201
|
Roche E, Lascombe I, Bittard H, Mougin C, Fauconnet S. The PPARβ agonist L-165041 promotes VEGF mRNA stabilization in HPV18-harboring HeLa cells through a receptor-independent mechanism. Cell Signal 2013; 26:433-43. [PMID: 24172859 DOI: 10.1016/j.cellsig.2013.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
Abstract
Peroxisome Proliferator-Activated Receptor-β (PPARβ) is a ligand-inducible transcription factor activated by both natural (fatty acids and derivatives) and high affinity synthetic agonists. It is thought to play a role in angiogenesis development and Vascular Endothelial Growth Factor (VEGF) regulation but its contribution remains unclear. Until now, the PPARβ agonism effect on VEGF expression in cervical cancer cells was unknown. This led to our interest in assessing the effect of PPARβ activation on the regulation of different VEGF isoforms mRNA expression and the impact of E6 viral oncoprotein and its target p53 on this regulation in cervical cancer cells. Here, we showed that the PPARβ agonist L-165041 induces VEGF(121), VEGF(165) and VEGF(189) expression in HPV (Human Papillomavirus) positive HeLa cells but not in HPV negative cells. The underlying mechanisms did involve neither E6 oncoprotein nor p53. We highlighted a novel mode of PPARβ ligand action including a post-transcriptional regulation of VEGF mRNA expression through the p38 MAPK signaling pathway and the activation of the mRNA-stabilizing factor HuR. But most importantly, we clearly demonstrated that L-165041 acts independently of PPARβ since its effect was not reversed by a chemical inhibition with a specific antagonist and the siRNA-mediated knockdown of the nuclear receptor. As VEGF is crucial for cancer development, the impact of PPARβ ligands on VEGF production is of high importance. Thus, the molecular mechanism of their action has to be elucidated and as a result, PPARβ agonists currently in clinical trials should be carefully monitored.
Collapse
Affiliation(s)
- Emmanuelle Roche
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France
| | - Isabelle Lascombe
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France
| | - Hugues Bittard
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France; Department of Urology, CHRU Besançon, F-25000 Besançon, France
| | - Christiane Mougin
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France; Department of Cell and Molecular Biology, CHRU Besançon, F-25000 Besançon, France
| | - Sylvie Fauconnet
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France; Department of Urology, CHRU Besançon, F-25000 Besançon, France.
| |
Collapse
|
202
|
The nuclear-cytoplasmic shuttling of virion host shutoff RNase is enabled by pUL47 and an embedded nuclear export signal and defines the sites of degradation of AU-rich and stable cellular mRNAs. J Virol 2013; 87:13569-78. [PMID: 24109211 DOI: 10.1128/jvi.02603-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.
Collapse
|
203
|
Zhang C, Zhang H, Zhao Y, Jiang H, Zhu S, Cheng B, Xiang Y. Genome-wide analysis of the CCCH zinc finger gene family in Medicago truncatula. PLANT CELL REPORTS 2013; 32:1543-55. [PMID: 23749175 DOI: 10.1007/s00299-013-1466-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/15/2013] [Accepted: 05/26/2013] [Indexed: 05/19/2023]
Abstract
In this study, we identified 34 CCCH Znf genes in Medicago truncatula and the results of semi-quantitative RT-PCR revealed that the expression patterns of subfamily VI members were diverse. CCCH-type zinc finger (Znf) proteins are specific transcriptional factors with a typical motif consisting of three cysteine residues and one histidine residue. Increasing evidences have revealed that CCCH Znf proteins participated in the regulation of plant growth, developmental processes and environmental responses. Survey and characterization of CCCH Znf genes in leguminous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, we performed a comprehensive analysis of CCCH Znf genes in M. truncatula by describing the phylogenetic relationships, chromosomal location and gene structure of each family member. A total of 34 CCCH Znf genes were identified in the latest M. truncatula genome sequence. The 34 predicted members were clustered into nine subfamilies based on their phylogenetic analysis and structure features. In addition, the 34 Medicago CCCH Znf genes were found to be unevenly distributed on eight chromosomes. Furthermore, the expression profiles of subfamily VI were investigated under different stress conditions (PEG-6000, NaCl and ABA) by using semi-quantitative RT-PCR. The data showed that these genes displayed different expression levels in response to various stress conditions. The results presented in this study provide basic information about Medicago CCCH Znf genes and form a fundamental clue for cloning genes with specific functions in further studies and applications.
Collapse
Affiliation(s)
- Cuiqin Zhang
- Lab of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | | | | | | | | | | | | |
Collapse
|
204
|
Heissmeyer V, Vogel KU. Molecular control of Tfh-cell differentiation by Roquin family proteins. Immunol Rev 2013; 253:273-89. [PMID: 23550652 DOI: 10.1111/imr.12056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-transcriptional gene regulation by RNA-binding proteins is a fast and effective way to adapt gene expression and change cellular responses. These trans-acting factors have been involved in a number of cell fate decisions, and their mutation is often associated with the development of disease. The RNA-binding protein Roquin-1 has been found to be crucial in the maintenance of peripheral tolerance and the prevention of autoimmune disease. This review describes the molecular role of Roquin family proteins in the control of follicular T-helper cell differentiation. Here, we discuss the redundant regulation of Icos and Ox40 costimulatory receptor mRNAs by Roquin-1 and Roquin-2 proteins. A major focus is placed on the distinct activity of Roquin-1 or Roquin-2 proteins in the mouse models of conditional gene targeting. These recent data are then integrated into an interpretation of altered Roquin protein function in the sanroque mouse that expresses the Roquin-1 protein with just one amino acid substitution and, different from the Roquin-1-deficient mouse, develops lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Vigo Heissmeyer
- Helmholtz Zentrum München, Institute of Molecular Immunology, Munich, Germany.
| | | |
Collapse
|
205
|
Chowdhury S, Dijkhuis A, Steiert S, Lutter R. IL-17 attenuates degradation of ARE-mRNAs by changing the cooperation between AU-binding proteins and microRNA16. PLoS Genet 2013; 9:e1003747. [PMID: 24086143 PMCID: PMC3784493 DOI: 10.1371/journal.pgen.1003747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/10/2013] [Indexed: 01/25/2023] Open
Abstract
Interleukin 17A (IL-17), a mediator implicated in chronic and severe inflammatory diseases, enhances the production of pro-inflammatory mediators by attenuating decay of the encoding mRNAs. The decay of many of these mRNAs depends on proteins (AUBps) that target AU-rich elements in the 3′-untranslated region of mRNAs and facilitate either mRNA decay or stabilization. Here we show that AUBps and the target mRNA assemble in a novel ribonucleoprotein complex in the presence of microRNA16 (miR16), which leads to the degradation of the target mRNA. Notably, IL-17 attenuates miR16 expression and promotes the binding of stabilizing AUBps over that of destabilizing AUBps, reducing mRNA decay. These findings indicate that miR16 independently of a seed sequence, directs the competition between degrading and stabilizing AUBps for target mRNAs. Since AUBps affect expression of about 8% of the human transcriptome and miR16 is ubiquitously expressed, IL-17 may in addition to inflammation affect many other cellular processes. Inflammation is driven by inflammatory mediators. Interleukin 17A (IL-17) is implicated in chronic and severe inflammation and exaggerates production of inflammatory mediators. This is due, at least in part, to the IL-17-attenuated degradation of mRNAs encoding these inflammatory mediators, but the underlying mechanism has remained elusive. Most of these mRNAs contain AU-rich elements in their 3′-untranslated region and are targeted by AU-binding proteins (AUBps) that promote either mRNA degradation or stabilization. Here we show that IL-17 directs the AU-mediated mRNA degradation (AMD pathway) by modulating the interaction of degrading and stabilizing AUBps via microRNA16 (miR16). Whereas microRNAs target mRNAs to the RISC pathway for degradation by binding to a seed sequence, miR16 drives degradation by the AMD pathway without an apparent seed sequence. Transcriptome analyses have revealed that the expression of 8% of all eukaryotic transcripts is dependent on the AMD pathway. Therefore, the impact of IL-17 on inflammatory diseases may extend beyond the production of inflammatory mediators to processes like tissue repair, cell cycle, etc. In addition, targeting AUBp and/or miR16 may provide a novel therapeutic option to combat the IL-17 axis of inflammation.
Collapse
Affiliation(s)
- Saheli Chowdhury
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Annemiek Dijkhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sabrina Steiert
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
206
|
Kaymak E, Ryder SP. RNA recognition by the Caenorhabditis elegans oocyte maturation determinant OMA-1. J Biol Chem 2013; 288:30463-30472. [PMID: 24014033 DOI: 10.1074/jbc.m113.496547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that OMA-1/2 are required to repress the expression of a glp-1 3'-UTR reporter in developing oocytes. OMA-1 binds with high affinity to a conserved region of the glp-1 3'-UTR previously shown to interact with POS-1 and GLD-1, RNA-binding proteins required for glp-1 reporter repression in the posterior of fertilized embryos. Our results reveal that OMA-1 is a sequence-specific RNA-binding protein required to repress expression of maternal transcripts during oogenesis and suggest that interplay between OMA-1 and other factors for overlapping binding sites helps to coordinate the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Ebru Kaymak
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sean P Ryder
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
207
|
Chou CF, Lin WJ, Lin CC, Luber CA, Godbout R, Mann M, Chen CY. DEAD box protein DDX1 regulates cytoplasmic localization of KSRP. PLoS One 2013; 8:e73752. [PMID: 24023901 PMCID: PMC3762726 DOI: 10.1371/journal.pone.0073752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
mRNA decay mediated by the AU-rich elements (AREs) is one of the most studied post-transcriptional mechanisms and is modulated by ARE-binding proteins (ARE-BPs). To understand the regulation of K homology splicing regulatory protein (KSRP), a decay-promoting ARE-BP, we purified KSRP protein complexes and identified an RNA helicase, DDX1. We showed that down-regulation of DDX1 expression elevated cytoplasmic levels of KSRP and facilitated ARE-mediated mRNA decay. Association of KSRP with 14-3-3 proteins, that are predominately located in the cytoplasm, increased upon reduction of DDX1. We also demonstrated that KSRP associated with DDX1 or 14-3-3, but not both. These observations indicate that subcellular localization of KSRP is regulated by competing interactions with DDX1 or 14-3-3.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wei-Jye Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chen-Chung Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christian A. Luber
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
208
|
Gu L, Ning H, Qian X, Huang Q, Hou R, Almourani R, Fu M, Blackshear PJ, Liu J. Suppression of IL-12 production by tristetraprolin through blocking NF-kcyB nuclear translocation. THE JOURNAL OF IMMUNOLOGY 2013; 191:3922-30. [PMID: 23997224 DOI: 10.4049/jimmunol.1300126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tristetraprolin (TTP), an mRNA-binding protein, plays a significant role in regulating the expression of adenylate-uridylate-rich elements containing mRNAs. Mice deficient of TTP (TTP(-/-)) develop a systemic autoimmune inflammatory syndrome characterized by cachexia, conjunctivitis, and dermatitis. IL-12 plays a crucial role in immune defense against infectious and malignant diseases. In this study, we found increased production of IL-12 during endotoxic shock and enhanced Th1 cells in TTP knockout mice. The levels of IL-12 p70 and p40 protein as well as p40 and p35 mRNA were also increased in activated macrophages deficient of TTP. In line with these findings, overexpression of TTP suppressed IL-12 p35 and p40 expression at the mRNA and promoter level, whereas it surprisingly had little effects on their mRNA stability. Our data showed that the inhibitory effects of TTP on p35 gene transcription were completely rescued by overexpression of NF-кB p65 and c-Rel but not by the p50 in activated macrophages. Our data further indicated that TTP acquired its inhibition on IL-12 expression through blocking nuclear translocation of NF-кB p65 and c-Rel while enhancing p50 upon stimulation. In summary, our study reveals a novel pathway through which TTP suppresses IL-12 production in macrophages, resulting in suppression of Th1 cell differentiation. This study may provide us with therapeutic targets for treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Ling Gu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Molle C, Zhang T, Ysebrant de Lendonck L, Gueydan C, Andrianne M, Sherer F, Van Simaeys G, Blackshear PJ, Leo O, Goriely S. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J Exp Med 2013; 210:1675-84. [PMID: 23940256 PMCID: PMC3754859 DOI: 10.1084/jem.20120707] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine-rich element (ARE)-binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow-derived dendritic cells (BMDCs) from TTP(-/-) mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3' untranslated region. TTP(-/-) mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23-IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation.
Collapse
Affiliation(s)
- Céline Molle
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Tong Zhang
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Laure Ysebrant de Lendonck
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Cyril Gueydan
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Mathieu Andrianne
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Félicie Sherer
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Gaetan Van Simaeys
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health, National Institutes of Health Sciences, Research Triangle Park, NC 27709
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Oberdan Leo
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Laboratoire de Biologie Moléculaire du Gène, and Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
- WELBIO, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
210
|
Twyffels L, Wauquier C, Soin R, Decaestecker C, Gueydan C, Kruys V. A masked PY-NLS in Drosophila TIS11 and its mammalian homolog tristetraprolin. PLoS One 2013; 8:e71686. [PMID: 23951221 PMCID: PMC3739726 DOI: 10.1371/journal.pone.0071686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/07/2013] [Indexed: 12/11/2022] Open
Abstract
Many RNA-binding proteins (RBPs) dynamically shuttle between the nucleus and the cytoplasm, often exerting different functions in each compartment. Therefore, the nucleo-cytoplasmic distribution of RBPs has a strong impact on their activity. Here we describe the localization and the shuttling properties of the tandem zinc finger RBP dTIS11, which is the Drosophila homolog of mammalian TIS11 proteins. Drosophila and mammalian TIS11 proteins act as destabilizing factors in ARE-mediated decay. At equilibrium, dTIS11 is concentrated mainly in the cytoplasm. We show that dTIS11 is a nucleo-cytoplasmic shuttling protein whose nuclear export is mediated by the exportin CRM1 through the recognition of a nuclear export signal (NES) located in a different region comparatively to its mammalian homologs. We also identify a cryptic Transportin-dependent PY nuclear localization signal (PY-NLS) in the tandem zinc finger region of dTIS11 and show that it is conserved across the TIS11 protein family. This NLS partially overlaps the second zinc finger ZnF2. Importantly, mutations disrupting the capacity of the ZnF2 to coordinate a Zinc ion unmask dTIS11 and TTP NLS and promote nuclear import. All together, our results indicate that the nuclear export of TIS11 proteins is mediated by CRM1 through diverging NESs, while their nuclear import mechanism may rely on a highly conserved PY-NLS whose activity is negatively regulated by ZnF2 folding.
Collapse
Affiliation(s)
- Laure Twyffels
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Corinne Wauquier
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis - Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| |
Collapse
|
211
|
Lee H, Komano J, Saitoh Y, Yamaoka S, Kozaki T, Misawa T, Takahama M, Satoh T, Takeuchi O, Yamamoto N, Matsuura Y, Saitoh T, Akira S. Zinc-finger antiviral protein mediates retinoic acid inducible gene I-like receptor-independent antiviral response to murine leukemia virus. Proc Natl Acad Sci U S A 2013; 110:12379-84. [PMID: 23836649 PMCID: PMC3725099 DOI: 10.1073/pnas.1310604110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
When host cells are infected by an RNA virus, pattern-recognition receptors (PRRs) recognize the viral RNA and induce the antiviral innate immunity. Toll-like receptor 7 (TLR7) detects the genomic RNA of incoming murine leukemia virus (MLV) in endosomes and mediates the antiviral response. However, the RNA-sensing PRR that recognizes the MLV in the cytosol is not fully understood. Here, we definitively demonstrate that zinc-finger antiviral protein (ZAP) acts as a cytosolic RNA sensor, inducing the degradation of the MLV transcripts by the exosome, an RNA degradation system, on RNA granules. Although the retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) RIG-I and melanoma differentiation-associated protein 5 detect various RNA viruses in the cytosol and induce the type I IFN-dependent antiviral response, RLR loss does not alter the replication efficiency of MLV. In sharp contrast, the loss of ZAP greatly enhances the replication efficiency of MLV. ZAP localizes to RNA granules, where the processing-body and stress-granule proteins assemble. ZAP induces the recruitment of the MLV transcripts and exosome components to the RNA granules. The CCCH-type zinc-finger domains of ZAP, which are RNA-binding motifs, mediate its localization to RNA granules and MLV transcripts degradation by the exosome. Although ZAP was known as a regulator of RIG-I signaling in a human cell line, ZAP deficiency does not affect the RIG-I-dependent production of type I IFN in mouse cells. Thus, ZAP is a unique member of the cytosolic RNA-sensing PRR family that targets and eliminates intracellular RNA viruses independently of TLR and RLR family members.
Collapse
Affiliation(s)
- Hanna Lee
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| | - Jun Komano
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan
| | - Yasunori Saitoh
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tatsuya Kozaki
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| | - Takuma Misawa
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| | - Michihiro Takahama
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| | - Takashi Satoh
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Yoshiharu Matsuura
- Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Departments of Host Defense and
| |
Collapse
|
212
|
Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 2013; 18:8083-94. [PMID: 23839113 PMCID: PMC6270260 DOI: 10.3390/molecules18078083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023] Open
Abstract
Luteolin (Lut) is a common dietary flavonoid present in Chinese herbal medicines that has been reported to have important anti-inflammatory properties. The purposes of this study were to observe the inhibition of lipopolysaccharide (LPS)-induced inflammatory responses in bone marrow macrophages (BMM) by Lut, and to examine whether this inhibition involves p38/MK2/TTP-mediated mRNA stability. Lut suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner according to enzyme-linked immunosorbent assay (ELISA) analysis. Lut also shortened the half-lives of the TNF-α and IL-6 mRNAs according to real-time PCR analysis. Western blots were performed to assess the activation of p38 and MK2 as well as the expression of TTP. The results indicated that Lut inhibited p38 and MK2 phosphorylation while promoting TTP expression. These results suggest that the anti-inflammatory effects of Lut are partially mediated through p38/MK2/TTP-regulated mRNA stability.
Collapse
|
213
|
Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS, Karetnikov A, Blackshear PJ, Nagar B, Sonenberg N. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol 2013; 20:735-9. [PMID: 23644599 PMCID: PMC4811204 DOI: 10.1038/nsmb.2572] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/19/2013] [Indexed: 12/27/2022]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that controls the inflammatory response by limiting the expression of several proinflammatory cytokines. TTP post-transcriptionally represses gene expression by interacting with AU-rich elements (AREs) in 3' untranslated regions of target mRNAs and subsequently engenders their deadenylation and decay. TTP accomplishes these tasks, at least in part, by recruiting the multisubunit CCR4-NOT deadenylase complex to the mRNA. Here we identify an evolutionarily conserved C-terminal motif in human TTP that directly binds a central domain of CNOT1, a core subunit of the CCR4-NOT complex. A high-resolution crystal structure of the TTP-CNOT1 complex was determined, providing the first structural insight, to our knowledge, into an ARE-binding protein bound to the CCR4-NOT complex. Mutations at the CNOT1-TTP interface impair TTP-mediated deadenylation, demonstrating the significance of this interaction in TTP-mediated gene silencing.
Collapse
MESH Headings
- Binding Sites
- Crystallography, X-Ray
- Humans
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Protein Binding
- Protein Conformation
- Receptors, CCR4/chemistry
- Receptors, CCR4/metabolism
- Ribonucleases/chemistry
- Ribonucleases/metabolism
- Tristetraprolin/chemistry
- Tristetraprolin/metabolism
Collapse
Affiliation(s)
- Marc R. Fabian
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital. Montréal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Filipp Frank
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Christopher Rouya
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Wi S. Lai
- Laboratory of Signal Transduction, National Institute of Environmental Health Science,, NC, USA
| | - Alexey Karetnikov
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Science,, NC, USA
| | - Bhushan Nagar
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
214
|
Ciais D, Cherradi N, Feige JJ. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci 2013; 70:2031-44. [PMID: 22968342 PMCID: PMC11113850 DOI: 10.1007/s00018-012-1150-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Members of the tristetraprolin (TTP/TIS11) family are important RNA-binding proteins initially characterized as mediators of mRNA degradation. They act via their interaction with AU-rich elements present in the 3'UTR of regulated transcripts. However, it is progressively appearing that the different steps of mRNA processing and fate including transcription, splicing, polyadenylation, translation, and degradation are coordinately regulated by multifunctional integrator proteins that possess a larger panel of functions than originally anticipated. Tristetraprolin and related proteins are very good examples of such integrators. This review gathers the present knowledge on the functions of this family of RNA-binding proteins, including their role in AU-rich element-mediated mRNA decay and focuses on recent advances that support the concept of their broader involvement in distinct steps of mRNA biogenesis and degradation.
Collapse
Affiliation(s)
- Delphine Ciais
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| |
Collapse
|
215
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
216
|
Uehata T, Akira S. mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:708-13. [DOI: 10.1016/j.bbagrm.2013.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 01/14/2023]
|
217
|
Mungunsukh O, Day RM. Transforming growth factor-β1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism. Mol Biol Cell 2013; 24:2088-97. [PMID: 23657814 PMCID: PMC3694793 DOI: 10.1091/mbc.e13-01-0017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multipotent endogenous repair factor. The profibrotic cytokine transforming growth factor (TGF)-β1 inhibits HGF expression by a micro-RNA-199 (miR-199)-dependent posttranscriptional mechanism. In contrast, NK2, a truncated isoform of HGF that inhibits normal repair, is protected from TGF-β1–induced downregulation by miR-199. Hepatocyte growth factor (HGF) is a multipotent endogenous repair factor secreted primarily by mesenchymal cells with effects on cells expressing its receptor, Met. HGF promotes normal tissue regeneration and inhibits fibrotic remodeling in part by promoting proliferation and migration of endothelial and epithelial cells and protecting these cells from apoptosis. HGF also inhibits myofibroblast proliferation. The profibrotic cytokine transforming growth factor beta 1 (TGF-β1) suppresses HGF expression but not the expression of NK2, an HGF splice variant that antagonizes HGF-induced proliferation. We investigated the mechanism for differential regulation of HGF and NK2 by TGF-β1. TGF-β1 down-regulated HGF in primary human adult pulmonary fibroblasts (HLFb) and increased the expression of miR-199a-3p, a microRNA (miRNA) associated with fibrotic remodeling. HGF and NK2 contain completely different 3′ untranslated regions (UTRs), and we determined that miR-199a-3p targeted HGF mRNA for suppression but not NK2. A pre–miR-199 mimic inhibited the expression of a luciferase reporter harboring the HGF 3′ UTR but not a pmirGLO reporter containing the NK2 3′ UTR. In contrast, an anti-miRNA inhibitor specific for miR-199a-3p prevented TGF-β1–induced reduction of both HGF mRNA and HGF protein secretion. Taken together, these findings demonstrate that HGF is distinctly regulated at the posttranscriptional level from its antagonist NK2.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
218
|
Matejuk A, Collet G, Nadim M, Grillon C, Kieda C. MicroRNAs and tumor vasculature normalization: impact on anti-tumor immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:285-99. [PMID: 23575964 DOI: 10.1007/s00005-013-0231-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022]
Abstract
Inefficient immune response is a major glitch during tumor growth and progression. Chaotic and leaky blood vessels created in the process of angiogenesis allow tumor cells to escape and extricate anti-cancer immunity. Proangiogenic characteristics of hypoxic tumor microenvironment maintained by low oxygen tension attract endothelial progenitor cells, drive expansion of cancer stem cells, and deviantly differentiate monocyte descendants. Such cellular milieu further boosts immune tolerance and eventually appoint immunity for cancer advantage. Blood vessel normalization strategies that equilibrate oxygen levels within tumor and fix abnormal vasculature bring exciting promises to future anticancer therapies especially when combined with conventional chemotherapy. Recently, a new group of microRNAs (miRs) engaged in angiogenesis, called angiomiRs and hypoxamiRs, emerged as new therapeutic targets in cancer. Some of those miRs were found to efficiently regulate cancer immunity and their dysregulation efficiently programs aberrant angiogenesis and cancer metastasis. The present review highlights new findings in the field of miRs proficiency to normalize aberrant angiogenesis and to restore anti-tumor immune responses.
Collapse
Affiliation(s)
- Agata Matejuk
- Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans, France.
| | | | | | | | | |
Collapse
|
219
|
Zhang H, Taylor WR, Joseph G, Caracciolo V, Gonzales DM, Sidell N, Seli E, Blackshear PJ, Kallen CB. mRNA-binding protein ZFP36 is expressed in atherosclerotic lesions and reduces inflammation in aortic endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1212-20. [PMID: 23559629 DOI: 10.1161/atvbaha.113.301496] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We studied the expression and function of an mRNA-binding protein, zinc finger protein-36 (ZFP36), in vascular endothelial cells in vivo and in vitro. We tested the hypotheses that ZFP36 regulates inflammation in vascular endothelial cells and that it functions through direct binding to target cytokine mRNAs. We also tested whether ZFP36 inhibits nuclear factor-κB-mediated transcriptional responses in vascular endothelial cells. APPROACH AND RESULTS ZFP36 was minimally expressed in healthy aorta but was expressed in endothelial cells overlying atherosclerotic lesions in mice and humans. The protein was also expressed in macrophage foam cells of atherosclerosis. ZFP36 was expressed in human aortic endothelial cells in response to bacterial lipopolysaccharide, glucocorticoid, and forskolin, but not oxidized low-density lipoproteins or angiotensin II. Functional studies demonstrated that ZFP36 reduces the expression of inflammatory cytokines in target cells by 2 distinct mechanisms: ZFP36 inhibits nuclear factor-κB transcriptional activation and also binds to cytokine mRNAs, leading to reduced transcript stability. CONCLUSIONS ZFP36 is expressed in vascular endothelial cells and macrophage foam cells where it inhibits the expression of proinflammatory mRNA transcripts. The anti-inflammatory effects of ZFP36 in endothelial cells occur via both transcriptional and posttranscriptional mechanisms. Our data suggest that enhancing vascular ZFP36 expression might reduce vascular inflammation.
Collapse
Affiliation(s)
- Huanchun Zhang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Herjan T, Novotny M, Hamilton TA. Diversity in sequence-dependent control of GRO chemokine mRNA half-life. J Leukoc Biol 2013; 93:895-904. [PMID: 23519936 DOI: 10.1189/jlb.0812370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophil trafficking to sites of injury or infection is regulated, in part, by the closely related GRO family of chemokines (CXCL1, -2, and -3). Expression of the GRO chemokine genes is known to be determined by transcriptional bursts in response to proinflammatory stimulation, but post-transcriptional mechanisms that regulate mRNA half-life are now recognized as important determinants. mRNA half-life is regulated via distinct sequence motifs and sequence-specific, RNA-binding proteins, whose function is subject to regulation by extracellular proinflammatory stimuli. Moreover, such mechanisms exhibit cell-type and stimulus dependency. We now present evidence that in nonmyeloid cells, GRO2 and GRO3 isoforms exhibit at least two patterns of mRNA instability that are distinguished by differential sensitivity to specific mRNA-destabilizing proteins and stimulus-mediated prolongation of mRNA half-life, respectively. Although the 3' UTR regions of GRO2 and GRO3 mRNAs contain multiple AREs, GRO2 has eight AUUUA pentamers, whereas GRO3 has seven. These confer quantitative differences in half-life and show sensitivity for TTP and KSRP but not SF2/ASF. Moreover, these AUUUA determinants do not confer instability that can be modulated in response to IL-1α. In contrast, IL-1α-sensitive instability for GRO2 and GRO3 is conferred by sequences located proximal to the 3' end of the 3'UTR that are independent of the AUUUA sequence motif. These regions are insensitive to TTP and KSRP but show reduced half-life mediated by SF2/ASF. These sequence-linked, post-transcriptional activities provide substantial mechanistic diversity in the control of GRO family chemokine gene expression.
Collapse
Affiliation(s)
- Tomasz Herjan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
221
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
222
|
Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013; 154:993-1007. [PMID: 23384835 DOI: 10.1210/en.2012-2045] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.
Collapse
Affiliation(s)
- Sofie Vandevyver
- VIB-Department for Molecular Biomedical Research /Ugent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | | | | | | |
Collapse
|
223
|
Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL. MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res 2013; 41:3314-26. [PMID: 23355615 PMCID: PMC3597685 DOI: 10.1093/nar/gkt019] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/31/2022] Open
Abstract
Monocyte chemoattractant protein 1-induced protein 1 (MCPIP1), belonging to the MCPIP family with highly conserved CCCH-type zinc finger and Nedd4-BP1, YacP Nuclease domains, has been implicated in negative regulation of the cellular inflammatory responses. In this report, we demonstrate for the first time that this RNA-binding nuclease also targets viral RNA and possesses potent antiviral activities. Overexpression of the human MCPIP1, but not MCPIP2, MCPIP3 or MCPIP4, inhibited Japanese encephalitis virus (JEV) and dengue virus (DEN) replication. The functional analysis of MCPIP1 revealed that the activities of RNase, RNA binding and oligomerization, but not deubiqutinase, are required for its antiviral potential. Furthermore, infection of other positive-sense RNA viruses, such as sindbis virus and encephalomyocarditis virus, and negative-sense RNA virus, such as influenza virus, as well as DNA virus, such as adenovirus, can also be blocked by MCPIP1. Moreover, the endogenous MCPIP1 gene expression was induced by JEV and DEN infection, and knockdown of MCPIP1 expression enhanced the replication of JEV and DEN in human cells. Thus, MCPIP1 can act as a host innate defense via RNase activity for targeting and degrading viral RNA.
Collapse
Affiliation(s)
- Ren-Jye Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsu-Ling Chien
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Shyr-Yi Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Bi-Lan Chang
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Han-Pang Yu
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Wei-Chun Tang
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Ling Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
224
|
Ray D, Shukla S, Allam US, Helman A, Ramanand SG, Tran L, Bassetti M, Krishnamurthy PM, Rumschlag M, Paulsen M, Sun L, Shanley TP, Ljungman M, Nyati MK, Zhang M, Lawrence TS. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages. PLoS One 2013; 8:e57290. [PMID: 23468959 PMCID: PMC3585360 DOI: 10.1371/journal.pone.0057290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/20/2013] [Indexed: 12/26/2022] Open
Abstract
The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (−/−) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTPSer178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.
Collapse
Affiliation(s)
- Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Dong C, Sexton H, Gertrudes A, Akama T, Martin S, Virtucio C, Chen CW, Fan X, Wu A, Bu W, Liu L, Feng L, Jarnagin K, Freund YR. Inhibition of Toll-like receptor-mediated inflammation in vitro and in vivo by a novel benzoxaborole. J Pharmacol Exp Ther 2013; 344:436-46. [PMID: 23192653 DOI: 10.1124/jpet.112.200030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Pro-inflammatory cytokines play a critical role in the development of autoimmune and inflammatory diseases. Targeting the cytokine environment has proven efficient for averting inflammation. In this study, we reported that 6-[4-(aminomethyl)-2-chlorophenoxyl]benzo[c][1,2]oxaborol-1(3H)-ol (AN3485), a benzoxaborole analog, inhibited TLR2-, TLR3-, TLR4-, and TLR5-mediated TNF-α, IL-1β, and IL-6 release from human PBMCs and isolated monocytes with IC(50) values ranging from 18 to 580 nM, and the inhibition was mediated at the transcriptional level. Topical administration of AN3485 significantly reduced PMA-induced contact dermatitis and oxazolone-induced delayed-type hypersensitivity in mice, indicating its capability of penetrating skin and potential topical application in skin inflammation. Oral administration of AN3485 showed dose-dependent suppression of LPS-induced TNF-α and IL-6 production in mice with an ED(90) of 30 mg/kg. Oral AN3485, 35 mg/kg, twice a day, suppressed collagen-induced arthritis in mice over a 20-day period. The potent anti-inflammatory activity in in vitro and in vivo disease models makes AN3485 an attractive therapeutic lead for a variety of cutaneous and systemic inflammatory diseases.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Arthritis/drug therapy
- Arthritis/immunology
- Arthritis/metabolism
- Boron Compounds/administration & dosage
- Boron Compounds/pharmacokinetics
- Boron Compounds/therapeutic use
- Boron Compounds/toxicity
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/toxicity
- Cell Survival/drug effects
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/metabolism
- Dermatitis, Allergic Contact/drug therapy
- Dermatitis, Allergic Contact/etiology
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Allergic Contact/metabolism
- Dose-Response Relationship, Drug
- Drug Hypersensitivity/drug therapy
- Drug Hypersensitivity/etiology
- Drug Hypersensitivity/immunology
- Drug Hypersensitivity/metabolism
- Female
- Humans
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Toll-Like Receptors/antagonists & inhibitors
Collapse
Affiliation(s)
- Chen Dong
- Anacor Pharmaceuticals, 1020 E Meadow Circle, Palo Alto, CA 94303, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Robertson S, Lin R. The oocyte-to-embryo transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:351-72. [PMID: 22872483 DOI: 10.1007/978-1-4614-4015-4_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The oocyte-to-embryo transition refers to the process whereby a fully grown, relatively quiescent oocyte undergoes maturation, fertilization, and is converted into a developmentally active, mitotically dividing embryo, arguably one of the most dramatic transitions in biology. This transition occurs very rapidly in Caenorhabditis elegans, with fertilization of a new oocyte occurring every 23 min and the first mitotic division occurring 45 min later. Molecular events regulating this transition must be very precisely timed. This chapter reviews our current understanding of the coordinated temporal regulation of different events during this transition. We divide the oocyte-to-embryo transition into a number of component processes, which are coordinated primarily through the MBK-2 kinase, whose activation is intimately tied to completion of meiosis, and the OMA-1/OMA-2 proteins, whose expression and functions span multiple processes during this transition. The oocyte-to-embryo transition occurs in the absence of de novo transcription, and all the factors required for the process, whether mRNA or protein, are already present within the oocyte. Therefore, all regulation of this transition is posttranscriptional. The combination of asymmetric partitioning of maternal factors, protein modification-mediated functional switching, protein degradation, and highly regulated translational repression ensure a smooth oocyte-to-embryo transition. We will highlight protein degradation and translational repression, two posttranscriptional processes which play particularly critical roles in this transition.
Collapse
Affiliation(s)
- Scott Robertson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | | |
Collapse
|
227
|
Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013; 191:7-37. [PMID: 22893198 DOI: 10.1007/978-3-642-30331-9_2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3'UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, KS 66106, USA.
| | | | | | | |
Collapse
|
228
|
Damgaard CK, Lykke-Andersen J. Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. Cancer Treat Res 2013; 158:153-80. [PMID: 24222358 DOI: 10.1007/978-3-642-31659-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.
Collapse
|
229
|
Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:680-8. [PMID: 23246978 DOI: 10.1016/j.bbagrm.2012.12.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022]
Abstract
AUF1 is a family of four proteins generated by alternative pre-mRNA splicing that form high affinity complexes with AU-rich, mRNA-destabilizing sequences located within the 3' untranslated regions of many labile mRNAs. While AUF1 binding is most frequently associated with accelerated mRNA decay, emerging examples have demonstrated roles as a mRNA stabilizer or even translational regulator for specific transcripts. In this review, we summarize recent advances in our understanding of mRNA recognition by AUF1 and the biochemical and functional consequences of these interactions. In addition, unique properties of individual AUF1 isoforms and the roles of these proteins in modulating expression of genes associated with inflammatory, neoplastic, and cardiac diseases are discussed. Finally, we describe mechanisms that regulate AUF1 expression in cells, and current knowledge of regulatory switches that modulate the cellular levels and/or activities of AUF1 isoforms through distinct protein post-translational modifications. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
230
|
Chen YL, Jiang YW, Su YL, Lee SC, Chang MS, Chang CJ. Transcriptional regulation of tristetraprolin by NF-κB signaling in LPS-stimulated macrophages. Mol Biol Rep 2012; 40:2867-77. [PMID: 23212617 DOI: 10.1007/s11033-012-2302-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/19/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Yu-Ling Chen
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
231
|
Li M, Cao W, Liu H, Zhang W, Liu X, Cai Z, Guo J, Wang X, Hui Z, Zhang H, Wang J, Wang L. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One 2012; 7:e49841. [PMID: 23185455 PMCID: PMC3504106 DOI: 10.1371/journal.pone.0049841] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 10/12/2012] [Indexed: 01/14/2023] Open
Abstract
IL-2 plays a key role in the survival and proliferation of immune cells, especially T lymphocytes. Its expression is precisely regulated at transcriptional and posttranscriptional level. IL-2 is known to be regulated by RNA binding proteins, such as tristetraprolin (TTP), via an AU-rich element (ARE) in the 3'-untranslated region (3'UTR) to influence the stability of mRNA. MCPIP1, identified as a novel RNase, can degrade IL-6, IL-12 and TNF-α mRNA by an ARE-independent pathway in the activation of macrophages. Here, we reported that MCPIP1 was induced in the activation of T lymphocytes and negatively regulated IL-2 gene expression in both mouse and human primary T lymphocytes through destabilizing its mRNA. A set of Luciferase reporter assay demonstrated that a non-ARE conserved element in IL-2 3'UTR, which formed a stem-loop structure, responded to MCPIP1 activity.RNA immunoprecipitation and Biotin pulldown experiments further suggested that MCPIP1 could modestly bind to IL-2 mRNA. Taken together, these data demonstrate that MCPIP1 down-regulates IL-2 via an ARE-independent pathway.
Collapse
Affiliation(s)
- Min Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqiang Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haifeng Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuelian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoyuan Hui
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
232
|
mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab 2012; 16:645-57. [PMID: 23102618 PMCID: PMC3594686 DOI: 10.1016/j.cmet.2012.10.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/13/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
Iron is an essential cofactor with unique redox properties. Iron-regulatory proteins 1 and 2 (IRP1/2) have been established as important regulators of cellular iron homeostasis, but little is known about the role of other pathways in this process. Here we report that the mammalian target of rapamycin (mTOR) regulates iron homeostasis by modulating transferrin receptor 1 (TfR1) stability and altering cellular iron flux. Mechanistic studies identify tristetraprolin (TTP), a protein involved in anti-inflammatory response, as the downstream target of mTOR that binds to and enhances degradation of TfR1 mRNA. We also show that TTP is strongly induced by iron chelation, promotes downregulation of iron-requiring genes in both mammalian and yeast cells, and modulates survival in low-iron states. Taken together, our data uncover a link between metabolic, inflammatory, and iron-regulatory pathways, and point toward the existence of a yeast-like TTP-mediated iron conservation program in mammals.
Collapse
|
233
|
Abstract
Shortening of the poly(A) tail is the first and often rate-limiting step in mRNA degradation. Three poly(A)-specific 3' exonucleases have been described that can carry out this reaction: PAN, composed of two subunits; PARN, a homodimer; and the CCR4-NOT complex, a heterooligomer that contains two catalytic subunits and may have additional functions in the cell. Current evidence indicates that all three enzymes use a two-metal ion mechanism to release nucleoside monophosphates in a hydrolytic reaction. The CCR4-NOT is the main deadenylase in all organisms examined, and mutations affecting the complex can be lethal. The contribution of PAN, apparently an initial deadenylation preceding the activity of CCR4-NOT, is less important, whereas the activity of PARN seems to be restricted to specific substrates or circumstances, for example, stress conditions. Rapid deadenylation and decay of specific mRNAs can be caused by recruitment of both PAN and the CCR4-NOT complex. This function can be carried out by RNA-binding proteins, for example, members of the PUF family. Alternatively, miRNAs can recruit the deadenylase complexes with the help of their associated GW182 proteins.
Collapse
Affiliation(s)
- Christiane Harnisch
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Bodo Moritz
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Christiane Rammelt
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Claudia Temme
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Elmar Wahle
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany.
| |
Collapse
|
234
|
Upadhyay R, Sanduja S, Kaza V, Dixon DA. Genetic polymorphisms in RNA binding proteins contribute to breast cancer survival. Int J Cancer 2012; 132:E128-38. [PMID: 22907529 DOI: 10.1002/ijc.27789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
The RNA-binding proteins TTP and HuR control expression of numerous genes associated with breast cancer pathogenesis by regulating mRNA stability. However, the role of genetic variation in TTP (ZFP36) and HuR (ELAVL1) genes is unknown in breast cancer prognosis. A total of 251 breast cancer patients (170 Caucasians and 81 African-Americans) were enrolled and followed up from 2001 to 2011 (or until death). Genotyping was performed for 10 SNPs in ZFP36 and 7 in ELAVL1 genes. On comparing both races with one another, significant differences were found for clinical and genetic variables. The influence of genetic polymorphisms on survival was analyzed by using Cox-regression, Kaplan-Meier analysis and the log-rank test. Univariate (Kaplan-Meier/Cox-regression) and multivariate (Cox-regression) analysis showed that the TTP gene polymorphism ZFP36*2 A > G was significantly associated with poor prognosis of Caucasian patients (HR = 2.03; 95% CI = 1.09-3.76; p = 0.025; log-rank p = 0.022). None of the haplotypes, but presence of more than six risk genotypes in Caucasian patients, was significantly associated with poor prognosis (HR=2.42; 95% CI = 1.17-4.99; p = 0.017; log-rank p = 0.007). The effect of ZFP36*2 A > G on gene expression was evaluated from patients' tissue samples. Both TTP mRNA and protein expression was significantly decreased in ZFP36*2 G allele carriers compared to A allele homozygotes. Conversely, upregulation of the TTP-target gene COX-2 was observed ZFP36*2 G allele carriers. Through its ability to attenuate TTP gene expression, the ZFP36*2 A > G gene polymorphism has appeared as a novel prognostic breast cancer marker in Caucasian patients.
Collapse
Affiliation(s)
- Rohit Upadhyay
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | | | |
Collapse
|
235
|
Chen X, Wei Z, Wang W, Yan R, Xu X, Cai Q. Role of RNA-binding protein tristetraprolin in tumor necrosis factor-α mediated gene expression. Biochem Biophys Res Commun 2012; 428:327-32. [PMID: 22995314 DOI: 10.1016/j.bbrc.2012.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
Tumor necrosis factor-α (TNF-α) plays an important role in the pathogenesis of inflammatory diseases. Excessive TNF-α expression induces tristetraprolin (TTP), an RNA-binding protein that regulates mRNA degradation, which in turn downregulates TNF and its downstream genes, thus resulting in anti-inflammatory effects. In order to better understand the TNF-α mediated molecular pathways in inflammatory diseases, embryonic fibroblast (MEF) cell lines derived from TTP-deficient (KO) or wild type (WT) mice were treated with TNF-α and gene expression differences between two cell lines were compared by a microarray essay of 9224 genes. We found that TTP-KO cells had higher expression levels of pro-inflammatory genes than TTP-WT cells, and inflammatory genes were differentially regulated by TNF-α between TTP-KO and TTP-WT cells. Through a study of 2-dimentional gene set matrix analysis, we also found the genes upregulated by TNF-α in TTP KO cells were correlated with the pathologic phenotypes in inflammation, joint, or bone diseases. Our study provided a detailed genetic roadmap for further understanding the regulatory effect of TTP in inflammatory pathways related to human diseases.
Collapse
Affiliation(s)
- Xia Chen
- Urology Department, Minhang District Central Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
236
|
Chan CS, Ming-Lum A, Golds GB, Lee SJ, Anderson RJ, Mui ALF. Interleukin-10 inhibits lipopolysaccharide-induced tumor necrosis factor-α translation through a SHIP1-dependent pathway. J Biol Chem 2012; 287:38020-7. [PMID: 22955274 DOI: 10.1074/jbc.m112.348599] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Production of the proinflammatory cytokine TNFα by activated macrophages is an important component of host defense. However, TNFα production must be tightly controlled to avoid pathological consequences. The anti-inflammatory cytokine IL-10 inhibits TNFα mRNA expression through activation of the STAT3 transcription factor pathway and subsequent expression of STAT3-dependent gene products. We hypothesized that IL-10 must also have more rapid mechanisms of action and show that IL-10 rapidly shifts existing TNFα mRNA from polyribosome-associated polysomes to monosomes. This translation suppression requires the presence of SHIP1 (SH2 domain-containing inositol 5'-phosphatase 1) and involves inhibition of Mnk1 (MAPK signal-integrating kinase 1). Furthermore, activating SHIP1 using a small-molecule agonist mimics the inhibitory effect of IL-10 on Mnk1 phosphorylation and TNFα translation. Our data support the existence of an alternative STAT3-independent pathway through SHIP1 for IL-10 to regulate TNFα translation during the anti-inflammatory response.
Collapse
Affiliation(s)
- Catherine S Chan
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
237
|
Ross CR, Brennan-Laun SE, Wilson GM. Tristetraprolin: roles in cancer and senescence. Ageing Res Rev 2012; 11:473-84. [PMID: 22387927 DOI: 10.1016/j.arr.2012.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/17/2022]
Abstract
Cancer and senescence are both complex transformative processes that dramatically alter many features of cell physiology and their interactions with surrounding tissues. Developing the wide range of cellular features characteristic of these conditions requires profound alterations in global gene expression patterns, which can be achieved by suppressing, activating, or uncoupling cellular gene regulatory pathways. Many genes associated with the initiation and development of tumors are regulated at the level of mRNA decay, frequently through the activity of AU-rich mRNA-destabilizing elements (AREs) located in their 3'-untranslated regions. As such, cellular factors that recognize and control the decay of ARE-containing mRNAs can influence tumorigenic or senescent phenotypes mediated by products of these transcripts. In this review, we discuss evidence showing how suppressed expression and/or activity of the ARE-binding protein tristetraprolin (TTP) can contribute to these processes. Next, we outline current findings linking TTP suppression to exacerbation of individual tumorigenic phenotypes, and the roles of specific TTP substrate mRNAs in mediating these effects. Finally, we survey potential mechanisms that cells may employ to suppress TTP expression in cancer, and propose potential diagnostic and therapeutic strategies that may exploit the relationship between TTP expression and tumor progression or senescence.
Collapse
Affiliation(s)
- Christina R Ross
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
238
|
Westmark CJ, Malter JS. The regulation of AβPP expression by RNA-binding proteins. Ageing Res Rev 2012; 11:450-9. [PMID: 22504584 DOI: 10.1016/j.arr.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
Abstract
Amyloid β-protein precursor (AβPP) is cleaved by β- and γ-secretases to liberate amyloid beta (Aβ), the predominant protein found in the senile plaques associated with Alzheimer's disease (AD) and Down syndrome (Masters et al., 1985). Intense investigation by the scientific community has centered on understanding the molecular pathways that underlie the production and accumulation of Aβ Therapeutics that reduce the levels of this tenacious, plaque-promoting peptide may reduce the ongoing neural dysfunction and neuronal degeneration that occurs so profoundly in AD. AβPP and Aβ production are highly complex and involve still to be elucidated combinations of transcriptional, post-transcriptional, translational and post-translational events that mediate the production, processing and clearance of these proteins. Research in our laboratory for the past two decades has focused on the role of RNA binding proteins (RBPs) in mediating the post-transcriptional as well as translational regulation of APP messenger RNA (mRNA). This review article summarizes our findings, as well as those from other laboratories, describing the identification of regulatory RBPs, where and under what conditions they interact with APP mRNA and how those interactions control AβPP and Aβ synthesis.
Collapse
Affiliation(s)
- Cara J Westmark
- University of Wisconsin, Waisman Center for Developmental Disabilities, 1500 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
239
|
Vindry C, Lauwers A, Hutin D, Soin R, Wauquier C, Kruys V, Gueydan C. dTIS11 Protein-dependent polysomal deadenylation is the key step in AU-rich element-mediated mRNA decay in Drosophila cells. J Biol Chem 2012; 287:35527-35538. [PMID: 22932903 DOI: 10.1074/jbc.m112.356188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The destabilization of AU-rich element (ARE)-containing mRNAs mediated by proteins of the TIS11 family is conserved among eukaryotes including Drosophila. Previous studies have demonstrated that Tristetraprolin, a human protein of the TIS11 family, induces the degradation of ARE-containing mRNAs through a large variety of mechanisms including deadenylation, decapping, and P-body targeting. We have previously shown that the degradation of the mRNA encoding the antimicrobial peptide Cecropin A1 (CecA1) is controlled by the TIS11 protein (dTIS11) in Drosophila cells. In this study, we used CecA1 mRNA as a model to investigate the molecular mechanism of dTIS11-mediated mRNA decay. We observed that during the biphasic deadenylation and decay process of this mRNA, dTIS11 enhances deadenylation performed by the CCR4-CAF-NOT complex while the mRNA is still associated with ribosomes. Sequencing of mRNA degradation intermediates revealed that the complete deadenylation of the mRNA triggers its decapping and decay in both the 5'-3' and the 3'-5' directions. Contrary to the observations made for its mammalian homologs, overexpression of dTIS11 does not promote the localization of ARE-containing mRNAs in P-bodies but rather decreases the accumulation of CecA1 mRNA in these structures by enhancing the degradation process. Therefore, our results suggest that proteins of the TIS11 family may have acquired additional functions in the course of evolution from invertebrates to mammals.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie Moléculaire du Gène, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | - Aurélien Lauwers
- Laboratoire de Biologie Moléculaire du Gène, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | - David Hutin
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | - Corinne Wauquier
- Laboratoire de Biologie Moléculaire du Gène, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging, Faculté des Sciences, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Université Libre de Bruxelles, 12 rue Pr. Jeener et Brachet, 6041 Gosselies, Belgium.
| |
Collapse
|
240
|
Huang CY, Shih CM, Tsao NW, Chen YH, Li CY, Chang YJ, Chang NC, Ou KL, Lin CY, Lin YW, Nien CH, Lin FY. GroEL1, from Chlamydia pneumoniae, induces vascular adhesion molecule 1 expression by p37(AUF1) in endothelial cells and hypercholesterolemic rabbit. PLoS One 2012; 7:e42808. [PMID: 22900050 PMCID: PMC3416774 DOI: 10.1371/journal.pone.0042808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/11/2012] [Indexed: 12/20/2022] Open
Abstract
The expression of vascular adhesion molecule-1 (VCAM-1) by endothelial cells may play a major role in atherogenesis. The actual mechanisms of chlamydia pneumoniae (C. pneumoniae) relate to atherogenesis are unclear. We investigate the influence of VCAM-1 expression in the GroEL1 from C. pneumoniae-administered human coronary artery endothelial cells (HCAECs) and hypercholesterolemic rabbits. In this study, we constructed the recombinant GroEL1 from C. pneumoniae. The HCAECs/THP-1 adhesion assay, tube formation assay, western blotting, enzyme-linked immunosorbent assay, actinomycin D chase experiment, luciferase reporter assay, and immunohistochemical stainings were performed. The results show that GroEL1 increased both VCAM-1expression and THP-1 cell adhesives, and impaired tube-formation capacity in the HCAECs. GroEL1 significantly increased the VCAM-1 mRNA stability and cytosolic AU-binding factor 1 (AUF1) level. Overexpression of the p37AUF1 significantly increased VCAM-1 gene expression in GroEL1-induced bovine aortic endothelial cells (BAECs). GroEL1 prolonged the stability of VCAM-1 mRNA by increasing both p37AUF1 and the regulation of the 5′ untranslated region (UTR) of the VCAM-1 mRNA in BAECs. In hypercholesterolemic rabbits, GroEL1 administration enhanced fatty-streak and macrophage infiltration in atherosclerotic lesions, which may be mediated by elevated VCAM-1 expression. In conclusion, GroEL1 induces VCAM-1 expression by p37AUF1 in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center For Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nai-Wen Tsao
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Sciences, China Medical University and Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Keng-Liang Ou
- Research Center For Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yen Lin
- Department of Computer Science and Information Management, Hung Kuang University, Taichung, Taiwan
| | - Yi-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hao Nien
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
241
|
Tristetraprolin inhibits poly(A)-tail synthesis in nuclear mRNA that contains AU-rich elements by interacting with poly(A)-binding protein nuclear 1. PLoS One 2012; 7:e41313. [PMID: 22844456 PMCID: PMC3406032 DOI: 10.1371/journal.pone.0041313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/22/2012] [Indexed: 12/24/2022] Open
Abstract
Background Tristetraprolin binds mRNA AU-rich elements and thereby facilitates the destabilization of mature mRNA in the cytosol. Methodology/Principal Findings To understand how tristetraprolin mechanistically functions, we biopanned with a phage-display library for proteins that interact with tristetraprolin and retrieved, among others, a fragment of poly(A)-binding protein nuclear 1, which assists in the 3'-polyadenylation of mRNA by binding to immature poly(A) tails and thereby increases the activity of poly(A) polymerase, which is directly responsible for polyadenylation. The tristetraprolin/poly(A)-binding protein nuclear 1 interaction was characterized using tristetraprolin and poly(A)-binding protein nuclear 1 deletion mutants in pull-down and co-immunoprecipitation assays. Tristetraprolin interacted with the carboxyl-terminal region of poly(A)-binding protein nuclear 1 via its tandem zinc finger domain and another region. Although tristetraprolin and poly(A)-binding protein nuclear 1 are located in both the cytoplasm and the nucleus, they interacted in vivo in only the nucleus. In vitro, tristetraprolin bound both poly(A)-binding protein nuclear 1 and poly(A) polymerase and thereby inhibited polyadenylation of AU-rich element–containing mRNAs encoding tumor necrosis factor α, GM-CSF, and interleukin-10. A tandem zinc finger domain–deleted tristetraprolin mutant was a less effective inhibitor. Expression of a tristetraprolin mutant restricted to the nucleus resulted in downregulation of an AU-rich element–containing tumor necrosis factor α/luciferase mRNA construct. Conclusion/Significance In addition to its known cytosolic mRNA–degrading function, tristetraprolin inhibits poly(A) tail synthesis by interacting with poly(A)-binding protein nuclear 1 in the nucleus to regulate expression of AU-rich element–containing mRNA.
Collapse
|
242
|
NADPH oxidase-derived superoxide destabilizes lipopolysaccharide-induced interleukin 8 mRNA via p38, extracellular signal-regulated kinase mitogen-activated protein kinase, and the destabilizing factor tristetraprolin. Shock 2012; 37:433-40. [PMID: 22392142 DOI: 10.1097/shk.0b013e31824582e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of inflammatory cytokines is regulated by transcriptional and posttranscriptional mechanisms. We previously showed that NADPH oxidase-derived superoxide induces inflammatory mediators in response to tumor necrosis factor α (TNF-α) and lipopolysaccharide (LPS). In this study, we examined the role of endothelial NADPH oxidase in the regulation of mRNA stability of three inflammatory mediators: interleukin (IL) 8, IL-6, and intercellular adhesion molecule 1 (ICAM-1). Tumor necrosis factor α increased mRNA stability of ICAM-1, IL-8, and IL-6 by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism, but this did not involve NADPH oxidase. Surprisingly, whereas LPS treatment alone did not alter stability of these molecules, the antioxidant N-acetyl-L-cysteine; the flavine inhibitor diphenylene iodonium; short interfering RNA against Nox2, Nox4; and the p22(phox) subunit of NADPH oxidase all enhanced IL-8 mRNA stability in LPS-treated cells, indicating that LPS induced destabilization through NADPH oxidase. This occurred by a mechanism that involved extracellular signal-regulated kinase 1/2, p38 MAPK, and the mRNA-destabilizing factor tristetraprolin. On the other hand, N-acetyl-L-cysteine decreased mRNA stability of ICAM-1 and IL-6 in LPS-treated cells and IL-6 and ICAM-1 in TNF-α-treated cells. In conclusion, NADPH oxidase contributes to destabilization of IL-8 mRNA stability and propose a model for the complex underlying mechanism, which is dependent upon agonist (LPS vs. TNF-α) and target molecule (IL-8 vs. IL-6 and ICAM-1) and involves tristetraprolin, p38, and extracellular signal-regulated kinase 1/2 MAPK.
Collapse
|
243
|
Hoppstädter J, Diesel B, Eifler LK, Schmid T, Brüne B, Kiemer AK. Glucocorticoid-induced leucine zipper is downregulated in human alveolar macrophages upon Toll-like receptor activation. Eur J Immunol 2012; 42:1282-93. [PMID: 22539300 DOI: 10.1002/eji.201142081] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Induction of the glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids plays a role in their antiinflammatory action, whereas GILZ expression is reduced under inflammatory conditions. The mechanisms regulating GILZ expression during inflammation, however, have not yet been characterized. Here, we investigated GILZ expression in human alveolar macrophages (AMs) following Toll-like receptor (TLR) activation. Macrophages were shown to predominantly express GILZ transcript variant 2. Lipopolysaccharide-treated AMs, THP-1 cells, and lungs of lipopolysaccharide-exposed mice displayed decreased GILZ protein and mRNA levels. The effect was strictly dependent on the adapter molecule MyD88, as shown by using specific ligands or a knockdown strategy. Investigations on the functional significance of GILZ downregulation performed by GILZ knockdown revealed a proinflammatory response, as indicated by increased cytokine expression and NF-κB activity. We found that TLR activation reduced GILZ mRNA stability, which was mediated via the GILZ 3'-untranslated region. Finally, involvement of the mRNA-binding protein tristetraprolin (TTP) is suggested, since TTP overexpression or knockdown modulated GILZ expression and TTP was induced in a MyD88-dependent fashion. Taken together, our data show a MyD88- and TTP-dependent GILZ downreg-ulation in human macrophages upon TLR activation. Suppression of GILZ is mediated by mRNA destabilization, which might represent a regulatory mechanism in macrophage activation.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
244
|
Huotari N, Hömmö T, Taimi V, Nieminen R, Moilanen E, Korhonen R. Regulation of tristetraprolin expression by mitogen-activated protein kinase phosphatase-1. APMIS 2012; 120:988-99. [DOI: 10.1111/j.1600-0463.2012.02927.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/01/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Noora Huotari
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Tuija Hömmö
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Ville Taimi
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| |
Collapse
|
245
|
Al-Haj L, Blackshear PJ, Khabar KSA. Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and involvement of AU-rich elements. Nucleic Acids Res 2012; 40:7739-52. [PMID: 22718976 PMCID: PMC3439922 DOI: 10.1093/nar/gks545] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The p21Cip1/WAF1 plays an important role in cell-cycle arrest. Here, we find that RNase L regulates p21-mediated G1 growth arrest in AU-rich elements-dependent manner. We found a significant loss of p21 mRNA expression in RNASEL−/− MEFs and that the overexpression of RNase L in HeLa cells induces p21 mRNA expression. The p21 mRNA half-life significantly changes as a result of RNase L modulation, indicating a post-transcriptional effect. Indeed, we found that RNase L promotes tristetraprolin (TTP/ZFP36) mRNA decay. This activity was not seen with dimerization- and nuclease-deficient RNase L mutants. Deficiency in TTP led to increases in p21 mRNA and protein. With induced ablation of RNase L, TTP mRNA and protein expressions were higher, while p21 expression became reduced. We further establish that TTP, but not C124R TTP mutant, binds to, and accelerates the decay of p21 mRNA. The p21 mRNA half-life was prolonged in TTP−/− MEFs. The TTP regulation of p21 mRNA decay required functional AU-rich elements. Thus, we demonstrate a novel mechanism of regulating G1 growth arrest by an RNase L-TTP-p21 axis.
Collapse
Affiliation(s)
- Latifa Al-Haj
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | | |
Collapse
|
246
|
Chai G, Hu R, Zhang D, Qi G, Zuo R, Cao Y, Chen P, Kong Y, Zhou G. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 2012; 13:253. [PMID: 22708723 PMCID: PMC3427045 DOI: 10.1186/1471-2164-13-253] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/05/2012] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date. RESULTS In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes. CONCLUSIONS This study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.
Collapse
Affiliation(s)
- Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Dongyuan Zhang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Ran Zuo
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Yingping Cao
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Peng Chen
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Yingzhen Kong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| |
Collapse
|
247
|
Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor prevents AU-rich-element-mediated mRNA decay. J Virol 2012; 86:8859-71. [PMID: 22696654 DOI: 10.1128/jvi.00597-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3' untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells.
Collapse
|
248
|
He G, Sun D, Ou Z, Ding A. The protein Zfand5 binds and stabilizes mRNAs with AU-rich elements in their 3'-untranslated regions. J Biol Chem 2012; 287:24967-77. [PMID: 22665488 DOI: 10.1074/jbc.m112.362020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AU-rich elements (AREs) in the 3'-UTR of unstable transcripts play a vital role in the regulation of many inflammatory mediators. To identify novel ARE-dependent gene regulators, we screened a human leukocyte cDNA library for candidates that enhanced the activity of a luciferase reporter bearing the ARE sequence from TNF (ARE(TNF)). Among 171 hits, we focused on Zfand5 (zinc finger, AN1-type domain 5), a 23-kDa protein containing two zinc finger domains. Zfand5 expression was induced in macrophages in response to IFNγ and Toll-like receptor ligands. Knockdown of Zfand5 in macrophages decreased expression of ARE class II transcripts TNF and COX2, whereas overexpression stabilized TNF mRNA by suppressing deadenylation. Zfand5 specifically bound to ARE(TNF) mRNA and competed with tristetraprolin, a protein known to bind and destabilize class II ARE-containing RNAs. Truncation studies indicated that both zinc fingers of Zfand5 contributed to its mRNA-stabilizing function. These findings add Zfand5 to the growing list of RNA-binding proteins and suggest that Zfand5 can enhance ARE-containing mRNA stability by competing with tristetraprolin for mRNA binding.
Collapse
Affiliation(s)
- Guoan He
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
249
|
Selmi T, Martello A, Vignudelli T, Ferrari E, Grande A, Gemelli C, Salomoni P, Ferrari S, Zanocco-Marani T. ZFP36 expression impairs glioblastoma cell lines viability and invasiveness by targeting multiple signal transduction pathways. Cell Cycle 2012; 11:1977-87. [PMID: 22544323 DOI: 10.4161/cc.20309] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA binding proteins belonging to the TIS11/TTP gene family regulate the stability of multiple targets. Their inactivation or deregulated expression has recently been related to cancer, and it has been suggested that they are capable of displaying tumor suppressor activities. Here we describe three new targets of ZFP36 (PIM-1, PIM-3 and XIAP) and show by different approaches that its ectopic expression is capable of impairing glioblastoma cell lines viability and invasiveness by interfering with different transduction pathways. Moreover, we provide evidence that compounds capable of inducing the expression of TIS11/TTP genes determine a comparable biological effect on the same cell contexts.
Collapse
Affiliation(s)
- Tommaso Selmi
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 2012; 9:563-76. [PMID: 22614827 DOI: 10.4161/rna.20231] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The untranslated regions (UTRs) at the 3'end of mRNA transcripts contain important sequences that influence the fate of mRNA and thus proteosynthesis. In this review, we summarize the information known to date about 3'end processing, sequence characteristics including related binding proteins and the role of 3'UTRs in several selected signaling pathways to delineate their importance in the regulatory processes in mammalian cells. In addition to reviewing recent advances in the more well known aspects, such as cleavage and polyadenylation processes that influence mRNA stability and location, we concentrate on some newly emerging concepts of the role of the 3'UTR, including alternative polyadenylation sites in relation to proliferation and differentiation and the recognition of the multi-functional properties of non-coding RNAs, including miRNAs that commonly target the 3'UTR. The emerging picture is of a highly complex set of regulatory systems that include autoregulation, cooperativity and competition to fine tune proteosynthesis in context-dependent manners.
Collapse
|