201
|
Zhang H, Li G, Yan C, Cao N, Yang H, Le M, Zhu F. Depicting the molecular responses of adventitious rooting to waterlogging in melon hypocotyls by transcriptome profiling. 3 Biotech 2021; 11:351. [PMID: 34221821 DOI: 10.1007/s13205-021-02866-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Waterlogging is a severe abiotic stressor that inhibits crop growth and productivity owing to the decline in the amount of oxygen available to the waterlogged organs. Although melon (Cucumis melo L.) is sensitive to waterlogging, its ability to form adventitious roots facilitates the diffusion of oxygen and allows the plant to survive waterlogging. To provide comprehensive insight into the adventitious rooting in response to waterlogging of melon, global transcriptome changes during this process were investigated. Of the 17,146 genes expressed during waterlogging, 7363 of them were differentially expressed in the pairwise comparisons between different waterlogging treatment time points. A further analysis suggested that the genes involved in sugar cleavage, glycolysis, fermentation, reactive oxygen species scavenging, cell wall modification, cell cycle governing, microtubule remodeling, hormone signals and transcription factors could play crucial roles in the adventitious root production induced by waterlogging. Additionally, ethylene and ERFs were found to be vital factors that function in melon during adventitious rooting. This study broadens our understanding of the mechanisms that underlie adventitious rooting induced by waterlogging and lays the theoretical foundation for further molecular breeding of waterlogging-tolerant melon. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02866-w.
Collapse
Affiliation(s)
- Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Guoquan Li
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Chengpu Yan
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Na Cao
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Huidong Yang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Meiwang Le
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Fanghong Zhu
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
202
|
Morpho-Physio-Biochemical and Molecular Responses of Maize Hybrids to Salinity and Waterlogging during Stress and Recovery Phase. PLANTS 2021; 10:plants10071345. [PMID: 34371548 PMCID: PMC8309398 DOI: 10.3390/plants10071345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023]
Abstract
Maize is one of the most economically important cereal crops worldwide. Salinity coupled with waterlogging is a major challenge for successful crop production. Understanding the underlying mechanisms and impacts of individual and combined salinity and waterlogging stress on the morpho-physio-biochemical and molecular responses and oxidative metabolism of maize during stress and recovery periods is essential. The present study was carried out to assess the response of four hybrid maize cultivars viz. DK-6142, FH-1231, FH-949, and MALKA-2016 under individual and combined salinity and waterlogging conditions. The treatments comprised the control (no stress), NaCl (salinity with 10 dSm−1), WL (waterlogged conditions with 3 cm flooding), and NaCl + WL (combined salinity and waterlogging stress). The data regarding morpho-physiological attributes were collected at 22 days after sowing (DAS; stress phase) and 30 DAS (recovery phase). The results revealed that both stresses, either individually or in combination, substantially reduced the root-shoot length, root-shoot fresh and dry weights, leaf width, and the number of leaves per plant as well as the leaf chlorophyll (Chl) and carotenoids contents; however, the inhibitory effects were more severe in combined stresses than for individual stress factors in many cultivars. Both individual and combined stress conditions enhanced hydrogen peroxide (H2O2) accumulation, whereas the antioxidant enzyme activities, i.e., superoxide dismutase (SOD), peroxidase (POD) catalase (CAT), and ascorbate peroxidase (APX), remained higher under stress conditions compared to the control. The expression levels of antioxidant genes (CAT and POD) were also upregulated under stress conditions. All of the cultivars recovered better from individual stresses than combined stress conditions; however, the hybrid DK-6142 performed better than the other maize hybrids under stress conditions and showed faster recovery.
Collapse
|
203
|
Tamang BG, Li S, Rajasundaram D, Lamichhane S, Fukao T. Overlapping and stress-specific transcriptomic and hormonal responses to flooding and drought in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:100-117. [PMID: 33864651 DOI: 10.1111/tpj.15276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Flooding and drought are serious constraints that reduce crop productivity worldwide. Previous studies identified genes conferring tolerance to both water extremes in various plants. However, overlapping responses to flooding and drought at the genome-scale remain obscure. Here, we defined overlapping and stress-specific transcriptomic and hormonal responses to submergence, drought and recovery from these stresses in soybean (Glycine max). We performed comparative RNA-sequencing and hormone profiling, identifying genes, hormones and biological processes that are differentially regulated in an overlapping or stress-specific manner. Overlapping responses included positive regulation of trehalose and sucrose metabolism and negative regulation of cellulose, tubulin, photosystem II and I, and chlorophyll biosynthesis, facilitating the economization of energy reserves under both submergence and drought. Additional energy-consuming pathways were restricted in a stress-specific manner. Downregulation of distinct pathways for energy saving under each stress suggests energy-consuming processes that are relatively unnecessary for each stress adaptation are turned down. Our newly developed transcriptomic-response analysis revealed that abscisic acid and ethylene responses were activated in common under both stresses, whereas stimulated auxin response was submergence-specific. The energy-saving strategy is the key overlapping mechanism that underpins adaptation to both submergence and drought in soybean. Abscisic acid and ethylene are candidate hormones that coordinate transcriptomic energy-saving processes under both stresses. Auxin may be a signaling component that distinguishes submergence-specific regulation of the stress response.
Collapse
Affiliation(s)
- Bishal G Tamang
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA, 24061, USA
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Song Li
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA, 24061, USA
| | - Dhivyaa Rajasundaram
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA, 24061, USA
- Department of Pediatrics, University of Pittsburg, Pittsburg, PA, 15224, USA
| | - Suman Lamichhane
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA, 24061, USA
| | - Takeshi Fukao
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA, 24061, USA
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| |
Collapse
|
204
|
Basu S, Kumari S, Kumar P, Kumar G, Rajwanshi R. Redox imbalance impedes photosynthetic activity in rice by disrupting cellular membrane integrity and induces programmed cell death under submergence. PHYSIOLOGIA PLANTARUM 2021; 172:1764-1778. [PMID: 33751571 DOI: 10.1111/ppl.13387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Climate change negatively impacts the global hydrological resources leading to detrimental flood events. Submergence impedes the cellular membrane integrity, consequently affecting the membrane fluidity. Different abiotic stresses influence membrane lipid composition. Therefore, the remodeling of membrane lipids plays a major role in stress adaptation. Submergence-induced membrane lipid peroxidation is well established in plants. However, dynamic changes in lipid composition for regulating submergence tolerance in rice remain so far unexplored. The present study explored the effect of submergence on the lipidomic profile of the Sub1 near-isogenic lines (NILs) of rice, viz. Swarna, and Swarna Sub1 with contrasting submergence tolerance. The study also examined the association of lipidomic alteration with the membrane integrity and submergence tolerance. Submergence caused increased accumulation of reactive oxygen species (ROS), which was significantly higher in Swarna than Swarna Sub1. The lipid profile was also considerably altered under submergence. Following submergence, Swarna exhibited a significant decrease in phospholipid content accompanied by increased lipid peroxidation and electrolyte leakage. Furthermore, the disintegration of the thylakoid membrane resulted in a significant decrease in the chlorophyll content and photosynthesis rate under submergence. Submergence-induced hypoxic condition also promoted starch depletion to fulfill the energy requirement. In contrast, submergence acclimation in Swarna Sub1 was associated with the shift to anaerobic respiration mediated by increased alcohol dehydrogenase (ADH) activity. Effective ROS detoxification in Swarna Sub1 facilitated by increased antioxidant enzyme activities contributed to the submergence tolerance by maintaining membrane integrity and photosynthetic activity. The present study established the direct association of lipid remodeling with membrane integrity, cell viability, and photosynthesis and also devised a crop model to reveal the molecular background of submergence tolerance in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Surbhi Kumari
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Pankaj Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Ravi Rajwanshi
- Department of Biotechnology, Assam University, Silchar, Assam, India
| |
Collapse
|
205
|
Peng X, Yang Y, Yan X, Li H. The effects of water control on the survival and growth of Alternanthera philoxeroides in the vegetative reproduction and seedling stages. Sci Rep 2021; 11:13556. [PMID: 34193895 PMCID: PMC8245590 DOI: 10.1038/s41598-021-92674-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Alternanthera philoxeroides (Martius) is an infamous invasive alien plant that is widely distributed in aquatic and terrestrial habitats. To investigate the vegetative reproduction, growth, survival strategy, and the function of leaves in fragment of A. philoxeroides under different water conditions, two water control experiments were conducted with different leaf treatments: (1) water control with stolon fragments, and (2) water control with plants. The water control was subjected to five levels: I 30% soil water content, II 70% soil water content, III 97% soil water content, IV water depth of 5 cm, and V water depth of 10 cm in combination with the two leaf treatments, fragments with two leaves and fragments without leaves. Based on the results, A. philoxeroides produced a significantly higher stem length, node number, leaf number, stem biomass, leaf biomass, and total biomass in the 97% soil water content and in treatments with leaves. Additionally, the stem mass ratio increased and the root mass ratio decreased with the increase of the water content. In Exp. 1, the survival rate was the highest in the 97% water content and was 0 in the 30% water content. Therefore, the leaves of stolon fragments contribute to the vegetative reproduction and growth of A. philoxeroides. In response to different water conditions, A. philoxeroides adopts different strategies according to the resource reserves by itself, which are conducive to its survival and widespread occurrence.
Collapse
Affiliation(s)
- Xuemei Peng
- grid.494625.80000 0004 1771 8625School of Biological Sciences, Guizhou Education University, Guiyang, 550018 People’s Republic of China
| | - Yunfei Yang
- grid.27446.330000 0004 1789 9163Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024 People’s Republic of China
| | - Xiumin Yan
- grid.494625.80000 0004 1771 8625School of Geography and Resources, Guizhou Education University, Guiyang, 550018 People’s Republic of China
| | - Haiyan Li
- grid.27446.330000 0004 1789 9163Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024 People’s Republic of China
| |
Collapse
|
206
|
Ngumbi EN, Ugarte CM. Flooding and Herbivory Interact to Alter Volatile Organic Compound Emissions in Two Maize Hybrids. J Chem Ecol 2021; 47:707-718. [PMID: 34125370 DOI: 10.1007/s10886-021-01286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Flooding is a major plant abiotic stress factor that is frequently experienced by plants simultaneously with other biotic stresses, including herbivory. How plant volatile emissions, which mediate interactions with a wide range of organisms, are influenced by flooding and by multiple co-occurring stress factors remains largely unexplored. Using Spodoptera frugiperda (Lepidoptera: Noctuidae) (fall armyworm) as the insect pest and two maize (Zea mays, L. Poaceae) hybrids differentially marketed for conventional and organic production, we assessed the effects of flooding, herbivory, and both stress factors on the composition of blends of emitted volatiles. Headspace volatiles were collected from all treatment combinations seven days after flooding. We documented metrics indicative of biomass allocation to determine the effects of individual and combined stressors on plant growth. We also evaluated relationships between volatile emissions and indicators of soil chemical characteristics as influenced by treatment factors. Flooding and herbivory induced the emission of volatile organic compounds (VOCs) in similar ways on both maize hybrids, but the interaction of both stress factors produced significantly larger quantities of emitted volatiles. Thirty-eight volatile compounds were identified, including green leaf volatiles, monoterpenes, an aldehyde, a benzoate ester, sesquiterpenes, a diterpene alcohol, and alkane hydrocarbons. The hybrid marketed for organic production was a stronger VOC emitter. As expected, plant biomass was detrimentally affected by flooding. Soil chemical properties were less responsive to the treatment factors. Taken together, the results suggest that flooding stress and the interactions of flooding and insect attack can shape the emission of plant volatiles and further influence insect-plant interactions.
Collapse
Affiliation(s)
- Esther N Ngumbi
- Department of Entomology, University of Illinois at Urbana-Champaign, IL, 61801, Urbana, USA.
| | - Carmen M Ugarte
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, IL, 61801, Urbana, USA
| |
Collapse
|
207
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021. [PMID: 34204152 DOI: 10.3390/ijms221161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
208
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021; 22:6119. [PMID: 34204152 PMCID: PMC8201344 DOI: 10.3390/ijms22116119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
209
|
Ding Z, Liu Y, Lou Y, Jiang M, Li H, Lü X. How soil ion stress and type influence the flooding adaptive strategies of Phragmites australis and Bolboschoenus planiculmis in temperate saline-alkaline wetlands? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144654. [PMID: 33545459 DOI: 10.1016/j.scitotenv.2020.144654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Soil saline-alkaline stress and flooding extremes have been projected to be the main factors influencing the degradation of marsh plants in wetlands worldwide, which would affect their ecological functions (i.e. food source for migrating birds). Plants cope with flooding either by escaping from below water through shoot elongation or by remaining quiescent until water subsides. However, little is known about the adaptive strategies of Phragmites australis and Bolboschoenus planiculmis to flooding combined with salinity-alkalinity, which are the key environmental filters in Western Songnen Plain, China. Accordingly, this study investigated the adaptive strategies of P. australis and B. planiculmis subjected to the interacting effects of flooding and soil ion stress under field and greenhouse conditions. Results showed that the two species adopted different strategies to survive flooding. P. australis exhibited an escape strategy because of leaf and shoot elongation with increasing flooding depth whereas B. planiculmis became quiescent with no or deceased leaf and shoot elongation and biomass accumulation. High soil ion stress changed the flooding adaptive strategy of P. australis to a quiescence strategy, whereas B. planiculmis remained quiescent with increasing flooding depth at each soil ion content. The strategies of the two species were changed by alkaline ion stress but not by saline ion stress, and they exhibited different adaptive responses. High alkaline ion stress induced P. australis to remain quiescent with increasing flooding depth, whereas low alkaline ion stress promoted B. planicumis to escape from below water, probably due to the buffer effect of low alkaline ion contents outside the roots probably. Hence, P. australis and B. planicumis might adopt the quiescence strategy with increasing degree of soil salinization and alkalization under high greenhouse gas emissions scenarios in Western Songnen Plain, which may lead to severe degradation of the two kinds of marshes in the future.
Collapse
Affiliation(s)
- Zhi Ding
- The Three Gorges Institute of Ecological Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng 475004, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China; Chongqing Jinfo Mountain Field Scientific Observation and Research Station for Kast Ecosystem, Ministry of Education, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Ying Liu
- The Three Gorges Institute of Ecological Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yanjing Lou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China.
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
| | - He Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianguo Lü
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
| |
Collapse
|
210
|
Li L, Wu D, Zhen Q, Zhang J, Qiu L, Huang G, Yang C. Morphological structures and histochemistry of roots and shoots in Myricaria laxiflora (Tamaricaceae). Open Life Sci 2021; 16:455-463. [PMID: 34017920 PMCID: PMC8114956 DOI: 10.1515/biol-2021-0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/15/2022] Open
Abstract
Myricaria laxiflora (Tamaricaceae) is an endangered plant that is narrowly distributed in the riparian zone of the Three Gorges, along the Yangtze River, China. Using bright-field and epifluorescence microscopy, we investigated the anatomical and histochemical features that allow this species to tolerate both submerged and terrestrial environments. The adventitious roots of Myr. laxiflora had an endodermis with Casparian bands and suberin lamellae; the cortex and hypodermal walls had lignified thickenings in the primary structure. In the mature roots, the secondary structure had cork. The apoplastic barriers in stems consisted of a lignified fiber ring and a cuticle at the young stage and cork at the mature stage. The leaves had two layers of palisade tissue, a hyaline epidermis, sunken stomata, and a thick, papillose cuticle. Aerenchyma presented in the roots and shoots. Several Myr. laxiflora structures, including aerenchyma, apoplastic barriers in the roots and shoots, were adapted to riparian habitats. In addition, shoots had typical xerophyte features, including small leaves, bilayer palisade tissues, sunken stomata, a thick, papillose cuticle, and a hyaline epidermis. Thus, our study identified several anatomical features that may permit Myr. laxiflora to thrive in the riparian zone of the Three Gorges, China.
Collapse
Affiliation(s)
- Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei 443000, China
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei 443000, China
| | - Qiaoling Zhen
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei 443000, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei 443000, China
| | - Liwen Qiu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei 443000, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei 443000, China
| | - Chaodong Yang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
211
|
Tan X, Liu M, Du N, Zwiazek JJ. Ethylene enhances root water transport and aquaporin expression in trembling aspen (Populus tremuloides) exposed to root hypoxia. BMC PLANT BIOLOGY 2021; 21:227. [PMID: 34020594 PMCID: PMC8140438 DOI: 10.1186/s12870-021-02995-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Root hypoxia has detrimental effects on physiological processes and growth in most plants. The effects of hypoxia can be partly alleviated by ethylene. However, the tolerance mechanisms contributing to the ethylene-mediated hypoxia tolerance in plants remain poorly understood. RESULTS In this study, we examined the effects of root hypoxia and exogenous ethylene treatments on leaf gas exchange, root hydraulic conductance, and the expression levels of several aquaporins of the plasma membrane intrinsic protein group (PIP) in trembling aspen (Populus tremuloides) seedlings. Ethylene enhanced net photosynthetic rates, transpiration rates, and root hydraulic conductance in hypoxic plants. Of the two subgroups of PIPs (PIP1 and PIP2), the protein abundance of PIP2s and the transcript abundance of PIP2;4 and PIP2;5 were higher in ethylene-treated trembling aspen roots compared with non-treated roots under hypoxia. The increases in the expression levels of these aquaporins could potentially facilitate root water transport. The enhanced root water transport by ethylene was likely responsible for the increase in leaf gas exchange of the hypoxic plants. CONCLUSIONS Exogenous ethylene enhanced root water transport and the expression levels of PIP2;4 and PIP2;5 in hypoxic roots of trembling aspen. The results suggest that ethylene facilitates the aquaporin-mediated water transport in plants exposed to root hypoxia.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, AB, T6G 2E3, Edmonton, Canada
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Mengmeng Liu
- Department of Renewable Resources, University of Alberta, AB, T6G 2E3, Edmonton, Canada
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Science, Shandong University, 266237, Qingdao, China
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, AB, T6G 2E3, Edmonton, Canada.
| |
Collapse
|
212
|
Naidoo G. Waterlogging tolerance of the common reeds
Phragmites mauritianus
and
P. australis. Afr J Ecol 2021. [DOI: 10.1111/aje.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gonasageran Naidoo
- University of KwaZulu‐NatalSchool of Life Sciences Westville South Africa
| |
Collapse
|
213
|
Panda D, Barik J, Sarkar RK. Recent Advances of Genetic Resources, Genes and Genetic Approaches for Flooding Tolerance in Rice. Curr Genomics 2021; 22:41-58. [PMID: 34045923 PMCID: PMC8142345 DOI: 10.2174/1389202922666210114104140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world, which results in huge economic losses. The frequency and duration of flooding is predicted to increase in near future as a result of global climate change. Breeding of flooding tolerance in rice is a challenging task because of the complexity of the component traits, screening technique, environmental factors and genetic interactions. A great progress has been made during last two decades to find out the flooding tolerance mechanism in rice. An important breakthrough in submergence research was achieved by the identification of major quantitative trait locus (QTL) SUB1 in rice chromosomes that acts as the primary contributor for tolerance. This enabled the use of marker-assisted backcrossing (MABC) to transfer SUB1 QTL into popular varieties which showed yield advantages in flood prone areas. However, SUB1 varieties are not always tolerant to stagnant flooding and flooding during germination stage. So, gene pyramiding approach can be used by combining several important traits to develop new breeding rice lines that confer tolerances to different types of flooding. This review highlights the important germplasm/genetic resources of rice to different types of flooding stress. A brief discussion on the genes and genetic mechanism in rice exhibited to different types of flooding tolerance was discussed for the development of flood tolerant rice variety. Further research on developing multiple stresses tolerant rice can be achieved by combining SUB1 with other tolerance traits/genes for wider adaptation in the rain-fed rice ecosystems.
Collapse
Affiliation(s)
- Debabrata Panda
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput-764 020, Odisha, India
| | - Jijnasa Barik
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput-764 020, Odisha, India
| | - Ramani K Sarkar
- ICAR-National Rice Research Institute, Cuttack-753 006, Odisha, India
| |
Collapse
|
214
|
Zhang Q, Tang S, Li J, Fan C, Xing L, Luo K. Integrative transcriptomic and metabolomic analyses provide insight into the long-term submergence response mechanisms of young Salix variegata stems. PLANTA 2021; 253:88. [PMID: 33813651 DOI: 10.1007/s00425-021-03604-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The mechanisms underlying long-term complete submergence tolerance in S. variegata involve enhanced oxidative stress responses, strengthened ethylene and ABA signaling, synthesis of raffinose family oligosaccharides, unsaturated fatty acids, and specific stress-related amino acids. Salix variegata Franch. is a riparian shrub species that can tolerate long-term complete submergence; however, the molecular mechanisms underlying this trait remain to be elucidated. In this study, we subjected S. variegata plants to complete submergence for 60 d and collected stems to perform transcriptomic and metabolomic analyses, as well as quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays. Results revealed that photosynthesis and the response to light stimulus were inhibited during submergence and recovered after desubmergence. Ethylene and abscisic acid (ABA) signaling could be important for the long-term submergence tolerance of S. variegata. Jasmonic acid (JA) signaling also participated in the response to submergence. Raffinose family oligosaccharides, highly unsaturated fatty acids, and specific stress-related amino acids accumulated in response to submergence, indicating that they may protect plants from submergence damage, as they do in response to other abiotic stressors. Several organic acids were produced in S. variegata plants after submergence, which may facilitate coping with the toxicity induced by submergence. After long-term submergence, cell wall reorganization and phenylpropanoid metabolic processes (the synthesis of specific phenolics and flavonoids) were activated, which may contribute to long-term S. variegata submergence tolerance; however, the detailed mechanisms require further investigation. Several transcription factors (TFs), such as MYB, continuously responded to submergence, indicating that they may play important roles in the responses and adaption to submergence. Genes related to oxidative stress tolerance were specifically expressed after desubmergence, potentially contributing to recovery of S. variegata plants within a short period of time.
Collapse
Affiliation(s)
- Qingwei Zhang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Shaohu Tang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianqiu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
215
|
Guo Z, Zhou S, Wang S, Li WX, Du H, Xu Y. Identification of major QTL for waterlogging tolerance in maize using genome-wide association study and bulked sample analysis. J Appl Genet 2021; 62:405-418. [PMID: 33788096 DOI: 10.1007/s13353-021-00629-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
Waterlogging has increasingly become one of the major constraints to maize (Zea mays L.) production in some maize growing areas as it seriously decreases the yield. Waterlogging tolerance in maize germplasm provides a basis for maize waterlogging improvement. In this study, nine seedling traits, plant height (PH), root length (RL), shoot dry weight (SDW), root dry weight (RDW), adventitious root number (ARN), node number of brace root (BRNN), brace root number (BRN), brace root dry weigh (BRDW), survival rate (SR), and the secondary traits that were defined as relative phenotypic value of seedling traits under waterlogging and control treatments were used in a natural population that contain 365 inbred lines to evaluate the waterlogging tolerance of tropical maize. The result showed that maize waterlogging tolerance was genetically controlled and seedling traits were significantly different between the control and waterlogging treatments. PH, RL, SDW, and RDW are important seedling traits for waterlogging tolerance identification. Some tropical maize inbred lines were identified with extreme waterlogging tolerance that can provide an important germplasm resource for breeding. Population structure analysis showed that two major phylogenetic subgroups in tropical maize could be identified. Genome-wide association study (GWAS) using 39,266 single nucleotide polymorphisms (SNPs) across the whole genome identified 49 trait-SNPs distributed on over all 10 chromosomes excluding chromosome 10. Seventy-one significant SNPs, distributed on all 10 chromosomes excluding chromosome 5, were identified by extend bulked sample analysis (Ext-BSA) based on the inbred lines with extreme phenotypes. GWAS and Ext-BSA identified the same loci on bin1.07, bin6.01, bin2.09, bin6.04, bin7.02, and bin7.03. Nine genes were proposed as potential candidate genes. Cloning and functional validation of these genes would be helpful for understanding the molecular mechanism of waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Zifeng Guo
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Shuangzhen Zhou
- Hubei collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Shanhong Wang
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen-Xue Li
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hewei Du
- Hubei collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China.
| | - Yunbi Xu
- Institute of Crop Science/CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP, 56130, México. .,CIMMYT-China Tropical Maize Research Center, Foshan University, Foshan, 528231, China.
| |
Collapse
|
216
|
Sanclemente MA, Ma F, Liu P, Della Porta A, Singh J, Wu S, Colquhoun T, Johnson T, Guan JC, Koch KE. Sugar modulation of anaerobic-response networks in maize root tips. PLANT PHYSIOLOGY 2021; 185:295-317. [PMID: 33721892 PMCID: PMC8133576 DOI: 10.1093/plphys/kiaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels. We compared responses to oxygen (21 and 0.2%) in the presence of abundant versus limited glucose supplies (2.0 and 0.2%). Low-oxygen reconfigured the transcriptome with glucose deprivation enhancing the speed and magnitude of gene induction for core anaerobic proteins (ANPs). Sugar supply also altered profiles of hypoxia-responsive genes carrying G4 motifs (sources of regulatory quadruplex structures), revealing a fast, sugar-independent class followed more slowly by feast-or-famine-regulated G4 genes. Metabolite analysis showed that endogenous sugar levels were maintained by exogenous glucose under aerobic conditions and demonstrated a prominent capacity for sucrose re-synthesis that was undetectable under hypoxia. Glucose abundance had distinctive impacts on co-expression networks associated with ANPs, altering network partners and aiding persistence of interacting networks under prolonged hypoxia. Among the ANP networks, two highly interconnected clusters of genes formed around Pyruvate decarboxylase 3 and Glyceraldehyde-3-phosphate dehydrogenase 4. Genes in these clusters shared a small set of cis-regulatory elements, two of which typified glucose induction. Collective results demonstrate specific, previously unrecognized roles of sugars in low-oxygen responses, extending from accelerated onset of initial adaptive phases by starvation stress to maintenance and modulation of co-expression relationships by carbohydrate availability.
Collapse
Affiliation(s)
- Maria-Angelica Sanclemente
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584CH, The Netherlands
- Author for communication:
| | - Fangfang Ma
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Liu
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Adriana Della Porta
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jugpreet Singh
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Shan Wu
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Thomas Colquhoun
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Timothy Johnson
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Jiahn-Chou Guan
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Karen E Koch
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
217
|
Antonelli CJ, Calzadilla PI, Campestre MP, Escaray FJ, Ruiz OA. Contrasting response of two Lotus corniculatus L. accessions to combined waterlogging-saline stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:363-374. [PMID: 33190297 DOI: 10.1111/plb.13216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Waterlogging and salinity impair crop growth and productivity worldwide, with their combined effects being larger than the additive effects of the two stresses separately. Here, a common forage tetraploid Lotus corniculatus (cv. San Gabriel) and a diploid L. corniculatus accession, collected from a coastal area with high frequency of waterlogging-saline stress events, were evaluated for tolerance to waterlogging, salinity and these two stresses combined. We hypothesize that, due to its environmental niche, the diploid accession would show better adaptation to combined waterlogging-saline stress compared to the tetraploid L. corniculatus. Plants were evaluated under control conditions, waterlogging, salinity and a combined waterlogging-saline treatment for 33 days. Shoot and root growth were assessed, together with chlorophyll fluorescence and gas exchange measurements. Results showed that salinity and waterlogging effects were more severe for the tetraploid accession, with a larger effect being observed under the combined stress condition. Concentrations of Na+ , Cl- and K+ were measured in apical and basal leaves, and in roots. A larger accumulation of Na+ and Cl- was observed under both saline and combined stress treatments for the tetraploid L. corniculatus, for which ion toxicity effects were evident. The expression of CLC gene, coding for a Cl- transporter, was only increased in diploid L. corniculatus plants in response to the combined stress condition, suggesting that ion compartmentalization mechanisms were induced in this accession. Thus, this recently characterized L. corniculatus could be used for the introduction of new tolerance traits in other Lotus species used as forage.
Collapse
Affiliation(s)
- C J Antonelli
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Bs As, Argentina
| | - P I Calzadilla
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Bs As, Argentina
| | - M P Campestre
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Bs As, Argentina
| | - F J Escaray
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Bs As, Argentina
| | - O A Ruiz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Bs As, Argentina
| |
Collapse
|
218
|
Lukić N, Trifković T, Kojić D, Kukavica B. Modulations of the antioxidants defence system in two maize hybrids during flooding stress. JOURNAL OF PLANT RESEARCH 2021; 134:237-248. [PMID: 33591473 DOI: 10.1007/s10265-021-01264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Flooding stress nowadays is one of the major stressors for plants under climate change. This kind of stress may cause severe depression of the plant's growth through inhibition of photosynthesis and oxidative cell damage as well as changes in cell respiration. The present work aimed to study the effect of flooding stress on oxidative and antioxidative parameters in leaves of two maize hybrids (ZP 555 and ZP 606). Leaves of maize plants at the stage of three fully developed leaves were harvested after 6, 24, 72, and 144 h of applied flooding stress. Leaves were used for determination of physiological (the content of photosynthetic pigments and soluble proteins), oxidative stress parameters (the content of malondialdehyde (MDA) and H2O2) as well as antioxidants (the total polyphenols content, and activity of antioxidative enzymes [catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), and Class III peroxidases (POX, EC, 1.11.1.7)]). Results indicated that flooding stress-induced time-dependent changes of measured parameters and those hybrids differ in response to stress. The noticeable difference between hybrids was detected in the H2O2 and MDA content. An increase in the activity of SOD, POX and polyphenols content, with the most pronounced changes in POX activity and polyphenols concentration, could minimize the cellular damage caused by flooding. The results of the present study suggest that a more robust antioxidative metabolism is essential under flooding stress and could be a protective strategy against oxidative damage induced by flooding in ZP 606 maize plants compared to ZP 555 plants.
Collapse
Affiliation(s)
- Nataša Lukić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovic 3, 21 000, Novi Sad, Republic of Serbia
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann Str. 3, 70599, Stuttgart, Germany
| | - Tanja Trifković
- Faculty of Natural Science and Mathematics, University of Banja Luka, Mladena Stojanovića 2, 78000, Banja Luka, Bosnia and Herzegovina
| | - Danijela Kojić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovic 3, 21 000, Novi Sad, Republic of Serbia
| | - Biljana Kukavica
- Faculty of Natural Science and Mathematics, University of Banja Luka, Mladena Stojanovića 2, 78000, Banja Luka, Bosnia and Herzegovina.
| |
Collapse
|
219
|
Sou HD, Masumori M, Yamanoshita T, Tange T. Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions. Sci Rep 2021; 11:4520. [PMID: 33633329 PMCID: PMC7907123 DOI: 10.1038/s41598-021-84183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Some plant species develop aerenchyma to avoid anaerobic environments. In Syzygium kunstleri (King) Bahadur & R. C. Gaur, both primary and secondary aerenchyma were observed in adventitious roots under hypoxic conditions. We clarified the function of and relationship between primary and secondary aerenchyma. To understand the function of primary and secondary aerenchyma in adventitious roots, we measured changes in primary and secondary aerenchyma partial pressure of oxygen (pO2) after injecting nitrogen (N2) into the stem 0-3 cm above the water surface using Clark-type oxygen microelectrodes. Following N2 injection, a decrease in pO2 was observed in the primary aerenchyma, secondary aerenchyma, and rhizosphere. Oxygen concentration in the primary aerenchyma, secondary aerenchyma, and rhizosphere also decreased after the secondary aerenchyma was removed from near the root base. The primary and secondary aerenchyma are involved in oxygen transport, and in adventitious roots, they participate in the longitudinal movement of oxygen from the root base to root tip. As cortex collapse occurs from secondary growth, the secondary aerenchyma may support or replace the primary aerenchyma as the main oxygen transport system under hypoxic conditions.
Collapse
Affiliation(s)
- Hong-Duck Sou
- Urban Forest Research Center, National Institute of Forest Science, Seoul, 02455, South Korea.
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Masaya Masumori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takashi Yamanoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takeshi Tange
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
220
|
Song H, Guo X, Yu X, Liu L, Wang N, Eller F, Guo W. Is there evidence of local adaptation of Phragmites australis to water level gradients and fluctuation frequencies? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144065. [PMID: 33310212 DOI: 10.1016/j.scitotenv.2020.144065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Greater differences in hydrologic conditions are expected between coastal and inland wetlands with global climate change. Local adaptation has been considered as a significant driver of intraspecific differentiation in heterogeneous habitats. The common reed Phragmites australis is a cosmopolitan wetland species with high genetic variability and adaptability. In our study, reeds collected from coastal and inland wetlands were subjected to three stable water level gradients and two fluctuation frequencies in a common garden experiment. We measured their aboveground and belowground biomass, height, density, stem diameter, leaf water potential, specific leaf area, and photosynthetic parameters. Our results showed that P. australis exhibited high tolerance to stable and fluctuating water levels up to 30 cm depth. Increased shoot elongation rate and water-use efficiency promoted the establishment of P. australis in flooding habitats. The common reeds in the high-frequency water level fluctuation had a shorter shoot height and a lower shoot density than those in the low-frequency one. The coastal populations performed better under high (30 cm) and low (0 cm) water levels than the inland populations, which preferred shallow water (15 cm). The adaptation strategies of coastal and inland reeds to fluctuation frequencies were no different. We concluded that local adaptation might occur in P. australis populations due to different water levels rather than fluctuation frequency in coastal and inland wetlands. Our findings could provide a theoretical basis on the effects of flooding on intraspecific variation of wetland plants in future environmental change scene.
Collapse
Affiliation(s)
- Huijia Song
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaona Yu
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lele Liu
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Franziska Eller
- Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| | - Weihua Guo
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
221
|
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021; 10:277. [PMID: 33670123 PMCID: PMC7916865 DOI: 10.3390/antiox10020277] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226 025, India;
| | | | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
222
|
Responses of Swamp Cypress (Taxodium distichum) and Chinese Willow (Salix matsudana) Roots to Periodic Submergence in Mega-Reservoir: Changes in Organic Acid Concentration. FORESTS 2021. [DOI: 10.3390/f12020203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic acids are critical as secondary metabolites for plant adaption in a stressful situation. Oxalic acid, tartaric acid, and malic acid can improve plant tolerance under waterlogged conditions. Two prominent woody species (Taxodium distichum-Swamp cypress and Salix matsudana-Chinese willow) have been experiencing long-term winter submergence and summer drought in the Three Gorges Reservoir. The objectives of the present study were to explore the responses of the roots of two woody species during flooding as reflected by root tissue concentrations of organic acids. Potted sample plants were randomly divided into three treatment groups: control, moderate submergence, and deep submergence. The concentrations of oxalic acid, tartaric acid, and malic acid in the main root and lateral roots of the two species were determined at four stages. The results showed that T. distichum and S. matsudana adapted well to the water regimes of the reservoir, with a survival rate of 100% during the experiment period. After experiencing a cycle of submergence and emergence, the height and base diameter of the two species showed increasing trends. Changes in base diameter showed insignificant differences between submergence treatments, and only height was significant under deep submergence. The concentrations of three organic acids in the roots of two species were influenced by winter submergence. After emergence in spring, two species could adjust their organic acid metabolisms to the normal level. Among three organic acids, tartaric acid showed the most sensitive response to water submergence, which deserved more studies in the future. The exotic species, T. distichum, had a more stable metabolism of organic acids to winter flooding. However, the native species, S. matsudana, responded more actively to long-term winter flooding. Both species can be considered in vegetation restoration, but it needs more observations for planting around 165 m above sea level, where winter submergence is more than 200 days.
Collapse
|
223
|
Xuan L, Hua J, Zhang F, Wang Z, Pei X, Yang Y, Yin Y, Creech DL. Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium hybrid 'Zhongshanshan 406'. Genes (Basel) 2021; 12:genes12020225. [PMID: 33557242 PMCID: PMC7913975 DOI: 10.3390/genes12020225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
The Taxodium hybrid 'Zhongshanshan 406' (T. hybrid 'Zhongshanshan 406') [Taxodium mucronatum Tenore × Taxodium distichum (L.). Rich] has an outstanding advantage in flooding tolerance and thus has been widely used in wetland afforestation in China. Alcohol dehydrogenase genes (ADHs) played key roles in ethanol metabolism to maintain energy supply for plants in low-oxygen conditions. Two ADH genes were isolated and characterized-ThADH1 and ThADH4 (GenBank ID: AWL83216 and AWL83217-basing on the transcriptome data of T. hybrid 'Zhongshanshan 406' grown under waterlogging stress. Then the functions of these two genes were investigated through transient expression and overexpression. The results showed that the ThADH1 and ThADH4 proteins both fall under ADH III subfamily. ThADH1 was localized in the cytoplasm and nucleus, whereas ThADH4 was only localized in the cytoplasm. The expression of the two genes was stimulated by waterlogging and the expression level in roots was significantly higher than those in stems and leaves. The respective overexpression of ThADH1 and ThADH4 in Populus caused the opposite phenotype, while waterlogging tolerance of the two transgenic Populus significantly improved. Collectively, these results indicated that genes ThADH1 and ThADH4 were involved in the tolerance and adaptation to anaerobic conditions in T. hybrid 'Zhongshanshan 406'.
Collapse
Affiliation(s)
- Lei Xuan
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
| | - Jianfeng Hua
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
- Correspondence: ; Tel.: +86-25-8434-7069
| | - Fan Zhang
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
| | - Zhiquan Wang
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
| | - Xiaoxiao Pei
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
| | - Ying Yang
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
| | - Yunlong Yin
- Jiangsu Province Engineering Research Center of Taxodium Rich. Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing 210037, China; (L.X.); (F.Z.); (Z.W.); (X.P.); (Y.Y.); (Y.Y.)
| | - David L. Creech
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA;
| |
Collapse
|
224
|
Mira MM, Huang S, Hill RD, Stasolla C. Tolerance to excess moisture in soybean is enhanced by over-expression of the Glycine max Phytoglobin (GmPgb1). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:322-334. [PMID: 33421908 DOI: 10.1016/j.plaphy.2020.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Excess moisture in the form of waterlogging or full submergence can cause severe conditions of hypoxia or anoxia compromising several physiological and biochemical processes. A decline in photosynthetic rate due to accumulation of ROS and damage of leaf tissue are the main consequences of excess moisture. These effects compromise crop yield and quality, especially in sensitive species, such as soybean (Glycine max.). Phytoglobins (Pgbs) are expressed during hypoxia and through their ability to scavenge nitric oxide participate in several stress-related responses. Soybean plants over-expressing or suppressing the Pgb1 gene GmPgb1 were generated and their ability to cope with waterlogging and full submergence conditions was assessed. Plants over-expressing GmPgb1 exhibited a higher retention of photosynthetic rate during waterlogging and survival rate during submergence relative to wild type plants. The same plants also had lower levels of ROS due to a reduction in expression of Respiratory Burst Oxidase Homologs (RBOH), components of the NADPH oxidase enzyme, and enhanced antioxidant system characterized by higher expression of catalases (CAT) and superoxide dismutase (SOD), as well as elevated expression and activity of ascorbate peroxidase (APX). Plants over-expressing GmPgb1 also exhibited an expression pattern of aquaporins typical of excess moisture resilience. This was in contrast to plants downregulating GmPgb1 which were characterized by the lowest photosynthetic rates, higher ROS signal, and reduced expression and activities of many antioxidant enzymes. Results from these studies suggest that GmPgb1 exercises a protective role during conditions of excess moisture with similar mechanisms operating during waterlogging and submergence.
Collapse
Affiliation(s)
- Mohamed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
225
|
Ejiri M, Fukao T, Miyashita T, Shiono K. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. BREEDING SCIENCE 2021; 71:40-50. [PMID: 33762875 PMCID: PMC7973497 DOI: 10.1270/jsbbs.20110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Internal aeration is crucial for root growth under waterlogged conditions. Many wetland plants have a structural barrier that impedes oxygen leakage from the basal part of roots called a radial oxygen loss (ROL) barrier. ROL barriers reduce the loss of oxygen transported via the aerenchyma to the root tips, enabling long-distance oxygen transport for cell respiration at the root tip. Because the root tip does not have an ROL barrier, some of the transferred oxygen is released into the waterlogged soil, where it oxidizes and detoxifies toxic substances (e.g., sulfate and Fe2+) around the root tip. ROL barriers are located at the outer part of roots (OPRs). Their main component is thought to be suberin. Suberin deposits may block the entry of potentially toxic compounds in highly reduced soils. The amount of ROL from the roots depends on the strength of the ROL barrier, the length of the roots, and environmental conditions, which causes spatiotemporal changes in the root system's oxidization pattern. We summarize recent achievements in understanding how ROL barrier formation is regulated and discuss opportunities for breeding waterlogging-tolerant crops.
Collapse
Affiliation(s)
- Masato Ejiri
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
| | - Takeshi Fukao
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
| | - Tomoki Miyashita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
| | - Katsuhiro Shiono
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
226
|
Lai MC, Lai ZY, Jhan LH, Lai YS, Kao CF. Prioritization and Evaluation of Flooding Tolerance Genes in Soybean [ Glycine max (L.) Merr.]. Front Genet 2021; 11:612131. [PMID: 33584812 PMCID: PMC7873447 DOI: 10.3389/fgene.2020.612131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important legume crops abundant in edible protein and oil in the world. In recent years there has been increasingly more drastic weather caused by climate change, with flooding, drought, and unevenly distributed rainfall gradually increasing in terms of the frequency and intensity worldwide. Severe flooding has caused extensive losses to soybean production and there is an urgent need to breed strong soybean seeds with high flooding tolerance. The present study demonstrates bioinformatics big data mining and integration, meta-analysis, gene mapping, gene prioritization, and systems biology for identifying prioritized genes of flooding tolerance in soybean. A total of 83 flooding tolerance genes (FTgenes), according to the appropriate cut-off point, were prioritized from 36,705 test genes collected from multidimensional genomic features linking to soybean flooding tolerance. Several validation results using independent samples from SoyNet, genome-wide association study, SoyBase, GO database, and transcriptome databases all exhibited excellent agreement, suggesting these 83 FTgenes were significantly superior to others. These results provide valuable information and contribution to research on the varieties selection of soybean.
Collapse
Affiliation(s)
- Mu-Chien Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Zheng-Yuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hsin Jhan
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Syuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
227
|
Jia W, Ma M, Chen J, Wu S. Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms22031088. [PMID: 33499312 PMCID: PMC7865476 DOI: 10.3390/ijms22031088] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.
Collapse
|
228
|
Valeri MC, Novi G, Weits DA, Mensuali A, Perata P, Loreti E. Botrytis cinerea induces local hypoxia in Arabidopsis leaves. THE NEW PHYTOLOGIST 2021; 229:173-185. [PMID: 32124454 PMCID: PMC7754360 DOI: 10.1111/nph.16513] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Low oxygen availability often is associated with soil waterlogging or submergence, but may occur also as hypoxic niches in otherwise aerobic tissues. Experimental evidence assigns a role in Botrytis cinerea resistance to a group of oxygen-unstable Ethylene Response Factors (ERF-VII). Given that infection by B. cinerea often occurs in aerobic organs such as leaves, where ERF-VII stability should be compromised, we explored the possibility of local leaf hypoxia at the site of infection. We analyzed the expression of hypoxia-responsive genes in infected leaves. Confocal microscopy was utilized to verify the localization of the ERF-VII protein RAP2.12. Oxygen concentration was measured to evaluate the availability of oxygen (O2 ). We discovered that infection by B. cinerea induces increased respiration, leading to a drastic drop in the O2 concentration in an otherwise fully aerobic leaf. The establishment of a local hypoxic area results in stabilization and nuclear relocalization of RAP2.12. The possible roles of defence elicitors, ABA and ethylene were evaluated. Local hypoxia at the site of B. cinerea infection allows the stabilization of ERF-VII proteins. Hypoxia at the site of pathogen infection generates a nearly O2 -free environment that may affect the stability of other N-degron-regulated proteins as well as the metabolism of elicitors.
Collapse
Affiliation(s)
- Maria Cristina Valeri
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Giacomo Novi
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Daan A. Weits
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Anna Mensuali
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Pierdomenico Perata
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Elena Loreti
- Institute of Agricultural Biology and BiotechnologyCNR, National Research CouncilVia Moruzzi56124PisaItaly
| |
Collapse
|
229
|
Pedersen O, Sauter M, Colmer TD, Nakazono M. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. THE NEW PHYTOLOGIST 2021; 229:42-49. [PMID: 32045027 DOI: 10.1111/nph.16375] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 05/25/2023]
Abstract
Flooding causes oxygen deprivation in soils. Plants adapt to low soil oxygen availability by changes in root morphology, anatomy, and architecture to maintain root system functioning. Essential traits include aerenchyma formation, a barrier to radial oxygen loss, and outgrowth of adventitious roots into the soil or the floodwater. We highlight recent findings of mechanisms of constitutive aerenchyma formation and of changes in root architecture. Moreover, we use modelling of internal aeration to demonstrate the beneficial effect of increasing cortex-to-stele ratio on sustaining root growth in waterlogged soils. We know the genes for some of the beneficial traits, and the next step is to manipulate these genes in breeding in order to enhance the flood tolerance of our crops.
Collapse
Affiliation(s)
- Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, 2100, Copenhagen, Denmark
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mikio Nakazono
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
230
|
González-Guzmán M, Gómez-Cadenas A, Arbona V. Abscisic Acid as an Emerging Modulator of the Responses of Plants to Low Oxygen Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:661789. [PMID: 33981326 PMCID: PMC8107475 DOI: 10.3389/fpls.2021.661789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.
Collapse
|
231
|
Müller JT, van Veen H, Bartylla MM, Akman M, Pedersen O, Sun P, Schuurink RC, Takeuchi J, Todoroki Y, Weig AR, Sasidharan R, Mustroph A. Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale). THE NEW PHYTOLOGIST 2021; 229:140-155. [PMID: 31792981 DOI: 10.1111/nph.16350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 05/25/2023]
Abstract
The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.
Collapse
Affiliation(s)
- Jana T Müller
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Malte M Bartylla
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Melis Akman
- Plant and Microbial Biology, University of California, Berkeley, 361 Koshland Hall, Berkeley, CA, 94720, USA
- Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen, Denmark
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
232
|
Weits DA, van Dongen JT, Licausi F. Molecular oxygen as a signaling component in plant development. THE NEW PHYTOLOGIST 2021; 229:24-35. [PMID: 31943217 DOI: 10.1111/nph.16424] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
While traditionally hypoxia has been studied as a detrimental component of flooding stress, the last decade has flourished with studies reporting the involvement of molecular oxygen availability in plant developmental processes. Moreover, proliferating and undifferentiated cells from different plant tissues were found to reside in endogenously generated hypoxic niches. Thus, stress-associated acute hypoxia may be distinguished from constitutively generated chronic hypoxia. The Cys/Arg branch of the N-degron pathway assumes a central role in integrating oxygen levels resulting in proteolysis of transcriptional regulators that control different aspects of plant growth and development. As a target of this pathway, group VII of the Ethylene Response Factor (ERF-VII) family has emerged as a hub for the integration of oxygen dynamics in root development and during seedling establishment. Additionally, vegetative shoot meristem activity and reproductive transition were recently associated with oxygen availability via two novel substrates of the N-degron pathways: VERNALISATION 2 (VRN2) and LITTLE ZIPPER 2 (ZPR2). Together, these observations support roles for molecular oxygen as a signalling molecule in plant development, as well as in essential metabolic reactions. Here, we review recent findings regarding oxygen-regulated development, and discuss outstanding questions that spring from these discoveries.
Collapse
Affiliation(s)
- Daan A Weits
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56010, Italy
| | | | - Francesco Licausi
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56010, Italy
- Biology Department, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
233
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
234
|
Betti F, Ladera-Carmona MJ, Perata P, Loreti E. RNAi Mediated Hypoxia Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E9394. [PMID: 33321742 PMCID: PMC7764064 DOI: 10.3390/ijms21249394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Small RNAs regulate various biological process involved in genome stability, development, and adaptive responses to biotic or abiotic stresses. Small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs). MicroRNAs (miRNAs) are regulators of gene expression that affect the transcriptional and post-transcriptional regulation in plants and animals through RNA interference (RNAi). miRNAs are endogenous small RNAs that originate from the processing of non-coding primary miRNA transcripts folding into hairpin-like structures. The mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and drive the Argonaute (AGO) proteins towards their mRNA targets. siRNAs are generated from a double-stranded RNA (dsRNA) of cellular or exogenous origin. siRNAs are also involved in the adaptive response to biotic or abiotic stresses. The response of plants to hypoxia includes a genome-wide transcription reprogramming. However, little is known about the involvement of RNA signaling in gene regulation under low oxygen availability. Interestingly, miRNAs have been shown to play a role in the responses to hypoxia in animals, and recent evidence suggests that hypoxia modulates the expression of various miRNAs in plant systems. In this review, we describe recent discoveries on the impact of RNAi on plant responses to hypoxic stress in plants.
Collapse
Affiliation(s)
- Federico Betti
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Maria José Ladera-Carmona
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
235
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
236
|
Xie LJ, Zhou Y, Chen QF, Xiao S. New insights into the role of lipids in plant hypoxia responses. Prog Lipid Res 2020; 81:101072. [PMID: 33188800 DOI: 10.1016/j.plipres.2020.101072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
In plants, hypoxia (low-oxygen stress) is induced by soil waterlogging or submergence and this major abiotic stress has detrimental effects on plant growth, development, distribution, and productivity. To survive low-oxygen stress, plants have evolved a set of morphological, physiological, and biochemical adaptations. These adaptations integrate metabolic acclimation and signaling networks allowing plants to endure or escape from low-oxygen environments by altering their metabolism and growth. Lipids are ubiquitously involved in regulating plant responses to hypoxia and post-hypoxic reoxygenation. In particular, the polyunsaturation of long-chain acyl-CoAs regulates hypoxia sensing in plants by modulating acyl-CoA-binding protein-Group VII ethylene response factor dynamics. Moreover, unsaturated very-long-chain ceramide species protect plants from hypoxia-induced cellular damage by regulating the kinase activity of CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway. Finally, the oxylipin jasmonate specifically regulates plant responses to reoxygenation stress by transcriptionally modulating antioxidant biosynthesis. Here we provide an overview of the roles of lipid remodeling and signaling in plant responses to hypoxia/reoxygenation and their effects on the downstream events affecting plant survival. In addition, we highlight the key remaining challenges in this important field.
Collapse
Affiliation(s)
- Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
237
|
Lee HJ, Park JS, Shin SY, Kim SG, Lee G, Kim HS, Jeon JH, Cho HS. Submergence deactivates wound-induced plant defence against herbivores. Commun Biol 2020; 3:651. [PMID: 33159149 PMCID: PMC7648080 DOI: 10.1038/s42003-020-01376-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Flooding is a common and critical disaster in agriculture, because it causes defects in plant growth and even crop loss. An increase in herbivore populations is often observed after floods, which leads to additional damage to the plants. Although molecular mechanisms underlying the plant responses to flooding have been identified, how plant defence systems are affected by flooding remains poorly understood. Herein, we show that submergence deactivates wound-induced defence against herbivore attack in Arabidopsis thaliana. Submergence rapidly suppressed the wound-induced expression of jasmonic acid (JA) biosynthesis genes, resulting in reduced JA accumulation. While plants exposed to hypoxia in argon gas exhibited similar reduced wound responses, the inhibitory effects were initiated after short-term submergence without signs for lack of oxygen. Instead, expression of ethylene-responsive genes was increased after short-term submergence. Blocking ethylene signalling by ein2-1 mutation partially restored suppressed expression of several wound-responsive genes by submergence. In addition, submergence rapidly removed active markers of histone modifications at a gene locus involved in JA biosynthesis. Our findings suggest that submergence inactivates defence systems of plants, which would explain the proliferation of herbivores after flooding. Hyo-Jun Lee et al. show that submergence in Arabidopsis deactivates wound-induced defence against herbivore attack by suppressing the expression of jasmonic acid biosynthesis genes and increasing expression of ethylene-responsive genes. These results shed light on how flooding may impact plant defence systems.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
238
|
Kumar V, Vogelsang L, Schmidt RR, Sharma SS, Seidel T, Dietz KJ. Remodeling of Root Growth Under Combined Arsenic and Hypoxia Stress Is Linked to Nutrient Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:569687. [PMID: 33193499 PMCID: PMC7644957 DOI: 10.3389/fpls.2020.569687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 05/29/2023]
Abstract
Root architecture responds to environmental stress. Stress-induced metabolic and nutritional changes affect the endogenous root development program. Transcriptional and translational changes realize the switch between stem cell proliferation and cell differentiation, lateral root or root hair formation and root functionality for stress acclimation. The current work explores the effects of stress combination of arsenic toxicity (As) and hypoxia (Hpx) on root development in Arabidopsis thaliana. As revealed previously, combined As and Hpx treatment leads to severe nutritional disorder evident from deregulation of root transcriptome and plant mineral contents. Both As and Hpx were identified to pose stress-specific constraints on root development that lead to unique root growth phenotype under their combination. Besides inhibition of root apical meristem (RAM) activity under all stresses, As induced lateral root growth while root hair density and lengths were strongly increased by Hpx and HpxAs-treatments. A dual stimulation of phosphate (Pi)-starvation response was observed for HpxAs-treated plant roots; however, the response under HpxAs aligned more with Hpx than As. Transcriptional evidence along with biochemical data suggests involvement of PHOSPHATE STARVATION RESPONSE 1; PHR1-dependent systemic signaling. Pi metabolism-related transcripts in close association with cellular iron homeostasis modulate root development under HpxAs. Early redox potential changes in meristematic cells, differential ROS accumulation in root hair zone cell layers and strong deregulation of NADPH oxidases, NADPH-dependent oxidoreductases and peroxidases signify a role of redox and ROS signaling in root architecture remodeling under HpxAs. Differential aquaporin expression suggests transmembrane ROS transport to regulate root hair induction and growth. Reorganization of energy metabolism through NO-dependent alternate oxidase, lactate fermentation, and phosphofructokinase seems crucial under HpxAs. TOR and SnRK-signaling network components were potentially involved in control of sustainable utilization of available energy reserves for root hair growth under combined stress as well as recovery on reaeration. Findings are discussed in context of combined stress-induced signaling in regulation of root development in contrast to As and Hpx alone.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Shanti S. Sharma
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| | - Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
239
|
Metabolic Responses to Waterlogging Differ between Roots and Shoots and Reflect Phloem Transport Alteration in Medicago truncatula. PLANTS 2020; 9:plants9101373. [PMID: 33076529 PMCID: PMC7650564 DOI: 10.3390/plants9101373] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022]
Abstract
Root oxygen deficiency that is induced by flooding (waterlogging) is a common situation in many agricultural areas, causing considerable loss in yield and productivity. Physiological and metabolic acclimation to hypoxia has mostly been studied on roots or whole seedlings under full submergence. The metabolic difference between shoots and roots during waterlogging, and how roots and shoots communicate in such a situation is much less known. In particular, the metabolic acclimation in shoots and how this, in turn, impacts on roots metabolism is not well documented. Here, we monitored changes in the metabolome of roots and shoots of barrel clover (Medicago truncatula), growth, and gas-exchange, and analyzed phloem sap exudate composition. Roots exhibited a typical response to hypoxia, such as γ-aminobutyrate and alanine accumulation, as well as a strong decline in raffinose, sucrose, hexoses, and pentoses. Leaves exhibited a strong increase in starch, sugars, sugar derivatives, and phenolics (tyrosine, tryptophan, phenylalanine, benzoate, ferulate), suggesting an inhibition of sugar export and their alternative utilization by aromatic compounds production via pentose phosphates and phosphoenolpyruvate. Accordingly, there was an enrichment in sugars and a decline in organic acids in phloem sap exudates under waterlogging. Mass-balance calculations further suggest an increased imbalance between loading by shoots and unloading by roots under waterlogging. Taken as a whole, our results are consistent with the inhibition of sugar import by waterlogged roots, leading to an increase in phloem sugar pool, which, in turn, exert negative feedback on sugar metabolism and utilization in shoots.
Collapse
|
240
|
The Molecular Regulatory Pathways and Metabolic Adaptation in the Seed Germination and Early Seedling Growth of Rice in Response to Low O 2 Stress. PLANTS 2020; 9:plants9101363. [PMID: 33066550 PMCID: PMC7602250 DOI: 10.3390/plants9101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
As sessile organisms, flooding/submergence is one of the major abiotic stresses for higher plants, with deleterious effects on their growth and survival. Therefore, flooding/submergence is a large challenge for agriculture in lowland areas worldwide. Long-term flooding/submergence can cause severe hypoxia stress to crop plants and can result in substantial yield loss. Rice has evolved distinct adaptive strategies in response to low oxygen (O2) stress caused by flooding/submergence circumstances. Recently, direct seeding practice has been increasing in popularity due to its advantages of reducing cultivation cost and labor. However, establishment and growth of the seedlings from seed germination under the submergence condition are large obstacles for rice in direct seeding practice. The physiological and molecular regulatory mechanisms underlying tolerant and sensitive phenotypes in rice have been extensively investigated. Here, this review focuses on the progress of recent advances in the studies of the molecular mechanisms and metabolic adaptions underlying anaerobic germination (AG) and coleoptile elongation. Further, we highlight the prospect of introducing quantitative trait loci (QTL) for AG into rice mega varieties to ensure the compatibility of flooding/submergence tolerance traits and yield stability, thereby advancing the direct seeding practice and facilitating future breeding improvement.
Collapse
|
241
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
242
|
The Anaerobic Product Ethanol Promotes Autophagy-Dependent Submergence Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21197361. [PMID: 33028029 PMCID: PMC7583018 DOI: 10.3390/ijms21197361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
In response to hypoxia under submergence, plants switch from aerobic respiration to anaerobic fermentation, which leads to the accumulation of the end product, ethanol. We previously reported that Arabidopsis thaliana autophagy-deficient mutants show increased sensitivity to ethanol treatment, indicating that ethanol is likely involved in regulating the autophagy-mediated hypoxia response. Here, using a transcriptomic analysis, we identified 3909 genes in Arabidopsis seedlings that were differentially expressed in response to ethanol treatment, including 2487 upregulated and 1422 downregulated genes. Ethanol treatment significantly upregulated genes involved in autophagy and the detoxification of reactive oxygen species. Using transgenic lines expressing AUTOPHAGY-RELATED PROTEIN 8e fused to green fluorescent protein (GFP-ATG8e), we confirmed that exogenous ethanol treatment promotes autophagosome formation in vivo. Phenotypic analysis showed that deletions in the alcohol dehydrogenase gene in adh1 mutants result in attenuated submergence tolerance, decreased accumulation of ATG proteins, and diminished submergence-induced autophagosome formation. Compared to the submergence-tolerant Arabidopsis accession Columbia (Col-0), the submergence-intolerant accession Landsberg erecta (Ler) displayed hypersensitivity to ethanol treatment; we linked these phenotypes to differences in the functions of ADH1 and the autophagy machinery between these accessions. Thus, ethanol promotes autophagy-mediated submergence tolerance in Arabidopsis.
Collapse
|
243
|
Park SU, Lee CJ, Kim SE, Lim YH, Lee HU, Nam SS, Kim HS, Kwak SS. Selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:243-251. [PMID: 32781274 DOI: 10.1016/j.plaphy.2020.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 05/27/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam] serves as a sustainable food source and ensures nutrition security in the face of climate change. Recently, farmers have developed increased interest in replacing rice with sweetpotato in paddy fields for higher income. However, sweetpotato is more susceptible to flooding stress than other abiotic stresses including drought and salinity. Here, we selected flooding tolerant sweetpotato cultivars based on biochemical characterization. Young seedlings of 33 sweetpotato cultivars were subjected to flooding stress for 20 days, and Yeonjami (YJM) was identified as the most flooding tolerant sweetpotato cultivar. Plant growth and biochemical characteristics of YJM were compared with those of Jeonmi (JM), a flooding sensitive sweetpotato cultivar. Under flooding stress, YJM showed higher content of chlorophyll and lower inhibition of plant height and fibrous root length than JM. Biochemical characterization revealed that although malondialdehyde and hydrogen peroxide contents were increased in fibrous roots of both cultivars, the amount of increase was 4-fold lower in YJM than in JM. Additionally, leaves of YJM showed higher ascorbate peroxidase activity than those of JM under flooding stress. Our results suggest that high membrane stability and antioxidant capacity are important flooding tolerance factors in sweetpotato. Furthermore, several flooding tolerance-related genes involved in starch and sucrose metabolism, fermentation, and cell wall loosening showed earlier induction and higher transcript levels in YJM leaves and fibrous roots than in JM tissues under flooding stress. Thus, phenotypic and biochemical characterization suggests that YJM could be used as a flooding tolerant sweetpotato cultivar.
Collapse
Affiliation(s)
- Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, 199 Muan-ro, Muan-gun, 58545, South Korea
| | - Sang-Sik Nam
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, 199 Muan-ro, Muan-gun, 58545, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea.
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea.
| |
Collapse
|
244
|
Two Alternative Splicing Variants of AtERF73/HRE1, HRE1α and HRE1β, Have Differential Transactivation Activities in Arabidopsis. Int J Mol Sci 2020; 21:ijms21196984. [PMID: 32977426 PMCID: PMC7582492 DOI: 10.3390/ijms21196984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
AtERF73/HRE1 is an AP2/ERF transcription factor in Arabidopsis and has two distinct alternative splicing variants, HRE1α and HRE1β. In this study, we examined the differences between the molecular functions of HRE1α and HRE1β. We found that HRE1α and HRE1β are both involved in hypoxia response and root development and have transactivation activity. Two conserved motifs in the C-terminal region of HRE1α and HRE1β, EELL and LWSY-like, contributed to their transactivation activity, specifically the four E residues in the EELL motif and the MGLWS amino acid sequence at the end of the LWSY-like motif. The N-terminal region of HRE1β also showed transactivation activity, mediated by the VDDG motif, whereas that of HRE1α did not. The transactivation activity of HRE1β was stronger than that of HRE1α in Arabidopsis protoplasts. Both transcription factors transactivated downstream genes via the GCC box. RNA-sequencing analysis further supported that both HRE1α and HRE1β might regulate gene expression associated with the hypoxia stress response, although they may transactivate different subsets of genes in downstream pathways. Our results, together with previous studies, suggested that HRE1α and HRE1β differentially transactivate downstream genes in hypoxia response and root development in Arabidopsis.
Collapse
|
245
|
Medina MÁ. Metabolic Reprogramming is a Hallmark of Metabolism Itself. Bioessays 2020; 42:e2000058. [PMID: 32939776 DOI: 10.1002/bies.202000058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Indexed: 12/16/2022]
Abstract
The reprogramming of metabolism has been identified as one of the hallmarks of cancer. It is becoming more and more frequent to connect other diseases with metabolic reprogramming. This article aims to argue that metabolic reprogramming is not driven by disease but instead is the main hallmark of metabolism, based on its dynamic behavior that allows it to continuously adapt to changes in the internal and external conditions.
Collapse
Affiliation(s)
- Miguel Ángel Medina
- Andalucía Tech, Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Málaga, E-29071, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, E-29071, Spain
| |
Collapse
|
246
|
Wei GW, Sun XS, Chen YH, Luo FL, Yu FH. Growth and reproductive responses of Polygonum hydropiper populations to elevational difference associated with flooding. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
247
|
Shen C, Yuan J, Qiao H, Wang Z, Liu Y, Ren X, Wang F, Liu X, Zhang Y, Chen X, Ou X. Transcriptomic and anatomic profiling reveal the germination process of different wheat varieties in response to waterlogging stress. BMC Genet 2020; 21:93. [PMID: 32859149 PMCID: PMC7456028 DOI: 10.1186/s12863-020-00901-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Waterlogging is one of the most serious abiotic stresses affecting wheat-growing regions in China. Considerable differences in waterlogging tolerance have been found among different wheat varieties, and the mechanisms governing the waterlogging tolerance of wheat seeds during germination have not been elucidated. RESULTS The results showed no significant difference between the germination rate of 'Bainong 207' (BN207) (after 72 h of waterlogging treatment) and that of the control seeds. However, the degree of emulsification and the degradation rate of endosperm cells under waterlogging stress were higher than those obtained with the control treatment, and the number of amyloplasts in the endosperm was significantly reduced by waterlogging. Transcriptomic data were obtained from seed samples (a total of 18 samples) of three wheat varieties, 'Zhoumai 22' (ZM22), BN207 and 'Bainong 607' (BN607), subjected to the waterlogging and control treatments. A comprehensive analysis identified a total of 2775 differentially expressed genes (DEGs). In addition, an analysis of the correlations among the expression difference levels of DEGs and the seed germination rates of the three wheat varieties under waterlogging stress revealed that the relative expression levels of 563 and 398 genes were positively and negatively correlated with the germination rate of the wheat seeds, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the difference in the waterlogging tolerance among the three wheat varieties was related to the abundance of key genes involved in the glycolysis pathway, the starch and sucrose metabolism pathway, and the lactose metabolism pathway. The alcohol dehydrogenase (ADH) gene in the endosperm of BN607 was induced immediately after short-term waterlogging, and the energy provided by the glycolysis pathway enabled the BN607 seeds to germinate as early as possible; in addition, the expression of the AP2/ERF transcription factor was upregulated to further enhance the waterlogging tolerance of this cultivar. CONCLUSIONS Taken together, the results of this study help elucidate the mechanisms through which different wheat varieties respond to waterlogging stress during germination.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Hong Qiao
- Xinxiang Nongle Seed Industry Co. Ltd, Xinxiang, 453003, China
| | - Zijuan Wang
- Xinxiang Nongle Seed Industry Co. Ltd, Xinxiang, 453003, China
| | - Yuanhai Liu
- Xinxiang Nongle Seed Industry Co. Ltd, Xinxiang, 453003, China
| | - Xiujuan Ren
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Fei Wang
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xing Liu
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ying Zhang
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiling Chen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
248
|
Keep Calm and Survive: Adaptation Strategies to Energy Crisis in Fruit Trees under Root Hypoxia. PLANTS 2020; 9:plants9091108. [PMID: 32867316 PMCID: PMC7570223 DOI: 10.3390/plants9091108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
Plants are permanently facing challenges imposed by the environment which, in the context of the current scenario of global climate change, implies a constant process of adaptation to survive and even, in the case of crops, at least maintain yield. O2 deficiency at the rhizosphere level, i.e., root hypoxia, is one of the factors with the greatest impact at whole-plant level. At cellular level, this O2 deficiency provokes a disturbance in the energy metabolism which has notable consequences on the yield of plant crops. In this sense, although several physiological studies describe processes involved in plant adaptation to root hypoxia in woody fruit trees, with emphasis on the negative impacts on photosynthetic rate, there are very few studies that include -omics strategies for specifically understanding these processes in the roots of such species. Through a de novo assembly approach, a comparative transcriptome study of waterlogged Prunus spp. genotypes contrasting in their tolerance to root hypoxia was revisited in order to gain a deeper insight into the reconfiguration of pivotal pathways involved in energy metabolism. This re-analysis describes the classically altered pathways seen in the roots of woody fruit trees under hypoxia, but also routes that link them to pathways involved with nitrogen assimilation and the maintenance of cytoplasmic pH and glycolytic flow. In addition, the effects of root hypoxia on the transcription of genes related to the mitochondrial oxidative phosphorylation system, responsible for providing adenosine triphosphate (ATP) to the cell, are discussed in terms of their roles in the energy balance, reactive oxygen species (ROS) metabolism and aerenchyma formation. This review compiles key findings that help to explain the trait of tolerance to root hypoxia in woody fruit species, giving special attention to their strategies for managing the energy crisis. Finally, research challenges addressing less-explored topics in recovery and stress memory in woody fruit trees are pointed out.
Collapse
|
249
|
Juntawong P, Butsayawarapat P, Songserm P, Pimjan R, Vuttipongchaikij S. Overexpression of Jatropha curcas ERFVII2 Transcription Factor Confers Low Oxygen Tolerance in Transgenic Arabidopsis by Modulating Expression of Metabolic Enzymes and Multiple Stress-Responsive Genes. PLANTS 2020; 9:plants9091068. [PMID: 32825465 PMCID: PMC7570394 DOI: 10.3390/plants9091068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Enhancing crop tolerance to waterlogging is critical for improving food and biofuel security. In waterlogged soils, roots are exposed to a low oxygen environment. The group VII ethylene response factors (ERFVIIs) were recently identified as key regulators of plant low oxygen response. Oxygen-dependent N-end rule pathways can regulate the stability of ERFVIIs. This study aims to characterize the function of the Jatropha curcas ERFVIIs and the impact of N-terminal modification that stabilized the protein toward low oxygen response. This study revealed that all three JcERFVII proteins are substrates of the N-end rule pathway. Overexpression of JcERFVII2 conferred tolerance to low oxygen stress in Arabidopsis. In contrast, the constitutive overexpression of stabilized JcERFVII2 reduced low oxygen tolerance. RNA-seq was performed to elucidate the functional roles of JcERFVII2 and the impact of its N-terminal modification. Overexpression of both wildtype and stabilized JcERFVII2 constitutively upregulated the plant core hypoxia-responsive genes. Besides, overexpression of the stabilized JcERFVII2 further upregulated various genes controlling fermentative metabolic processes, oxidative stress, and pathogen responses under aerobic conditions. In summary, JcERFVII2 is an N-end rule regulated waterlogging-responsive transcription factor that modulates the expression of multiple stress-responsive genes; therefore, it is a potential candidate for molecular breeding of multiple stress-tolerant crops.
Collapse
Affiliation(s)
- Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.B.); (P.S.); (R.P.); (S.V.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence: or ; Tel.: +66-02-562-5555
| | - Pimprapai Butsayawarapat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.B.); (P.S.); (R.P.); (S.V.)
| | - Pattralak Songserm
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.B.); (P.S.); (R.P.); (S.V.)
| | - Ratchaneeporn Pimjan
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.B.); (P.S.); (R.P.); (S.V.)
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.B.); (P.S.); (R.P.); (S.V.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
250
|
Li YS, Ou SL, Yang CY. The Seedlings of Different Japonica Rice Varieties Exhibit Differ Physiological Properties to Modulate Plant Survival Rates under Submergence Stress. PLANTS 2020; 9:plants9080982. [PMID: 32756426 PMCID: PMC7465654 DOI: 10.3390/plants9080982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/30/2023]
Abstract
Oryza sativa is a major food crop in Asia. In recent years, typhoons and sudden downpours have caused field flooding, which has resulted in serious harm to the production of rice. In this study, our data revealed that the plant heights of the five Japonica varieties increased during submergence. The elongation rates of TN14, KH139, and TK9 increased significantly during submergence. Chlorophyll contents of the five varieties significantly decreased after submergence and increased after recovery. Moreover, the chlorophyll content of KH139 was significantly higher than those of the other four varieties after recovery. The plant survival rates of the five varieties were higher than 50% after four-day submergence. After eight-day submergence, the survival rate of KH139 remained at 90%, which was the highest among the different varieties. The KH139 presented lower accumulation of hydrogen peroxide and the catalase activity than those of the other four varieties under submergence. The sucrose synthase 1 and alcohol dehydrogenase 1 were induced in KH139 under submergence. The results presented that different varieties of japonica rice have different flood tolerances, especially KH139 under submergence was superior to that of the other four varieties. These results can provide crucial information for future research on japonica rice under flooding stress.
Collapse
Affiliation(s)
| | | | - Chin-Ying Yang
- Correspondence: ; Tel.: +886-4-22840777 (ext. 608); Fax: +886-4-22877054
| |
Collapse
|