molecules at these specific sites. CONCLUSION Our results extend recent discoveries indicating a role for these molecules in virus entry at different anatomical sites. Moreover, they support the notion of alveolar macrophages being a potential entry cell for SARS-CoV-2.
Collapse
Affiliation(s)
| | - Stefan Reinhard
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Stefan Forster
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Karen Greif
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Massimo Granai
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Hans Bösmüller
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Karin Klingel
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
247
|
Targeting RNA G-quadruplex with repurposed drugs blocks SARS-CoV-2 entry. PLoS Pathog 2023; 19:e1011131. [PMID: 36701392 PMCID: PMC9904497 DOI: 10.1371/journal.ppat.1011131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern, the complexity of infection, and the functional redundancy of host factors, underscore an urgent need for broad-spectrum antivirals against the continuous COVID-19 pandemic, with drug repurposing as a viable therapeutic strategy. Here we report the potential of RNA G-quadruplex (RG4)-targeting therapeutic strategy for SARS-CoV-2 entry. Combining bioinformatics, biochemical and biophysical approaches, we characterize the existence of RG4s in several SARS-CoV-2 host factors. In silico screening followed by experimental validation identify Topotecan (TPT) and Berbamine (BBM), two clinical approved drugs, as RG4-stabilizing agents with repurposing potential for COVID-19. Both TPT and BBM can reduce the protein level of RG4-containing host factors, including ACE2, AXL, FURIN, and TMPRSS2. Intriguingly, TPT and BBM block SARS-CoV-2 pseudovirus entry into target cells in vitro and murine tissues in vivo. These findings emphasize the significance of RG4 in SARS-CoV-2 pathogenesis and provide a potential broad-spectrum antiviral strategy for COVID-19 prevention and treatment.
Collapse
|
248
|
Farkas D, Bogamuwa S, Piper B, Newcomb G, Gunturu P, Bednash JS, Londino JD, Elhance A, Nho R, Mejia OR, Yount JS, Horowitz JC, Goncharova EA, Mallampalli RK, Robinson RT, Farkas L. A role for Toll-like receptor 3 in lung vascular remodeling associated with SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.524586. [PMID: 36747676 PMCID: PMC9900759 DOI: 10.1101/2023.01.25.524586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cardiovascular sequelae of severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) disease 2019 (COVID-19) contribute to the complications of the disease. One potential complication is lung vascular remodeling, but the exact cause is still unknown. We hypothesized that endothelial TLR3 insufficiency contributes to lung vascular remodeling induced by SARS-CoV-2. In the lungs of COVID-19 patients and SARS-CoV-2 infected Syrian hamsters, we discovered thickening of the pulmonary artery media and microvascular rarefaction, which were associated with decreased TLR3 expression in lung tissue and pulmonary artery endothelial cells (ECs). In vitro , SARS-CoV-2 infection reduced endothelial TLR3 expression. Following infection with mouse-adapted (MA) SARS-CoV-2, TLR3 knockout mice displayed heightened pulmonary artery remodeling and endothelial apoptosis. Treatment with the TLR3 agonist polyinosinic:polycytidylic acid reduced lung tissue damage, lung vascular remodeling, and endothelial apoptosis associated with MA SARS-CoV-2 infection. In conclusion, repression of endothelial TLR3 is a potential mechanism of SARS-CoV-2 infection associated lung vascular remodeling and enhancing TLR3 signaling is a potential strategy for treatment.
Collapse
|
249
|
SARS-CoV-2 as an Oncolytic Virus Following Reactivation of the Immune System: A Review. Int J Mol Sci 2023; 24:ijms24032326. [PMID: 36768649 PMCID: PMC9916917 DOI: 10.3390/ijms24032326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
The effects SARS-CoV-2 inflicts on human physiology, especially in patients who developed COVID-19, can range from flu-like symptoms to death, and although many lives have been lost during the pandemic, others have faced the resolution of aggressive neoplasms that once proclaimed a poor prognosis following traditional treatments. The purpose of this review was to analyze several fortunate case reports and their associated biomolecular pathways to further explore new avenues that might provide oncological treatments in the future of medicine. We included papers that discussed cases in which patients affected by COVID-19 suffered beneficial changes in their cancer status. Multiple mechanisms which elicited a reactivation of the host's immune system included cross-reactivity with viral antigens and downregulation of neoplastic cells. We were able to identify important cases presenting the resolution/remission of different aggressive neoplasms, for which most of the time, standard-of-care treatments offered little to no prospect towards a cure. The intricacy of the defense mechanisms humans have adopted against cancer cells through the millennia are still not well understood, but SARS-CoV-2 has demonstrated that the same ruinous cytokine storm which has taken so many lives can paradoxically be the answer we have been looking for to recalibrate the immunological system to retarget and vanquish malignancies.
Collapse
|
250
|
Touizer E, Alrubayyi A, Ford R, Hussain N, Gerber PP, Shum HL, Rees-Spear C, Muir L, Gea-Mallorquí E, Kopycinski J, Jankovic D, Jeffery-Smith A, Pinder CL, Fox TA, Williams I, Mullender C, Maan I, Waters L, Johnson M, Madge S, Youle M, Barber TJ, Burns F, Kinloch S, Rowland-Jones S, Gilson R, Matheson NJ, Morris E, Peppa D, McCoy LE. Attenuated humoral responses in HIV after SARS-CoV-2 vaccination linked to B cell defects and altered immune profiles. iScience 2023; 26:105862. [PMID: 36590902 PMCID: PMC9788849 DOI: 10.1016/j.isci.2022.105862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs). Improved neutralization breadth was seen against the Omicron variant (BA.1) after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global MBC dysfunction. In contrast, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, individuals with low or absent neutralization had detectable functional T cell responses. These PLWH had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3+CD127+CD8+T cells after two doses of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Emma Touizer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Aljawharah Alrubayyi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rosemarie Ford
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Noshin Hussain
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hiu-Long Shum
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Rees-Spear
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Luke Muir
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dylan Jankovic
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Anna Jeffery-Smith
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Christopher L. Pinder
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Thomas A. Fox
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Ian Williams
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Claire Mullender
- Institute for Global Health, University College London, London, UK
| | - Irfaan Maan
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Margaret Johnson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sara Madge
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Michael Youle
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Tristan J. Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | | | - Richard Gilson
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Emma Morris
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Laura E. McCoy
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|