201
|
Dinu LM, Singh SN, Baker NS, Georgescu AL, Singer BF, Overton PG, Dommett EJ. The Effects of Different Exercise Approaches on Attention Deficit Hyperactivity Disorder in Adults: A Randomised Controlled Trial. Behav Sci (Basel) 2023; 13:bs13020129. [PMID: 36829357 PMCID: PMC9952527 DOI: 10.3390/bs13020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) results in significant functional impairment. Current treatments, particularly for adults, are limited. Previous research indicates that exercise may offer an alternative approach to managing ADHD, but research into different types of exercise and adult populations is limited. The aim of this study was to examine the effects of acute exercise (aerobic cycling vs mind-body yoga exercises) on symptoms of ADHD in adults. Adults with ADHD (N = 82) and controls (N = 77) were randomly allocated to 10 min of aerobic (cycling) or mind-body (Hatha yoga) exercise. Immediately before and after exercise, participants completed the Test of Variables of Attention task, Delay Discounting Task, and Iowa Gambling Task to measure attention and impulsivity. Actigraphy measured movement frequency and intensity. Both groups showed improved temporal impulsivity post-exercise, with cycling beneficial to all, whilst yoga only benefited those with ADHD. There were no effects of exercise on attention, cognitive or motor impulsivity, or movement in those with ADHD. Exercise reduced attention and increased movement in controls. Exercise can improve temporal impulsivity in adult ADHD but did not improve other symptoms and worsened some aspects of performance in controls. Exercise interventions should be further investigated.
Collapse
Affiliation(s)
- Larisa M. Dinu
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Samriddhi N. Singh
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Neo S. Baker
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Alexandra L. Georgescu
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Bryan F. Singer
- School of Psychology, Sussex Addiction Research & Intervention Centre, Sussex Neuroscience, University of Sussex, Brighton BN1 9RH, UK
| | - Paul G. Overton
- Department of Psychology, The University of Sheffield, Cathedral Court, Sheffield S1 2LT, UK
| | - Eleanor J. Dommett
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Correspondence:
| |
Collapse
|
202
|
Gorka SM, Manzler CA, Jones EE, Smith RJ, Bryan CJ. Reward-related neural dysfunction in youth with a history of suicidal ideation: The importance of temporal predictability. J Psychiatr Res 2023; 158:20-26. [PMID: 36549196 DOI: 10.1016/j.jpsychires.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022]
Abstract
Abnormal reward processing is an important yet understudied risk factor for suicide. Recent neuroimaging studies have found that suicidality is associated with abnormal reward-related neural reactivity and connectivity across a wide range of brain regions and circuits. The varying, and oftentimes discrepant, findings have hindered progress in elucidating the neurobiological link between reward processing dysfunction and suicide risk. Some of this variability is likely related to different reward-related paradigms that are utilized across studies. The primary aim of the current study was to address these issues by comparing neural reactivity between youth with and without a history of suicidal ideation during direct manipulation of reward parameters. A total of 108 unmedicated youth, ages 17-19, were classified into two groups: 1) history of suicidal ideation (n = 39) and 2) no history of suicidal ideation (n = 69). All participants completed a novel reward anticipation task probing anticipation of predictable (P-reward) and unpredictable (U-reward) monetary reward. Results revealed that compared with controls, youth with a history of suicidal ideation exhibited increased neural activation in the dorsal anterior cingulate cortex (dACC) and right anterior insula (aINS) during anticipation of U-reward. There were no group differences during anticipation of P-reward. These findings suggest that propensity for suicidal ideation may be related to specific abnormalities during anticipation of U-reward, but not P-reward.
Collapse
Affiliation(s)
- Stephanie M Gorka
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH, 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| | - Charles A Manzler
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH, 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Emily E Jones
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH, 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Reid J Smith
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH, 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Craig J Bryan
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 370 W. 9th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
203
|
Biernacki K, Myers CE, Cole S, Cavanagh JF, Baker TE. Prefrontal transcranial magnetic stimulation boosts response vigour during reinforcement learning in healthy adults. Eur J Neurosci 2023; 57:680-691. [PMID: 36550631 DOI: 10.1111/ejn.15905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A 10-Hz repetitive transcranial magnetic stimulation to the left dorsal lateral prefrontal cortex has been shown to increase dopaminergic activity in the dorsal striatum, a region strongly implicated in reinforcement learning. However, the behavioural influence of this effect remains largely unknown. We tested the causal effects of 10-Hz stimulation on behavioural and computational characteristics of reinforcement learning. A total of 40 healthy individuals were randomized into active and sham (placebo) stimulation groups. Each participant underwent one stimulation session (1500 pulses) in which stimulation was applied over the left dorsal lateral prefrontal cortex using a robotic arm. Participants then completed a reinforcement learning task sensitive to striatal dopamine functioning. Participants' choices were modelled using a reinforcement learning model (Q-learning) that calculates separate learning rates associated with positive and negative reward prediction errors. Subjects receiving active stimulation exhibited increased reward rate (number of correct responses per second of task activity) compared with those in sham. Computationally, although no group differences were observed, the active group displayed a higher learning rate for correct trials (αG) compared with incorrect trials (αL). Finally, when tested with novel pairs of stimuli, the active group displayed extremely fast reaction times, and a trend towards a higher reward rate. This study provided specific behavioural and computational accounts of altered striatal-mediated behaviour, particularly response vigour, induced by a proposed increase of dopamine activity by 10-Hz stimulation to the left dorsal lateral prefrontal cortex. Together, these findings bolster the use of repetitive transcranial magnetic stimulation to target neurocognitive disturbances attributed to the dysregulation of dopaminergic-striatal circuits.
Collapse
Affiliation(s)
- Kathryn Biernacki
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey, USA
| | - Catherine E Myers
- VA New Jersey Health Care System, East Orange, New Jersey, USA.,Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Sally Cole
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Travis E Baker
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey, USA
| |
Collapse
|
204
|
Hall JM, Park HRP, Krebs RM, Schomaker J. The effect of target-related and target-irrelevant novel stimuli on response behaviour. Acta Psychol (Amst) 2023; 232:103818. [PMID: 36577334 DOI: 10.1016/j.actpsy.2022.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Novel events catch our attention, which can influence performance of a task. Whether this attentional capture by novelty benefits or impairs performance depends on several factors, such as the relevance of the stimulus, task requirements, and the timing of the event. Additionally, it has been argued that novel stimuli can hold intrinsic reward value, which may directly affect approach motivation, similar to positive valence stimuli. This link between novelty and approach/avoid behaviour has not been investigated directly. Here, we investigated whether stimulus novelty interacts with response behaviour in an approach/avoidance task, and whether these effects depend on the task relevance of novelty and stimulus timing. In experiment 1, participants gave an approach or avoid response dependent on a shape (diamond or square) presented at different stimulus onset asynchronies (SOA) following a novel or familiar scene (target-irrelevant novelty). In experiment 2, participants had to approach or avoid a novel or familiar image depending on the content (indoor/outdoor; target-related novelty). A shape was presented at different SOA. Results of a linear mixed model showed novelty-induced performance costs as demonstrated by longer RT and lower accuracy when novelty was target-relevant, likely due to attentional lingering at novel images. When images were target-irrelevant, approach but not avoid responses were faster for familiar versus novel images at 200 ms SOA only. Thus, novelty had a differentially pronounced detrimental effect on performance. These observations confirm that processing of novel stimuli generally depends on stimulus relevance, and tentatively suggests that differential processing of novel and familiar images is intensified by motivated approach behaviour.
Collapse
Affiliation(s)
- Julie M Hall
- Department of Experimental Psychology, Ghent University, Belgium; Faculty of Social and Behavioural Sciences, Section Health, Medical & Neuropsychology, Leiden University, the Netherlands.
| | - Haeme R P Park
- Neuroscience Research Australia, University of New South Wales, Australia
| | - Ruth M Krebs
- Department of Experimental Psychology, Ghent University, Belgium
| | - Judith Schomaker
- Faculty of Social and Behavioural Sciences, Section Health, Medical & Neuropsychology, Leiden University, the Netherlands
| |
Collapse
|
205
|
Yamada D, Bushey D, Li F, Hibbard KL, Sammons M, Funke J, Litwin-Kumar A, Hige T, Aso Y. Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila. eLife 2023; 12:e79042. [PMID: 36692262 PMCID: PMC9937650 DOI: 10.7554/elife.79042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective 'teacher' by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the 'student' compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel HillChapel HillUnited States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
206
|
Combined EEG and immersive virtual reality unveil dopaminergic modulation of error monitoring in Parkinson's Disease. NPJ Parkinsons Dis 2023; 9:3. [PMID: 36639384 PMCID: PMC9839679 DOI: 10.1038/s41531-022-00441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Detecting errors in your own and others' actions is associated with discrepancies between intended and expected outcomes. The processing of salient events is associated with dopamine release, the balance of which is altered in Parkinson's disease (PD). Errors in observed actions trigger various electrocortical indices (e.g. mid-frontal theta, error-related delta, and error positivity [oPe]). However, the impact of dopamine depletion to observed errors in the same individual remains unclear. Healthy controls (HCs) and PD patients observed ecological reach-to-grasp-a-glass actions performed by a virtual arm from a first-person perspective. PD patients were tested under their dopaminergic medication (on-condition) and after dopaminergic withdrawal (off-condition). Analyses of oPe, delta, and theta-power increases indicate that while the formers were elicited after incorrect vs. correct actions in all groups, the latter were observed in on-condition but altered in off-condition PD. Therefore, different EEG error signatures may index the activity of distinct mechanisms, and error-related theta power is selectively modulated by dopamine depletion. Our findings may facilitate discovering dopamine-related biomarkers for error-monitoring dysfunctions that may have crucial theoretical and clinical implications.
Collapse
|
207
|
Tavares TF, Bueno JLO, Doyère V. Temporal prediction error triggers amygdala-dependent memory updating in appetitive operant conditioning in rats. Front Behav Neurosci 2023; 16:1060587. [PMID: 36703723 PMCID: PMC9873233 DOI: 10.3389/fnbeh.2022.1060587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Reinforcement learning theories postulate that prediction error, i.e., a discrepancy between the actual and expected outcomes, drives reconsolidation and new learning, inducing an updating of the initial memory. Pavlovian studies have shown that prediction error detection is a fundamental mechanism in triggering amygdala-dependent memory updating, where the temporal relationship between stimuli plays a critical role. However, in contrast to the well-established findings in aversive situations (e.g., fear conditioning), only few studies exist on prediction error in appetitive operant conditioning, and even less with regard to the role of temporal parameters. To explore if temporal prediction error in an appetitive operant paradigm could generate an updating and consequent reconsolidation and/or new learning of temporal association, we ran four experiments in adult male rats. Experiment 1 verified whether an unexpected delay in the time of reward's availability (i.e., a negative temporal prediction error) in a single session produces an updating in long-term memory of temporal expectancy in an appetitive operant conditioning. Experiment 2 showed that negative prediction errors, either due to the temporal change or through reward omission, increased in the basolateral amygdala nucleus (BLA) the activation of a protein that is critical for memory formation. Experiment 3 revealed that the presence of a protein synthesis inhibitor (anisomycin) in the BLA during the session when the reward was delayed (Error session) affected the temporal updating. Finally, Experiment 4 showed that anisomycin, when infused immediately after the Error session, interfered with the long-term memory of the temporal updating. Together, our study demonstrated an involvement of BLA after a change in temporal and reward contingencies, and in the resulting updating in long-term memory in appetitive operant conditioning.
Collapse
Affiliation(s)
- Tatiane Ferreira Tavares
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil,Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,*Correspondence: Tatiane Ferreira Tavares,
| | - José Lino Oliveira Bueno
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,Valérie Doyère,
| |
Collapse
|
208
|
Altınok S, Vatansever G, Apaydın N, Üstün S, Kale EH, Çelikağ İ, Devrimci-Özgüven H, Baskak B, Çiçek M. Reward Processing Alters the Time Perception Networks in Patients with Major Depressive Disorder. TIMING & TIME PERCEPTION 2023. [DOI: 10.1163/22134468-bja10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Behavioral studies revealed that time perception is affected by the presence of a reward. Both the experience of time and the reward processing were shown to be distorted in major depressive disorder (MDD). We aimed to investigate how neural correlates of time perception and reward anticipation interact in patients with MDD. Participants (17 healthy, seven MDD) performed a time perception task during fMRI scanning that requires estimating the speed of a moving rectangle which was briefly occluded. In the control condition, participants attended to the change in color tone of the rectangle. Half of the runs were rewarded with a monetary payment per correctly done trial to evaluate the effect of a reward. The fMRI data were acquired with a 3T scanner and analyzed with repeated-measures analysis of variance (ANOVA) using SPM12. The activations related to the integration of time with reward were different between both groups in the supplementary motor area, intraparietal sulcus, thalamus, frontal eye field and caudate nucleus. Increased coupling between supplementary motor area and caudate/putamen region during timing was found in MDD patients more than in controls. Overall, our findings suggest that functional differences related to the interaction of time perception with reward anticipation in MDD occur via dysfunction of the cortico-striatal-thalamic network.
Collapse
Affiliation(s)
- Simge Altınok
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
| | - Gözde Vatansever
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
| | - Nihal Apaydın
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Anatomy, School of Medicine, Ankara University, Ankara, 06230 Turkey
| | - Sertaç Üstün
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Physiology, School of Medicine, Ankara University, Ankara, 06230 Turkey
| | - Emre H. Kale
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
| | - İpek Çelikağ
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
| | - Halise Devrimci-Özgüven
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, 06590 Turkey
| | - Bora Baskak
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, 06590 Turkey
| | - Metehan Çiçek
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Physiology, School of Medicine, Ankara University, Ankara, 06230 Turkey
| |
Collapse
|
209
|
Silveira-Ciola AP, Barbieri FA, Soares CF, Marques NR, Simieli L, Faganello-Navega FR. The effect of whole body vibration on gait stability in individuals with Parkinson's disease: a preliminary study. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2023. [DOI: 10.12968/ijtr.2020.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background/Aims Whole body vibration could benefit functional mobility in people with Parkinson's disease. A preliminary study was undertaken to analyse the acute effect of whole body vibration on unobstructed walking and obstacle circumvention in people with Parkinson's disease. Methods People with Parkinson's disease and typically healthy individuals as matched controls were divided into four groups with nine individuals in each: experimental or placebo for people with Parkinson's disease and experimental or placebo for the control group. The participants were evaluated in two different gait conditions: unobstructed walking and obstacle circumvention. Then the participants undertook a session of whole body vibration on a KIKOS P201 lateral vibratory platform in two positions: feet shoulder-width apart, and feet shoulder-width apart with slightly flexed knees. The participants were re-evaluated after this session. Results After whole body vibration, those in the experimental Parkinson's disease group had a reduced co-contraction of the tibialis anterior and the gastrocnemius lateralis muscles during unobstructed walking, whereas the co-contraction of the tibialis anterior and the gastrocnemius lateralis muscles increased in the experimental control group. In addition, those in the experimental control group had reduced stride duration in unobstructed walking and in obstacle circumvention. After the placebo intervention, the co-contraction of the tibialis anterior and the gastrocnemius lateralis muscles increased in all conditions and stride duration was reduced in unobstructed walking. Conclusions Although whole body vibration had no acute efficiency on gait (unobstructed walking and obstacle circumvention), it can improve other components, such as strength, which could be important for people with Parkinson's disease.
Collapse
Affiliation(s)
- Aline Prieto Silveira-Ciola
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory, Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Fabio Augusto Barbieri
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory, Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Carolina Favarin Soares
- School of Philosophy and Sciences, Department of Physiotherapy and Occupational Therapy, Research Laboratory of Neuromuscular Disorders, São Paulo State University, Marília, Brazil
| | | | - Lucas Simieli
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory, Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Flávia Roberta Faganello-Navega
- School of Philosophy and Sciences, Department of Physiotherapy and Occupational Therapy, Research Laboratory of Neuromuscular Disorders, São Paulo State University, Marília, Brazil
| |
Collapse
|
210
|
A Reinforcement Meta-Learning framework of executive function and information demand. Neural Netw 2023; 157:103-113. [DOI: 10.1016/j.neunet.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
|
211
|
Hahn S, Um KB, Kim SW, Kim HJ, Park MK. Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons. J Physiol 2023; 601:171-193. [PMID: 36398712 DOI: 10.1113/jp283716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In multipolar nigral dopamine (DA) neurons, the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. However, the causal link between them is unknown. Here we report that the proximal dendritic localization of NALCN underlies pacemaking and burst firing in DA neurons. Our morphological analysis of nigral DA neurons reveals that TRPC3 is ubiquitously expressed in the whole somatodendritic compartment, but NALCN is localized within the PDCs. Blocking either TRPC3 or NALCN channels abolished pacemaking. However, only blocking NALCN, not TRPC3, degraded burst discharges. Furthermore, local glutamate uncaging readily induced burst discharges within the PDCs, compared with other parts of the neuron, and NALCN channel inhibition dissipated burst generation, indicating the importance of NALCN to the high excitability of PDCs. Therefore, we conclude that PDCs serve as a common base for tonic and burst firing in nigral DA neurons. KEY POINTS: Midbrain dopamine (DA) neurons are slow pacemakers that can generate tonic and burst firings, and the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. We find that slow tonic firing depends on the basal activity of both the NALCN and TRPC3 channels, but that burst firing does not require TRPC3 channels but relies only on NALCN channels. We find that TRPC3 is ubiquitously expressed in the entire somatodendritic compartment, but that NALCN exists only within the PDCs in nigral DA neurons. We show that NALCN channel localization confers high excitability on PDCs and is essential for burst generation in nigral DA neurons. These results suggest that PDCs serve as a common base for tonic and burst firing in nigral DA neurons.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
212
|
Russo C, Senese VP. Functional near-infrared spectroscopy is a useful tool for multi-perspective psychobiological study of neurophysiological correlates of parenting behaviour. Eur J Neurosci 2023; 57:258-284. [PMID: 36485015 DOI: 10.1111/ejn.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The quality of the relationship between caregiver and child has long-term effects on the cognitive and socio-emotional development of children. A process involved in human parenting is the bio-behavioural synchrony that occurs between the partners in the relationship during interaction. Through interaction, bio-behavioural synchronicity allows the adaptation of the physiological systems of the parent to those of the child and promotes the positive development and modelling of the child's social brain. The role of bio-behavioural synchrony in building social bonds could be investigated using functional near-infrared spectroscopy (fNIRS). In this paper we have (a) highlighted the importance of the quality of the caregiver-child relationship for the child's cognitive and socio-emotional development, as well as the relevance of infantile stimuli in the activation of parenting behaviour; (b) discussed the tools used in the study of the neurophysiological substrates of the parental response; (c) proposed fNIRS as a particularly suitable tool for the study of parental responses; and (d) underlined the need for a multi-systemic psychobiological approach to understand the mechanisms that regulate caregiver-child interactions and their bio-behavioural synchrony. We propose to adopt a multi-system psychobiological approach to the study of parental behaviour and social interaction.
Collapse
Affiliation(s)
- Carmela Russo
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Paolo Senese
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
213
|
Ray LA, Nieto SJ, Grodin EN. Translational models of addiction phenotypes to advance addiction pharmacotherapy. Ann N Y Acad Sci 2023; 1519:118-128. [PMID: 36385614 PMCID: PMC10823887 DOI: 10.1111/nyas.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alcohol and substance use disorders are heterogeneous conditions with limited effective treatment options. While there have been prior attempts to classify addiction subtypes, they have not been translated into clinical practice. In an effort to better understand heterogeneity in psychiatric disorders, the National Institute for Mental Health Research Domain Criteria (RDoC) has challenged scientists to think beyond diagnostic symptoms and to consider the underlying features of psychopathology from a neuroscience-based framework. The field of addiction has grappled with this approach by considering several key constructs with the potential to capture RDoC domains. This critical review will focus on the efforts to apply translational models of addiction phenomenology in human clinical samples, including their relative strengths and weaknesses. Opportunities for forward and reverse translation are also discussed. Deep behavioral phenotyping using neuroscience-informed batteries shows promise for a better understanding of the clinical neuroscience of addiction and advancing precision medicine for alcohol and substance use disorders.
Collapse
Affiliation(s)
- Lara A. Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Shirley & Stefan Hatos Center for Neuropharmacology, University of California at Los Angeles, Los Angeles, CA, USA
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Steven J. Nieto
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
214
|
Brain monoaminergic activity during predator inspection in female Trinidadian guppies (Poecilia reticulata). Behav Brain Res 2023; 436:114088. [DOI: 10.1016/j.bbr.2022.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
|
215
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
216
|
Lee JH, Leibo JZ, An SJ, Lee SW. Importance of prefrontal meta control in human-like reinforcement learning. Front Comput Neurosci 2022; 16:1060101. [PMID: 36618272 PMCID: PMC9811824 DOI: 10.3389/fncom.2022.1060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Recent investigation on reinforcement learning (RL) has demonstrated considerable flexibility in dealing with various problems. However, such models often experience difficulty learning seemingly easy tasks for humans. To reconcile the discrepancy, our paper is focused on the computational benefits of the brain's RL. We examine the brain's ability to combine complementary learning strategies to resolve the trade-off between prediction performance, computational costs, and time constraints. The complex need for task performance created by a volatile and/or multi-agent environment motivates the brain to continually explore an ideal combination of multiple strategies, called meta-control. Understanding these functions would allow us to build human-aligned RL models.
Collapse
Affiliation(s)
- Jee Hang Lee
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, South Korea
| | | | - Su Jin An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Center for Neuroscience-Inspired Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
217
|
Verdier A, Dominique N, Groussard D, Aldanondo A, Bathellier B, Bagur S. Enhanced perceptual task performance without deprivation in mice using medial forebrain bundle stimulation. CELL REPORTS METHODS 2022; 2:100355. [PMID: 36590697 PMCID: PMC9795331 DOI: 10.1016/j.crmeth.2022.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 05/11/2023]
Abstract
Perceptual decision-making tasks are essential to many fields of neuroscience. Current protocols generally reward deprived animals with water. However, balancing animals' deprivation level with their well-being is challenging, and trial number is limited by satiation. Here, we present electrical stimulation of the medial forebrain bundle (MFB) as an alternative that avoids deprivation while yielding stable motivation for thousands of trials. Using licking or lever press as a report, MFB animals learnt auditory discrimination tasks at similar speed to water-deprived mice. Moreover, they more reliably reached higher accuracy in harder tasks, performing up to 4,500 trials per session without loss of motivation. MFB stimulation did not impact the underlying sensory behavior since psychometric parameters and response times are preserved. MFB mice lacked signs of metabolic or behavioral stress compared with water-deprived mice. Overall, MFB stimulation is a highly promising tool for task learning because it enhances task performance while avoiding deprivation.
Collapse
Affiliation(s)
- Antonin Verdier
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France
| | - Noémi Dominique
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, 75724 Paris, France
| | - Déborah Groussard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, 75724 Paris, France
| | - Anna Aldanondo
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France
| | - Brice Bathellier
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France
| | - Sophie Bagur
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France
| |
Collapse
|
218
|
Whelan MT, Jimenez-Rodriguez A, Prescott TJ, Vasilaki E. A robotic model of hippocampal reverse replay for reinforcement learning. BIOINSPIRATION & BIOMIMETICS 2022; 18:015007. [PMID: 36327454 DOI: 10.1088/1748-3190/ac9ffc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hippocampal reverse replay, a phenomenon in which recently active hippocampal cells reactivate in the reverse order, is thought to contribute to learning, particularly reinforcement learning (RL), in animals. Here, we present a novel computational model which exploits reverse replay to improve stability and performance on a homing task. The model takes inspiration from the hippocampal-striatal network, and learning occurs via a three-factor RL rule. To augment this model with hippocampal reverse replay, we derived a policy gradient learning rule that associates place-cell activity with responses in cells representing actions and a supervised learning rule of the same form, interpreting the replay activity as a 'target' frequency. We evaluated the model using a simulated robot spatial navigation task inspired by the Morris water maze. Results suggest that reverse replay can improve performance stability over multiple trials. Our model exploits reverse reply as an additional source for propagating information about desirable synaptic changes, reducing the requirements for long-time scales in eligibility traces combined with low learning rates. We conclude that reverse replay can positively contribute to RL, although less stable learning is possible in its absence. Analogously, we postulate that reverse replay may enhance RL in the mammalian hippocampal-striatal system rather than provide its core mechanism.
Collapse
Affiliation(s)
- Matthew T Whelan
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, Sheffield, United Kingdom
| | - Alejandro Jimenez-Rodriguez
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, Sheffield, United Kingdom
| | - Tony J Prescott
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, Sheffield, United Kingdom
| | - Eleni Vasilaki
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, Sheffield, United Kingdom
| |
Collapse
|
219
|
Furukawa E, Bado P, da Costa RQM, Melo B, Erthal P, de Oliveira IP, Wickens JR, Moll J, Tripp G, Mattos P. Reward modality modulates striatal responses to reward anticipation in ADHD: Effects of affiliative and food stimuli. Psychiatry Res Neuroimaging 2022; 327:111561. [PMID: 36334392 DOI: 10.1016/j.pscychresns.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Altered reward sensitivity has been proposed to underlie symptoms of attention deficit hyperactivity disorder (ADHD). Functional magnetic resonance imaging (fMRI) studies have reported hypoactivation to reward-predicting cues in the ventral striatum among individuals with ADHD, using experimental designs with and without behavioral response requirements. These studies have typically used monetary incentives as rewards; however, it is unclear if these findings extend to other reward types. The current study examined striatal responses to anticipation and delivery of both affiliative and food reward images using a classical conditioning paradigm. Data from 20 typically developing young adults, and 20 individuals diagnosed with ADHD were included in a region-of-interest analysis for a priori striatal regions. Consistent with findings from studies using monetary rewards, individuals with ADHD showed decreased activation to cues predicting affiliative rewards in the bilateral ventral and dorsal striatum and increased activation to the delivery of affiliative rewards in the ventral striatum. No group differences were found in striatal responses to food reward cues or images. These results suggest hyposensitivity to reward-predicting cues in ADHD extends to affiliative rewards, with important implications for understanding and managing the learning and social functioning of those with ADHD.
Collapse
Affiliation(s)
- Emi Furukawa
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| | - Patricia Bado
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Bruno Melo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Pilar Erthal
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Jeff R Wickens
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Jorge Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Gail Tripp
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
220
|
Morris LS, Mehta M, Ahn C, Corniquel M, Verma G, Delman B, Hof PR, Jacob Y, Balchandani P, Murrough JW. Ventral tegmental area integrity measured with high-resolution 7-Tesla MRI relates to motivation across depression and anxiety diagnoses. Neuroimage 2022; 264:119704. [PMID: 36349598 PMCID: PMC9801251 DOI: 10.1016/j.neuroimage.2022.119704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/25/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The ventral tegmental area (VTA) is one of the major sources of dopamine in the brain and has been associated with reward prediction, error-based reward learning, volitional drive and anhedonia. However, precise anatomical investigations of the VTA have been prevented by the use of standard-resolution MRI, reliance on subjective manual tracings, and lack of quantitative measures of dopamine-related signal. Here, we combine ultra-high field 400 µm3 quantitative MRI with dopamine-related signal mapping, and a mixture of machine learning and supervised computational techniques to delineate the VTA in a transdiagnostic sample of subjects with and without depression and anxiety disorders. Subjects also underwent cognitive testing to measure intrinsic and extrinsic motivational tone. Fifty-one subjects were scanned in total, including healthy control (HC) and mood/anxiety (MA) disorder subjects. MA subjects had significantly larger VTA volumes compared to HC but significantly lower signal intensity within VTA compared to HC, indicating reduced structural integrity of the dopaminergic VTA. Interestingly, while VTA integrity did not significantly correlate with self-reported depression or anxiety symptoms, it was correlated with an objective cognitive measure of extrinsic motivation, whereby lower VTA integrity was associated with lower motivation. This is the first study to demonstrate a computational pipeline for detecting and delineating the VTA in human subjects with 400 μm3 resolution. We highlight the use of objective transdiagnostic measures of cognitive function that link neural integrity to behavior across clinical and non-clinical groups.
Collapse
Affiliation(s)
- Laurel S Morris
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Marishka Mehta
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Christopher Ahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Morgan Corniquel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gaurav Verma
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bradley Delman
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yael Jacob
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
221
|
The brain bases of regulation of eating behaviors: the role of reward, executive control, and valuation processes, and new paths to propel the field forward. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
222
|
Francis T, Wolter M, Leri F. The effects of passive and active administration of heroin, and associated conditioned stimuli, on consolidation of object memory. Sci Rep 2022; 12:20351. [PMID: 36437288 PMCID: PMC9701675 DOI: 10.1038/s41598-022-24585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Mode of administration (i.e., active vs passive) could influence the modulatory action that drugs of abuse exert on memory consolidation. Similarly, drug conditioned stimuli modulate memory consolidation and, therefore, acquisition and extinction of this conditioned response could also be influenced by mode of drug administration. Exploring these questions in male Sprague-Dawley rats, Study 1 assessed memory modulation by post-training 0, 0.3 and 1 mg/kg heroin injected subcutaneously in operant chambers (i.e., drug conditioned context). Study 2 asked a similar question but in rats trained to self-administer 0.05 mg/kg/infusion heroin intravenously, as well as in rats that received identical amounts of intravenous heroin but passively, using a yoked design. The period of heroin exposure was followed by repeated drug-free confinement in the conditioned context, and by sessions during which responses on the active lever had no scheduled consequences. Study 2 also included a cue-induced reinstatement session during which lever responses reactivated a light cue previously paired with intravenous heroin infusions. The post-training effects of injected/self-administered/yoked heroin, extinction and reinstatement sessions on memory consolidation were tested using the object location memory task. It was found that post-sample heroin enhanced memory in injected and yoked, but not self-administering, rats. However, post-sample exposure to the heroin cues (i.e., context or/and light cue) modulated memory equally in all groups. Taken together, these data support the conclusion that mode of administration impacts the cognitive consequences of exposure to drugs but not of environmental stimuli linked to their reinforcing effects.
Collapse
Affiliation(s)
- Travis Francis
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Michael Wolter
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Francesco Leri
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| |
Collapse
|
223
|
Akiti K, Tsutsui-Kimura I, Xie Y, Mathis A, Markowitz JE, Anyoha R, Datta SR, Mathis MW, Uchida N, Watabe-Uchida M. Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron 2022; 110:3789-3804.e9. [PMID: 36130595 PMCID: PMC9671833 DOI: 10.1016/j.neuron.2022.08.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/03/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Animals both explore and avoid novel objects in the environment, but the neural mechanisms that underlie these behaviors and their dynamics remain uncharacterized. Here, we used multi-point tracking (DeepLabCut) and behavioral segmentation (MoSeq) to characterize the behavior of mice freely interacting with a novel object. Novelty elicits a characteristic sequence of behavior, starting with investigatory approach and culminating in object engagement or avoidance. Dopamine in the tail of the striatum (TS) suppresses engagement, and dopamine responses were predictive of individual variability in behavior. Behavioral dynamics and individual variability are explained by a reinforcement-learning (RL) model of threat prediction in which behavior arises from a novelty-induced initial threat prediction (akin to "shaping bonus") and a threat prediction that is learned through dopamine-mediated threat prediction errors. These results uncover an algorithmic similarity between reward- and threat-related dopamine sub-systems.
Collapse
Affiliation(s)
- Korleki Akiti
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Iku Tsutsui-Kimura
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yudi Xie
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander Mathis
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02138, USA; Swiss Federal Institute of Technology Lausanne, Geneve 1202, Switzerland
| | - Jeffrey E Markowitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Rockwell Anyoha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mackenzie Weygandt Mathis
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02138, USA; Swiss Federal Institute of Technology Lausanne, Geneve 1202, Switzerland
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
224
|
Liu Q, Ely BA, Stern ER, Xu J, Kim JW, Pick DG, Alonso CM, Gabbay V. Neural function underlying reward expectancy and attainment in adolescents with diverse psychiatric symptoms. Neuroimage Clin 2022; 36:103258. [PMID: 36451362 PMCID: PMC9668660 DOI: 10.1016/j.nicl.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Reward dysfunction has been hypothesized to play a key role in the development of psychiatric conditions during adolescence. To help capture the complexity of reward function in youth, we used the Reward Flanker fMRI Task, which enabled us to examine neural activity during expectancy and attainment of both certain and uncertain rewards. Participants were 84 psychotropic-medication-free adolescents, including 67 with diverse psychiatric conditions and 17 healthy controls. Functional MRI used high-resolution acquisition and high-fidelity processing techniques modeled after the Human Connectome Project. Analyses examined neural activation during reward expectancy and attainment, and their associations with clinical measures of depression, anxiety, and anhedonia severity, with results controlled for family-wise errors using non-parametric permutation tests. As anticipated, reward expectancy activated regions within the fronto-striatal reward network, thalamus, occipital lobe, superior parietal lobule, temporoparietal junction, and cerebellum. Unexpectedly, however, reward attainment was marked by widespread deactivation in many of these same regions, which we further explored using cosine similarity analysis. Across all subjects, striatum and thalamus activation during reward expectancy negatively correlated with anxiety severity, while activation in numerous cortical and subcortical regions during reward attainment positively correlated with both anxiety and depression severity. These findings highlight the complexity and dynamic nature of neural reward processing in youth.
Collapse
Affiliation(s)
- Qi Liu
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin A Ely
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Emily R Stern
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Danielle G Pick
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen M Alonso
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vilma Gabbay
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
225
|
Müller-Pinzler L, Czekalla N, Mayer AV, Schröder A, Stolz DS, Paulus FM, Krach S. Neurocomputational mechanisms of affected beliefs. Commun Biol 2022; 5:1241. [PMCID: PMC9663730 DOI: 10.1038/s42003-022-04165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe feedback people receive on their behavior shapes the process of belief formation and self-efficacy in mastering a particular task. However, the neural and computational mechanisms of how the subjective value of self-efficacy beliefs, and the corresponding affect, influence the learning process remain unclear. We investigated these mechanisms during self-efficacy belief formation using fMRI, pupillometry, and computational modeling, and by analyzing individual differences in affective experience. Biases in the formation of self-efficacy beliefs were associated with affect, pupil dilation, and neural activity within the anterior insula, amygdala, ventral tegmental area/ substantia nigra, and mPFC. Specifically, neural and pupil responses mapped the valence of the prediction errors in correspondence with individuals’ experienced affective states and learning biases during self-efficacy belief formation. Together with the functional connectivity dynamics of the anterior insula within this network, our results provide evidence for neural and computational mechanisms of how we arrive at affected beliefs.
Collapse
|
226
|
Brandman T, Malach R, Simony E. Retrospective behavioral sampling (RBS): A method to effectively track the cognitive fluctuations driven by naturalistic stimulation. Front Hum Neurosci 2022; 16:956708. [PMID: 36438637 PMCID: PMC9682255 DOI: 10.3389/fnhum.2022.956708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2023] Open
Abstract
Everyday experiences are dynamic, driving fluctuations across simultaneous cognitive processes. A key challenge in the study of naturalistic cognition is to disentangle the complexity of these dynamic processes, without altering the natural experience itself. Retrospective behavioral sampling (RBS) is a novel approach to model the cognitive fluctuations corresponding to the time-course of naturalistic stimulation, across a variety of cognitive dimensions. We tested the effectiveness and reliability of RBS in a web-based experiment, in which 53 participants viewed short movies and listened to a story, followed by retrospective reporting. Participants recalled their experience of 55 discrete events from the stimuli, rating their quality of memory, magnitude of surprise, intensity of negative and positive emotions, perceived importance, reflectivity state, and mental time travel. In addition, a subset of the original cohort re-rated their memory of events in a follow-up questionnaire. Results show highly replicable fluctuation patterns across distinct cognitive dimensions, thereby revealing a stimulus-driven experience that is substantially shared among individuals. Remarkably, memory ratings more than a week after stimulation resulted in an almost identical time-course of memorability as measured immediately following stimulation. In addition, idiosyncratic response patterns were preserved across different stimuli, indicating that RBS characterizes individual differences that are stimulus invariant. The current findings highlight the potential of RBS as a powerful tool for measuring dynamic processes of naturalistic cognition. We discuss the promising approach of matching RBS fluctuations with dynamic processes measured via other testing modalities, such as neuroimaging, to study the neural manifestations of naturalistic cognitive processing.
Collapse
Affiliation(s)
- Talia Brandman
- Department of Brain Sciences and Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Malach
- Department of Brain Sciences and Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Simony
- Department of Brain Sciences and Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| |
Collapse
|
227
|
Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry 2022; 12:464. [PMID: 36344514 PMCID: PMC9640700 DOI: 10.1038/s41398-022-02233-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine (DA) is a major monoamine neurotransmitter in the brain and has essential roles in higher functions of the brain. Malfunctions of dopaminergic signaling have been implicated in various mental disorders such as addiction, attention deficit/hyperactivity disorder, Huntington's disease, Parkinson's disease (PD), and schizophrenia. The pathogenesis of PD and schizophrenia involves the interplay of mitochondrial defect and DA metabolism abnormalities. This article focuses on this issue in schizophrenia. It started with the introduction of metabolism, behavioral action, and physiology of DA, followed by reviewing evidence for malfunctions of dopaminergic signaling in patients with schizophrenia. Then it provided an overview of multiple facets of mitochondrial physiology before summarizing mitochondrial defects reported in clinical studies with schizophrenia patients. Finally, it discussed the interplay between DA metabolism abnormalities and mitochondrial defects and outlined some clinical studies showing effects of combination therapy of antipsychotics and antioxidants in treating patients with schizophrenia. The update and integration of these lines of information may advance our understanding of the etiology, pathogenesis, phenomenology, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
- Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Fan Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
228
|
Lee H, Hikosaka O. Lateral habenula neurons signal step-by-step changes of reward prediction. iScience 2022; 25:105440. [DOI: 10.1016/j.isci.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
229
|
Gaertner Z, Azcorra M, Dombeck DA, Awatramani R. Molecular heterogeneity in the substantia nigra: A roadmap for understanding PD motor pathophysiology. Neurobiol Dis 2022; 175:105925. [DOI: 10.1016/j.nbd.2022.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
|
230
|
Bikute K, Di Bernardi Luft C, Beyer F. The value of an action: Impact of motor behaviour on outcome processing and stimulus preference. Eur J Neurosci 2022; 56:5823-5835. [PMID: 36114689 PMCID: PMC9828266 DOI: 10.1111/ejn.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
While influences of Pavlovian associations on instrumental behaviour are well established, we still do not know how motor actions affect the formation of Pavlovian associations. To address this question, we designed a task in which participants were presented with neutral stimuli, half of which were paired with an active response, half with a passive waiting period. Stimuli had an 80% chance of predicting either a monetary gain or loss. We compared the feedback-related negativity (FRN) in response to predictive stimuli and outcomes, as well as directed phase synchronization before and after outcome presentation between trials with versus without a motor response. We found a larger FRN amplitude in response to outcomes presented after a motor response (active trials). This effect was driven by a positive deflection in active reward trials, which was absent in passive reward trials. Connectivity analysis revealed that the motor action reversed the direction of the phase synchronization at the time of the feedback presentation: Top-down information flow during the outcome anticipation phase in active trials, but bottom-up information flow in passive trials. This main effect of action was mirrored in behavioural data showing that participants preferred stimuli associated with an active response. Our findings suggest an influence of neural systems that initiate motor actions on neural systems involved in reward processing. We suggest that motor actions might modulate the brain responses to feedback by affecting the dynamics of brain activity towards optimizing the processing of the resulting action outcome.
Collapse
Affiliation(s)
- Kotryna Bikute
- Department of Biological and Experimental PsychologyQueen Mary University of LondonLondonUK
| | | | - Frederike Beyer
- Department of Biological and Experimental PsychologyQueen Mary University of LondonLondonUK
| |
Collapse
|
231
|
The nucleus accumbens dopamine increase, typically triggered by sexual stimuli in male rats, is no longer produced when animals are sexually inhibited due to sexual satiety. Psychopharmacology (Berl) 2022; 239:3679-3695. [PMID: 36192550 DOI: 10.1007/s00213-022-06240-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/17/2022] [Indexed: 10/10/2022]
Abstract
RATIONALE Exposure of male rats to an inaccessible receptive female and copulation increases dopamine (DA) levels in the nucleus accumbens (NAcc). Males copulating to satiety become sexually inhibited and most of them do not display sexual activity when presented with a sexually receptive female 24 h later. This inhibitory state can be pharmacologically reversed. There are no studies exploring NAcc DA levels during this sexual inhibitory state. OBJECTIVES To characterize changes in NAcc DA and its metabolites' levels during sexual satiety development, during the well-established sexual inhibitory state 24 h later, and during its pharmacological reversal. METHODS Changes in NAcc DA and its metabolites were measured in sexually experienced male rats, using in vivo microdialysis, during copulation to satiety, when presented to a new sexually receptive female 24 h later, and during the pharmacological reversal of the sexual inhibition by anandamide. RESULTS NAcc DA levels remained increased during copulation to satiety. DA basal levels were significantly reduced 24 h after copulation to satiety, as compared to the initial basal levels. Presenting a receptive female behind a barrier 24 h after satiety did not induce the typical NAcc DA elevation in the sexually satiated males but there was a decrease that persisted when they got access to the female, with which they did not copulate. Anandamide injection slightly increased NAcc DA levels coinciding with sexual satiety reversal. CONCLUSIONS Reduced NAcc DA concentrations coincide with the inhibition of an instinctive, natural rewarding behavior suggesting that there might be a DA concentration threshold needed to be responsive to a rewarding stimulus.
Collapse
|
232
|
Berner W. Sexualität zwischen Lustprinzip und Wiederholungszwang. PDP - PSYCHODYNAMISCHE PSYCHOTHERAPIE 2022. [DOI: 10.21706/pdp-21-4-341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
233
|
Decreased reward circuit connectivity during reward anticipation in major depression. Neuroimage Clin 2022; 36:103226. [PMID: 36257119 PMCID: PMC9668633 DOI: 10.1016/j.nicl.2022.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022]
Abstract
An important symptom of major depressive disorder (MDD) is the inability to experience pleasure, possibly due to a dysfunction of the reward system. Despite promising insights regarding impaired reward-related processing in MDD, circuit-level abnormalities remain largely unexplored. Furthermore, whereas studies contrasting experimental conditions from incentive tasks have revealed important information about reward processing, temporal difference modeling of reward-related prediction error (PE) signals might give a more accurate representation of the reward system. We used a monetary incentive delay task during functional MRI scanning to explore PE-related striatal and ventral tegmental area (VTA) activation in response to anticipation and delivery of monetary rewards in 24 individuals with MDD versus 24 healthy controls (HCs). Furthermore, we investigated group differences in temporal difference related connectivity with a generalized psychophysiological interaction (gPPI) analysis with the VTA, ventral striatum (VS) and dorsal striatum (DS) as seeds during reward versus neutral, both in anticipation and delivery. Relative to HCs, MDD patients displayed a trend-level (p = 0.052) decrease in temporal difference-related activation in the VS during reward anticipation and delivery combined. Moreover, gPPI analyses revealed that during reward anticipation, MDD patients exhibited decreased functional connectivity between the VS and anterior cingulate cortex / medial prefrontal cortex, anterior cingulate gyrus, angular/middle orbital gyrus, left insula, superior/middle frontal gyrus (SFG/MFG) and precuneus/superior occipital gyrus/cerebellum compared to HC. Moreover, MDD patients showed decreased functional connectivity between the VTA and left insula compared to HC during reward anticipation. Exploratory analysis separating medication free patients from patients using antidepressant revealed that these decreased functional connectivity patterns were mainly apparent in the MDD group that used antidepressants. These results suggest that MDD is characterized by alterations in reward circuit connectivity rather than isolated activation impairments. These findings represent an important extension of the existing literature since improved understanding of neural pathways underlying depression-related reward dysfunctions, may help currently unmet diagnostic and therapeutic efforts.
Collapse
|
234
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2022; 42:2109-2120. [PMID: 34057683 PMCID: PMC11421599 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
235
|
Minassian A, Kelsoe JR, Miranda A, Young JW, Perry W. The relationship between novelty-seeking traits and behavior: Establishing construct validity for the human Behavioral Pattern Monitor. Psychiatry Res 2022; 316:114776. [PMID: 35964417 PMCID: PMC9885942 DOI: 10.1016/j.psychres.2022.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 02/01/2023]
Abstract
Novelty seeking is a tendency to approach new situations, putatively driven by the brain's catecholaminergic system. It is traditionally measured via self-report, but a laboratory-based paradigm, the human Behavioral Pattern Monitor (hBPM), quantifies behavior in a novel environment and has utility in cross-species studies of neuropsychiatric disorders. Our primary aim assessed whether self-reported novelty-seeking traits were associated with novelty-seeking behavior in the hBPM. An existing sample of 106 volunteers were categorized as high vs. low novelty seekers using the Temperament and Character Inventory (TCI). Subjects had been randomized to one dose of amphetamine (10 or 20 mg) or modafinil (200 or 400 mg), allowing us to explore whether a pharmacological catecholamine challenge further enhanced novelty-seeking behavior. High TCI novelty-seekers had more hBPM motor activity and novel object interactions. The exploratory analyses, although limited by low power, suggested that amphetamine and modafinil did not markedly moderate novelty-seeking traits. The hBPM demonstrates construct validity as a lab-based measure of novelty seeking and thus useful in translational studies of neuropsychiatric conditions and treatment options. Further research may illuminate whether a biological predisposition towards higher catecholaminergic activity, combined with the novelty-seeking trait, may increase propensity for risky and addictive behaviors.
Collapse
Affiliation(s)
- Arpi Minassian
- University of California, San Diego, United States; VA Center of Excellence in Stress and Mental Health, United States.
| | | | | | | | | |
Collapse
|
236
|
Fry BR, Roberts D, Thakkar KN, Johnson AW. Variables influencing conditioning-evoked hallucinations: overview and future applications. Psychol Med 2022; 52:2937-2949. [PMID: 36138518 PMCID: PMC9693682 DOI: 10.1017/s0033291722002100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Hallucinations occur in the absence of sensory stimulation and result in vivid perceptual experiences of nonexistent events that manifest across a range of sensory modalities. Approaches from the field of experimental and cognitive psychology have leveraged the idea that associative learning experiences can evoke conditioning-induced hallucinations in both animals and humans. In this review, we describe classical and contemporary findings and highlight the variables eliciting these experiences. We also provide an overview of the neurobiological mechanisms, along with the associative and computational factors that may explain hallucinations that are generated by representation-mediated conditioning phenomena. Through the integration of animal and human research, significant advances into the psychobiology of hallucinations are possible, which may ultimately translate to more effective clinical applications.
Collapse
Affiliation(s)
- Benjamin R. Fry
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Dominic Roberts
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Alexander W. Johnson
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
237
|
Zhao F, Zeng Y, Han B, Fang H, Zhao Z. Nature-inspired self-organizing collision avoidance for drone swarm based on reward-modulated spiking neural network. PATTERNS 2022; 3:100611. [DOI: 10.1016/j.patter.2022.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
|
238
|
Schultz H, Yoo J, Meshi D, Heekeren HR. Category-specific memory encoding in the medial temporal lobe and beyond: the role of reward. Learn Mem 2022; 29:379-389. [PMID: 36180131 PMCID: PMC9536755 DOI: 10.1101/lm.053558.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
The medial temporal lobe (MTL), including the hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), is central to memory formation. Reward enhances memory through interplay between the HC and substantia nigra/ventral tegmental area (SNVTA). While the SNVTA also innervates the MTL cortex and amygdala (AMY), their role in reward-enhanced memory is unclear. Prior research suggests category specificity in the MTL cortex, with the PRC and PHC processing object and scene memory, respectively. It is unknown, however, whether reward modulates category-specific memory processes. Furthermore, no study has demonstrated clear category specificity in the MTL for encoding processes contributing to subsequent recognition memory. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while performing an incidental encoding task pairing objects or scenes with high or low reward, followed by a next-day recognition test. Behaviorally, high reward preferably enhanced object memory. Neural activity in the PRC and PHC reflected successful encoding of objects and scenes, respectively. Importantly, AMY encoding effects were selective for high-reward objects, with a similar pattern in the PRC. The SNVTA and HC showed no clear evidence of successful encoding. This behavioral and neural asymmetry may be conveyed through an anterior-temporal memory system, including the AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jungsun Yoo
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Cognitive Sciences, University of California at Irvine, Irvine, California 92697, USA
| | - Dar Meshi
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Advertising and Public Relations, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Executive University Board, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
239
|
Maksimovskiy AL, Okine C, Cataldo AM, Dillon DG. Sluggish retrieval of positive memories in depressed adults. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1172-1182. [PMID: 35556232 PMCID: PMC9464714 DOI: 10.3758/s13415-022-01010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Although depression is associated with poor memory for positive material, the underlying mechanisms remain unclear. We used the Hierarchical Drift Diffusion Model (HDDM) to determine whether slow evidence accumulation at retrieval contributes to depressed individuals' difficulty remembering positive events. Participants completed the Beck Depression Inventory-II and were stratified into High BDI (HBDI; BDI-II > 20, n = 49) and Low BDI (LBDI; BDI-II < 6, n = 46) groups. Next, participants completed an oddball task in which neutral, negative, and positive pictures served as rare targets. One day later, recognition memory was tested by presenting the encoded ("old") pictures along with closely matched ("new") lures. Recognition accuracy was analyzed with a generalized linear model, and choice and response time data were analyzed with the HDDM. Recognition accuracy for old positive pictures was lower in HBDI versus LBDI participants, and the HDDM highlighted slow evidence accumulation during positive memory retrieval in the HBDI group. Impaired memory for positive material in depressed adults was related to slow evidence accumulation at retrieval. Because oddballs should elicit prediction errors that normally strengthen memory formation, these retrieval findings may reflect weak positive prediction errors, at encoding, in depressed adults.
Collapse
Affiliation(s)
- Arkadiy L Maksimovskiy
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | | | - Andrea M Cataldo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
240
|
Castillo Díaz F, Dalto JF, Pereyra M, Medina JH. Dopamine neurotransmission in the VTA regulates aversive memory formation and persistence. Physiol Behav 2022; 253:113854. [PMID: 35609721 DOI: 10.1016/j.physbeh.2022.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) innervating several limbic and neocortical regions of the mammalian brain have long been implicated in motivation, rewarding and aversive behaviors, and memory processing. Recently, we demonstrated that somatodendritic release of DA in the VTA regulates the formation and maintenance of appetitive long-term memories (LTM). However, less is known about the impact of DA neurotransmission in the VTA on aversive LTM. Here, we describe the modulation of negative-valence memories by D1/D5-type DA (D1R)-receptor-mediated neurotransmission in the VTA. As aversive stimuli elicit both active and passive behavioral responses, we used two single-trial aversive training protocols: inhibitory avoidance task and conditioned place aversion. We bilaterally microinfused SCH23390, an antagonist of D1R, into the VTA immediately after training and found that DA neurotransmission in the VTA modulates LTM consolidation and persistence of aversive experiences. Together with previous findings demonstrating that D1R-mediated DA neurotransmission in the medial prefrontal cortex and hippocampus is involved in the formation and persistence of LTM for aversive events, our present results indicate that memory processing of environmental stimuli with negative-valence depends on the integration of information mediated by D1R activation in both the VTA region and in selected downstream target areas.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Facultad de Medicina, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires C1121ABG, Argentina; Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy.
| | - Juliana F Dalto
- Facultad de Medicina, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires C1121ABG, Argentina
| | - Magdalena Pereyra
- Facultad de Medicina, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires C1121ABG, Argentina
| | - Jorge H Medina
- Facultad de Medicina, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires C1121ABG, Argentina; Instituto Tecnológico Buenos Aires, Iguazú 341, CABA C1437, Argentina
| |
Collapse
|
241
|
Bosulu J, Allaire MA, Tremblay-Grénier L, Luo Y, Eickhoff S, Hétu S. "Wanting" versus "needing" related value: An fMRI meta-analysis. Brain Behav 2022; 12:e32713. [PMID: 36000558 PMCID: PMC9480935 DOI: 10.1002/brb3.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Consumption and its excesses are sometimes explained by imbalance of need or lack of control over "wanting." "Wanting" assigns value to cues that predict rewards, whereas "needing" assigns value to biologically significant stimuli that one is deprived of. Here we aimed at studying how the brain activation patterns related to value of "wanted" stimuli differs from that of "needed" stimuli using activation likelihood estimation neuroimaging meta-analysis approaches. We used the perception of a cue predicting a reward for "wanting" related value and the perception of food stimuli in a hungry state as a model for "needing" related value. We carried out separate, contrasts, and conjunction meta-analyses to identify differences and similarities between "wanting" and "needing" values. Our overall results for "wanting" related value show consistent activation of the ventral tegmental area, striatum, and pallidum, regions that both activate behavior and direct choice, while for "needing" related value, we found an overall consistent activation of the middle insula and to some extent the caudal-ventral putamen, regions that only direct choice. Our study suggests that wanting has more control on consumption and behavioral activation.
Collapse
Affiliation(s)
- Juvenal Bosulu
- Faculté Des Arts et des Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Yi Luo
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Simon Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Sébastien Hétu
- Faculté Des Arts et des Sciences, Université de Montréal, Montréal, Canada
| |
Collapse
|
242
|
Hu W, Zhao X, Liu Y, Ren Y, Wei Z, Tang Z, Tian Y, Sun Y, Yang J. Reward sensitivity modulates the brain reward pathway in stress resilience via the inherent neuroendocrine system. Neurobiol Stress 2022; 20:100485. [PMID: 36132434 PMCID: PMC9483565 DOI: 10.1016/j.ynstr.2022.100485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
In the previous 10 years, researchers have suggested a critical role for the brain reward system in stress resilience. However, no study has provided an empirical link between activity in the mesostriatal reward regions during stress and the recovery of cortisol stress response. Moreover, although reward sensitivity as a trait has been demonstrated to promote stress resilience, it remains unclear whether it modulates the brain reward system in stress resilience and how this effect is achieved by the inherent neuroendocrine system. To investigate these uncertainties, 70 young adults were recruited to participate in a ScanSTRESS task, and their brain imaging data and saliva samples (for cortisol assay) were collected during the task. In addition, we assessed reward sensitivity, cortisol awakening response, and intrinsic functional connectivity of the brain in all the participants. We found that left putamen activation during stress exposure positively predicted cortisol recovery. In addition, reward sensitivity was positively linked with activation of the left putamen, and this relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic connectivity. These findings suggest that reward sensitivity modulates reward pathways in stress resilience through the interplay of the diurnal stress response system and network of the hippocampus-prefrontal circuitry. Summarily, the current study built a model to highlight the dynamic and multifaceted interaction between pertinent allostatic factors in the reward-resilience pathway and uncovered new insight into the resilience function of the mesostriatal reward system during stress. Cortisol recovery can be predicted by activation of the left putamen in stress. Activation of the left putamen was positively linked with reward sensitivity. This relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic coupling.
Collapse
Affiliation(s)
- Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zhenni Wei
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zihan Tang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yun Tian
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Sun
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| |
Collapse
|
243
|
Kim MJ, Kaang BK. Distinct cell populations of ventral tegmental area process motivated behavior. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:307-312. [PMID: 36039731 PMCID: PMC9437368 DOI: 10.4196/kjpp.2022.26.5.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Min Jung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
244
|
Kaźmierczak M, Nicola SM. The Arousal-motor Hypothesis of Dopamine Function: Evidence that Dopamine Facilitates Reward Seeking in Part by Maintaining Arousal. Neuroscience 2022; 499:64-103. [PMID: 35853563 PMCID: PMC9479757 DOI: 10.1016/j.neuroscience.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Dopamine facilitates approach to reward via its actions on dopamine receptors in the nucleus accumbens. For example, blocking either D1 or D2 dopamine receptors in the accumbens reduces the proportion of reward-predictive cues to which rats respond with cued approach. Recent evidence indicates that accumbens dopamine also promotes wakefulness and arousal, but the relationship between dopamine's roles in arousal and reward seeking remains unexplored. Here, we show that the ability of systemic or intra-accumbens injections of the D1 antagonist SCH23390 to reduce cued approach to reward depends on the animal's state of arousal. Handling the animal, a manipulation known to increase arousal, was sufficient to reverse the behavioral effects of the antagonist. In addition, SCH23390 reduced spontaneous locomotion and increased time spent in sleep postures, both consistent with reduced arousal, but also increased time spent immobile in postures inconsistent with sleep. In contrast, the ability of the D2 antagonist haloperidol to reduce cued approach was not reversible by handling. Haloperidol reduced spontaneous locomotion but did not increase sleep postures, instead increasing immobility in non-sleep postures. We place these results in the context of the extensive literature on dopamine's contributions to behavior, and propose the arousal-motor hypothesis. This novel synthesis, which proposes that two main functions of dopamine are to promote arousal and facilitate motor behavior, accounts both for our findings and many previous behavioral observations that have led to disparate and conflicting conclusions.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA
| | - Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA.
| |
Collapse
|
245
|
Hellrung L, Kirschner M, Sulzer J, Sladky R, Scharnowski F, Herdener M, Tobler PN. Analysis of individual differences in neurofeedback training illuminates successful self-regulation of the dopaminergic midbrain. Commun Biol 2022; 5:845. [PMID: 35986202 PMCID: PMC9391365 DOI: 10.1038/s42003-022-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
The dopaminergic midbrain is associated with reinforcement learning, motivation and decision-making - functions often disturbed in neuropsychiatric disorders. Previous research has shown that dopaminergic midbrain activity can be endogenously modulated via neurofeedback. However, the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we examine whether the activation of particular brain regions associates with successful regulation transfer when feedback is no longer available. Moreover, to elucidate mechanisms underlying effective self-regulation, we study the relation of successful transfer with learning (temporal difference coding) outside the midbrain during neurofeedback training and with individual reward sensitivity in a monetary incentive delay (MID) task. Fifty-nine participants underwent neurofeedback training either in standard (Study 1 N = 15, Study 2 N = 28) or control feedback group (Study 1, N = 16). We find that successful self-regulation is associated with prefrontal reward sensitivity in the MID task (N = 25), with a decreasing relation between prefrontal activity and midbrain learning signals during neurofeedback training and with increased activity within cognitive control areas during transfer. The association between midbrain self-regulation and prefrontal temporal difference and reward sensitivity suggests that reinforcement learning contributes to successful self-regulation. Our findings provide insights in the control of midbrain activity and may facilitate individually tailoring neurofeedback training.
Collapse
Affiliation(s)
- Lydia Hellrung
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Matthias Kirschner
- Department of Psychiatric, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - James Sulzer
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ronald Sladky
- Department of Psychiatric, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Frank Scharnowski
- Department of Psychiatric, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Marcus Herdener
- Center for Addictive Disorders, Psychiatric University Hospital, University of Zurich, Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
246
|
Nour MM, Liu Y, Dolan RJ. Functional neuroimaging in psychiatry and the case for failing better. Neuron 2022; 110:2524-2544. [PMID: 35981525 DOI: 10.1016/j.neuron.2022.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
Psychiatric disorders encompass complex aberrations of cognition and affect and are among the most debilitating and poorly understood of any medical condition. Current treatments rely primarily on interventions that target brain function (drugs) or learning processes (psychotherapy). A mechanistic understanding of how these interventions mediate their therapeutic effects remains elusive. From the early 1990s, non-invasive functional neuroimaging, coupled with parallel developments in the cognitive neurosciences, seemed to signal a new era of neurobiologically grounded diagnosis and treatment in psychiatry. Yet, despite three decades of intense neuroimaging research, we still lack a neurobiological account for any psychiatric condition. Likewise, functional neuroimaging plays no role in clinical decision making. Here, we offer a critical commentary on this impasse and suggest how the field might fare better and deliver impactful neurobiological insights.
Collapse
Affiliation(s)
- Matthew M Nour
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Yunzhe Liu
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
247
|
Strauss G, Flannery JE, Vierra E, Koepsell X, Berglund E, Miller I, Lake JI. Meaningful engagement: A crossfunctional framework for digital therapeutics. Front Digit Health 2022; 4:890081. [PMID: 36052316 PMCID: PMC9426459 DOI: 10.3389/fdgth.2022.890081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Digital mental health interventions, or digital therapeutics, have the potential to transform the field of mental health. They provide the opportunity for increased accessibility, reduced stigma, and daily integration with patient's lives. However, as the burgeoning field continues to expand, there is a growing concern regarding the level and type of engagement users have with these technologies. Unlike many traditional technology products that have optimized their user experience to maximize the amount of time users spend within the product, such engagement within a digital therapeutic is not sufficient if users are not experiencing an improvement in clinical outcomes. In fact, a primary challenge within digital therapeutics is user engagement. Digital therapeutics are only effective if users sufficiently engage with them and, we argue, only if users meaningfully engage with the product. Therefore, we propose a 4-step framework to assess meaningful engagement within digital therapeutics: (1) Define the measure of value (2) Operationalize meaningful engagement for your digital therapeutic (3) Implement solutions to increase meaningful engagement (4) Iteratively evaluate the solution's impact on meaningful engagement and clinical outcomes. We provide recommendations to the common challenges associated with each step. We specifically emphasize a cross-functional approach to assessing meaningful engagement and use an adolescent-focused example throughout to further highlight developmental considerations one should consider depending on their target users.
Collapse
|
248
|
Wang S, Leri F, Rizvi SJ. Clinical and Preclinical Assessments of Anhedonia in Psychiatric Disorders. Curr Top Behav Neurosci 2022; 58:3-21. [PMID: 35435647 DOI: 10.1007/7854_2022_318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anhedonia is a prevalent symptom across many psychiatric disorders. The contemporary scope of anhedonia across various models includes interest, reward anticipation, motivation, effort expenditure, reward valuation, expectation, pleasure, satiation, and learning. In order to further elucidate the impact of anhedonia on treatment outcomes, quality of life, as well as brain function, validated tools to probe the various facets of anhedonia are necessary. This chapter evaluates assessment tools for anhedonia in clinical populations and in animals. Subjective clinical scales have been in use for decades, and as the construct of anhedonia evolved, contemporary scales were developed to integrate these new concepts. Clinical scales are useful for understanding the subjective experience of anhedonia but do not account for objective aspects of anhedonia, including implicit learning. Behavioral tasks that probe responses to rewarding stimuli have been useful to fill this gap and to delineate the specific brain processes underlying facets of anhedonia. Although there have been translational challenges in the assessments of anhedonia and reward deficits from preclinical to clinical (and vice versa), the multifaceted clinical scales and reward tasks provide valuable insights into the conceptualization of anhedonia and its neural basis across psychiatric disorders.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
249
|
Hoops D, Whiting MJ, Keogh JS. A Smaller Habenula is Associated with Increasing Intensity of Sexual Selection. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:265-273. [PMID: 34983044 DOI: 10.1159/000521750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
The habenula is a small structure in the brain that acts as a relay station for neural information, helping to modulate behaviour in response to variable and unpredictable stimuli. Broadly, it is evolutionarily conserved in structure and connectivity across vertebrates and is the most prominent bilaterally asymmetric structure in the brain. Nonetheless, comparative evolutionary studies of the habenula are virtually non-existent. Here, we examine the volumes of the medial and lateral habenular subregions, in both hemispheres, across a group of Australian agamid lizards in the genus Ctenophorus. In males, we found bilaterally asymmetrical selection on the lateral habenula to become smaller with increasing intensity of sexual selection, possibly as a mechanism to increase aggressive responses. In females, we found bilaterally symmetrical selection on both the medial and lateral subregions to become smaller with increasing sexual selection. This is consistent with sexual selection increasing motivation to reproduce and the habenula's well-characterized role in controlling and modifying responses to rewarding stimuli. However, as there are currently no studies addressing habenular function in reptiles, it is difficult to draw more precise conclusions. As has happened recently in biomedical neuroscience, it is time for the habenula to receive greater attention in evolutionary neuroscience.
Collapse
Affiliation(s)
- Daniel Hoops
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia.,Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
250
|
Wang B, Aljadeff J. Multiplicative Shot-Noise: A New Route to Stability of Plastic Networks. PHYSICAL REVIEW LETTERS 2022; 129:068101. [PMID: 36018633 DOI: 10.1103/physrevlett.129.068101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Fluctuations of synaptic weights, among many other physical, biological, and ecological quantities, are driven by coincident events of two "parent" processes. We propose a multiplicative shot-noise model that can capture the behaviors of a broad range of such natural phenomena, and analytically derive an approximation that accurately predicts its statistics. We apply our results to study the effects of a multiplicative synaptic plasticity rule that was recently extracted from measurements in physiological conditions. Using mean-field theory analysis and network simulations, we investigate how this rule shapes the connectivity and dynamics of recurrent spiking neural networks. The multiplicative plasticity rule is shown to support efficient learning of input stimuli, and it gives a stable, unimodal synaptic-weight distribution with a large fraction of strong synapses. The strong synapses remain stable over long times but do not "run away." Our results suggest that the multiplicative shot-noise offers a new route to understand the tradeoff between flexibility and stability in neural circuits and other dynamic networks.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|