201
|
Liu J, Koyano-Nakagawa N, Amasaki Y, Saito-Ohara F, Ikeuchi T, Imai S, Takano T, Arai N, Yokota T, Arai K. Calcineurin-dependent nuclear translocation of a murine transcription factor NFATx: molecular cloning and functional characterization. Mol Biol Cell 1997; 8:157-70. [PMID: 9017603 PMCID: PMC276067 DOI: 10.1091/mbc.8.1.157] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Members of the nuclear factor of activated T cells (NFAT) are involved in the induction of a number of cytokine genes. We report here cDNA cloning and chromosomal localization of a murine homologue of human NFATx, designated as mNFATx1, and its splicing variants mNFATx2 and m delta NFATx. Northern blot analysis showed mNFATx1 to be predominantly expressed in the thymus. mNFATx1, but not m delta NFATx, produced in COS-7 cells, bound to all NFAT-binding sites of the interleukin (IL)-2 and IL-4 promoters tested. Immunofluorescence assay showed that both mNFATx1 and m delta NFATx introduced into COS-7 cells localized predominantly to the cytoplasm, but did translocate to the nucleus, either by cotransfection with an active form of calcineurin or wild-type calcineurin followed by stimulation with calcium ionophore. Translocation of mNFATx1 correlated well with activation of the murine IL-2 promoter; mNFATx1 translocated under conditions described above, in combination with phorbol 12-myristate 13-acetate, activated the transiently transfected murine IL-2 promoter. Thus, nuclear-translocated mNFATx1 is involved in activation of the IL-2 promoter. These results provide the first evidence for the requirement of calcineurin in the control of mNFATx imported from the cytoplasm to the nucleus and implies that mNFATx may possibly be a substrate of calcineurin in vivo.
Collapse
Affiliation(s)
- J Liu
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Penix LA, Sweetser MT, Weaver WM, Hoeffler JP, Kerppola TK, Wilson CB. The proximal regulatory element of the interferon-gamma promoter mediates selective expression in T cells. J Biol Chem 1996; 271:31964-72. [PMID: 8943243 DOI: 10.1074/jbc.271.50.31964] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interferon-gamma (IFN-gamma) is produced by natural killer cells and certain subsets of T cells, but the basis for its selective expression is unknown. Within the region between -108 and -40 base pairs of the IFN-gamma promoter are two conserved and essential regulatory elements, which confer activation-specific expression in T cells. This report describes studies indicating that the most proximal of these two regulatory elements is an important determinant of its restricted expression. The proximal element is a composite site that binds members of the CREB/ATF, AP-1, and octamer families of transcription factors. Jun is essential for activation-induced transcription and binds preferably as a heterodimer with ATF-2. In contrast, CREB appears to dampen transcription from this element. The CpG dinucleotide in this element is selectively methylated in Th2 T cells and other cells that do not express IFN-gamma, and methylation markedly reduces transcription factor binding. As a target for DNA methylation and for binding of transcription factors that mediate or impede transcription, this element appears to play a central role in controlling IFN-gamma expression.
Collapse
Affiliation(s)
- L A Penix
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA.
| | | | | | | | | | | |
Collapse
|
203
|
Faris M, Kokot N, Lee L, Nel AE. Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J Biol Chem 1996; 271:27366-73. [PMID: 8910314 DOI: 10.1074/jbc.271.44.27366] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Engagement of the T cell receptor induces the activation of several mitogen-activated protein kinase modules, including the extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK) cascades. Whereas extracellular signal-regulated kinase is activated by T cell receptor/CD3 ligation alone, activation of JNK requires co-stimulation by the CD28 receptor. Activation of MEKK-1, which acts as a mitogen-activated protein kinase kinase kinase in the JNK pathway, was also induced by CD3 plus CD28 (CD3/CD28) ligation in Jurkat cells. To study the significance of the JNK cascade in T lymphocytes, we established stable Jurkat cell lines that inducibly express dominant active (DA) or dominant negative (DN) MEKK-1. Whereas expression of DA-MEKK-1 resulted in the constitutive activation of JNK along with the transcriptional activation of the minimal interleukin-2 (IL-2) promoter, DN-MEKK-1 inhibited JNK responsiveness during CD3/CD28 co-stimulation. In addition to inhibiting CD3/CD28-induced IL-2 mRNA expression, DN-MEKK-1 abrogated the transcriptional activation of the IL-2 promoter and the distal nuclear factor of activated T cells (NFAT)-activating protein 1 (AP-1) response element in that promoter. A c-Jun mutant lacking activation sites for JNK also interfered with the activation of the distal NFAT/AP-1 complex, suggesting that the JNK pathway functions by controlling AP-1 response elements in the IL-2 promoter. Using inducible stable expression of DA- and DN-Ras in Jurkat cells, we found that Ras regulates JNK activation in these cells. Our results suggest that the dual ligation of CD3 and CD28 in T cells triggers a cascade of events that involve Ras, the JNK cascade, and one or more AP-1 response elements in the IL-2 promoter.
Collapse
Affiliation(s)
- M Faris
- Division of Clinical Immunology and Allergy, Department of Medicine, Jonsson Cancer Center, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
204
|
Himes SR, Coles LS, Reeves R, Shannon MF. High mobility group protein I(Y) is required for function and for c-Rel binding to CD28 response elements within the GM-CSF and IL-2 promoters. Immunity 1996; 5:479-89. [PMID: 8934574 DOI: 10.1016/s1074-7613(00)80503-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD28 response elements (CD28REs) within cytokine promoters are variant NF-kappaB-binding sites and are essential for transcription in response to CD28 receptor activation in T cells. We show that the CK-1 element (CD28RE) within the GM-CSF promoter binds the RelA and c-Rel transcription factors in response to CD28 activation. We further show that the high mobility group protein HMG I(Y) can bind to the CD28REs of both GM-CSF and IL-2 and that this binding is critical for c-Rel, but not RelA, binding. A second NF-kappaB site in the GM-CSF promoter that binds p50 and RelA, but neither c-Rel nor HMG I(Y), failed to respond to CD28 activation. Expression of HMG I or c-Rel antisense RNA inhibited CD28 activation of the IL-2 and GM-CSF promoters, implying that HMG I(Y) enhancement of c-Rel binding plays an important role in the activity of the CD28REs.
Collapse
Affiliation(s)
- S R Himes
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | | | | | | |
Collapse
|
205
|
Tsai EY, Yie J, Thanos D, Goldfeld AE. Cell-type-specific regulation of the human tumor necrosis factor alpha gene in B cells and T cells by NFATp and ATF-2/JUN. Mol Cell Biol 1996; 16:5232-44. [PMID: 8816436 PMCID: PMC231523 DOI: 10.1128/mcb.16.10.5232] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human tumor necrosis factor alpha (TNF-alpha) gene is one of the earliest genes transcribed after the stimulation of a B cell through its antigen receptor or via the CD-40 pathway. In both cases, induction of TNF-alpha gene transcription can be blocked by the immunosuppressants cyclosporin A and FK506, which suggested a role for the NFAT family of proteins in the regulation of the gene in B cells. Furthermore, in T cells, two molecules of NFATp bind to the TNF-alpha promoter element kappa 3 in association with ATF-2 and Jun proteins bound to an immediately adjacent cyclic AMP response element (CRE) site. Here, using the murine B-cell lymphoma cell line A20, we show that the TNF-alpha gene is regulated in a cell-type-specific manner. In A20 B cells, the TNF-alpha gene is not regulated by NFATp bound to the kappa 3 element. Instead, ATF-2 and Jun proteins bind to the composite kappa 3/CRE site and NFATp binds to a newly identified second NFAT site centered at -76 nucleotides relative to the TNF-alpha transcription start site. This new site plays a critical role in the calcium-mediated, cyclosporin A-sensitive induction of TNF-alpha in both A20 B cells and Ar-5 cells. Consistent with these results, quantitative DNase footprinting of the TNF-alpha promoter using increasing amounts of recombinant NFATp demonstrated that the -76 site binds to NFATp with a higher affinity than the kappa 3 site. Two other previously unrecognized NFATp-binding sites in the proximal TNF-alpha promoter were also identified by this analysis. Thus, through the differential use of the same promoter element, the composite kappa 3/CRE site, the TNF-alpha gene is regulated in a cell-type-specific manner in response to the same extracellular signal.
Collapse
Affiliation(s)
- E Y Tsai
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
206
|
Rothenberg EV, Ward SB. A dynamic assembly of diverse transcription factors integrates activation and cell-type information for interleukin 2 gene regulation. Proc Natl Acad Sci U S A 1996; 93:9358-65. [PMID: 8790334 PMCID: PMC38432 DOI: 10.1073/pnas.93.18.9358] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The interleukin 2 (IL-2) gene is subject to two types of regulation: its expression is T-lymphocyte-specific and it is acutely dependent on specific activation signals. The IL-2 transcriptional apparatus integrates multiple types of biochemical information in determining whether or not the gene will be expressed, using multiple diverse transcription factors that are each optimally activated or inhibited by different signaling pathways. When activation of one or two of these factors is blocked IL-2 expression is completely inhibited. The inability of the other, unaffected factors to work is explained by the striking finding that none of the factors interacts stably with its target site in the IL-2 enhancer unless all the factors are present. Coordinate occupancy of all the sites in the minimal enhancer is apparently maintained by continuous assembly and disassembly cycles that respond to the instantaneous levels of each factor in the nuclear compartment. In addition, the minimal enhancer undergoes specific increases in DNase I accessibility, consistent with dramatic changes in chromatin structure upon activation. Still to be resolved is what interaction(s) conveys T-lineage specificity. In the absence of activating signals, the minimal IL-2 enhancer region in mature T cells is apparently unoccupied, exactly as in non-T lineage cells. However, in a conserved but poorly studied upstream region, we have now mapped several novel sites of DNase I hypersensitivity in vivo that constitutively distinguish IL-2 producer type T cells from cell types that cannot express IL-2. Thus a distinct domain of the IL-2 regulatory sequence may contain sites for competence- or lineage-marking protein contacts.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| | | |
Collapse
|
207
|
Feske S, Müller JM, Graf D, Kroczek RA, Dräger R, Niemeyer C, Baeuerle PA, Peter HH, Schlesier M. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur J Immunol 1996; 26:2119-26. [PMID: 8814256 DOI: 10.1002/eji.1830260924] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peripheral blood lymphocytes (PBL) and alloreactive T cell lines of two male infants born to consanguinous parents and presenting with severe combined immunodeficiency (SCID) showed a pronounced deficiency in T cell activation. Although phenotypically normal, the proliferative response of the childrens' T cells was strongly reduced but could be improved by the addition of interleukin-2 (IL-2). Furthermore both childrens' T cells were unable to produce the cytokines IL-2, interferon-gamma (IFN-gamma), IL-4 and tumor necrosis factor-alpha (TNF-alpha). This multiple cytokine production deficiency could not be restored by IL-2 or co-stimulatory signals provided by antigen-presenting cells (APC). Moreover, mRNA for IL-2 and IFN-gamma could not be detected. In contrast, expression of the activation-dependent cell surface markers CD25 and CD69 was within normal limits. To determine whether the functional defect of the patients' T cells was due to the absence or abnormal binding of transcription factors involved in cytokine gene expression, electrophoretic mobility shift assays were used to examine the DNA binding of AP-1, Oct, CREB, SP1, NF-kappa B and the nuclear factor of activated T cells (NF-AT) to their respective response elements in the promoter of the IL-2 gene. Whereas AP-1, NF-kappa B, Oct, CREB and SP1 displayed normal binding activities in nuclear extracts, the binding of NF-AT to its IL-2 promoter response element was barely detectable both before and after T cell stimulation. Our results strongly suggest that this NF-AT/DNA binding defect is responsible for the multiple cytokine deficiency and the SCID phenotype observed in the two infant brothers.
Collapse
Affiliation(s)
- S Feske
- Department of Medicine, Albert-Ludwigs University of Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Good L, Maggirwar SB, Sun SC. Activation of the IL-2 gene promoter by HTLV-I tax involves induction of NF-AT complexes bound to the CD28-responsive element. EMBO J 1996; 15:3744-50. [PMID: 8670878 PMCID: PMC452042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tax gene product of the type I human T-cell leukemia virus (HTLV-I) is a potent transcriptional activator of various growth-related cellular genes, including that encoding interleukin-2 (IL-2). Tax activation of many of these target genes appears to be mediated by the NF-kappa B/Rel and CREB/ATF family of cellular transcription factors. However, the mechanism by which Tax transactivates the IL-2 gene remains unclear. In the present study, we demonstrate that neither NF-kappa B/Rel nor CREB/ATF is sufficient for Tax-mediated activation of the IL-2 promoter. Two novel nuclear protein complexes are induced by Tax and specifically bind to an IL-2 gene enhancer, the CD28-responsive element (CD28RE). Immunobiochemical analyses suggest that these DNA binding complexes contain at least two members of the nuclear factor of activated T cells, NF-ATp and NF-ATc. However, the CD28 binding NF-AT complexes do not contain Jun and Fos family proteins that have been proposed to serve as NF-AT partners in the activation of the IL-2 NF-AT motif. Transient transfection studies demonstrate that the in vivo expressed NF-ATp binds to the CD28RE probe and enhances Tax-mediated activation of this critical IL-2 enhancer. We demonstrate further that binding of NF-AT to CD28RE is critical for Tax activation of the IL-2 promoter. Together, these results suggest a novel mechanism of Tax-mediated activation of the IL-2 gene, which involves the induction of NF-AT-containing CD28RE binding complexes.
Collapse
Affiliation(s)
- L Good
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, PA 17033, USA
| | | | | |
Collapse
|
209
|
Bemer V, Truffa-Bachi P. T cell activation by concanavalin A in the presence of cyclosporin A: immunosuppressor withdrawal induces NFATp translocation and interleukin-2 gene transcription. Eur J Immunol 1996; 26:1481-8. [PMID: 8766550 DOI: 10.1002/eji.1830260712] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclosporin A (CSA), an immunosuppressive agent used in organ transplantation and to treat some autoimmune diseases, blocks the Ca2+-dependent steps involved in T cell receptor triggering leading to interleukin (IL)-2 production. Considering that the early steps of T cell activation are insensitive to CSA, we asked whether the initial activation achieved in presence of this immunosuppressor could affect the capacity of the T cell to respond to a mitogenic restimulation. We found that T cells activated by concanavalin A (ConA) for 48 h in the presence of CSA retain the capacity to proliferate in response to ConA once the immunosuppressor is removed. These cells are able to transcribe anew the IL-2 gene, without the requirement of new protein synthesis, and to up-regulate the alpha chain of the IL-2 receptor. Furthermore, we present the first direct evidence that the nuclear factor AP-1 is present in the nucleus of the T cells primed for 48 h in presence of CSA and that withdrawal of the immunosuppressor leads to the translocation of NFATp from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- V Bemer
- Immunophysiologie Moléculaire, Institut Pasteur, Paris, France
| | | |
Collapse
|
210
|
Curtiss VE, Smilde R, McGuire KL. Requirements for interleukin 2 promoter transactivation by the Tax protein of human T-cell leukemia virus type 1. Mol Cell Biol 1996; 16:3567-75. [PMID: 8668173 PMCID: PMC231352 DOI: 10.1128/mcb.16.7.3567] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) upregulates the expression of several cellular genes by activating members of both the NF-kappaB and bZIP families of transcription factors. Recent studies demonstrate that the CD28 response element (CD28RE) of the interleukin 2 (IL-2) promoter is the site upregulated by Tax in stimulated T cells. Although some reports suggest that this site is transactivated by NF-kappaB family members, others disagree, leaving the identity of the transcription factor(s) binding the CD28RE unclear. The studies presented here further characterize the response of the IL-2 promoter and CD28RE to the HTLV-1 Tax protein and demonstrate that the TATA-proximal AP-1 binding site of the IL-2 promoter is also necessary for Tax transactivation in stimulated Jurkat cells. In contrast to its upregulation of the IL-2 promoter which requires T-cell stimulation, Tax transactivates the isolated CD28RE-AP-1 element without stimulation but is greatly synergized by calcium ionophore and phorbol ester. Additionally, transactivation of the IL-2 promoter requires the Tax activation domain involved in upregulation of bZIP-enhanced transcription while the NF-kappaB-activating domain of Tax is dispensable. Interestingly, both domains appear to be necessary for the activation of the isolated CD28RE-AP-1 sequence in the context of a heterologous promoter construct. This strongly suggests that activation of NF-kappaB is insufficient to activate transcription via the CD28RE-AP-1 element of the IL-2 promoter and that a different transcription factor, upregulated via the activation domain of the HTLV-1 Tax protein, may be involved.
Collapse
Affiliation(s)
- V E Curtiss
- Department of Biology, San Diego State University, California 92182-4614, USA
| | | | | |
Collapse
|
211
|
Ho IC, Hodge MR, Rooney JW, Glimcher LH. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996; 85:973-83. [PMID: 8674125 DOI: 10.1016/s0092-8674(00)81299-4] [Citation(s) in RCA: 544] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular basis for the distinctive cytokine expression of CD4+ T helper 1 (Th1) and T helper 2 (Th2) subsets remains elusive. Here, we report that the proto-oncogene c-maf, a basic region/leucine zipper transcription factor, controls tissue-specific expression of IL-4. c-Maf is expressed in Th2 but not Th1 clones and is induced during normal precursor cell differentiation along a Th2 but not Th1 lineage. c-Maf binds to a c-Maf response element (MARE) in the proximal IL-4 promoter adjacent to a site footprinted by extracts from Th2 but not Th1 clones. Ectopic expression of c-Maf transactivates the IL-4 promoter in Th1 cells, B cells, and nonlymphoid cells, a function that maps to the MARE and Th2-specific footprint. Furthermore, c-Maf acts in synergy with the nuclear factor of activated T cells (NF-ATp) to initiate endogeneous IL-4 production by B cells. Manipulation of c-Maf may alter Th subset ratios in human disease.
Collapse
Affiliation(s)
- I C Ho
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
212
|
Affiliation(s)
- C E Rudd
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
213
|
Ghosh P, Sica A, Cippitelli M, Subleski J, Lahesmaa R, Young HA, Rice NR. Activation of nuclear factor of activated T cells in a cyclosporin A-resistant pathway. J Biol Chem 1996; 271:7700-4. [PMID: 8631809 DOI: 10.1074/jbc.271.13.7700] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mechanism of action of the immunosuppressive drug cyclosporin A (CsA) is the inactivation of the Ca2+/calmodulin-dependent serine-threonine phosphatase calcineurin by the drug-immunophilin complex. Inactive calcineurin is unable to activate the nuclear factor of activated T cells (NFAT), a transcription factor required for expression of the interleukin 2 (IL-2) gene. IL-2 production by CsA-treated cells is therefore dramatically reduced. We demonstrate here, however, that NFAT can be activated, and significant levels of IL-2 can be produced by the CsA-resistant CD28-signaling pathway. In transient transfection assays, both multicopy NFAT- and IL-2 promoter-beta-galactosidase reporter gene constructs could be activated by phorbol 12-myristate 13-acetate (PMA)/alpha-CD28 stimulation, and this activation was resistant to CsA. Electrophoretic mobility shift assay showed the induction of a CsA-resistant NFAT complex in the nuclear extracts of peripheral blood T cells stimulated with PMA plus alphaCD28. Peripheral blood T cells stimulated with PMA/alphaCD28 produced IL-2 in the presence of CsA. Collectively, these data suggest that NFAT can be activated and IL-2 can be produced in a calcineurin independent manner.
Collapse
Affiliation(s)
- P Ghosh
- Laboratory of Experimental Immunology, Division of Basic Science, SAIC, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Declerck P, De Mol M, Vaughan D, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49751-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|