201
|
Carvalheda CA, Campos SRR, Baptista AM. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics. J Chem Inf Model 2015; 55:2206-17. [PMID: 26397014 DOI: 10.1021/acs.jcim.5b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.
Collapse
Affiliation(s)
- Catarina A Carvalheda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| | - Sara R R Campos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
202
|
Abstract
Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Timothy E Weaver
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
203
|
Shu LH, Lu Q, Han LY, Dong GH. SP-D, KL-6, and HTI-56 levels in children with mycoplasma pneumoniae pneumonia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11185-11191. [PMID: 26617840 PMCID: PMC4637655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED The study was aimed to evaluate the potential biomarkers from pulmonary surfactant protein D (SP-D), Krebs von den Lungen-6 (KL-6), and 56-kD a human type I protein (HTI-56) in serum and bronchoalveolar lavage fluid samples of children with Mycoplasma pneumoniae pneumonia. This retrospective study, self-controlled study enrolled 34 Chinese children with M. pneumoniae pneumonia. The levels of SP-D, KL-6, and HTI-56 in bronchoalveolar lavage fluid samples were assessed and compared between patients with unilateral lung infection and contralateral lungs without any abnormal findings. Significant differences in the levels of SP-D, KL-6, and HTI-56 were observed in infected bronchoalveolar lavage fluid samples compared with uninfected samples (all P<0.05); however, there was no correlation between the serum level of SP-D, KL-6, and HTI-56 and their levels in infected and uninfected bronchoalveolar lavage fluid samples (P>0.05). CONCLUSION The high levels of SP-D, KL-6, and HTI-56 in infected bronchoalveolar lavage fluid samples may reflect the injury of alveolar epithelium caused by M. pneumoniae. Instead of SP-D in uninfected bronchoalveolar lavage fluid samples obtained by invasive bronchoscopy, serum SP-D may serve as a convenient medium to distinguish lung infection caused by M. pneumoniae.
Collapse
Affiliation(s)
- Lin-Hua Shu
- Department of Pediatric Pulmonology, Shanghai Children’s Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Quan Lu
- Department of Pediatric Pulmonology, Shanghai Children’s Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Li-Ying Han
- Department of Pediatrics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Guang-Hui Dong
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical UniversityShenyang 110001, China
| |
Collapse
|
204
|
Structural Features of the ATP-Binding Cassette (ABC) Transporter ABCA3. Int J Mol Sci 2015; 16:19631-44. [PMID: 26295388 PMCID: PMC4581316 DOI: 10.3390/ijms160819631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
In this review we reported and discussed the structural features of the ATP-Binding Cassette (ABC) transporter ABCA3 and how the use of bioinformatics tools could help researchers to obtain a reliable structural model of this important transporter. In fact, a model of ABCA3 is still lacking and no crystallographic structures (of the transporter or of its orthologues) are available. With the advent of next generation sequencing, many disease-causing mutations have been discovered and many more will be found in the future. In the last few years, ABCA3 mutations have been reported to have important pediatric implications. Thus, clinicians need a reliable structure to locate relevant mutations of this transporter and make genotype/phenotype correlations of patients affected by ABCA3-related diseases. In conclusion, we strongly believe that the model preliminarily generated by these novel bioinformatics tools could be the starting point to obtain more refined models of the ABCA3 transporter.
Collapse
|
205
|
Campo I, Zorzetto M, Bonella F. Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 2015; 9:437-57. [DOI: 10.1586/17476348.2015.1062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
206
|
Woik N, Kroll J. Regulation of lung development and regeneration by the vascular system. Cell Mol Life Sci 2015; 72:2709-18. [PMID: 25894695 PMCID: PMC11113134 DOI: 10.1007/s00018-015-1907-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 02/08/2023]
Abstract
Blood vessels have been described a long time ago as passive circuits providing sufficient blood supply to ensure proper distribution of oxygen and nutrition. Blood vessels are mainly formed during embryonic development and in the early postnatal period. In the adult, blood vessels are quiescent, but can be activated and subsequently induced under pathophysiological conditions, such as ischemia and tumor growth. Surprisingly, recent data have suggested an active function for blood vessels, named angiocrine signaling, releasing trophogens which regulate organ development and organ regeneration including in the pancreas, lung, tumor cells, liver and bone. Lung development is driven by hypoxia as well as an intense endothelial-epithelial interaction, and important mechanisms contributing to these processes have recently been identified. This review aims to summarize recent developments and concepts about embryonic pulmonary vascular development and lung regeneration. We discuss hypoxia-inducible factor HIF-2α and vascular endothelial growth factor VEGF as important mediators in lung development and focus on endothelial-epithelial interactions and angiocrine signaling mechanisms.
Collapse
Affiliation(s)
- Nicole Woik
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
207
|
Whitsett JA, Wert SE, Weaver TE. Diseases of pulmonary surfactant homeostasis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:371-93. [PMID: 25621661 DOI: 10.1146/annurev-pathol-012513-104644] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Divisions of Neonatology, Perinatal Biology, and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; , ,
| | | | | |
Collapse
|
208
|
Harayama T, Shindou H, Kita Y, Otsubo E, Ikeda K, Chida S, Weaver TE, Shimizu T. Establishment of LC-MS methods for the analysis of palmitoylated surfactant proteins. J Lipid Res 2015; 56:1370-9. [PMID: 26022805 DOI: 10.1194/jlr.d060236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 01/08/2023] Open
Abstract
The surfactant proteins (SPs), SP-B and SP-C, are important components of pulmonary surfactant involved in the reduction of alveolar surface tension. Quantification of SP-B and SP-C in surfactant drugs is informative for their quality control and the evaluation of their biological activity. Western blot analysis enabled the quantification of SP-B, but not SP-C, in surfactant drugs. Here, we report a new procedure involving chemical treatments and LC-MS to analyze SP-C peptides. The procedure enabled qualitative analysis of SP-C from different species with discrimination of the palmitoylation status and the artificial modifications that occur during handling and/or storage. In addition, the method can be used to estimate the total amount of SP-C in pulmonary surfactant drugs. The strategy described here might serve as a prototype to establish analytical methods for peptides that are extremely hydrophobic and behave like lipids. The new method provides an easy measurement of SP-C from various biological samples, which will help the characterization of various experimental animal models and the quality control of surfactant drugs, as well as diagnostics of human samples.
Collapse
Affiliation(s)
- Takeshi Harayama
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiji Otsubo
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan Advanced Medical Research Department, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa 227-0033, Japan
| | - Kazushige Ikeda
- Division of Neonantology, Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shoichi Chida
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka-shi, Iwate 020-8505, Japan
| | - Timothy E Weaver
- Division of Pulmonary Biology, Medical Center, Cincinnati Children's Hospital, Cincinnati, OH 45229-3026
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
209
|
Ito Y, Correll K, Zemans RL, Leslie CC, Murphy RC, Mason RJ. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1178-88. [PMID: 26033355 PMCID: PMC4451400 DOI: 10.1152/ajplung.00290.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
Abstract
The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, Colorado;
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Aurora, Colorado
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
210
|
Borie R, Danel C, Lainé C, Kannengiesser C, Crestani B. [Treatment of alveolar proteinosis by intrapulmonary transplantation of macrophages]. Med Sci (Paris) 2015; 31:241-4. [PMID: 25855273 DOI: 10.1051/medsci/20153103005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Raphael Borie
- APHP, hôpital Bichat, DHU Fire, service de pneumologie A, centre de compétence des maladies pulmonaires rares, 46, rue Henri Huchard, 75018 Paris, France - Inserm unité 1152, Paris, France - Université Paris Diderot, Paris, France
| | - Claire Danel
- Université Paris Diderot, Paris, France - APHP, hôpital Bichat, service d'anatomopathologie, 46, rue Henri Huchard, 75018 Paris, France
| | - Catherine Lainé
- service d'immunologie-thérapie cellulaire et hématopoïèse, centre hospitalo-universitaire Pontchaillou, Rennes, France
| | - Caroline Kannengiesser
- Université Paris Diderot, Paris, France - APHP, hôpital Bichat, service de génétique, 46, rue Henri Huchard, 75018 Paris, France
| | - Bruno Crestani
- APHP, hôpital Bichat, DHU Fire, service de pneumologie A, centre de compétence des maladies pulmonaires rares, 46, rue Henri Huchard, 75018 Paris, France - Inserm unité 1152, Paris, France - Université Paris Diderot, Paris, France
| |
Collapse
|
211
|
ABCA3 protects alveolar epithelial cells against free cholesterol induced cell death. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:987-95. [PMID: 25817392 DOI: 10.1016/j.bbalip.2015.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 11/22/2022]
Abstract
Diffuse parenchymal lung diseases (DPLDs) are characterized by chronic inflammation and fibrotic remodeling of the interstitial tissue. A small fraction of DPLD cases can be genetically defined by mutations in certain genes, with ABCA3 being the gene most commonly affected. However, the pathomechanisms underlying ABCA3-induced DPLD are far from clear. To investigate whether ABCA3 plays a role in cellular cholesterol homeostasis, phospholipids, free cholesterol, and cholesteryl esters were quantified in cells stably expressing ABCA3 using mass spectrometry. Cellular free cholesterol and lipid droplets were visualized by filipin or oil red staining, respectively. Expression of SREBP regulated genes was measured using qPCR. Cell viability was assessed using the XTT assay. We found that wild type ABCA3 reduces cellular free cholesterol levels, induces the SREBP pathway, and renders cells more resistant to loading with exogenous cholesterol. Moreover, ABCA3 mutations found in patients with DPLD interfere with this protective effect of ABCA3, resulting in free cholesterol induced cell death. We conclude that ABCA3 plays a previously unrecognized role in the regulation of cellular cholesterol levels. Accumulation of free cholesterol as a result of a loss of ABCA3 export function represents a novel pathomechanism in ABCA3-induced DPLD.
Collapse
|
212
|
De Backer L, Braeckmans K, Stuart MCA, Demeester J, De Smedt SC, Raemdonck K. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system. J Control Release 2015; 206:177-86. [PMID: 25791835 DOI: 10.1016/j.jconrel.2015.03.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/24/2015] [Accepted: 03/14/2015] [Indexed: 12/31/2022]
Abstract
Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf®) outer shell. The decoration of siNGs with a surfactant shell enhances the colloidal stability and prevents siRNA release in the presence of competing polyanions, which are abundantly present in biofluids. Additionally, the impact of the surfactant shell on the biological efficacy of the siNGs is determined in lung cancer cells. The presence of the surfactants substantially reduces the cellular uptake of siNGs. Remarkably, the lowered intracellular dose does not impede the gene silencing effect, suggesting a crucial role of the pulmonary surfactant in the intracellular processing of the nanoparticles. In order to surmount the observed reduction in cellular dose, folate is incorporated as a targeting ligand in the pulmonary surfactant shell to incite receptor-mediated endocytosis. The latter substantially enhances both cellular uptake and gene silencing potential, achieving efficient knockdown at siRNA concentrations in the low nanomolar range.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Marc C A Stuart
- Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Jo Demeester
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
213
|
Spitler G, Spitz H, Glasser S, Hoffman MK, Bowen J. In vitro dissolution of uranium-contaminated soil in simulated lung fluid containing a pulmonary surfactant. HEALTH PHYSICS 2015; 108:336-343. [PMID: 25627945 DOI: 10.1097/hp.0000000000000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
During the latter part of the twentieth century, the United States developed a highly technical nuclear weapons complex that involved workers at many facilities performing complex missions at a number of different industrial sites across the country. Now, many of these sites are being remediated to remove legacy materials including chemical and radioactive wastes. Along with remediation comes the responsibility to adequately assess risk to cleanup workers who could be exposed to any hazardous materials, including resuspended uranium dust, encountered during environmental restoration. Inhalation of resuspended uranium represents one of the exposure hazards at an abandoned former metal rolling mill where approximately 11 thousand tons of uranium metal was rolled between 1947 and 1958. Residual uranium contamination in the dirt floor of this abandoned site has been exposed to rain, ice, snow, and other environmental factors for more than 50 y. This report describes the solubility of the uranium contamination in this dirt measured in vitro using a modified recipe for simulated lung fluid that contains a pulmonary surfactant. Small (0.1 g) aliquots of dirt collected at this site were sequentially dissolved in simulated lung fluid for increasing periods of time up to 30 d. Solubility was classified according to the ICRP categories as fast, medium, and slow. Results demonstrate that the solubility designation for the uranium contamination in the dirt is approximately 50% fast, 15% medium, and 35-40% slow. There was no observed difference in solubility when a pulmonary surfactant was added to the simulated lung fluid.
Collapse
Affiliation(s)
- Grant Spitler
- *University of Cincinnati, College of Engineering & Applied Science, Department of Mechanical and Materials Engineering, Nuclear & Radiological Engineering, 598 Rhodes Hall, Cincinnati, OH 45221-0072; †Cincinnati Children's Hospital Medical Center, University of Cincinnati Department of Pediatrics, 3333 Burnet Avenue, Cincinnati, OH 45229-3026; §University of Cincinnati, Department of Chemistry, 404 Crosley Tower, Cincinnati, OH 45521-0037
| | | | | | | | | |
Collapse
|
214
|
Snoeck HW. Modeling human lung development and disease using pluripotent stem cells. Development 2015; 142:13-6. [PMID: 25516965 DOI: 10.1242/dev.115469] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into mature cells, tissues and organs holds major promise for the development of novel approaches in regenerative medicine, and provides a unique tool for disease modeling and drug discovery. Sometimes underappreciated is the fact that directed differentiation of hPSCs also provides a unique model for human development, with a number of important advantages over model organisms. Here, I discuss the importance of using human stem cell models for understanding human lung development and disease.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA Department of Medicine, Columbia University Medical Center, New York, NY, USA Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
215
|
Wu Y, Ma J, Woods PS, Chesarino NM, Liu C, Lee LJ, Nana-Sinkam SP, Davis IC. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes. J Control Release 2015; 203:140-9. [PMID: 25687308 DOI: 10.1016/j.jconrel.2015.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 12/20/2022]
Abstract
Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48h, and did not accumulate at significant levels in other lung cell types or viscera. 48h after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for the treatment of pulmonary diseases that result primarily from ATII cell dysfunction.
Collapse
Affiliation(s)
- Yun Wu
- Dept. of Biomedical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260, USA; Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Smith Laboratory, 174W. 18th Ave., Columbus, OH 43210, USA.
| | - Junyu Ma
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Smith Laboratory, 174W. 18th Ave., Columbus, OH 43210, USA.
| | - Parker S Woods
- Dept. of Veterinary Biosciences, The Ohio State University, Goss Laboratories, 1925 Coffey Road, Columbus, OH 43210, USA.
| | - Nicholas M Chesarino
- Dept. of Microbial Infection & Immunity, The Ohio State University, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA.
| | - Chang Liu
- Dept. of Biomedical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260, USA.
| | - L James Lee
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Smith Laboratory, 174W. 18th Ave., Columbus, OH 43210, USA; William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Koffolt Laboratories, 140W. 19th Ave., Columbus, OH 43210, USA.
| | - Serge P Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Davis Heart and Lung Research Institute, 473W. 12th Ave., Columbus, OH 43210, USA.
| | - Ian C Davis
- Dept. of Veterinary Biosciences, The Ohio State University, Goss Laboratories, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
216
|
Huang SXL, Green MD, de Carvalho AT, Mumau M, Chen YW, D'Souza SL, Snoeck HW. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc 2015; 10:413-25. [PMID: 25654758 DOI: 10.1038/nprot.2015.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of hPSCs into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development, and it takes ∼50 d. First, definitive endoderm (DE) is induced in the presence of high concentrations of activin A. Subsequently, lung-biased anterior foregut endoderm (AFE) is specified by sequential inhibition of bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β) and Wnt signaling. AFE is then ventralized by applying Wnt, BMP, fibroblast growth factor (FGF) and retinoic acid (RA) signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, cAMP and glucocorticoid agonism. This protocol is conducted in defined conditions, it does not involve genetic manipulation of the cells and it results in cultures in which the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells.
Collapse
Affiliation(s)
- Sarah X L Huang
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Michael D Green
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ana Toste de Carvalho
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Melanie Mumau
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ya-Wen Chen
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Sunita L D'Souza
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Experimental Therapeutic Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hans-Willem Snoeck
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA. [3] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
217
|
Huang LT, Yeh TF, Kuo YL, Chen PC, Chen CM. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice. Pediatr Neonatol 2015; 56:19-24. [PMID: 25199848 DOI: 10.1016/j.pedneo.2014.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Surfactant is a useful vehicle for the intratracheal delivery of medicine to the distal lung. The aim of this study was to analyze the effect of intratracheal surfactant and budesonide instillation on the pulmonary distribution of fluorescent dye in mice. METHODS Male athymic nude mice were assigned randomly as controls, fluorescent dye, fluorescent dye + surfactant (50 mg/kg), fluorescent dye + budesonide (0.25 mg/kg), and fluorescent dye + surfactant + budesonide groups. A total volume of 60 μL fluorescent solutions was intratracheally injected and followed by 60 μL of air. We photographed and measured fluorescence in the lungs, from the back, 15 minutes after intratracheal administration using an IVIS Xenogen imaging instrument. RESULTS The fluorescent dye (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide) was most strongly detected near the trachea and weakly detected in the lungs in mice administered with fluorescent solutions. Almost no fluorescence was seen in the lung region of control mice. Intratracheal administration of surfactant or budesonide increased fluorescent intensity compared with control mice. Combined administration of surfactant and budesonide further increased fluorescent intensity compared with mice given surfactant or budesonide alone. CONCLUSION Surfactant and budesonide enhance the pulmonary distribution of fluorescent dye in mice.
Collapse
Affiliation(s)
- Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsu-Fu Yeh
- Maternal and Child Health Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Lin Kuo
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Pin-Chuan Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chung-Ming Chen
- Maternal and Child Health Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
218
|
Early radiologic evidence of severe respiratory distress syndrome as a predictor of nasal continuous positive airway pressure failure in extremely low birth weight newborns. J Perinatol 2015; 35:99-103. [PMID: 25188910 DOI: 10.1038/jp.2014.164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/08/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine whether early radiologic evidence of severe respiratory distress syndrome (RDS) is predictive of nasal continuous positive airway pressure (CPAP) failure in extremely low birth weight (ELBW) infants during the first 72 h of age. STUDY DESIGN Retrospective analysis of 235 consecutively inborn ELBW infants who received initial support with CPAP. CPAP success (n=151) and CPAP failure (n=84) groups were designated according to outcome within the first 72 h of age. We assessed the ability of radiologic evidence of severe RDS in the initial chest radiograph, alone and in combination with other variables available in the first hours of life, to predict CPAP failure. RESULT Severe RDS had a positive predictive value (PPV) of 0.81 (95% confidence interval (CI) 0.64, 0.92) for CPAP failure. The combination of severe RDS and gestational age (GA) ⩽ 26 weeks had a PPV of 0.92 (95% CI 0.68, 0.96). CONCLUSION Early radiologic evidence of severe RDS is predictive of CPAP failure, especially in infants with GA ⩽ 26 weeks.
Collapse
|
219
|
Hofer CC, Woods PS, Davis IC. Infection of mice with influenza A/WSN/33 (H1N1) virus alters alveolar type II cell phenotype. Am J Physiol Lung Cell Mol Physiol 2015; 308:L628-38. [PMID: 25595651 DOI: 10.1152/ajplung.00373.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
Influenza viruses cause acute respiratory disease of great importance to public health. Alveolar type II (ATII) respiratory epithelial cells are central to normal lung function and are a site of influenza A virus replication in the distal lung. However, the consequences of infection for ATII cell function are poorly understood. To determine the impact of influenza infection on ATII cells we used C57BL/6-congenic SP-C(GFP) mice that express green fluorescent protein (GFP) under the control of the surfactant protein-C (SP-C) promoter, which is only active in ATII cells. Most cells isolated from the lungs of uninfected SP-C(GFP) mice were GFP(+) but did not express the alveolar type I (ATI) antigen podoplanin (PODO). ATII cells were also EpCAM(+) and α2,3-linked sialosaccharide(+). Infection with influenza A/WSN/33 virus caused severe hypoxemia and pulmonary edema. This was accompanied by loss of whole lung GFP fluorescence, reduced ATII cell yields, increased ATII cell apoptosis, reduced SP-C gene and protein expression in ATII cell lysates, and increased PODO gene and protein levels. Flow cytometry indicated that infection decreased GFP(+)/PODO(-) cells and increased GFP(-)/PODO(+) and GFP(-)/PODO(-) cells. Very few GFP(+)/PODO(+) cells were detectable. Finally, infection resulted in a significant decline in EpCAM expression by PODO(+) cells, but had limited effects on α2,3-linked sialosaccharides. Our findings indicate that influenza infection results in a progressive differentiation of ATII cells into ATI-like cells, possibly via an SP-C(-)/PODO(-) intermediate, to replace dying or dead ATI cells. However, impaired SP-C synthesis is likely to contribute significantly to reduced lung compliance in infected mice.
Collapse
Affiliation(s)
- Christian C Hofer
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio; and
| | - Parker S Woods
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
220
|
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015; 16:27-35. [PMID: 25521682 PMCID: PMC4318521 DOI: 10.1038/ni.3045] [Citation(s) in RCA: 542] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology, Division of Perinatal Biology and Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
221
|
Jouneau S, Kerjouan M, Briens E, Lenormand JP, Meunier C, Letheulle J, Chiforeanu D, Lainé-Caroff C, Desrues B, Delaval P. La protéinose alvéolaire pulmonaire. Rev Mal Respir 2014; 31:975-91. [DOI: 10.1016/j.rmr.2014.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
|
222
|
Hallik M, Annilo T, Ilmoja ML. Different course of lung disease in two siblings with novel ABCA3 mutations. Eur J Pediatr 2014; 173:1553-6. [PMID: 23846195 DOI: 10.1007/s00431-013-2087-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Mutations in the gene for adenosine triphosphate-binding cassette transporter subfamily A member 3 (ABCA3) have been reported in infants and children with surfactant deficiency and interstitial lung disease. We report a case of siblings found to be compound heterozygotes for two novel ABCA3 gene mutations but developing very different course of lung disease. The index case is a baby girl with severe interstitial lung disease that manifested on the first days of life. Her 4-year-old brother carrying the same mutations has no signs of lung disease so far. Our findings suggest the contribution of other genetic, epigenetic and environmental factors to discordant phenotype observed in patients carrying the same mutations in the ABCA3 gene. The clinical course of the index case suggests benefit of combined medical therapy in treating infants with ABCA3 deficiency.
Collapse
Affiliation(s)
- Maarja Hallik
- Department of Anesthesiology and Intensive Care, Clinic of Pediatrics, Tallinn Children's Hospital, Tervise 28, 13419, Tallinn, Estonia,
| | | | | |
Collapse
|
223
|
Romero F, Shah D, Duong M, Stafstrom W, Hoek JB, Kallen CB, Lang CH, Summer R. Chronic alcohol ingestion in rats alters lung metabolism, promotes lipid accumulation, and impairs alveolar macrophage functions. Am J Respir Cell Mol Biol 2014; 51:840-9. [PMID: 24940828 PMCID: PMC4291549 DOI: 10.1165/rcmb.2014-0127oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022] Open
Abstract
Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and/or treating alcohol-related pulmonary disorders.
Collapse
Affiliation(s)
| | | | | | | | - Jan B. Hoek
- Department of Pathology, Anatomy, and Cell Biology, and
| | - Caleb B. Kallen
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Charles H. Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
224
|
Gu C, Li Y, Xu WL, Yan JP, Xia YJ, Ma YY, Chen C, Wang HJ, Tao HQ. Sirtuin 1 Activator SRT1720 Protects Against Lung Injury via Reduction of Type II Alveolar Epithelial Cells Apoptosis in Emphysema. COPD 2014; 12:444-52. [DOI: 10.3109/15412555.2014.974740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
225
|
Abstract
The occurrence of pulmonary fibrosis in numerous individuals from the same family suggests a genetic cause for the disease. During the last 10 years, mutations involving proteins from the telomerase complex and from the surfactant system have been identified in association with pulmonary fibrosis. Mutations of TERT, the coding gene for the telomerase reverse transcriptase, are the most frequently identified mutations and are present in 15% of cases of familial pulmonary fibrosis. Other mutations (TERC, surfactant proteins genes) are only rarely evidenced in adults. Patients with mutations involving the telomerase complex may present with pulmonary fibrosis, hematologic, cutaneous or liver diseases. Other genetic variations associated with pulmonary fibrosis such as a polymorphism in the promoter of MUC5B or a polymorphism in TERT have been recently described, and could be considered to be part of a polygenic transmission. Evidence for mutations associated with the development of pulmonary fibrosis raises numerous clinical questions from establishing a diagnosis, providing counselling to deciding on therapy, and requires specific studies. From a pathophysiological point of view, the function of the genes highlights the central role of alveolar epithelium and aging in fibrogenesis.
Collapse
|
226
|
Schmiedl A, Grützner D, Hoffmann T, von Hörsten S, Stephan M. DPP4 inhibitors increase differentially the expression of surfactant proteins in Fischer 344 rats. Acta Physiol (Oxf) 2014; 212:248-61. [PMID: 25069535 DOI: 10.1111/apha.12350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/17/2014] [Accepted: 07/19/2014] [Indexed: 01/21/2023]
Abstract
AIM Intact surface active agent (surfactant) composed of surfactant-associated proteins (SPs) and lipids is necessary for respiration and prevents alveoli from collapsing. CD26, a transmembrane glycoprotein exerting dipeptidyl peptidase activity (DPP4), highly expressed in lung parenchyma, is involved in inflammatory processes. A pharmacological inhibition of DPP4 influenced not only the inflammation but also elevated the SPs. Thus, DPP4 inhibitors may be a novel drug for treatment of diseases with surfactant deficiency. Therefore, we tested firstly the hypothesis that DPP4 inhibitors increase the expression of SPs in healthy rats. METHODS SP mRNA and protein expression were determined different times after nebulization of aerosolized DPP4 inhibitors [L-isoleucine-thiazolidide (L-Ile-Thia), L-valine-pyrrolidide (L-Val-Pyrr)], budesonide, saline or stereoisomers. RESULTS Compared with negative controls (1) L-Ile-Thia as well as budesonide led to a significant higher and L-Val-Pyrr had the tendency to a significant higher expression of SP-A mRNA 6 h after nebulization, (2) the expression of SP-D mRNA increased significantly 6 h after nebulization with L-Ile-Thia and 3 and 6 h after nebulization with Val-pyrr, (3) SP-B mRNA levels showed significantly higher values 3 and 6 h after nebulization with L-Val-Pyrr, (4) protein levels of SP-A, SP-B and SP-C were elevated significantly 6 h after nebulization with L-Val-Pyrr as well as with budesonide, and (5) phospholipids were also increased in response to DPP4 inhibition; the minimal surface tension was comparable. CONCLUSION DPP4 inhibition influence differently the expression of surfactant proteins in healthy rats and may be suitable to elevate surfactant synthesis in different diseases accompanied with surfactant deficiencies.
Collapse
Affiliation(s)
- A. Schmiedl
- Institute of Functional and Applied Anatomy; Hannover Medical School; Hannover Germany
| | - D. Grützner
- Institute of Functional and Applied Anatomy; Hannover Medical School; Hannover Germany
| | | | - S. von Hörsten
- Department for Experimental Therapy; Franz-Penzoldt-Center; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - M. Stephan
- Clinic for Psychosomatics and Psychotherapy; Hannover Medical School; Hannover Germany
| |
Collapse
|
227
|
Li Y, Gu C, Xu W, Yan J, Xia Y, Ma Y, Chen C, He X, Tao H. Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res 2014; 15:120. [PMID: 25319435 PMCID: PMC4201761 DOI: 10.1186/s12931-014-0120-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the loss of alveolar structure and airspace enlargement. To treat COPD, it is crucial to repair damaged lung tissue and regenerate the lost alveoli. Type II alveolar epithelial cells (AECII) play a vital role in maintaining lung tissue repair, and amniotic fluid-derived mesenchymal stromal cells (AFMSCs) possess the characteristics of regular mesenchymal stromal cells. However, it remains untested whether transplantation of rat AFMSCs (rAFMSCs) might alleviate lung injury caused by emphysema by increasing the expression of surfactant protein (SP)A and SPC and inhibiting AECII apoptosis. Methods We analyzed the phenotypic characteristics, differentiation potential, and karyotype of rAFMSCs, which were isolated from pregnant Sprague–Dawley rats. Moreover, we examined the lung morphology and the expression levels of SPA and SPC in rats with emphysema after cigarette-smoke exposure and intratracheal lipopolysaccharide instillation and rAFMSC transplantation. The ability of rAFMSCs to differentiate was measured, and the apoptosis of AECII was evaluated. Results In rAFMSCs, the surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 were expressed, but CD14, CD19, CD34, and CD45 were not detected; rAFMSCs also strongly expressed the mRNA of octamer-binding transcription factor 4, and the cells could be induced to differentiate into adipocytes and osteocytes. Furthermore, rAFMSC treatment up-regulated the levels of SPA, SPC, and thyroid transcription factor 1 and inhibited AECII apoptosis, and rAFMSCs appeared to be capable of differentiating into AECII-like cells. Lung injury caused by emphysema was alleviated after rAFMSC treatment. Conclusions rAFMSCs might differentiate into AECII-like cells or induce local regeneration of the lung alveolar epithelium in vivo after transplantation and thus could be used in COPD treatment and lung regenerative therapy.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, No, 158, Shangtang Road, Hangzhou 310014, Zhejiang, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Subramaniam R, Shams H. Reply to Roux and Ricard. J Infect Dis 2014; 210:1340-1. [PMID: 24755436 DOI: 10.1093/infdis/jiu243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Renuka Subramaniam
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler
| | - Homayoun Shams
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler
| |
Collapse
|
229
|
Suzuki T, Arumugam P, Sakagami T, Lachmann N, Chalk C, Sallese A, Abe S, Trapnell C, Carey B, Moritz T, Malik P, Lutzko C, Wood RE, Trapnell BC. Pulmonary macrophage transplantation therapy. Nature 2014; 514:450-4. [PMID: 25274301 PMCID: PMC4236859 DOI: 10.1038/nature13807] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022]
Abstract
Bone marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection-risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independent of hematologic progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using GM-CSF receptor-β deficient (Csf2rb−/−) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA/CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe, well-tolerated, and that one administration corrected the lung disease, secondary systemic manifestations, normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Results identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP.
Collapse
Affiliation(s)
- Takuji Suzuki
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Paritha Arumugam
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Takuro Sakagami
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Nico Lachmann
- RG Reprograming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Claudia Chalk
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Anthony Sallese
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Shuichi Abe
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Cole Trapnell
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02138, USA
| | - Brenna Carey
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Thomas Moritz
- RG Reprograming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Punam Malik
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Carolyn Lutzko
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Robert E Wood
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Bruce C Trapnell
- 1] Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA [2] Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA [3] Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| |
Collapse
|
230
|
Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports 2014; 3:394-403. [PMID: 25241738 PMCID: PMC4266003 DOI: 10.1016/j.stemcr.2014.07.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 11/20/2022] Open
Abstract
No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. Carboxypeptidase M (CPM) is a marker of alveolar epithelial progenitor cells CPM is useful for isolating “ventralized” anterior foregut endoderm cells (VAFECs) 3D coculture of CPM+ VAFECs enables alveolar differentiation SFTPC-GFP knockin reporter hPSCs help to detect and isolate SFTPC+ cells
Collapse
|
231
|
Lysophospholipid acyltransferases mediate phosphatidylcholine diversification to achieve the physical properties required in vivo. Cell Metab 2014; 20:295-305. [PMID: 24981836 DOI: 10.1016/j.cmet.2014.05.019] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/18/2014] [Accepted: 05/13/2014] [Indexed: 12/19/2022]
Abstract
The acyl-chain composition of the major mammalian phospholipid phosphatidylcholine (PC) is distinct in various tissues. Although it was classically suggested that PC diversity is acquired through acyl-chain remodeling, the mechanisms and biological relevance of acyl-chain diversity remain unclear. Here, we show that differences in the substrate selectivity of lysophospholipid acyltransferases regulate tissue PC acyl-chain composition through contribution of both the de novo and remodeling pathways, depending on the fatty acid species. Unexpectedly, while dipalmitoyl-PC (DPPC) is enriched through the remodeling pathway, several polyunsaturated PC molecules accumulate during the de novo pathway. We confirmed this concept for DPPC in pulmonary surfactant and showed that the biophysical properties of this lipid are important to prevent the early onset of acute lung injury. We propose a model of harmonized processes for phospholipid diversification to satisfy in vivo requirements, with an example of its biological relevance.
Collapse
|
232
|
|
233
|
Woik N, Dietz CT, Schäker K, Kroll J. Kelch-like ECT2-interacting protein KLEIP regulates late-stage pulmonary maturation via Hif-2α in mice. Dis Model Mech 2014; 7:683-92. [PMID: 24785085 PMCID: PMC4036475 DOI: 10.1242/dmm.014266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory distress syndrome (RDS) caused by preterm delivery is a major clinical problem with limited mechanistic insight. Late-stage embryonic lung development is driven by hypoxia and the hypoxia-inducible transcription factors Hif-1α and Hif-2α, which act as important regulators for lung development. Expression of the BTB-and kelch-domain-containing (BTB-kelch) protein KLEIP (Kelch-like ECT2-interacting protein; also named Klhl20) is controlled by two hypoxia response elements, and KLEIP regulates stabilization and transcriptional activation of Hif-2α. Based on the available data, we hypothesized an essential role for KLEIP in murine lung development and function. Therefore, we have performed a functional, histological, mechanistic and interventional study in embryonic and neonatal KLEIP−/− mice. Here, we show that about half of the KLEIP−/− neonates die due to respiratory failure that is caused by insufficient aeration, reduced septal thinning, reduced glycogenolysis, type II pneumocyte immaturity and reduced surfactant production. Expression analyses in embryonic day (E) 18.5 lungs identified KLEIP in lung capillaries, and showed strongly reduced mRNA and protein levels for Hif-2α and VEGF; such reduced levels are associated with embryonic endothelial cell apoptosis and lung bleedings. Betamethasone injection in pregnant females prevented respiratory failure in KLEIP−/− neonates, normalized lung maturation, vascularization, aeration and function, and increased neonatal Hif-2α expression. Thus, the experimental study shows that respiratory failure in KLEIP−/− neonates is determined by insufficient angiocrine Hif-2α–VEGF signaling and that betamethasone activates this newly identified signaling cascade in late-stage embryonic lung development.
Collapse
Affiliation(s)
- Nicole Woik
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany. Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Christian T Dietz
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Kathrin Schäker
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany. Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany. Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany.
| |
Collapse
|
234
|
Vadivel A, Alphonse RS, Etches N, van Haaften T, Collins JJP, O'Reilly M, Eaton F, Thébaud B. Hypoxia-inducible factors promote alveolar development and regeneration. Am J Respir Cell Mol Biol 2014; 50:96-105. [PMID: 23962064 DOI: 10.1165/rcmb.2012-0250oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.
Collapse
Affiliation(s)
- Arul Vadivel
- 1 Department of Pediatrics, School of Human Development, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Campo I, Zorzetto M, Mariani F, Kadija Z, Morbini P, Dore R, Kaltenborn E, Frixel S, Zarbock R, Liebisch G, Hegermann J, Wrede C, Griese M, Luisetti M. A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respir Res 2014; 15:43. [PMID: 24730976 PMCID: PMC4021316 DOI: 10.1186/1465-9921-15-43] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 04/08/2014] [Indexed: 01/15/2023] Open
Abstract
Background Interstitial lung disease occurring in children is a condition characterized by high frequency of cases due to genetic aberrations of pulmonary surfactant homeostasis, that are also believed to be responsible of a fraction of familial pulmonary fibrosis. To our knowledge, ABCA3 gene was not previously reported as causative agent of fibrosis affecting both children and adults in the same kindred. Methods We investigated a large kindred in which two members, a girl whose interstitial lung disease was first recognized at age of 13, and an adult, showed a diffuse pulmonary fibrosis with marked differences in terms of morphology and imaging. An additional, asymptomatic family member was detected by genetic analysis. Surfactant abnormalities were investigated at biochemical, and genetic level, as well as by cell transfection experiments. Results Bronchoalveolar lavage fluid analysis of the patients revealed absence of surfactant protein C, whereas the gene sequence was normal. By contrast, sequence of the ABCA3 gene showed a novel homozygous G > A transition at nucleotide 2891, localized within exon 21, resulting in a glycine to aspartic acid change at codon 964. Interestingly, the lung specimens from the girl displayed a morphologic usual interstitial pneumonitis-like pattern, whereas the specimens from one of the two adult patients showed rather a non specific interstitial pneumonitis-like pattern. Conclusions We have detected a large kindred with a novel ABCA3 mutation likely causing interstitial lung fibrosis affecting either young and adult family members. We suggest that ABCA3 gene should be considered in genetic testing in the occurrence of familial pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maurizio Luisetti
- Pneumology Unit, IRCCS San Matteo Foundation Hospital, Piazza Golgi 1, Pavia 27100, Italy.
| |
Collapse
|
236
|
LI YAQING, XU WULIN, YAN JIANPING, XIA YINGJIE, GU CHAO, MA YINGYU, TAO HOUQUAN. Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro. Int J Mol Med 2014; 33:1507-13. [DOI: 10.3892/ijmm.2014.1705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/12/2014] [Indexed: 11/06/2022] Open
|
237
|
Hishikawa D, Hashidate T, Shimizu T, Shindou H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 2014; 55:799-807. [PMID: 24646950 PMCID: PMC3995458 DOI: 10.1194/jlr.r046094] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | |
Collapse
|
238
|
Jon C, Nolan PK, Ekong M, Mosquera RA, Stark JM. SFTPC gene mutation p.R167Q in a premature infant. Pediatr Pulmonol 2014; 49:E66-8. [PMID: 23775869 DOI: 10.1002/ppul.22825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 11/06/2022]
Abstract
We present an infant who was born premature at 23 weeks gestation with bronchopulmonary dysplasia and a SFTPC gene mutation, p.R167Q, who had a complicated neonatal course requiring 4 months of mechanical ventilation. Over time, his clinical course has improved, and he only requires oxygen by nasal cannula and low dose hydroxychloroquine, suggesting that p.R167Q mutation contributed to his clinical course and may manifest with a variable disease pattern making long-term prognostication difficult in the immediate newborn period.
Collapse
Affiliation(s)
- Cindy Jon
- Department of Pediatrics, University of Texas Health Science Center, Houston, Texas
| | | | | | | | | |
Collapse
|
239
|
Carrera P, Ferrari M, Presi S, Ventura L, Vergani B, Lucchini V, Cogo PE, Carnielli VP, Somaschini M, Tagliabue P. Null ABCA3 in humans: large homozygous ABCA3 deletion, correlation to clinical-pathological findings. Pediatr Pulmonol 2014; 49:E116-20. [PMID: 24420869 DOI: 10.1002/ppul.22983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023]
Abstract
A study was undertaken to analyze the clinical presentation, pulmonary function, and pathological features in two female siblings with neonatal pulmonary surfactant metabolism dysfunction, type 3 (MIM 610921). The clinical records of the siblings were examined; the genes encoding surfactant protein B (SFTPB), surfactant protein C (SFTPC), and ATP-binding cassette transporter 3 protein (ABCA3) were analyzed with direct sequencing and Southern blotting. The infants were homozygous for a 5,983 bp deletion in ABCA3 including exons 2-5 as well as the start AUG codon and a putative Golgi exit signal motif. Dense abnormalities of lamellar bodies at electron microscopy and absence of ABCA3 at immunohistochemical staining were in agreement with the presence of two null alleles. In addition, an increased lipid synthesis suggested a compensatory mechanism. The clinical course in the two sisters was influenced by different environmental factors like the time needed for molecular confirmation, the ventilatory assistance adopted, the occurrence of infections. A less aggressive clinical approach did not improve the course of the disease; the prognosis was always poor. Development of a fast molecular test, able to detect also structural variants, is needed.
Collapse
Affiliation(s)
- Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, Centre of Translational Genomics and Bioinformatics, Ospedale San Raffaele, Milano, Italy; Laboraf, Diagnostica e Ricerca, Ospedale San Raffaele, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Vento M, Curstedt T, Halliday HL, Hallman M, Saugstad OD, Speer CP. More about surfactant, oxygen, caffeine and chronic lung disease. Neonatology 2014; 105:320-63. [PMID: 24931323 DOI: 10.1159/000360653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
MESH Headings
- Animals
- Caffeine/therapeutic use
- Humans
- Infant, Newborn
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/physiopathology
- Infant, Premature, Diseases/therapy
- Oxygen Inhalation Therapy/adverse effects
- Pulmonary Surfactant-Associated Proteins/metabolism
- Pulmonary Surfactants/therapeutic use
- Respiration, Artificial/adverse effects
- Risk Factors
- Signal Transduction
- Treatment Outcome
- Ventilator-Induced Lung Injury/diagnosis
- Ventilator-Induced Lung Injury/etiology
- Ventilator-Induced Lung Injury/metabolism
- Ventilator-Induced Lung Injury/physiopathology
- Ventilator-Induced Lung Injury/therapy
Collapse
|
241
|
|
242
|
Abstract
Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed 'idiopathic', that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar homeostasis has provided new diagnostic, prognostic and therapeutic tools to advance our understanding of the causes and treatments of acute and chronic lung diseases. Severe lung disease in newborn infants and older patients is caused by mutations in genes regulating alveolar epithelial cells and surfactant homeostasis. Mutations in genes encoding the surfactant proteins, transcription factors critical for alveolar morphogenesis and surfactant clearance, are now known to play important roles in the pathogenesis of chronic lung diseases. Identification of the genes underlying the diseases of alveolar homeostasis is useful for the diagnosis of lung disease before and after birth.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
243
|
Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE, Kitzmiller JA, Page K, Xu Y, Bao EL, Korfhagen TR. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol 2013; 49:845-54. [PMID: 23795648 DOI: 10.1165/rcmb.2012-0374oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation.
Collapse
|
244
|
Calcium signaling-related proteins are associated with broncho-pulmonary dysplasia progression. J Proteomics 2013; 94:401-12. [DOI: 10.1016/j.jprot.2013.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/07/2023]
|
245
|
Huang SXL, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 2013; 32:84-91. [PMID: 24291815 PMCID: PMC4101921 DOI: 10.1038/nbt.2754] [Citation(s) in RCA: 439] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 12/14/2022]
Abstract
The ability to generate lung and airway epithelial cells from human pluripotent stem cells (hPSCs) would have applications in regenerative medicine, drug screening and modeling of lung disease, and studies of human lung development. We established, based on developmental paradigms, a highly efficient method for directed differentiation of hPSCs into lung and airway epithelial cells. Long-term differentiation in vivo and in vitro yielded basal, goblet, Clara, ciliated, type I and type II alveolar epithelial cells. Type II alveolar epithelial cells generated were capable of surfactant protein-B uptake and stimulated surfactant release, providing evidence of specific function. Inhibiting or removing agonists to signaling pathways critical for early lung development in the mouse—retinoic acid, Wnt and BMP—recapitulated defects in corresponding genetic mouse knockouts. The capability of this protocol to generate most cell types of the respiratory system suggests its utility for deriving patient-specific therapeutic cells.
Collapse
Affiliation(s)
- Sarah X L Huang
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | - John O'Neill
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Zheng Hu
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Yong-Guang Yang
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ya-Wen Chen
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Melanie Mumau
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Michael D Green
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- 1] Department of Medicine, Columbia University Medical Center, New York, New York, USA. [2] Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jahar Bhattacharya
- 1] Department of Medicine, Columbia University Medical Center, New York, New York, USA. [2] Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, USA
| | - Hans-Willem Snoeck
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA. [3] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
246
|
Kaczyńska K, Walski M, Szereda-Przestaszewska M. Long-term ultrastructural indices of lead intoxication in pulmonary tissue of the rat. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1410-1415. [PMID: 23985218 DOI: 10.1017/s1431927613013305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present research long-term pulmonary toxicity of lead was investigated in rats treated by intraperitoneal administration of lead acetate for three consecutive days (25 mg/kg per day). Five weeks after treatment average lead content in the whole blood was 0.41 μg/dL ± 0.05, in the lung homogenates it measured 3.35 μg/g ± 0.54, as compared to the control values of 0.13 ± 0.07 μg/dL and 1.03 μg/g ± 0.59, respectively. X-ray microanalysis of lung specimens displayed lead localized mainly within type II pneumocytes and macrophages. At the ultrastructural level the effects of lead toxicity were found in lung capillaries, interstitium, epithelial cells, and alveolar lining. Alveolar septa showed intense fibrosis, consisting of collagen, elastin, and fibroblasts. Thinned alveolar septa had emphysematous tissue with some revealing signs of angiogenesis. Type II pneumocytes contained lamellar bodies with features of laminar destruction. Fragments of the surfactant layer were often detached from the alveolar epithelium. These findings indicate that 5 weeks after exposure, lead provokes reconstruction of the alveolar septa including fibrosis and emphysematous changes in the lung tissue.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiratory Reflexes, Polish Academy of Sciences Mossakowski Medical Research Centre, 02-106 Warsaw, 5 Pawińskiego Street, Poland
| | | | | |
Collapse
|
247
|
Novel ABCA3 mutations as a cause of respiratory distress in a term newborn. Gene 2013; 534:417-20. [PMID: 24269975 DOI: 10.1016/j.gene.2013.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 12/23/2022]
Abstract
We report here the case of a term female newborn that developed severe respiratory distress soon after birth. She was found to be a compound heterozygote for both novel mutations in the ABCA3 gene. ABCA3 deficiency should be considered in mature babies who develop severe respiratory distress syndrome.
Collapse
|
248
|
Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.). Oncogene 2013; 33:5391-6. [PMID: 24213573 DOI: 10.1038/onc.2013.475] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/31/2013] [Accepted: 09/20/2013] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of deaths in cancer patients in the United States. Identification of new molecular targets is clearly needed to improve therapeutic outcomes of this devastating human disease. Activating mutations in K-Ras oncogene and increased expression of FOXM1 protein are associated with poor prognosis in patients with non-small-cell lung cancer. Transgenic expression of activated Kras(G12D) in mouse respiratory epithelium is sufficient to induce lung adenocarcinomas; however, transcriptional mechanisms regulated by K-Ras during the initiation of lung cancer remain poorly understood. Foxm1 transcription factor, a downstream target of K-Ras, stimulates cellular proliferation during embryogenesis, organ repair and tumor growth, but its role in tumor initiation is unknown. In the present study, we used transgenic mice expressing Kras(G12D) under control of Sftpc promoter to demonstrate that Foxm1 was induced in type II epithelial cells before the formation of lung tumors. Conditional deletion of Foxm1 from Kras(G12D)-expressing respiratory epithelium prevented the initiation of lung tumors in vivo. The loss of Foxm1 inhibited expression of K-Ras target genes critical for the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, including Ikbkb, Nfkb1, Nfkb2, Rela, Jnk1, N-Myc, Pttg1 and Cdkn2a. Transgenic overexpression of activated FOXM1 mutant was sufficient to induce expression of these genes in alveolar type II cells. FOXM1 directly bound to promoter regions of Ikbkb, Nfkb2, N-Myc, Pttg1 and Cdkn2a, indicating that these genes are direct FOXM1 targets. FOXM1 is required for K-Ras-mediated lung tumorigenesis by activating genes critical for the NF-κB and JNK pathways.
Collapse
|
249
|
Islam MN, Gusarova GA, Monma E, Das SR, Bhattacharya J. F-actin scaffold stabilizes lamellar bodies during surfactant secretion. Am J Physiol Lung Cell Mol Physiol 2013; 306:L50-7. [PMID: 24213916 DOI: 10.1152/ajplung.00252.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar type 2 (AT2) cells secrete surfactant that forms a protective layer on the lung's alveolar epithelium. Vesicles called lamellar bodies (LBs) store surfactant. Failure of surfactant secretion, which causes severe lung disease, relates to the manner in which LBs undergo exocytosis during the secretion. However, the dynamics of LBs during the secretion process are not known in intact alveoli. Here, we addressed this question through real-time confocal microscopy of single AT2 cells in live alveoli of mouse lungs. Using a combination of phospholipid and aqueous fluorophores that localize to LBs, we induced surfactant secretion by transiently hyperinflating the lung, and we quantified the secretion in terms of loss of bulk LB fluorescence. In addition, we quantified inter-LB phospholipid flow through determinations of fluorescence recovery after photobleaching. Furthermore, we determined the role of F-actin in surfactant secretion through expression of the fluorescent F-actin probe Lifeact. Our findings indicate that, in AT2 cells in situ, LBs are held in an F-actin scaffold. Although F-actin transiently decreases during surfactant secretion, the LBs remain stationary, forming a chain of vesicles connected by intervesicular channels that convey surfactant to the secretion site on the plasma membrane. This is the first instance of a secretory process in which the secretory vesicles are immobile, but form a conduit for the secretory material.
Collapse
|
250
|
Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci U S A 2013; 110:18042-51. [PMID: 24058167 DOI: 10.1073/pnas.1311760110] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.
Collapse
|