201
|
Hollowell AC, Regus JU, Gano KA, Bantay R, Centeno D, Pham J, Lyu JY, Moore D, Bernardo A, Lopez G, Patil A, Patel S, Lii Y, Sachs JL. Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California. MICROBIAL ECOLOGY 2016; 71:700-710. [PMID: 26467244 DOI: 10.1007/s00248-015-0685-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
The patterns and drivers of bacterial strain dominance remain poorly understood in natural populations. Here, we cultured 1292 Bradyrhizobium isolates from symbiotic root nodules and the soil root interface of the host plant Acmispon strigosus across a >840-km transect in California. To investigate epidemiology and the potential role of accessory loci as epidemic drivers, isolates were genotyped at two chromosomal loci and were assayed for presence or absence of accessory "symbiosis island" loci that encode capacity to form nodules on hosts. We found that Bradyrhizobium populations were very diverse but dominated by few haplotypes-with a single "epidemic" haplotype constituting nearly 30 % of collected isolates and spreading nearly statewide. In many Bradyrhizobium lineages, we inferred presence and absence of the symbiosis island suggesting recurrent evolutionary gain and or loss of symbiotic capacity. We did not find statistical phylogenetic evidence that the symbiosis island acquisition promotes strain dominance and both symbiotic and non-symbiotic strains exhibited population dominance and spatial spread. Our dataset reveals that a strikingly few Bradyrhizobium genotypes can rapidly spread to dominate a landscape and suggests that these epidemics are not driven by the acquisition of accessory loci as occurs in key human pathogens.
Collapse
Affiliation(s)
- A C Hollowell
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J U Regus
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - K A Gano
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - R Bantay
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - D Centeno
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J Pham
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J Y Lyu
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - D Moore
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - A Bernardo
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - G Lopez
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - A Patil
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - S Patel
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - Y Lii
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - J L Sachs
- Department of Biology, University of California, Riverside, CA, 92521, USA.
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 95616, USA.
| |
Collapse
|
202
|
Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C. The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2483-94. [PMID: 26931172 DOI: 10.1093/jxb/erw065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria utilize type 3 secretion systems to inject type 3 effectors (T3Es) into host cells, thereby subverting host defense reactions. Similarly, T3Es of symbiotic nitrogen-fixing rhizobia can affect nodule formation on roots of legumes. Previous work showed that NopL (nodulation outer protein L) of Sinorhizobium(Ensifer) sp. strain NGR234 is multiply phosphorylated in eukaryotic cells and that this T3E suppresses responses mediated by mitogen-activated protein (MAP) kinase signaling in yeast (mating pheromone signaling) and plant cells (expression of pathogenesis-related defense proteins). Here, we show that NopL is a MAP kinase substrate. Microscopic observations of fluorescent fusion proteins and bimolecular fluorescence complementation analysis in onion cells indicated that NopL is targeted to the nucleus and forms a complex with SIPK (salicylic acid-induced protein kinase), a MAP kinase of tobacco. In vitro experiments demonstrated that NopL is phosphorylatyed by SIPK. At least nine distinct spots were observed after two-dimensional gel electrophoresis, indicating that NopL can be hyperphosphorylated by MAP kinases. Senescence symptoms in nodules of beans (Phaseolus vulgaris cv. Tendergreen) were analyzed to determine the symbiotic effector activity of different NopL variants with serine to alanine substitutions at identified and predicted phosphorylation sites (serine-proline motif). NopL variants with six or eight serine to alanine substitutions were partially active, whereas NopL forms with 10 or 12 substituted serine residues were inactive. In conclusion, our findings provide evidence that NopL interacts with MAP kinases and reveals the importance of serine-proline motifs for effector activity during symbiosis.
Collapse
Affiliation(s)
- Ying-Ying Ge
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Wang Xiang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, China
| |
Collapse
|
203
|
Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP. A perspective on inter-kingdom signaling in plant-beneficial microbe interactions. PLANT MOLECULAR BIOLOGY 2016; 90:537-48. [PMID: 26792782 DOI: 10.1007/s11103-016-0433-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 01/06/2016] [Indexed: 05/14/2023]
Abstract
Recent work has shown that the rhizospheric and phyllospheric microbiomes of plants are composed of highly diverse microbial species. Though the information pertaining to the diversity of the aboveground and belowground microbes associated with plants is known, an understanding of the mechanisms by which these diverse microbes function is still in its infancy. Plants are sessile organisms, that depend upon chemical signals to interact with the microbiota. Of late, the studies related to the impact of microbes on plants have gained much traction in the research literature, supporting diverse functional roles of microbes on plant health. However, how these microbes interact as a community to confer beneficial traits to plants is still poorly understood. Recent advances in the use of "biologicals" as bio-fertilizers and biocontrol agents for sustainable agricultural practices is promising, and a fundamental understanding of how microbes in community work on plants could help this approach be more successful. This review attempts to highlight the importance of different signaling events that mediate a beneficial plant microbe interaction. Fundamental research is needed to understand how plants react to different benign microbes and how these microbes are interacting with each other. This review highlights the importance of chemical signaling, and biochemical and genetic events which determine the efficacy of benign microbes to promote the development of beneficial traits in plants.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Usha Bishnoi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Venkatachalam Lakshmanan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - D Janine Sherrier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, Newark, DE, 19711, USA.
| |
Collapse
|
204
|
Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, Cao Y, Zhao X, Sha X, Hu T, Yang P. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:439-53. [PMID: 26573680 DOI: 10.1007/s00299-015-1895-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/18/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yafang Wang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leqin Chang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie An
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yushi Liu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuman Cao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xia Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuyang Sha
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tianming Hu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peizhi Yang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
205
|
The extracellular polysaccharide produced by Enterobacter spp. isolated from root nodules of Abrus precatorius L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
206
|
Tang F, Yang S, Liu J, Zhu H. Rj4, a Gene Controlling Nodulation Specificity in Soybeans, Encodes a Thaumatin-Like Protein But Not the One Previously Reported. PLANT PHYSIOLOGY 2016; 170:26-32. [PMID: 26582727 PMCID: PMC4704605 DOI: 10.1104/pp.15.01661] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 05/19/2023]
Abstract
Rj4 is a dominant gene in soybeans (Glycine max) that restricts nodulation by many strains of Bradyrhizobium elkanii. The soybean-B. elkanii symbiosis has a low nitrogen-fixation efficiency, but B. elkanii strains are highly competitive for nodulation; thus, cultivars harboring an Rj4 allele are considered favorable. Cloning the Rj4 gene is the first step in understanding the molecular basis of Rj4-mediated nodulation restriction and facilitates the development of molecular tools for genetic improvement of nitrogen fixation in soybeans. We finely mapped the Rj4 locus within a small genomic region on soybean chromosome 1, and validated one of the candidate genes as Rj4 using both complementation tests and CRISPR/Cas9-based gene knockout experiments. We demonstrated that Rj4 encodes a thaumatin-like protein, for which a corresponding allele is not present in the surveyed rj4 genotypes, including the reference genome Williams 82. Our conclusion disagrees with the previous report that Rj4 is the Glyma.01G165800 gene (previously annotated as Glyma01g37060). Instead, we provide convincing evidence that Rj4 is Glyma.01g165800-D, a duplicated and unique version of Glyma.01g165800, that has evolved the ability to control symbiotic specificity.
Collapse
Affiliation(s)
- Fang Tang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| |
Collapse
|
207
|
Kučerová D, Kollárová K, Vatehová Z, Lišková D. Interaction of galactoglucomannan oligosaccharides with auxin involves changes in flavonoid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:155-161. [PMID: 26691060 DOI: 10.1016/j.plaphy.2015.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Galactoglucomannan oligosaccharides (GGMOs) are signalling molecules originating from plant cell walls influencing plant growth and defence reactions. The present study focused on their interaction with exogenous IAA (indole-3-acetic acid). GGMOs acted as auxin antagonists and diminished the effect of IAA on Arabidopsis primary root growth. Their effect is associated with meristem enlargement and prolongation of the elongation zone. Reduction of the elongation zone was a consequence of the IAA action, but IAA did not affect the size of the meristem. In the absence of auxin, GGMOs stimulated root growth, meristem enlargement and elongation zone prolongation. It is assumed that the effect of GGMOs in the absence of exogenous auxin resulted from their interaction with the endogenous form. In the presence of auxin transport inhibitor GGMOs did not affect root growth. It is known that flavonoids are auxin transport modulators but this is the first study suggesting the role of flavonoids in GGMOs' signalling. The accumulation of flavonoids in the meristem and elongation zone decreased in GGMOs' treatments in comparison with the control. These oligosaccharides also diminished the effect of IAA on the flavonoids' elevation. The fact that GGMOs decreased the accumulation of flavonoids, known to be modulators of auxin transport, and the loss of GGMOs' activity in the presence of the auxin transport inhibitor indicates that the root growth stimulation caused by GGMOs could be related to changes in auxin transport, possibly mediated by flavonoids.
Collapse
Affiliation(s)
- Danica Kučerová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Karin Kollárová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia.
| | - Zuzana Vatehová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Desana Lišková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| |
Collapse
|
208
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
209
|
Lemaire B, Van Cauwenberghe J, Verstraete B, Chimphango S, Stirton C, Honnay O, Smets E, Sprent J, James EK, Muasya AM. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Syst Appl Microbiol 2015; 39:41-8. [PMID: 26689612 DOI: 10.1016/j.syapm.2015.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 02/04/2023]
Abstract
The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils.
Collapse
Affiliation(s)
- Benny Lemaire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa; Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium.
| | - Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium
| | | | - Samson Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Charles Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium; Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, The Netherlands
| | - Janet Sprent
- Division of Plant Sciences, University of Dundee at JHI, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
210
|
Remigi P, Zhu J, Young JPW, Masson-Boivin C. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends Microbiol 2015; 24:63-75. [PMID: 26612499 DOI: 10.1016/j.tim.2015.10.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait.
Collapse
Affiliation(s)
- Philippe Remigi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France; New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| |
Collapse
|
211
|
Abstract
Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research.
Collapse
|
212
|
Jia RZ, Zhang RJ, Wei Q, Chen WF, Cho IK, Chen WX, Li QX. Identification and Classification of Rhizobia by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry. ACTA ACUST UNITED AC 2015; 8:98-107. [PMID: 26500417 PMCID: PMC4616259 DOI: 10.4172/jpb.1000357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mass spectrometry (MS) has been widely used for specific, sensitive and rapid analysis of proteins and has shown a high potential for bacterial identification and characterization. Type strains of four species of rhizobia and Escherichia coli DH5α were employed as reference bacteria to optimize various parameters for identification and classification of species of rhizobia by matrix-assisted laser desorption/ionization time-of-flight MS (MALDI TOF MS). The parameters optimized included culture medium states (liquid or solid), bacterial growth phases, colony storage temperature and duration, and protein data processing to enhance the bacterial identification resolution, accuracy and reliability. The medium state had little effects on the mass spectra of protein profiles. A suitable sampling time was between the exponential phase and the stationary phase. Consistent protein mass spectral profiles were observed for E. coli colonies pre-grown for 14 days and rhizobia for 21 days at 4°C or 21°C. A dendrogram of 75 rhizobial strains of 4 genera was constructed based on MALDI TOF mass spectra and the topological patterns agreed well with those in the 16S rDNA phylogenetic tree. The potential of developing a mass spectral database for all rhizobia species was assessed with blind samples. The entire process from sample preparation to accurate identification and classification of species required approximately one hour.
Collapse
Affiliation(s)
- Rui Zong Jia
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA ; State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China ; State Key Biotechnology Laboratory for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, 571101, China
| | - Rong Juan Zhang
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China ; Dongying Municipal Bureau of Agriculture, Dongying, Shandong, 257091, China
| | - Qing Wei
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China ; State Key Biotechnology Laboratory for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, 571101, China
| | - Wen Feng Chen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA ; State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Il Kyu Cho
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Wen Xin Chen
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
213
|
Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M, Łotocka B, Wójcik M. Phylogeny of Symbiotic Genes and the Symbiotic Properties of Rhizobia Specific to Astragalus glycyphyllos L. PLoS One 2015; 10:e0141504. [PMID: 26496493 PMCID: PMC4619719 DOI: 10.1371/journal.pone.0141504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99-100% in the case of nodAC and nifH genes, and 98-99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar "glycyphyllae", based on nodA and nodC genes sequences.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, University of Life Sciences, 13 Akademicka st. 20–950 Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| | - Ewa Oleńska
- Department of Genetics and Evolution, University of Białystok, 1J Ciołkowskiego st., 15–245 Białystok, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| | - Barbara Łotocka
- Department of Botany, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska st., 02–766 Warsaw, Poland
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| |
Collapse
|
214
|
Influence of Rhizobia Inoculation on Biomass Gain and Tissue Nitrogen Content of Leucaena leucocephala Seedlings under Drought. FORESTS 2015. [DOI: 10.3390/f6103686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
215
|
Lemaire B, Van Cauwenberghe J, Chimphango S, Stirton C, Honnay O, Smets E, Muasya AM. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol Ecol 2015; 91:fiv118. [PMID: 26433010 DOI: 10.1093/femsec/fiv118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.
Collapse
Affiliation(s)
- Benny Lemaire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Samson Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Charles Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, the Netherlands
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
216
|
Kumar Meena R, Kumar Singh R, Pal Singh N, Kumari Meena S, Singh Meena V. Isolation of low temperature surviving plant growth – promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.08.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
217
|
Alías-Villegas C, Cubo MT, Lara-Dampier V, Bellogín RA, Camacho M, Temprano F, Espuny MR. Rhizobial strains isolated from nodules of Medicago marina in southwest Spain are abiotic-stress tolerant and symbiotically diverse. Syst Appl Microbiol 2015; 38:506-14. [DOI: 10.1016/j.syapm.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/05/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
218
|
Ibáñez F, Angelini J, Figueredo MS, Muñoz V, Tonelli ML, Fabra A. Sequence and expression analysis of putative Arachis hypogaea (peanut) Nod factor perception proteins. JOURNAL OF PLANT RESEARCH 2015; 128:709-718. [PMID: 25801275 DOI: 10.1007/s10265-015-0719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Peanut, like most legumes, develops a symbiotic relationship with rhizobia to overcome nitrogen limitation. Rhizobial infection of peanut roots occurs through a primitive and poorly characterized intercellular mechanism. Knowledge of the molecular determinants of this symbiotic interaction is scarce, and little is known about the molecules implicated in the recognition of the symbionts. Here, we identify the LysM extracellular domain sequences of two putative peanut Nod factor receptors, named AhNFR1 and AhNFP. Phylogenetic analyses indicated that they correspond to LjNFR1 and LjNFR5 homologs, respectively. Transcriptional analysis revealed that, unlike LjNFR5, AhNFP expression was not induced at 8 h post bradyrhizobial inoculation. Further examination of AhNFP showed that the predicted protein sequence is identical to GmNFR5 in two positions that are crucial for Nod factor perception in other legumes. Analysis of the AhNFP LysM2 tridimensional model revealed that these two amino acids are very close, delimiting a zone of the molecule essential for Nod factor recognition. These data, together with the analysis of the molecular structure of Nod factors of native peanut symbionts previously reported, suggest that peanut and soybean could share some of the determinants involved in the signalling cascade that allows symbiosis establishment.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
219
|
Hirooka K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Biosci Biotechnol Biochem 2015; 78:1471-84. [PMID: 25209494 DOI: 10.1080/09168451.2014.943689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus subtilis collectively inhabits the rhizosphere, where it contributes to the promotion of plant growth, although it does not have a direct symbiotic relationship to plants as observed in the case of rhizobia between leguminous plants. As rhizobia sense the flavonoids released from their host roots through the NodD transcriptional factor, which triggers transcription of the nod genes involved in the symbiotic processes, we supposed that B. subtilis utilizes certain flavonoids as signaling molecules to perceive and adapt to the rhizospheric environment that it is in. Our approaches to identify the flavonoid-responsive transcriptional regulatory system from B. subtilis resulted in the findings that three transcriptional factors (LmrA/QdoR, YetL, and Fur) are responsive to flavonoids, with the modes of action being different from each other. We also revealed a unique regulatory system by two transcriptional factors, YcnK and CsoR, for copper homeostasis in B. subtilis. In this review, we summarize the molecular mechanisms of these regulatory systems with the relevant information and discuss their physiological significances in the mutually beneficial interaction between B. subtilis and plants, considering the possibility of their application for plant cultivation.
Collapse
Affiliation(s)
- Kazutake Hirooka
- a Department of Biotechnology, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Hiroshima , Japan
| |
Collapse
|
220
|
Abstract
Bacterial symbionts of eukaryotes often give up generalist lifestyles to specialize to particular hosts. The eusocial honey bees and bumble bees harbor two such specialized gut symbionts, Snodgrassella alvi and Gilliamella apicola. Not only are these microorganisms specific to bees, but different strains of these bacteria tend to assort according to host species. By using in-vivo microbial transplant experiments, we show that the observed specificity is, at least in part, due to evolved physiological barriers that limit compatibility between a host and a potential gut colonizer. How and why such specialization occurs is largely unstudied for gut microbes, despite strong evidence that it is a general feature in many gut communities. Here, we discuss the potential factors that favor the evolution of host specialization, and the parallels that can be drawn with parasites and other symbiont systems. We also address the potential of the bee gut as a model for exploring gut community evolution.
Collapse
Affiliation(s)
- Waldan K Kwong
- Department of Ecology and Evolutionary Biology; Yale University; New Haven, CT, USA,Department of Integrative Biology; University of Texas; Austin, TX, USA,Correspondence to: Waldan K Kwong;
| | - Nancy A Moran
- Department of Integrative Biology; University of Texas; Austin, TX, USA
| |
Collapse
|
221
|
Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR, and AFLP fingerprinting. J Appl Genet 2015; 56:551-554. [PMID: 25929993 PMCID: PMC4617851 DOI: 10.1007/s13353-015-0285-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/04/2015] [Accepted: 04/05/2015] [Indexed: 01/01/2023]
Abstract
We assessed the genomic diversity and genomic relationship of 28 Astragalus glycyphyllos symbionts by three methodologies based on PCR reaction, i.e., RAPD, ERIC-PCR, and AFLP. The AFLP method with one PstI restriction enzyme and selective PstI-GC primer pair had a comparable discriminatory power as ERIC-PCR oneand these fingerprinting techniques distinguished among the studied 28 A. glycyphyllos symbionts 18 and 17 genomotypes, respectively. RAPD method was less discriminatory in the genomotyping of rhizobia analyzed and it efficiently resolved nine genomotypes. The cluster analysis of RAPD, ERIC-PCR, and AFLP profiles resulted in a generally similar grouping of the test strains on generated dendrograms supporting a great potential of these DNA fingerprinting techniques for study of genomic polymorphism and evolutionary relationship of A. glycyphyllos nodulators. The RAPD, ERIC-PCR, and AFLP pattern similarity coefficients between A. glycyphyllos symbionts studied was in the ranges 8–100, 18–100, and 23-100 %, respectively.
Collapse
|
222
|
Bakhoum N, Galiana A, Le Roux C, Kane A, Duponnois R, Ndoye F, Fall D, Noba K, Sylla SN, Diouf D. Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium strains from different regions of Senegal. MICROBIAL ECOLOGY 2015; 69:641-651. [PMID: 25315832 DOI: 10.1007/s00248-014-0507-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.
Collapse
Affiliation(s)
- Niokhor Bakhoum
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, BP 5005, Dakar, Senegal,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V, de Meyer S, Vogel G, Tonolla M, Howieson J, Reeve W, Perret X. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015; 99:5547-62. [PMID: 25776061 DOI: 10.1007/s00253-015-6515-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 01/25/2023]
Abstract
Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.
Collapse
Affiliation(s)
- Dominik Ziegler
- Department of Botany and Plant Biology, Microbiology Unit, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff PM. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). JOURNAL OF PLANT PHYSIOLOGY 2015; 176:157-68. [PMID: 25617765 DOI: 10.1016/j.jplph.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.
Collapse
Affiliation(s)
- Arief Indrasumunar
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Julia Wilde
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Satomi Hayashi
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Dongxue Li
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia.
| |
Collapse
|
225
|
Jorrin B, Imperial J. Population Genomics Analysis of Legume Host Preference for Specific Rhizobial Genotypes in the Rhizobium leguminosarum bv. viciae Symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:310-8. [PMID: 25514682 DOI: 10.1094/mpmi-09-14-0296-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. Pisum sativum, Lens culinaris, Vicia sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNA from 100 isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16 to 22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S to 23S ribosomal RNA gene region presented single nucleotide polymorphisms (SNP) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.
Collapse
|
226
|
Ramírez-Bahena MH, Vargas M, Martín M, Tejedor C, Velázquez E, Peix Á. Alfalfa microsymbionts from different ITS and nodC lineages of Ensifer meliloti and Ensifer medicae symbiovar meliloti establish efficient symbiosis with alfalfa in Spanish acid soils. Appl Microbiol Biotechnol 2015; 99:4855-65. [DOI: 10.1007/s00253-014-6347-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
227
|
Nelson MS, Sadowsky MJ. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. FRONTIERS IN PLANT SCIENCE 2015; 6:491. [PMID: 26191069 PMCID: PMC4486765 DOI: 10.3389/fpls.2015.00491] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/19/2015] [Indexed: 05/18/2023]
Abstract
The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity.
Collapse
Affiliation(s)
| | - Michael J. Sadowsky
- *Correspondence: Michael J. Sadowsky, BioTechnology Institute, Department of Soil, Water and Climate, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA,
| |
Collapse
|
228
|
Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:311-34. [PMID: 26047562 DOI: 10.1146/annurev-phyto-080614-120149] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells. Plants perceive microbial LCO molecules by specific LysM-domain-containing receptor-like kinases. These do not only activate a common symbiosis signaling pathway that is shared in both symbioses but also modulate innate immune responses. Recent studies revealed that symbiotic LCO receptors are closely related to chitin innate immune receptors, and some of these receptors even function in symbiosis as well as immunity. This raises questions about how plants manage to translate structurally very similar microbial signals into different outputs. Here, we describe the current view on chitin and LCO perception in innate immunity and endosymbiosis and question how LCOs might modulate the immune system. Furthermore, we discuss what it takes to become an endosymbiont.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, 6708PB Wageningen, The Netherlands;
| | | | | |
Collapse
|
229
|
Tóth K, Stacey G. Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis? FRONTIERS IN PLANT SCIENCE 2015; 6:401. [PMID: 26082790 PMCID: PMC4451252 DOI: 10.3389/fpls.2015.00401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/19/2015] [Indexed: 05/22/2023]
Abstract
Plants are exposed to many different microbes in their habitats. These microbes may be benign or pathogenic, but in some cases they are beneficial for the host. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic) microorganisms, which raises the question as to how roots can distinguish such 'friends' from possible 'foes' (i.e., pathogens). Plants possess an innate immune system that can recognize pathogens, through an arsenal of protein receptors, including receptor-like kinases (RLKs) and receptor-like proteins (RLPs) located at the plasma membrane. In addition, the plant host has intracellular receptors (so called NBS-LRR proteins or R proteins) that directly or indirectly recognize molecules released by microbes into the plant cell. A successful cooperation between legume plants and rhizobia leads to beneficial symbiotic interaction. The key rhizobial, symbiotic signaling molecules [lipo-chitooligosaccharide Nod factors (NF)] are perceived by the host legume plant using lysin motif-domain containing RLKs. Perception of the symbiotic NFs trigger signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immune response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range.
Collapse
Affiliation(s)
| | - Gary Stacey
- *Correspondence: Gary Stacey, Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
230
|
Rodríguez-Navarro DN, Rodríguez-Carvajal MA, Acosta-Jurado S, Soto MJ, Margaret I, Crespo-Rivas JC, Sanjuan J, Temprano F, Gil-Serrano A, Ruiz-Sainz JE, Vinardell JM. Structure and biological roles of Sinorhizobium fredii HH103 exopolysaccharide. PLoS One 2014; 9:e115391. [PMID: 25521500 PMCID: PMC4270759 DOI: 10.1371/journal.pone.0115391] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/21/2014] [Indexed: 11/25/2022] Open
Abstract
Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum.
Collapse
Affiliation(s)
| | | | | | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Isabel Margaret
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Juan C Crespo-Rivas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Juan Sanjuan
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco Temprano
- IFAPA, Centro las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, (Sevilla), Spain
| | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
231
|
Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 2014; 91:1-17. [DOI: 10.1093/femsec/fiu024] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
232
|
Behm JE, Geurts R, Kiers ET. Parasponia: a novel system for studying mutualism stability. TRENDS IN PLANT SCIENCE 2014; 19:757-63. [PMID: 25239777 DOI: 10.1016/j.tplants.2014.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 05/05/2023]
Abstract
Understanding how mutualistic interactions are stabilized in the presence of cheaters is a major question in evolutionary biology. The legume-rhizobia mutualism has become a model system for studying how plants control cheating partners. However, the generality and evolutionary origins of these control mechanisms are intensely debated. In this Opinion article, we argue that a novel system--the Parasponia-rhizobia mutualism--will significantly advance research in mutualism stability. Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis, which provides an evolutionary replicate to test how rhizobial exploitation is controlled. Evidence also suggests that this symbiosis is young. This allows studies at an earlier evolutionary stage in mutualisms, so the origin of control mechanisms can be better understood.
Collapse
Affiliation(s)
- Jocelyn E Behm
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands.
| | - Rene Geurts
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Drovendaalsesteeg 1, 6709PB Wageningen, The Netherlands
| | - E Toby Kiers
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
233
|
Van Cauwenberghe J, Verstraete B, Lemaire B, Lievens B, Michiels J, Honnay O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol 2014; 37:613-21. [DOI: 10.1016/j.syapm.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
234
|
Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014; 19:16240-65. [PMID: 25310150 PMCID: PMC6270724 DOI: 10.3390/molecules191016240] [Citation(s) in RCA: 553] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are small molecular secondary metabolites synthesized by plants with various biological activities. Due to their physical and biochemical properties, they are capable of participating in plants' interactions with other organisms (microorganisms, animals and other plants) and their reactions to environmental stresses. The majority of their functions result from their strong antioxidative properties. Although an increasing number of studies focus on the application of flavonoids in medicine or the food industry, their relevance for the plants themselves also deserves extensive investigations. This review summarizes the current knowledge on the functions of flavonoids in the physiology of plants and their relations with the environment.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamil Kostyn
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
235
|
Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 2014; 37:533-40. [DOI: 10.1016/j.syapm.2014.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/22/2022]
|
236
|
PssP2 is a polysaccharide co-polymerase involved in exopolysaccharide chain-length determination in Rhizobium leguminosarum. PLoS One 2014; 9:e109106. [PMID: 25268738 PMCID: PMC4182512 DOI: 10.1371/journal.pone.0109106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.
Collapse
|
237
|
Saeki K, Ronson CW. Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-662-44270-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
238
|
Abstract
Comprehensive profiling of microRNAs (miRNAs) from the legume Medicago truncatula reveals the organization of miRNA-based regulatory modules in root biotic interactions.
Collapse
|
239
|
Rhizobia Indigenous to the Okavango Region in Sub-Saharan Africa: Diversity, Adaptations, and Host Specificity. Appl Environ Microbiol 2014; 80:7244-57. [PMID: 25239908 DOI: 10.1128/aem.02417-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 02/01/2023] Open
Abstract
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.
Collapse
|
240
|
Rogel MA, Bustos P, Santamaría RI, González V, Romero D, Cevallos MÁ, Lozano L, Castro-Mondragón J, Martínez-Romero J, Ormeño-Orrillo E, Martínez-Romero E. Genomic basis of symbiovar mimosae in Rhizobium etli. BMC Genomics 2014; 15:575. [PMID: 25005495 PMCID: PMC4125696 DOI: 10.1186/1471-2164-15-575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 07/01/2014] [Indexed: 11/25/2022] Open
Abstract
Background Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees. Results We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved. Conclusions The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.
Collapse
|
241
|
Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors. BMC Genomics 2014; 15:500. [PMID: 24948393 PMCID: PMC4085339 DOI: 10.1186/1471-2164-15-500] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/12/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known. In this study, genome sequences of representatives of the two symbiovars were produced, providing new material for studying properties of N. galegae, with a special interest in genomic differences that may play a role in host specificity. RESULTS The genome sequences confirmed that the two representative strains are much alike at a whole-genome level. Analysis of orthologous genes showed that N. galegae has a higher number of orthologs shared with Rhizobium than with Agrobacterium. The symbiosis plasmid of strain HAMBI 1141 was shown to transfer by conjugation under optimal conditions. In addition, both sequenced strains have an acetyltransferase gene which was shown to modify the Nod factor on the residue adjacent to the non-reducing-terminal residue. The working hypothesis that this gene is of major importance in directing host specificity of N. galegae could not, however, be confirmed. CONCLUSIONS Strains of N. galegae have many genes differentiating them from strains of Agrobacterium, Rhizobium and Sinorhizobium. However, the mechanism behind their ecological difference is not evident. Although the final determinant for the strict host specificity of N. galegae remains to be identified, the gene responsible for the species-specific acetylation of the Nod factors was identified in this study. We propose the name noeT for this gene to reflect its role in symbiosis.
Collapse
|
242
|
Liu J, Yang S, Zheng Q, Zhu H. Identification of a dominant gene in Medicago truncatula that restricts nodulation by Sinorhizobium meliloti strain Rm41. BMC PLANT BIOLOGY 2014; 14:167. [PMID: 24934080 PMCID: PMC4070093 DOI: 10.1186/1471-2229-14-167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/11/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Leguminous plants are able to form a root nodule symbiosis with nitrogen-fixing soil bacteria called rhizobia. This symbiotic association shows a high level of specificity. Beyond the specificity for the legume family, individual legume species/genotypes can only interact with certain restricted group of bacterial species or strains. Specificity in this system is regulated by complex signal exchange between the two symbiotic partners and thus multiple genetic mechanisms could be involved in the recognition process. Knowledge of the molecular mechanisms controlling symbiotic specificity could enable genetic improvement of legume nitrogen fixation, and may also reveal the possible mechanisms that restrict root nodule symbiosis in non-legumes. RESULTS We screened a core collection of Medicago truncatula genotypes with several strains of Sinorhizobium meliloti and identified a naturally occurring dominant gene that restricts nodulation by S. meliloti Rm41. We named this gene as Mt-NS1 (for M.truncatulanodulation specificity 1). We have mapped the Mt-NS1 locus within a small genomic region on M. truncatula chromosome 8. The data reported here will facilitate positional cloning of the Mt-NS1 gene. CONCLUSIONS Evolution of symbiosis specificity involves both rhizobial and host genes. From the bacterial side, specificity determinants include Nod factors, surface polysaccharides, and secreted proteins. However, we know relatively less from the host side. We recently demonstrated that a component of this specificity in soybeans is defined by plant NBS-LRR resistance (R) genes that recognize effector proteins delivered by the type III secretion system (T3SS) of the rhizobial symbionts. However, the lack of a T3SS in many sequenced S. meliloti strains raises the question of how the specificity is regulated in the Medicago-Sinorhizobium system beyond Nod-factor perception. Thus, cloning and characterization of Mt-NS1 will add a new dimension to our knowledge about the genetic control of nodulation specificity in the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
243
|
Stasiak G, Mazur A, Wielbo J, Marczak M, Zebracki K, Koper P, Skorupska A. Functional relationships between plasmids and their significance for metabolism and symbiotic performance of Rhizobium leguminosarum bv. trifolii. J Appl Genet 2014; 55:515-27. [PMID: 24839164 PMCID: PMC4185100 DOI: 10.1007/s13353-014-0220-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 12/31/2022]
Abstract
Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) is a soil bacterium establishing a highly specific symbiotic relationship with clover, which is based on the exchange of molecular signals between the host plant and the microsymbiont. The RtTA1 genome is large and multipartite, composed of a chromosome and four plasmids, which comprise approximately 65 % and 35 % of the total genome, respectively. Extrachromosomal replicons were previously shown to confer significant metabolic versatility to bacteria, which is important for their adaptation in the soil and nodulation competitiveness. To investigate the contribution of individual RtTA1 plasmids to the overall cell phenotype, metabolic properties and symbiotic performance, a transposon-based elimination strategy was employed. RtTA1 derivatives cured of pRleTA1b or pRleTA1d and deleted in pRleTA1a were obtained. In contrast to the in silico predictions of pRleTA1b and pRleTA1d, which were described as chromid-like replicons, both appeared to be completely curable. On the other hand, for pRleTA1a (symbiotic plasmid) and pRleTA1c, which were proposed to be unessential for RtTA1 viability, it was not possible to eliminate them at all (pRleTA1c) or entirely (pRleTA1a). Analyses of the phenotypic traits of the RtTA1 derivatives obtained revealed the functional significance of individual plasmids and their indispensability for growth, certain metabolic pathways, production of surface polysaccharides, autoaggregation, biofilm formation, motility and symbiotic performance. Moreover, the results allow us to suggest broad functional cooperation among the plasmids in shaping the phenotypic properties and symbiotic capabilities of rhizobia.
Collapse
Affiliation(s)
- Grażyna Stasiak
- Department of Genetics and Microbiology, Maria-Curie Skłodowska University, 19 Akademicka St., 20-033, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
244
|
Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ, Martínez-Molina E, Toro N, Velázquez E, Fernández-López M. The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 2014; 37:177-85. [DOI: 10.1016/j.syapm.2013.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022]
|
245
|
Gnat S, Wójcik M, Wdowiak-Wróbel S, Kalita M, Ptaszyńska A, Małek W. Phenotypic characterization of Astragalus glycyphyllos symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene. Antonie Van Leeuwenhoek 2014; 105:1033-48. [PMID: 24710996 PMCID: PMC4019831 DOI: 10.1007/s10482-014-0163-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/24/2014] [Indexed: 10/30/2022]
Abstract
In this study, the nitrogen fixing Astragalus glycyphyllos symbionts were characterized by phenotypic properties, restriction fragment length polymorphism (RFLP), and sequences of 16S rDNA. The generation time of A. glycyphyllos rhizobia in yeast extract mannitol medium was in the range 4-6 h. The studied isolates exhibited a low resistance to antibiotics, a moderate tolerance to NaCl, assimilated di- and trisaccharides, and produced acid in medium containing mannitol as a sole carbon source. In the cluster analysis, based on 86 phenotypic properties of A. glycyphyllos symbionts and the reference rhizobia, examined isolates and the genus Mesorhizobium strains were placed on a single branch, clearly distinct from other lineages of rhizobial genera. By the comparative analysis of 16S rRNA gene sequences and 16S rDNA-RFLP, A. glycyphyllos nodulators were also identified as the members of the genus Mesorhizobium. On the 16S rDNA sequence phylogram, the representatives of A. glycyphyllos nodule isolates formed a robust, monophyletic cluster together with the Mesorhizobium species at 16S rDNA sequence similarity of these bacteria between 95 and 99 %. Similarly, the cluster analysis of the combined RFLP-16S rDNA patterns, obtained with seven restriction endonucleases, showed that A. glycyphyllos rhizobia are closely related to the genus Mesorhizobium bacteria. The taxonomic approaches used in this paper allowed us to classify the studied bacteria into the genus Mesorhizobium.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, University of Life Sciences, 12 Akademicka st., 20-033, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
246
|
Wang W, Xie ZP, Staehelin C. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:56-69. [PMID: 24506212 DOI: 10.1111/tpj.12450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 05/10/2023]
Abstract
The expression of chimeric receptors in plants is a way to activate specific signaling pathways by corresponding signal molecules. Defense signaling induced by chitin from pathogens and nodulation signaling of legumes induced by rhizobial Nod factors (NFs) depend on receptors with extracellular lysin motif (LysM) domains. Here, we constructed chimeras by replacing the ectodomain of chitin elicitor receptor kinase 1 (AtCERK1) of Arabidopsis thaliana with ectodomains of NF receptors of Lotus japonicus (LjNFR1 and LjNFR5). The hybrid constructs, named LjNFR1-AtCERK1 and LjNFR5-AtCERK1, were expressed in cerk1-2, an A. thaliana CERK1 mutant lacking chitin-induced defense signaling. When treated with NFs from Rhizobium sp. NGR234, cerk1-2 expressing both chimeras accumulated reactive oxygen species, expressed chitin-responsive defense genes and showed increased resistance to Fusarium oxysporum. In contrast, expression of a single chimera showed no effects. Likewise, the ectodomains of LjNFR1 and LjNFR5 were replaced by those of OsCERK1 (Oryza sativa chitin elicitor receptor kinase 1) and OsCEBiP (O. sativa chitin elicitor-binding protein), respectively. The chimeras, named OsCERK1-LjNFR1 and OsCEBiP-LjNFR5, were expressed in L. japonicus NF receptor mutants (nfr1-1; nfr5-2) carrying a GUS (β-glucuronidase) gene under the control of the NIN (nodule inception) promoter. Upon chitin treatment, GUS activation reflecting nodulation signaling was observed in the roots of NF receptor mutants expressing both chimeras, whereas a single construct was not sufficient for activation. Hence, replacement of ectodomains in LysM domain receptors provides a way to specifically trigger NF-induced defense signaling in non-legumes and chitin-induced nodulation signaling in legumes.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou, 510006, China; Anhui Key Laboratory of Plant Genetics & Breeding, School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | | | | |
Collapse
|
247
|
Díaz-Alcántara CA, Ramírez-Bahena MH, Mulas D, García-Fraile P, Gómez-Moriano A, Peix A, Velázquez E, González-Andrés F. Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst Appl Microbiol 2014; 37:149-56. [DOI: 10.1016/j.syapm.2013.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/15/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|
248
|
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A 2014; 111:3217-24. [PMID: 24501121 DOI: 10.1073/pnas.1400421111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA replication from cell division. In the α-proteobacterium Caulobacter crescentus, cell cycle-regulated transcription plays an important role in the control of cell cycle progression but this has not been demonstrated in other α-proteobacteria. Here we describe a robust method for synchronizing cell growth that enabled global analysis of S. meliloti cell cycle-regulated gene expression. This analysis identified 462 genes with cell cycle-regulated transcripts, including several key cell cycle regulators, and genes involved in motility, attachment, and cell division. Only 28% of the 462 S. meliloti cell cycle-regulated genes were also transcriptionally cell cycle-regulated in C. crescentus. Furthermore, CtrA- and DnaA-binding motif analysis revealed little overlap between the cell cycle-dependent regulons of CtrA and DnaA in S. meliloti and C. crescentus. The predicted S. meliloti cell cycle regulon of CtrA, but not that of DnaA, was strongly conserved in more closely related α-proteobacteria with similar ecological niches as S. meliloti, suggesting that the CtrA cell cycle regulatory network may control functions of central importance to the specific lifestyles of α-proteobacteria.
Collapse
|
249
|
De Mita S, Streng A, Bisseling T, Geurts R. Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. THE NEW PHYTOLOGIST 2014; 201:961-972. [PMID: 24400903 DOI: 10.1111/nph.12549] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/16/2013] [Indexed: 05/11/2023]
Abstract
The symbiosis between legumes and nitrogen-fixing rhizobia co-opted pre-existing endomycorrhizal features. In particular, both symbionts release lipo-chitooligosaccharides (LCOs) that are recognized by LysM-type receptor kinases. We investigated the evolutionary history of rhizobial LCO receptor genes MtLYK3-LjNFR1 to gain insight into the evolutionary origin of the rhizobial symbiosis. We performed a phylogenetic analysis integrating gene copies from nonlegumes and legumes, including the non-nodulating, phylogenetically basal legume Cercis chinensis. Signatures of differentiation between copies were investigated through patterns of molecular evolution. We show that two rounds of duplication preceded the evolution of the rhizobial symbiosis in legumes. Molecular evolution patterns indicate that the resulting three paralogous gene copies experienced different selective constraints. In particular, one copy maintained the ancestral function, and another specialized into perception of rhizobial LCOs. It has been suggested that legume LCO receptors evolved from a putative ancestral defense-related chitin receptor through the acquisition of two kinase motifs. However, the phylogenetic analysis shows that these domains are actually ancestral, suggesting that this scenario is unlikely. Our study underlines the evolutionary significance of gene duplication and subsequent neofunctionalization in MtLYK3-LjNFR1 genes. We hypothesize that their ancestor was more likely a mycorrhizal LCO receptor, than a defense-related receptor kinase.
Collapse
Affiliation(s)
- Stéphane De Mita
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
- INRA Nancy-Lorraine, UMR Interactions Arbres/Micro-organismes, 54380, Champenoux, France
| | - Arend Streng
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - René Geurts
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
250
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|