201
|
Aman J, Peters MJL, Weenink C, van Nieuw Amerongen GP, Vonk Noordegraaf A. Reversal of vascular leak with imatinib. Am J Respir Crit Care Med 2013; 188:1171-3. [PMID: 24180451 DOI: 10.1164/rccm.201301-0136le] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jurjan Aman
- 1 VU University Medical Center Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
202
|
Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, Pavlov AM, Sukhorukov GB, Hinds CJ, Perretti M. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med 2013; 6:27-42. [PMID: 24357647 PMCID: PMC3936490 DOI: 10.1002/emmm.201303503] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Incorporation of locally produced signaling molecules into cell-derived vesicles may serve as an endogenous mediator delivery system. We recently reported that levels alpha-2-macroglobulin (A2MG)-containing microparticles are elevated in plasma from patients with sepsis. Herein, we investigated the immunomodulatory actions of A2MG containing microparticles during sepsis. Administration of A2MG-enriched (A2MG-E)-microparticles to mice with microbial sepsis protected against hypothermia, reduced bacterial titers, elevated immunoresolvent lipid mediator levels in inflammatory exudates and reduced systemic inflammation. A2MG-E microparticles also enhanced survival in murine sepsis, an action lost in mice transfected with siRNA for LRP1, a putative A2MG receptor. In vitro, A2MG was functionally transferred onto endothelial cell plasma membranes from microparticles, augmenting neutrophil–endothelial adhesion. A2MG also modulated human leukocyte responses: enhanced bacterial phagocytosis, reactive oxygen species production, cathelicidin release, prevented endotoxin induced CXCR2 downregulation and preserved neutrophil chemotaxis in the presence of LPS. A significant association was also found between elevated plasma levels of A2MG-containing microparticles and survival in human sepsis patients. Taken together, these results identify A2MG enrichment in microparticles as an important host protective mechanism in sepsis.
Collapse
Affiliation(s)
- Jesmond Dalli
- Centre for Biochemical Pharmacology The William Harvey Research Institute, Barts and The London School of Medicine Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res 2013; 355:587-96. [PMID: 24322391 DOI: 10.1007/s00441-013-1755-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General-, Visceral, Vascular and Pediatric surgery, University Hospital Wuerzburg, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany
| | | |
Collapse
|
204
|
Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenstädt H, Oberleithner H, Kümpers P. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 2013; 8:e80905. [PMID: 24278345 PMCID: PMC3835794 DOI: 10.1371/journal.pone.0080905] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
The endothelial glycocalyx (eGC), a carbohydrate-rich layer lining the luminal side of the endothelium, regulates vascular adhesiveness and permeability. Although central to the pathophysiology of vascular barrier dysfunction in sepsis, glycocalyx damage has been generally understudied, in part because of the aberrancy of in vitro preparations and its degradation during tissue handling. The aim of this study was to analyze inflammation-induced damage of the eGC on living endothelial cells by atomic-force microscopy (AFM) nanoindentation technique. AFM revealed the existence of a mature eGC on the luminal endothelial surface of freshly isolated rodent aorta preparations ex vivo, as well as on cultured human pulmonary microvascular endothelial cells (HPMEC) in vitro. AFM detected a marked reduction in glycocalyx thickness (266 ± 12 vs. 137 ± 17 nm, P<0.0001) and stiffness (0.34 ± 0.03 vs. 0.21 ± 0.01 pN/mn, P<0.0001) in septic mice (1 mg E. coli lipopolysaccharides (LPS)/kg BW i.p.) compared to controls. Corresponding in vitro experiments revealed that sepsis-associated mediators, such as thrombin, LPS or Tumor Necrosis Factor-α alone were sufficient to rapidly decrease eGC thickness (-50%, all P<0.0001) and stiffness (-20% P<0.0001) on HPMEC. In summary, AFM nanoindentation is a promising novel approach to uncover mechanisms involved in deterioration and refurbishment of the eGC in sepsis.
Collapse
Affiliation(s)
- Anne Wiesinger
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital, Muenster, Muenster, Germany
| | - Wladimir Peters
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Daniel Chappell
- Clinic of Anesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dominik Kentrup
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital, Muenster, Muenster, Germany
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital, Muenster, Muenster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital, Muenster, Muenster, Germany
| | - Hans Oberleithner
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital, Muenster, Muenster, Germany
| |
Collapse
|
205
|
Affiliation(s)
- Christopher W Seymour
- Department of Critical Care Medicine, Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
206
|
Pocivavsek L, Junghans A, Zebda N, Birukov K, Majewski J. Tuning endothelial monolayer adhesion: a neutron reflectivity study. Am J Physiol Lung Cell Mol Physiol 2013; 306:L1-9. [PMID: 24163142 DOI: 10.1152/ajplung.00160.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells, master gatekeepers of the cardiovascular system, line its inner boundary from the heart to distant capillaries constantly exposed to blood flow. Interendothelial signaling and the monolayers adhesion to the underlying collagen-rich basal lamina are key in physiology and disease. Using neutron scattering, we report the first ever interfacial structure of endothelial monolayers under dynamic flow conditions mimicking the cardiovascular system. Endothelial adhesion (defined as the separation distance ℓ between the basal cell membrane and solid boundary) is explained using developed interfacial potentials and intramembrane segregation of specific adhesion proteins. Our method provides a powerful tool for the biophysical study of cellular layer adhesion strength in living tissues.
Collapse
Affiliation(s)
- Luka Pocivavsek
- Dept. of Surgery, Univ. of Pittsburgh Medical Center, Pittsburgh, PA 15222.
| | | | | | | | | |
Collapse
|
207
|
Pu K, Shuhendler AJ, Rao J. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew Chem Int Ed Engl 2013; 52:10325-9. [PMID: 23943508 PMCID: PMC4079533 DOI: 10.1002/anie.201303420] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/14/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Kanyi Pu
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484 (USA)
| | | | | |
Collapse
|
208
|
Affiliation(s)
- Derek C Angus
- CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
209
|
Pu K, Shuhendler AJ, Rao J. Semiconducting Polymer Nanoprobe for In Vivo Imaging of Reactive Oxygen and Nitrogen Species. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
210
|
Fröhlich S, Murphy N, Ryan D, Boylan JF. Acute respiratory distress syndrome: current concepts and future directions. Anaesth Intensive Care 2013; 41:463-72. [PMID: 23808504 DOI: 10.1177/0310057x1304100405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute respiratory distress syndrome is one of the leading causes of death in critically ill patients. Recent advances in supportive care have led to a moderate improvement in mortality. In particular, a much lower mortality rate than expected was evident in the severest category of patients (requiring extracorporeal membrane oxygenation) in Australia during the recent H1N1 pandemic. Though improvements in supportive care may have provided some benefit, there remains an absence of effective biological agents that are necessary to achieve further incremental reduction in mortality. This article will review the evidence available for current treatment strategies and discuss future research directions that may eventually improve outcomes in this important global disease.
Collapse
Affiliation(s)
- S Fröhlich
- Department of Anaesthesia and Intensive Care Medicine, St Vincent's University Hospital, Dublin, Ireland.
| | | | | | | |
Collapse
|
211
|
|
212
|
A high angiopoietin-2/angiopoietin-1 ratio is associated with a high risk of septic shock in patients with febrile neutropenia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R169. [PMID: 23915833 PMCID: PMC4056795 DOI: 10.1186/cc12848] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022]
Abstract
Introduction Endothelial barrier breakdown is a hallmark of septic shock, and proteins that physiologically regulate endothelial barrier integrity are emerging as promising biomarkers of septic shock development. Patients with cancer and febrile neutropenia (FN) present a higher risk of sepsis complications, such as septic shock. Nonetheless, these patients are normally excluded or under-represented in sepsis biomarker studies. The aim of our study was to validate the measurement of a panel of microvascular permeability modulators as biomarkers of septic shock development in cancer patients with chemotherapy-associated FN. Methods This was a prospective study of diagnostic accuracy, performed in two distinct in-patient units of a university hospital. Levels of vascular endothelial growth factor A (VEGF-A), soluble fms-like tyrosine kinase-1 (sFlt-1) and angiopoietin (Ang) 1 and 2 were measured after the onset of neutropenic fever, in conditions designed to mimic the real-world use of a sepsis biomarker, based on our local practice. Patients were categorized based on the development of septic shock by 28 days as an outcome. Results A total of 99 consecutive patients were evaluated in the study, of which 20 developed septic shock and 79 were classified as non-complicated FN. VEGF-A and sFlt-1 levels were similar between both outcome groups. In contrast, Ang-2 concentrations were increased in patients with septic shock, whereas an inverse finding was observed for Ang-1, resulting in a higher Ang-2/Ang-1 ratio in patients with septic shock (5.29, range 0.58 to 57.14) compared to non-complicated FN (1.99, range 0.06 to 64.62; P = 0.01). After multivariate analysis, the Ang-2/Ang-1 ratio remained an independent factor for septic shock development and 28-day mortality. Conclusions A high Ang-2/Ang-1 ratio can predict the development of septic shock in cancer patients with febrile neutropenia.
Collapse
|
213
|
Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 2013; 112:1506-19. [PMID: 23704217 DOI: 10.1161/circresaha.113.300512] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key thromboinflammatory activities in a variety of vascular disorders and vasculopathies. Recently identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases.
Collapse
Affiliation(s)
- Matthew T Rondina
- Department of Medicine and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | |
Collapse
|
214
|
Armstrong SM, Darwish I, Lee WL. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence 2013; 4:537-42. [PMID: 23863601 PMCID: PMC5359731 DOI: 10.4161/viru.25779] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The development of severe influenza has been attributed, in part, to a heightened innate immune response. Recent evidence suggests that endothelial activation, loss of barrier function, and consequent microvascular leak may also serve important mechanistic roles in the pathogenesis of severe influenza. The aim of this review is to summarize the current evidence in support of endothelial activation and dysfunction as a central feature preceding the development of severe influenza. We also discuss the effect of influenza on platelet–endothelial interactions.
Collapse
|
215
|
Darwish I, Liles WC. Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction. Virulence 2013; 4:572-82. [PMID: 23863603 PMCID: PMC5359747 DOI: 10.4161/viru.25740] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that loss of endothelial barrier function and resulting microvascular leak play important mechanistic roles in the pathogenesis of infection-related end-organ dysfunction and failure. Several distinct therapeutic strategies, designed to prevent or limit infection-related microvascular endothelial activation and permeability, thereby mitigating end-organ injury/dysfunction, have recently been investigated in pre-clinical models. In this review, these potential therapeutic strategies, namely, VEGFR2/Src antagonists, sphingosine-1-phosphate agonists, fibrinopeptide Bβ15–42, slit2N, secinH3, angiopoietin-1/tie-2 agonists, angiopoietin-2 antagonists, statins, atrial natriuretic peptide, and mesenchymal stromal (stem) cells, are discussed in terms of their translational potential for the management of clinical infectious diseases.
Collapse
Affiliation(s)
- Ilyse Darwish
- University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | | |
Collapse
|
216
|
Sefing EJ, Wong MH, Larson DP, Hurst BL, Van Wettere AJ, Schneller SW, Gowen BB. Vascular leak ensues a vigorous proinflammatory cytokine response to Tacaribe arenavirus infection in AG129 mice. Virol J 2013; 10:221. [PMID: 23816343 PMCID: PMC3707785 DOI: 10.1186/1743-422x-10-221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Tacaribe virus (TCRV) is a less biohazardous relative of the highly pathogenic clade B New World arenaviruses that cause viral hemorrhagic fever syndromes and require handling in maximum containment facilities not readily available to most researchers. AG129 type I and II interferon receptor knockout mice have been shown to be susceptible to TCRV infection, but the pathogenic mechanisms contributing to the lethal disease are unclear. Methods To gain insights into the pathogenesis of TCRV infection in AG129 mice, we assessed hematologic and cytokine responses during the course of infection, as well as changes in the permeability of the vascular endothelium. We also treated TCRV-challenged mice with MY-24, a compound that prevents mortality without affecting viral loads during the acute infection, and measured serum and tissue viral titers out to 40 days post-infection to determine whether the virus is ultimately cleared in recovering mice. Results We found that the development of viremia and splenomegaly precedes an elevation in white blood cells and the detection of high levels of proinflammatory mediators known to destabilize the endothelial barrier, which likely contributes to the increased vascular permeability and weight loss that was observed several days prior to when the mice generally succumb to TCRV challenge. In surviving mice treated with MY-24, viremia and liver virus titers were not cleared until 2–3 weeks post-infection, after which the mice began to recover lost weight. Remarkably, substantial viral loads were still present in the lung, spleen, brain and kidney tissues at the conclusion of the study. Conclusions Our findings suggest that vascular leak may be a contributing factor in the demise of TCRV-infected mice, as histopathologic findings are generally mild to moderate in nature, and as evidenced with MY-24 treatment, animals can survive in the face of high viral loads.
Collapse
Affiliation(s)
- Eric J Sefing
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Armstrong SM, Mubareka S, Lee WL. The lung microvascular endothelium as a therapeutic target in severe influenza. Antiviral Res 2013; 99:113-8. [PMID: 23685311 DOI: 10.1016/j.antiviral.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Severe infections with influenza virus are characterized by acute respiratory distress syndrome (ARDS), a life-threatening disorder in which the alveolocapillary membrane in the lung becomes leaky. This leads to alveolar flooding, hypoxemia and respiratory failure. Recent data suggest that influenza virus can exert both direct and indirect effects on the lung endothelium, activating it and inducing microvascular leak. These findings raise the possibility that enhancing lung endothelial barrier integrity or modulating lung endothelial activation may prove therapeutically useful for severe influenza. In this paper, we review evidence that lung endothelial activation and vascular leak are a "final common pathway" in severe influenza, as has been reported in bacterial sepsis, and that enhancing endothelial barrier function may improve the outcome of illness. We describe a number of experimental therapies that have shown promise in preventing or reversing increased vascular leak in animal models of sepsis or influenza.
Collapse
|
218
|
dos Santos CC, Murthy S, Hu P, Shan Y, Haitsma JJ, Mei SHJ, Stewart DJ, Liles WC. Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 181:1681-92. [PMID: 23083833 DOI: 10.1016/j.ajpath.2012.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/03/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022]
Abstract
Although bone marrow-derived mesenchymal stem cell (MSC) systemic administration reduces sepsis-associated inflammation, organ injury, and mortality in clinically relevant models of polymicrobial sepsis, the cellular and molecular mechanisms mediating beneficial effects are controversial. This study identifies the molecular mechanisms of MSC-conferred protection in sepsis by interrogating transcriptional responses of target organs to MSC therapy. Sepsis was induced in C57Bl/6J mice by cecal ligation and puncture, followed 6 hours later by an i.v. injection of either MSCs or saline. Total RNA from lungs, hearts, kidneys, livers, and spleens harvested 28 hours after cecal ligation and puncture was hybridized to mouse expression bead arrays. Common transcriptional responses were analyzed using a network knowledge-based approach. A total of 4751 genes were significantly changed between placebo- and MSC-treated mice (adjusted P ≤ 0.05). Transcriptional responses identified three common effects of MSC administration in all five organs examined: i) attenuation of sepsis-induced mitochondrial-related functional derangement, ii down-regulation of endotoxin/Toll-like receptor innate immune proinflammatory transcriptional responses, and iii) coordinated expression of transcriptional programs implicated in the preservation of endothelial/vascular integrity. Transcriptomic analysis indicates that the protective effect of MSC therapy in sepsis is not limited to a single mediator or pathway but involves a range of complementary activities affecting biological networks playing critical roles in the control of host cell metabolism and inflammatory response.
Collapse
Affiliation(s)
- Claudia C dos Santos
- Interdepartmental Division of Critical Care, The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Seeley EJ, Rosenberg P, Matthay MA. Calcium flux and endothelial dysfunction during acute lung injury: a STIMulating target for therapy. J Clin Invest 2013; 123:1015-8. [PMID: 23434597 DOI: 10.1172/jci68093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial pathogen-associated molecular pattern molecules (PAMPs) such as LPS activate the endothelium and can lead to lung injury, but the signaling pathways mediating endothelial injury remain incompletely understood. In a recent issue of the JCI, Gandhirajan et al. identify STIM1, an ER calcium sensor, as a key link between LPS-induced ROS, calcium oscillations, and endothelial cell (EC) dysfunction. In addition, they report that BTP2, an inhibitor of calcium channels, attenuates lung injury. This study identifies a novel endothelial signaling pathway that could be a future target for the treatment of lung injury.
Collapse
Affiliation(s)
- Eric J Seeley
- Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California 94143, USA
| | | | | |
Collapse
|
220
|
von Drygalski A, Furlan-Freguia C, Ruf W, Griffin JH, Mosnier LO. Organ-specific protection against lipopolysaccharide-induced vascular leak is dependent on the endothelial protein C receptor. Arterioscler Thromb Vasc Biol 2013; 33:769-76. [PMID: 23393392 DOI: 10.1161/atvbaha.112.301082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To study the role of the endothelial protein C receptor (EPCR) in the modulation of susceptibility to inflammation-induced vascular leak in vivo. APPROACH AND RESULTS Genetically modified mice with low, <10% EPCR expression (EPCR(low)) and control mice were challenged with lipopolysaccharides in a mouse model of endotoxemia. Infrared fluorescence and quantification of albumin-bound Evans Blue in tissues and intravascular plasma volumes were used to assess plasma extravasation. Pair-wise analysis of EPCR(low) and control mice matched for sex, age, and weight allowed determination of EPCR-dependent vascular leak. Kidney, lung, and brain were the organs with highest discriminative increased Evans Blue accumulation in EPCR(low) versus control mice in response to lipopolysaccharides. Histology of kidney and lung confirmed the EPCR-specific pathology. In addition to severe kidney injury in response to lipopolysaccharides, EPCR(low) and anti-EPCR-treated wild-type mice suffered from enhanced albuminuria and profound renal hemorrhage versus controls. Intravascular volume loss at the same extent of weight loss in EPCR(low) mice compared with control mice provided proof that plasma leak was the predominant cause of Evans Blue tissue accumulation. CONCLUSIONS This study demonstrates an important protective role for EPCR in vivo against vascular leakage during inflammation and suggests that EPCR-dependent vascular protection is organ-specific.
Collapse
Affiliation(s)
- Annette von Drygalski
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, MEM 180, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
221
|
|
222
|
Murthy S, Kissoon N. After the FEAST--fluid resuscitation in pediatric sepsis. Indian J Pediatr 2013; 80:151-4. [PMID: 22782787 DOI: 10.1007/s12098-012-0845-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/20/2012] [Indexed: 01/20/2023]
Affiliation(s)
- Srinivas Murthy
- Department of Pediatric Critical Care, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | | |
Collapse
|
223
|
Abstract
OBJECTIVE : In sepsis, quiescent blood vessels become leaky and inflamed by mechanisms that are incompletely understood. We hypothesized that angiopoietin-2, a partial antagonist of the endothelium-stabilizing receptor Tie-2 secreted by endothelium, contributes to adverse outcomes in this disease. DESIGN : Laboratory and animal research. SETTINGS : Research laboratories and Emergency Department of Beth Israel Deaconess Medical Center, Boston, MA. SUBJECTS : Angiopoietin-2 heterozygous mice, emergency department patients. MEASUREMENTS AND MAIN RESULTS : Mice with one functional angiopoietin-2 allele developed milder kidney and lung injury, less tissue inflammation, and less vascular leakage compared to wild-type counterparts. Heterozygotes experienced >40% absolute survival advantage following two different models of sepsis (p = .004 and .018). In human subjects presenting to our emergency department with suspected infection (n = 270 combined), circulating angiopoietin-2 was markedly elevated within the first hour of clinical care. First-hour angiopoietin-2 concentrations were proportional to current disease severity (p < .0001), rose further over time in eventual nonsurvivors (p < .0001), and predicted the future occurrence of shock (p < .0001) or death (p < .0001) in the original cohort and an independent validation group. Finally, septic human serum disrupted the barrier function of microvascular endothelial cells, an effect fully neutralized by an angiopoietin-2 monoclonal antibody. CONCLUSIONS : We conclude that angiopoietin-2 induction precedes and contributes to the adverse outcomes in sepsis, opening a new avenue for therapeutic investigation.
Collapse
|
224
|
|
225
|
Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, Vogel J, Wagner CA, Loffing-Cueni D, Kurrer M, Ludewig B, Oxenius A. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. ACTA ACUST UNITED AC 2012; 209:2485-99. [PMID: 23230000 PMCID: PMC3526355 DOI: 10.1084/jem.20121015] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The PD-1–PD-L1 pathway inhibits perforin-mediated killing of PD-L1+ vascular endothelial cells by CD8+ T cells, thereby limiting vascular damage during systemic LCMV infection. The inhibitory programmed death 1 (PD-1)–programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1–PD-L1–mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1–deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1–PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell–mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1–PD-L1 pathway protects the vascular system from severe CD8 T cell–mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1–PD-L1 pathway during systemic virus infections.
Collapse
Affiliation(s)
- Helge Frebel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Huang X, Zhao YY. Transgenic expression of FoxM1 promotes endothelial repair following lung injury induced by polymicrobial sepsis in mice. PLoS One 2012. [PMID: 23185540 PMCID: PMC3502353 DOI: 10.1371/journal.pone.0050094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enhancing endothelial barrier integrity for the treatment of acute lung injury (ALI) is an emerging novel therapeutic strategy. Our previous studies have demonstrated the essential role of FoxM1 in mediating endothelial regeneration and barrier repair following lipopolysaccharide-induced lung injury. However, it remains unclear whether FoxM1 expression is sufficient to promote endothelial repair in experimental models of sepsis. Here, employing the FoxM1 transgenic (FoxM1 Tg) mice, we showed that transgenic expression of FoxM1 promoted rapid recovery of endothelial barrier function and survival in a clinically relevant model of sepsis induced by cecal ligation and puncture (CLP). We observed lung vascular permeability was rapidly recovered and returned to levels similar to baseline at 48 h post-CLP challenge in FoxM1 Tg mice whereas it remained markedly elevated in WT mice. Lung edema and inflammation were resolved only in FoxM1 Tg mice at 24 h post-CLP. 5-bromo-2-deoxyuridine incorporation assay revealed a drastic induction of endothelial proliferation in FoxM1 Tg lungs at 24h post-CLP, correlating with early induction of expression of FoxM1 target genes essential for cell cycle progression. Additionally, deletion of FoxM1 in endothelial cells, employing the mouse model with endothelial cell-restricted disruption of FoxM1 (FoxM1 CKO) resulted in impaired endothelial repair following CLP challenge. Together, these data suggest FoxM1 expression in endothelial cells is necessary and sufficient to mediate endothelial repair and thereby promote survival following sepsis challenge.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
227
|
|
228
|
Aman J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveld ABJ, Vonk Noordegraaf A, van Hinsbergh VWM, van Nieuw Amerongen GP. Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 2012; 126:2728-38. [PMID: 23099479 DOI: 10.1161/circulationaha.112.134304] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation. METHODS AND RESULTS We evaluated the effect of imatinib on endothelial barrier function in vitro and in vivo. In human macro- and microvascular endothelial monolayers, imatinib attenuated endothelial barrier dysfunction induced by thrombin and histamine. Small interfering RNA knock-downs of the imatinib-sensitive kinases revealed that imatinib attenuates endothelial barrier dysfunction via inhibition of Abl-related gene kinase (Arg/Abl2), a previously unknown mediator of endothelial barrier dysfunction. Indeed, Arg was activated by endothelial stimulation with thrombin, histamine, and vascular endothelial growth factor. Imatinib limited Arg-mediated endothelial barrier dysfunction by enhancing Rac1 activity and enforcing adhesion of endothelial cells to the extracellular matrix. Using mouse models of vascular leakage as proof-of-concept, we found that pretreatment with imatinib protected against vascular endothelial growth factor-induced vascular leakage in the skin, and effectively prevented edema formation in the lungs. In a murine model of sepsis, imatinib treatment (6 hours and 18 hours after induction of sepsis) attenuated vascular leakage in the kidneys and the lungs (24 hours after induction of sepsis). CONCLUSIONS Thus, imatinib prevents endothelial barrier dysfunction and edema formation via inhibition of Arg. These findings identify imatinib as a promising approach to permeability edema and indicate Arg as novel target for edema treatment.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Physiology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Armstrong SM, Wang C, Tigdi J, Si X, Dumpit C, Charles S, Gamage A, Moraes TJ, Lee WL. Influenza infects lung microvascular endothelium leading to microvascular leak: role of apoptosis and claudin-5. PLoS One 2012; 7:e47323. [PMID: 23115643 PMCID: PMC3480371 DOI: 10.1371/journal.pone.0047323] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/14/2012] [Indexed: 12/23/2022] Open
Abstract
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza.
Collapse
Affiliation(s)
| | - Changsen Wang
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
| | - Jayesh Tigdi
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
| | - Xiaoe Si
- Hospital for Sick Children, Toronto, Canada
| | - Carlo Dumpit
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
| | - Steffany Charles
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
| | - Asela Gamage
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Theo J. Moraes
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Hospital for Sick Children, Toronto, Canada
| | - Warren L. Lee
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
- Division of Respirology and Interdepartmental Division of Critical Care Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
230
|
von Drygalski A, Furlan-Freguia C, Mosnier LO, Yegneswaran S, Ruf W, Griffin JH. Infrared fluorescence for vascular barrier breach in vivo--a novel method for quantitation of albumin efflux. Thromb Haemost 2012; 108:981-91. [PMID: 23052565 DOI: 10.1160/th12-03-0196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/28/2012] [Indexed: 01/12/2023]
Abstract
Vascular hyperpermeability contributes to morbidity in inflammation. Current methodologies for in vivo assessment of permeability based on extravasation of Evans Blue (EB)-bound albumin are cumbersome and often lack sensitivity. We developed a novel infrared fluorescence (IRF) methodology for measurement of EB-albumin extravasation to quantify vascular permeability in murine models. Vascular permeability induced by endotoxaemia was examined for all solid organs, brain, skin and peritoneum by IRF and the traditional absorbance-based measurement of EB in tissue extracts. Organ IRF increased linearly with increasing concentrations of intravenous EB (2.5-25 mg/kg). Tissue IRF was more sensitive for EB accumulation compared to the absorbance-based method. Accordingly, differences in vascular permeability and organ EB accumulation between lipopolysaccharide-treated and saline-treated mice were often significant when analysed by IRF-based detection but not by absorbance-based detection. EB was detected in all 353 organs analysed with IRF but only in 67% (239/353) of organs analysed by absorbance-based methodology, demonstrating improved sensitivity of EB detection in organs with IRF. In contrast, EB in plasma after EB administration was readily measured by both methods with high correlation between the two methods (n=116, r2=0.86). Quantitation of organ-specific EB-IRF differences due to endotoxin was optimal when IRF was compared between mice matched for weight, gender, and age, and with appropriate corrections for organ weight and EB plasma concentrations. Notably, EB-IRF methodology leaves organs intact for subsequent histopathology. In summary, EB-IRF is a novel, highly sensitive, rapid, and convenient method for the relative quantification of EB in intact organs of treatment versus control mice.
Collapse
Affiliation(s)
- Annette von Drygalski
- Department of Medicine, University of California San Diego, San Diego, California, USA.
| | | | | | | | | | | |
Collapse
|
231
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Hontecillas R, Roberts PC, Carbo A, Vives C, Horne WT, Genis S, Velayudhan B, Bassaganya-Riera J. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism. J Nutr Biochem 2012; 24:1019-27. [PMID: 22995385 DOI: 10.1016/j.jnutbio.2012.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023]
Abstract
The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.
Collapse
Affiliation(s)
- Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech., Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Revised Starling equation predicts pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia. Crit Care Med 2012. [DOI: 10.1097/ccm.0b013e31825f7ab5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
234
|
Lukasz A, Kümpers P, David S. Role of angiopoietin/tie2 in critical illness: promising biomarker, disease mediator, and therapeutic target? SCIENTIFICA 2012; 2012:160174. [PMID: 24278675 PMCID: PMC3820656 DOI: 10.6064/2012/160174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/30/2012] [Indexed: 06/02/2023]
Abstract
Critical illness is a descriptive, broad term for a serious clinical condition that can result from enormously heterogeneous etiologies. A common end feature these patients regularly suffer from is the so-called multiple organ dysfunction syndrome (MODS), often a consequence of organ hypoperfusion and ischemia, coagulopathies, overwhelming inflammatory responses, immune paralysis and mitochondrial dysfunction. Mechanistically, endothelial injury and particularly microvascular leakage is a major step in the pathophysiology of MODS and contributes to its mortality. The angiopoietin (Angpt)/Tie2 system consists of the endothelial tyrosine kinase Tie2 and its 4 circulating ligands (Angpt1-4). The balance between the agonistic ligand "Angpt-1" and the antagonistic one "Angpt-2" regulates baseline endothelial barrier function and its response to injury and is therefore considered a gatekeeper of endothelial activation. This paper provides a systematic overview of the Angpt/Tie2 system with respect to (1) its role as a global biomarker of endothelial activation in critical ill patients, (2) its contribution to MODS pathophysiology as a disease mediator, and last but not least (3) putative therapeutic applications to modify the activation state of Tie2 in mice and men.
Collapse
Affiliation(s)
- Alexander Lukasz
- Department of Nephrology & Hypertension, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Philipp Kümpers
- Department of Internal Medicine, Rheumatology and Nephrology, University Hospital Münster, 48149 Münster, Germany
| | - Sascha David
- Department of Nephrology & Hypertension, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| |
Collapse
|
235
|
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122:2731-40. [PMID: 22850883 DOI: 10.1172/jci60331] [Citation(s) in RCA: 1368] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Departments of Medicine and Anesthesia, UCSF, San Francisco, CA, USA.
| | | | | |
Collapse
|
236
|
Fisher BJ, Kraskauskas D, Martin EJ, Farkas D, Wegelin JA, Brophy D, Ward KR, Voelkel NF, Fowler AA, Natarajan R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol 2012; 303:L20-32. [PMID: 22523283 DOI: 10.1152/ajplung.00300.2011] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial infections of the lungs and abdomen are among the most common causes of sepsis. Abdominal peritonitis often results in acute lung injury (ALI). Recent reports demonstrate a potential benefit of parenteral vitamin C [ascorbic acid (AscA)] in the pathogenesis of sepsis. Therefore we examined the mechanisms of vitamin C supplementation in the setting of abdominal peritonitis-mediated ALI. We hypothesized that vitamin C supplementation would protect lungs by restoring alveolar epithelial barrier integrity and preventing sepsis-associated coagulopathy. Male C57BL/6 mice were intraperitoneally injected with a fecal stem solution to induce abdominal peritonitis (FIP) 30 min prior to receiving either AscA (200 mg/kg) or dehydroascorbic acid (200 mg/kg). Variables examined included survival, extent of ALI, pulmonary inflammatory markers (myeloperoxidase, chemokines), bronchoalveolar epithelial permeability, alveolar fluid clearance, epithelial ion channel, and pump expression (aquaporin 5, cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and Na(+)-K(+)-ATPase), tight junction protein expression (claudins, occludins, zona occludens), cytoskeletal rearrangements (F-actin polymerization), and coagulation parameters (thromboelastography, pro- and anticoagulants, fibrinolysis mediators) of septic blood. FIP-mediated ALI was characterized by compromised lung epithelial permeability, reduced alveolar fluid clearance, pulmonary inflammation and neutrophil sequestration, coagulation abnormalities, and increased mortality. Parenteral vitamin C infusion protected mice from the deleterious consequences of sepsis by multiple mechanisms, including attenuation of the proinflammatory response, enhancement of epithelial barrier function, increasing alveolar fluid clearance, and prevention of sepsis-associated coagulation abnormalities. Parenteral vitamin C may potentially have a role in the management of sepsis and ALI associated with sepsis.
Collapse
Affiliation(s)
- Bernard J Fisher
- Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0050, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
How to approach genome wars in sepsis? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:1007. [PMID: 22136332 PMCID: PMC3388672 DOI: 10.1186/cc10482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis continues to pose a clear challenge as one of the most difficult and costly problems to treat and prevent. Sepsis is caused by systemic or localized infections that damage the integrity of microcirculation in multiple organs. The challenge of sepsis and its long-term sequelae was addressed by the National Institutes of Health National Heart Lung and Blood Institute Division of Blood Diseases and Resources. Defining sepsis as severe endothelial dysfunction syndrome that causes multiorgan failure in response to intravascular or extravascular microbial agents, the National Heart Lung and Blood Institute panel proposed the concept of genome wars as a platform for new diagnostic, therapeutic, and preventive approaches to sepsis.
Collapse
|
238
|
Do viral infections mimic bacterial sepsis? The role of microvascular permeability: A review of mechanisms and methods. Antiviral Res 2011; 93:2-15. [PMID: 22068147 DOI: 10.1016/j.antiviral.2011.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/12/2011] [Accepted: 10/22/2011] [Indexed: 12/13/2022]
Abstract
A dysregulated immune response and functional immunosuppression have been considered the major mechanisms of the bacterial sepsis syndrome. More recently, the loss of endothelial barrier function and resultant microvascular leak have been found to be a key determinant of the pathogenesis of bacterial sepsis. Whether a similar paradigm applies to systemic viral syndromes is not known. Answering this question has far-reaching implications for the development of future anti-viral therapeutic strategies. In this review, we provide an overview of the structure and function of the endothelium and how its barrier integrity is compromised in bacterial sepsis. The various in vitro and in vivo methodologies available to investigate vascular leak are reviewed. Emphasis is placed on the advantages and limitations of cell culture techniques, which represent the most commonly used methods. Within this context, we appraise recent studies of three viruses - hantavirus, human herpes virus 8 and dengue virus - that suggest microvascular leak may play a role in the pathogenesis of these viral infections. We conclude with a discussion of how endothelial barrier breakdown may occur in other viral infections such as H5N1 avian influenza virus.
Collapse
|