201
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
202
|
Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara B, Cirilli R, Ciossani G, Labella D, Marrocco B, Monaldi D, Ruoppolo G, Tilset M, Botrugno OA, Dessanti P, Minucci S, Mattevi A, Varasi M, Mai A. Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts. Eur J Med Chem 2015; 94:163-74. [DOI: 10.1016/j.ejmech.2015.02.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/12/2022]
|
203
|
Mazumdar S, Arendt LM, Phillips S, Sedic M, Kuperwasser C, Gill G. CoREST1 promotes tumor formation and tumor stroma interactions in a mouse model of breast cancer. PLoS One 2015; 10:e0121281. [PMID: 25793264 PMCID: PMC4368644 DOI: 10.1371/journal.pone.0121281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/29/2015] [Indexed: 01/14/2023] Open
Abstract
Regulators of chromatin structure and gene expression contribute to tumor formation and progression. The co-repressor CoREST1 regulates the localization and activity of associated histone modifying enzymes including lysine specific demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1). Although several CoREST1 associated proteins have been reported to enhance breast cancer progression, the role of CoREST1 in breast cancer is currently unclear. Here we report that knockdown of CoREST1 in the basal-type breast cancer cell line, MDA-MB-231, led to significantly reduced incidence and diminished size of tumors compared to controls in mouse xenograft studies. Notably, CoREST1-depleted cells gave rise to tumors with a marked decrease in angiogenesis. CoREST1 knockdown led to a decrease in secreted angiogenic and inflammatory factors, and mRNA analysis suggests that CoREST1 promotes expression of genes related to angiogenesis and inflammation including VEGF-A and CCL2. CoREST1 knockdown decreased the ability of MDA-MB-231 conditioned media to promote endothelial cell tube formation and migration. Further, tumors derived from CoREST1-depleted cells had reduced macrophage infiltration and the secretome of CoREST1 knockdown cells was deficient in promoting macrophage migration and macrophage-mediated angiogenesis. Taken together, these findings reveal that the epigenetic regulator CoREST1 promotes tumorigenesis in a breast cancer model at least in part through regulation of gene expression patterns in tumor cells that have profound non-cell autonomous effects on endothelial and inflammatory cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Sohini Mazumdar
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lisa M. Arendt
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Sarah Phillips
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Maja Sedic
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Cellular, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Grace Gill
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
204
|
Hoshino I, Akutsu Y, Murakami K, Akanuma N, Isozaki Y, Maruyama T, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, Sekino N, Komatsu A, Suzuki T, Matsubara H. Histone Demethylase LSD1 Inhibitors Prevent Cell Growth by Regulating Gene Expression in Esophageal Squamous Cell Carcinoma Cells. Ann Surg Oncol 2015; 23:312-20. [PMID: 25791791 DOI: 10.1245/s10434-015-4488-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The expression of genes can be influenced by the balance of histone acetylation and/or histone demethylation, with an imbalance of these processes possibly observed in many cancers. The histone demethylase LSD1 inhibitor activity is associated with selective transcriptional regulation and alterations in the gene expression. However, the exact mechanisms underlying the antitumor effects of LSD1 inhibitors are not fully understood. METHODS The antitumor effects of NCL1, an LSD1 inhibitor, in esophageal squamous cell cancer (ESCC) cell lines were evaluated. A comprehensive analysis of the changes in the gene expression in ESCC cell lines induced by NCL1 was carried out using a microarray analysis. A loss-of-function assay using a siRNA analysis was performed to examine the oncogenic function of the gene. RESULTS NCL1 strongly inhibited the cell growth of T.Tn and TE2 ESCC cells and induced apoptosis. According to the microarray analysis, 81 genes in the T.Tn cells and 149 genes in the TE2 cells were up- or down-regulated 2-fold or more by NCL1 exposure. Among these genes, 27 were contained in both cell lines and exhibited similar expression patterns. PHLDB2, one of the genes down-regulated by NCL1, was overexpressed in the ESCC tumor tissues. Moreover, a high expression level of PHLDB2 was found to be significantly correlated with poor prognosis. CONCLUSIONS The present observations of the comprehensive analysis of the gene expression levels provide insight into the mechanisms underlying the antitumor effects of LSD1 inhibitors in ESCC patients.
Collapse
Affiliation(s)
- Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Akanuma
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuka Isozaki
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuro Maruyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
205
|
Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F, Chandra J. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro Oncol 2015; 17:1463-73. [PMID: 25795306 DOI: 10.1093/neuonc/nov041] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Our previous studies demonstrated that combined inhibition of HDAC and KDM1A increases apoptotic cell death in vitro. However, whether this combination also increases death of the glioma stem cell (GSC) population or has an effect in vivo is yet to be determined. Therefore, we evaluated the translational potential of combined HDAC and KDM1A inhibition on patient-derived GSCs and xenograft GBM mouse models. We also investigated the changes in transcriptional programing induced by the combination in an effort to understand the induced molecular mechanisms of GBM cell death. METHODS Patient-derived GSCs were treated with the combination of vorinostat, a pan-HDAC inhibitor, and tranylcypromine, a KDM1A inhibitor, and viability was measured. To characterize transcriptional profiles associated with cell death, we used RNA-Seq and validated gene changes by RT-qPCR and protein expression via Western blot. Apoptosis was measured using DNA fragmentation assays. Orthotopic xenograft studies were conducted to evaluate the effects of the combination on tumorigenesis and to validate gene changes in vivo. RESULTS The combination of vorinostat and tranylcypromine reduced GSC viability and displayed efficacy in the U87 xenograft model. Additionally, the combination led to changes in apoptosis-related genes, particularly TP53 and TP73 in vitro and in vivo. CONCLUSIONS These data support targeting HDACs and KDM1A in combination as a strategy for GBM and identifies TP53 and TP73 as being altered in response to treatment.
Collapse
Affiliation(s)
- Melissa M Singh
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Blake Johnson
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Avinashnarayan Venkatarayan
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Elsa R Flores
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Jianping Zhang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Xiaoping Su
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Michelle Barton
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Frederick Lang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| | - Joya Chandra
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas (M.M.S., B.J., J.C.); Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (A.V., E.R.F.); Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas (M.B., J.C.); Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z., X.S.); Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (B.J., F.L.); Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas (A.V., E.R.F., M.B., F.L., J.C.)
| |
Collapse
|
206
|
Sainathan S, Paul S, Ramalingam S, Baranda J, Anant S, Dhar A. Histone Demethylases in Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40495-015-0025-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
207
|
Sakane C, Ohta H, Shidoji Y. Measurement of lysine-specific demethylase-1 activity in the nuclear extracts by flow-injection based time-of-flight mass spectrometry. J Clin Biochem Nutr 2015; 56:123-31. [PMID: 25759518 PMCID: PMC4345185 DOI: 10.3164/jcbn.14-99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/06/2014] [Indexed: 01/21/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A), a histone-modifying enzyme, is upregulated in many cancers, especially in neuroblastoma, breast cancer and hepatoma. We have established a simple method to measure LSD1 activity using a synthetic N-terminal 21-mer peptide of histone H3, which is dimethylated at Lys-4 (H3K4me2). After the enzyme reaction, a substrate of H3K4me2 and two demethylated products, H3K4me1 and H3K4me0, were quantitatively determined by flow injection time-of-flight mass spectrometry (FI-TOF/MS). By using recombinant human LSD1, a nonlinear fitting simulation of the data obtained by FI-TOF/MS produced typical consecutive-reaction kinetics. Apparent K m and k cat values of hLSD1 for the first and second demethylation reactions were found to be in the range of reported values. Tranylcypromine was shown to inhibit LSD1 activity with an IC50 of 6.9 µM for the first demethylation reaction and 5.8 µM for the second demethylation reaction. The FI-TOF/MS assay revealed that the endogenous LSD1 activity was higher in the nuclear extracts of SH-SY5Y cells than in HeLa or PC-3 cells, and this is in accordance with the immunoblotting data using an anti-LSD1 antibody. A simple, straightforward FI-TOF/MS assay is described to efficiently measure LSD1 activity in the nuclear extracts of cultured cells.
Collapse
Affiliation(s)
- Chiharu Sakane
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | - Hiromichi Ohta
- University of Nagasaki, 123 Kawashimo, Sasebo, Nagasaki 858-8580, Japan
| | - Yoshihiro Shidoji
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
208
|
Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara B, Cirilli R, Ciossani G, Labella D, Marrocco B, Ruoppolo G, Botrugno OA, Dessanti P, Minucci S, Mattevi A, Varasi M, Mai A. Pure Diastereomers of a Tranylcypromine-Based LSD1 Inhibitor: Enzyme Selectivity and In-Cell Studies. ACS Med Chem Lett 2015; 6:173-7. [PMID: 25699146 DOI: 10.1021/ml500424z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
The pure four diastereomers (11a-d) of trans-benzyl (1-((4-(2-aminocyclopropyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate hydrochloride 11, previously described by us as LSD1 inhibitor, were obtained by enantiospecific synthesis/chiral HPLC separation method. Tested in LSD1 and MAO assays, 11b (S,1S,2R) and 11d (R,1S,2R) were the most potent isomers against LSD1 and were less active against MAO-A and practically inactive against MAO-B. In cells, all the four diastereomers induced Gfi-1b and ITGAM gene expression in NB4 cells, accordingly with their LSD1 inhibition, and 11b and 11d inhibited the colony forming potential in murine promyelocytic blasts.
Collapse
Affiliation(s)
- Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Veronica Rodriguez
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Ciro Mercurio
- Genextra
Group, DAC s.r.l., Via Adamello 16, 20139 Milano, Italy
| | - Paola Vianello
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Bruna Saponara
- Department
of Therapeutic Research and Medicines Evaluation, Italian National Institute of Health, Via Regina Elena 299, 00161 Roma, Italy
| | - Roberto Cirilli
- Department
of Therapeutic Research and Medicines Evaluation, Italian National Institute of Health, Via Regina Elena 299, 00161 Roma, Italy
| | - Giuseppe Ciossani
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Donatella Labella
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Giovanni Ruoppolo
- Department
of Sense Organs, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Oronza A. Botrugno
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Paola Dessanti
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Saverio Minucci
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
- Department
of Biosciences, University of Milan, 20100 Milan, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Mario Varasi
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
- Pasteur
Institute−Cenci Bolognetti Foundation, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
209
|
Sakamoto A, Hino S, Nagaoka K, Anan K, Takase R, Matsumori H, Ojima H, Kanai Y, Arita K, Nakao M. Lysine Demethylase LSD1 Coordinates Glycolytic and Mitochondrial Metabolism in Hepatocellular Carcinoma Cells. Cancer Res 2015; 75:1445-56. [PMID: 25649769 DOI: 10.1158/0008-5472.can-14-1560] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/22/2014] [Indexed: 11/16/2022]
Abstract
The hallmark of most cancer cells is the metabolic shift from mitochondrial to glycolytic metabolism for adapting to the surrounding environment. Although epigenetic modification is intimately linked to cancer, the molecular mechanism, by which epigenetic factors regulate cancer metabolism, is poorly understood. Here, we show that lysine-specific demethylase-1 (LSD1, KDM1A) has an essential role in maintaining the metabolic shift in human hepatocellular carcinoma cells. Inhibition of LSD1 reduced glucose uptake and glycolytic activity, with a concurrent activation of mitochondrial respiration. These metabolic changes coexisted with the inactivation of the hypoxia-inducible factor HIF1α, resulting in a decreased expression of GLUT1 and glycolytic enzymes. In contrast, during LSD1 inhibition, a set of mitochondrial metabolism genes was activated with the concomitant increase of methylated histone H3 at lysine 4 in the promoter regions. Consistently, both LSD1 and GLUT1 were significantly overexpressed in carcinoma tissues. These findings demonstrate the epigenetic plasticity of cancer cell metabolism, which involves an LSD1-mediated mechanism.
Collapse
Affiliation(s)
- Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan Department of Neurosurgery, Faculty of Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Katsuya Nagaoka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Haruka Matsumori
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hidenori Ojima
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
210
|
Wang M, Liu X, Jiang G, Chen H, Guo J, Weng X. Relationship between LSD1 expression and E-cadherin expression in prostate cancer. Int Urol Nephrol 2015; 47:485-90. [DOI: 10.1007/s11255-015-0915-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/13/2015] [Indexed: 11/27/2022]
|
211
|
Pieroni M, Annunziato G, Azzali E, Dessanti P, Mercurio C, Meroni G, Trifiró P, Vianello P, Villa M, Beato C, Varasi M, Costantino G. Further insights into the SAR of α-substituted cyclopropylamine derivatives as inhibitors of histone demethylase KDM1A. Eur J Med Chem 2015; 92:377-86. [PMID: 25585008 DOI: 10.1016/j.ejmech.2014.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Epigenetics alterations including histone methylation and acetylation, and DNA methylation, are thought to play important roles in the onset and progression of cancer in numerous tumour cell lines. Lysine-specific demethylase 1 (LSD1 or KDM1A) is highly expressed in different cancer types and inhibiting KDM1A activity seems to have high therapeutic potential in cancer treatment. In the recent years, several inhibitors of KDM1A have been prepared and disclosed. The majority of these derivatives were designed based on the structure of tranylcypromine, as the cyclopropane core is responsible for the covalent interaction between the inhibitor and the catalytic domain of KDM proteins. In this study, we have further extended the SAR regarding compounds 1a-e, which were recently found to inhibit KDM1A with good activity. The decoration of the phenyl ring at the β-position of the cyclopropane ring with small functional groups, mostly halogenated, and in particular at the meta position, led to a significant improvement of the inhibitory activity against KDM1A, as exemplified by compound 44a, which has a potency in the low nanomolar range (31 nM).
Collapse
Affiliation(s)
- Marco Pieroni
- Dipartimento Farmaceutico, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Giannamaria Annunziato
- Dipartimento Farmaceutico, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Elisa Azzali
- Dipartimento Farmaceutico, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Paola Dessanti
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giuseppe Meroni
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paolo Trifiró
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paola Vianello
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Manuela Villa
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Claudia Beato
- Dipartimento Farmaceutico, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Mario Varasi
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Gabriele Costantino
- Dipartimento Farmaceutico, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
| |
Collapse
|
212
|
Ahmed Khan MN, Tsumoto H, Itoh Y, Ota Y, Suzuki M, Ogasawara D, Nakagawa H, Mizukami T, Miyata N, Suzuki T. Design, synthesis, and biological activity of N-alkylated analogue of NCL1, a selective inhibitor of lysine-specific demethylase 1. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00330f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybridization of NCL1 and compound 5 led to the identification of a potent lysine-specific demethylase 1 inhibitor 5.
Collapse
Affiliation(s)
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging
- Tokyo Metropolitan Institute of Gerontology
- Itabashi-ku
- Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Sakyo-ku
- Japan
| | - Yosuke Ota
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Sakyo-ku
- Japan
| | - Miki Suzuki
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Sakyo-ku
- Japan
| | - Daisuke Ogasawara
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Sakyo-ku
- Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Tamio Mizukami
- Graduate School of Bio-Science
- Nagahama Institute of Bio-Science and Technology
- Nagahama
- Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Sakyo-ku
- Japan
- PRESTO
| |
Collapse
|
213
|
Rodriguez V, Valente S, Rovida S, Rotili D, Stazi G, Lucidi A, Ciossani G, Mattevi A, Botrugno OA, Dessanti P, Mercurio C, Vianello P, Minucci S, Varasi M, Mai A. Pyrrole- and indole-containing tranylcypromine derivatives as novel lysine-specific demethylase 1 inhibitors active on cancer cells. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00507d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of pyrrole/indole-containing tranylcypromine analogues is reported as potent and selective LSD1 inhibitors active in leukemia.
Collapse
|
214
|
Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TCP, Buesa C. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics 2015; 7:609-26. [PMID: 26111032 DOI: 10.2217/epi.15.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer. An additional role has emerged for KDM1 in brain function, offering additional opportunities for the development of novel therapeutic strategies in neurodegenerative disease. A decade after the identification of KDM1A as a histone demethylase, the first selective inhibitors have now reached the clinic.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Serena Lunardi
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Filippo Ciceri
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, M20 4BX, UK
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| |
Collapse
|
215
|
Hsu HC, Liu YS, Tseng KC, Yang TS, Yeh CY, You JF, Hung HY, Chen SJ, Chen HC. CBB1003, a lysine-specific demethylase 1 inhibitor, suppresses colorectal cancer cells growth through down-regulation of leucine-rich repeat-containing G-protein-coupled receptor 5 expression. J Cancer Res Clin Oncol 2015; 141:11-21. [PMID: 25060070 DOI: 10.1007/s00432-014-1782-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE Lysine-specific demethylase 1 (LSD1) was highly expressed in several malignancies and had been implicated in pathological processes of cancer cells. However, the role of LSD1 in colorectal cancer (CRC) carcinogenesis, prognosis and treatment remains uncharacterized. METHODS In this study, we examined LSD1 expression in paraffin-embedded CRC specimens from 295 patients, including 65 patients with paired samples of colorectal carcinoma, adjacent adenoma and normal colorectal tissues. Using an LSD1 inhibitor, CBB1003, as a probe, we studied the association between LSD1 and leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), a CRC stem cell marker involved in carcinogenesis. The anti-tumor effects of CBB1003 on CRC cells were also examined. RESULTS LSD1 expression was significantly elevated in colorectal tumor tissues compared with adjacent adenoma and normal colorectal tissues (P < 0.001), and LSD1 levels were significantly correlated with an advanced AJCC T stage (P = 0.012) and distant metastasis (P = 0.004). CBB1003 inhibited CRC cell proliferation and colony formation. In cultured CRC cells, inhibiting LSD1 activity by CBB1003 caused a decrease in LGR5 levels while overexpression of LGR5 reduced CBB1003-induced cell death. We also observed the inactivation of β-catenin/TCF signaling after CBB1003 treatment, consistent with the positive correlations among LSD1, LGR5, β-catenin and c-Myc expression in human colon tumor and adenoma tissues. CONCLUSION Our result suggested that LSD1 overexpression promotes CRC development and that the LSD1 inhibitor inhibits CRC cell growth by down-regulating LGR5 levels and inactivates the Wnt/β-catenin pathway. Thus, LSD1 and its inhibitor might provide a new target or a useful strategy for therapy of CRC.
Collapse
Affiliation(s)
- Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, 333, Taiwan, R.O.C,
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Kutz CJ, Holshouser SL, Marrow EA, Woster PM. 3,5-Diamino-1,2,4-triazoles as a novel scaffold for potent, reversible LSD1 (KDM1A) inhibitors. MEDCHEMCOMM 2014; 5:1863-1870. [PMID: 25580204 PMCID: PMC4286191 DOI: 10.1039/c4md00283k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chromatin remodeling amine oxidase lysine-specific demethylase 1 (LSD1) has become an attractive target for the design of specific inhibitors with therapeutic potential. We, and others, have described LSD1 inhibitors that have potential as antitumor agents. Many of the currently known LSD1 inhibitors are poor drug candidates, or are structurally based on the tranylcypromine backbone, thus increasing the potential for off-target effects mediated by other amine oxidases. We now describe a series of potent LSD1 inhibitors based on a novel 1,2,4-triazole scaffold; these inhibitors show a high degree of specificity for LSD1 in vitro, and cause increases in cellular histone 3 dimethyllysine 4 (H3K4me2), a gene transcription activating mark. Importantly, these inhibitors are not toxic to mammalian cells in vitro, and thus they may show utility in the treatment of epigenetically-based diseases where cell death is not a desired endpoint Figure 1. Structures of LSD1 inhibitors 1, verlindamycin 2, (bis)thioureas 3, amidoxime 4, cyclic peptide 5, N3-(2-chloro-6-phenoxybenzyl)-4H-1,2,4-triazole-3,5-diamine 6 and N3,N5-bis(2-methoxybenzyl)-1H-1,2,4-triazole-3,5-diamine 7.
Collapse
Affiliation(s)
- Craig J Kutz
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | - Steven L Holshouser
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | - Ethan A Marrow
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| |
Collapse
|
217
|
Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol 2014; 171:4981-5010. [PMID: 25060293 PMCID: PMC4253452 DOI: 10.1111/bph.12848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy.
Collapse
Affiliation(s)
- David F Tough
- Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Epinova DPU, Stevenage, UK
| | | | | | | | | |
Collapse
|
218
|
Theisen ER, Gajiwala S, Bearss J, Sorna V, Sharma S, Janat-Amsbury M. Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. BMC Cancer 2014; 14:752. [PMID: 25300887 PMCID: PMC4197342 DOI: 10.1186/1471-2407-14-752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Endometrial cancer is the most common gynecologic malignancy. Type II endometrial carcinoma is often poorly differentiated and patients diagnosed with Type II disease (~11%) are disproportionately represented in annual endometrial cancer deaths (48%). Recent genomic studies highlight mutations in chromatin regulators as drivers in Type II endometrial carcinoma tumorigenesis, suggesting the use of epigenetic targeted therapies could provide clinical benefit to these patients. We investigated the anti-tumor efficacy of the LSD1 inhibitor HCI2509 in two poorly differentiated Type II endometrial cancer cell lines AN3CA and KLE. METHODS The effects of HCI2509 on viability, proliferation, anchorage-independent growth, global histone methylation, LSD1 target gene induction, cell cycle, caspase activation and TUNEL were assayed. KLE cells were used in an orthotopic xenograft model to assess the anti-tumor activity of HCI2509. RESULTS Both AN3CA and KLE cells were sensitive to HCI2509 treatment with IC50s near 500 nM for cell viability. Inhibition of LSD1 with HCI2509 caused decreased proliferation and anchorage independent growth in soft agar, elevated global histone methylation, and perturbed the cell cycle in both cell lines. These effects were largely dose-dependent. HCI2509 treatment also caused apoptotic cell death. Orthotopic implantation of KLE cells resulted in slow-growing and diffuse tumors throughout the abdomen. Tumor burden was distributed log-normally. Treatment with HCI2509 resulted 5/9 tumor regressions such that treatment and regressions were significantly associated (p=0.034). CONCLUSIONS Our findings demonstrate the anti-cancer properties of the LSD1 inhibitor HCI2509 on poorly differentiated endometrial carcinoma cell lines, AN3CA and KLE. HCI2509 showed single-agent efficacy in orthotopic xenograft studies. Continued studies are needed to preclinically validate LSD1 inhibition as a therapeutic strategy for endometrial carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Margit Janat-Amsbury
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
219
|
Abstract
Cell growth and proliferation are controlled through different posttranslational modifications including demethylation, a process regulated by regulated by the demethylase enzymes. This review focuses on our current understanding of functional and therapeutic potentials of histone demethylases in colon cancer. Colon cancer is the third most common malignancy worldwide and the second leading cause of cancer deaths in the United States. The key protein families responsible for demethylation of histones, histone demethylases, have emerged as new therapeutic targets in different cancer types including colon cancer. These families are of great interest as potential novel biomarkers for diagnosis and targets for therapy and prevention of colon cancer. In this manuscript, we will discuss our current understanding of the histone demethylase family, and the role they play as epigenetic activators or repressors of different genes in colon cancer.
Collapse
|
220
|
Althoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Sprüssel A, Lindner S, De Preter K, Florin A, Heukamp LC, Klein-Hitpass L, Astrahantseff K, Kumps C, Speleman F, Eggert A, Westermann F, Schramm A, Schulte JH. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 2014; 34:3357-68. [PMID: 25174395 PMCID: PMC4487199 DOI: 10.1038/onc.2014.269] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022]
Abstract
Neuroblastoma, a childhood cancer that originates from neural crest-derived cells, is the most common deadly solid tumor of infancy. Amplification of the MYCN oncogene, which occurs in approximately 20–25% of human neuroblastomas, is the most prominent genetic marker of high-stage disease. The availability of valid preclinical in vivo models is a prerequisite to develop novel targeted therapies. We here report on the generation of transgenic mice with Cre-conditional induction of MYCN in dopamine β-hydroxylase-expressing cells, termed LSL-MYCN;Dbh-iCre. These mice develop neuroblastic tumors with an incidence of >75%, regardless of strain background. Molecular profiling of tumors revealed upregulation of the MYCN-dependent miR-17–92 cluster as well as expression of neuroblastoma marker genes, including tyrosine hydroxylase and the neural cell adhesion molecule 1. Gene set enrichment analyses demonstrated significant correlation with MYC-associated expression patterns. Array comparative genome hybridization showed that chromosomal aberrations in LSL-MYCN;Dbh-iCre tumors were syntenic to those observed in human neuroblastomas. Treatment of a cell line established from a tumor derived from a LSL-MYCN;Dbh-iCre mouse with JQ1 or MLN8237 reduced cell viability and demonstrated oncogene addiction to MYCN. Here we report establishment of the first Cre-conditional human MYCN-driven mouse model for neuroblastoma that closely recapitulates the human disease with respect to tumor localization, histology, marker expression and genomic make up. This mouse model is a valuable tool for further functional studies and to assess the effect of targeted therapies.
Collapse
Affiliation(s)
- K Althoff
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany
| | - A Beckers
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - E Bell
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - M Nortmeyer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - T Thor
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [4] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - A Sprüssel
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [4] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - S Lindner
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [4] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - K De Preter
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - A Florin
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - L C Heukamp
- 1] Institute of Pathology, University Hospital Cologne, Cologne, Germany [2] New Oncology -a division of Blackfield AG, Köln, Germany
| | - L Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - K Astrahantseff
- Department of Pediatric Oncology, Hematology and BMT, Charité University Medicine, Augustenburger Platz 1, Berlin, Germany
| | - C Kumps
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - F Speleman
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - A Eggert
- Department of Pediatric Oncology, Hematology and BMT, Charité University Medicine, Augustenburger Platz 1, Berlin, Germany
| | - F Westermann
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - A Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - J H Schulte
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium [4] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [5] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
221
|
Vianello P, Botrugno OA, Cappa A, Ciossani G, Dessanti P, Mai A, Mattevi A, Meroni G, Minucci S, Thaler F, Tortorici M, Trifiró P, Valente S, Villa M, Varasi M, Mercurio C. Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: a novel class of irreversible inhibitors of histone demethylase KDM1A. Eur J Med Chem 2014; 86:352-63. [PMID: 25173853 DOI: 10.1016/j.ejmech.2014.08.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
Abstract
Histone demethylase KDM1A (also known as LSD1) has become an attractive therapeutic target for the treatment of cancer as well as other disorders such as viral infections. We report on the synthesis of compounds derived from the expansion of tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. These compounds, which are substituted on the cyclopropyl core moiety, were evaluated for their ability to inhibit KDM1A in vitro as well as to function in cells by modulating the expression of Gfi-1b, a well recognized KDM1A target gene. The molecules were all found to covalently inhibit KDM1A and to become increasingly selective against human monoamine oxidases MAO A and MAO B through the introduction of bulkier substituents on the cyclopropylamine ring. Structural and biochemical analysis of selected trans isomers showed that the two stereoisomers are endowed with similar inhibitory activities against KDM1A, but form different covalent adducts with the FAD co-enzyme.
Collapse
Affiliation(s)
- Paola Vianello
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Oronza A Botrugno
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Anna Cappa
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giuseppe Ciossani
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Paola Dessanti
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Antonello Mai
- Pasteur Institute - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, University "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Giuseppe Meroni
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Biosciences, University of Milan, Via Celoria, 26, 20133 Milan, Italy
| | - Florian Thaler
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Marcello Tortorici
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Paolo Trifiró
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sergio Valente
- Pasteur Institute - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, University "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Manuela Villa
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Mario Varasi
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Drug Discovery Unit, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
222
|
You JS, Han JH. Targeting components of epigenome by small molecules. Arch Pharm Res 2014; 37:1367-74. [PMID: 25070764 DOI: 10.1007/s12272-014-0455-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The diverse epigenetic modifications regulate the gene expression and determine the cellular identity. Pioneering work over the past decades has highlighted that these epigenetic regulations establish normal development but also contribute various diseases. Furthermore, the epigenetic priming events are considered as a key factor for efficient master transcription factor(s) mediated reprogramming process. With the advent of numerous small molecules that target specific enzymes or proteins involved in the epigenetic regulation of gene expression, the utilization of epigenetic targets is emerging as a valuable approach to cancer therapy and cellular reprogramming. Here, we briefly present the basic principles of epigenetic regulations and review the recent application of epigenetic targeting small molecules.
Collapse
Affiliation(s)
- Jueng Soo You
- Insitute of Biomedical Science & Technology, Departments of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea,
| | | |
Collapse
|
223
|
Han X, Gui B, Xiong C, Zhao L, Liang J, Sun L, Yang X, Yu W, Si W, Yan R, Yi X, Zhang D, Li W, Li L, Yang J, Wang Y, Sun YE, Zhang D, Meng A, Shang Y. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. Mol Cell 2014; 55:482-94. [PMID: 25018020 DOI: 10.1016/j.molcel.2014.06.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Histone H3K4 demethylase LSD1 plays an important role in stem cell biology, especially in the maintenance of the silencing of differentiation genes. However, how the function of LSD1 is regulated and the differentiation genes are derepressed are not understood. Here, we report that elimination of LSD1 promotes embryonic stem cell (ESC) differentiation toward neural lineage. We showed that the destabilization of LSD1 occurs posttranscriptionally via the ubiquitin-proteasome pathway by an E3 ubiquitin ligase, Jade-2. We demonstrated that Jade-2 is a major LSD1 negative regulator during neurogenesis in vitro and in vivo in both mouse developing cerebral cortices and zebra fish embryos. Apparently, Jade-2-mediated degradation of LSD1 acts as an antibraking system and serves as a quick adaptive mechanism for re-establishing epigenetic landscape without more laborious transcriptional regulations. As a potential anticancer strategy, Jade-2-mediated LSD1 degradation could potentially be used in neuroblastoma cells to induce differentiation toward postmitotic neurons.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Cong Xiong
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Linnan Zhao
- Key Laboratory of Mental Health, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenhua Yu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Di Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lifang Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200065, China; Departments of Psychiatry and Behavioral Sciences and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
224
|
Jin Y, Kim TY, Kim MS, Kim MA, Park SH, Jang YK. Nuclear import of human histone lysine-specific demethylase LSD1. J Biochem 2014; 156:305-13. [PMID: 24986870 DOI: 10.1093/jb/mvu042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Upregulation and nuclear retention of the human histone demethylase LSD1 are correlated with aggressiveness and poor outcome of several cancer types, but the molecular mechanism of LSD1 nuclear import remains unclear. Here, we found that the N-terminal flexible region of LSD1 contains a nuclear localization signal (NLS), (112)RRKRAK(117). Mutation or deletion of the NLS completely abolished the nuclear import of LSD1, suggesting the motif is a bona fide NLS. More importantly, our GST pull-down assay showed that LSD1 physically interacts with three proteins of importin α family. In addition, our data suggest that the nuclear localization of LSD1 via the NLS is not a cell-type specific event. Thus, these findings demonstrate for the first time that the NLS motif within the N-terminal flexible domain of LSD1 is critical for its nuclear localization via interaction with importin α proteins.
Collapse
Affiliation(s)
- Yanhua Jin
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Tae Young Kim
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Seong Kim
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Aeh Kim
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Su Hyung Park
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yeun Kyu Jang
- Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea. Department of Medical Genetics, College of Medicine, Yanbian University, 977 Gongyuan Road, Yanji City, China; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; and Initiative for Biological Function and Systems, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
225
|
Sankar S, Theisen ER, Bearss J, Mulvihill T, Hoffman LM, Sorna V, Beckerle MC, Sharma S, Lessnick SL. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res 2014; 20:4584-97. [PMID: 24963049 DOI: 10.1158/1078-0432.ccr-14-0072] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Ewing sarcoma is a pediatric bone tumor that absolutely relies on the transcriptional activity of the EWS/ETS family of fusion oncoproteins. While the most common fusion, EWS/FLI, utilizes lysine-specific demethylase 1 (LSD1) to repress critical tumor suppressors, small-molecule blockade of LSD1 has not yet been thoroughly explored as a therapeutic approach for Ewing sarcoma. We therefore evaluated the translational potential of potent and specific LSD1 inhibition with HCI2509 on the transcriptional program of both EWS/FLI and EWS/ERG as well as the downstream oncogenic phenotypes driven by EWS/ETS fusions in both in vitro and in vivo models of Ewing sarcoma. EXPERIMENTAL DESIGN RNA-seq was used to compare the transcriptional profiles of EWS/FLI, EWS/ERG, and treatment with HCI2509 in both EWS/FLI- and EWS/ERG-containing cell lines. We then evaluated morphologic phenotypes of treated cells with immunofluorescence. The induction of apoptosis was evaluated using caspase-3/7 activation and TUNEL staining. Colony forming assays were used to test oncogenic transformation and xenograft studies with patient-derived cell lines were used to evaluate the effects of HCI2509 on tumorigenesis. RESULTS HCI2509 caused a dramatic reversal of both the up- and downregulated transcriptional profiles of EWS/FLI and EWS/ERG accompanied by the induction of apoptosis and disruption of morphologic and oncogenic phenotypes modulated by EWS/FLI. Importantly, HCI2509 displayed single-agent efficacy in multiple xenograft models. CONCLUSIONS These data support epigenetic modulation with HCI2509 as a therapeutic strategy for Ewing sarcoma, and highlight a critical dual role for LSD1 in the oncogenic transcriptional activity of EWS/ETS proteins.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emily R Theisen
- Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah. Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Jared Bearss
- Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Laura M Hoffman
- Department of Biology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Venkataswamy Sorna
- Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mary C Beckerle
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah. Department of Biology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Sunil Sharma
- Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah. Division of Medical Oncology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stephen L Lessnick
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah. Center for Children's Cancer Research at Huntsman Cancer Institute, Salt Lake City, Utah. Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
226
|
Tung PY, Knoepfler PS. Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene 2014; 34:2288-96. [PMID: 24931168 PMCID: PMC4268091 DOI: 10.1038/onc.2014.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/04/2023]
Abstract
One of the biggest roadblocks to using stem cells as the basis for regenerative medicine therapies is the tumorigenicity of stem cells. Unfortunately, the unique abilities of stem cells to self-renew and differentiate into a variety of cell types are also mechanistically linked to their tumorigenic behaviors. Understanding the mechanisms underlying the close relationship between stem cells and cancer cells has therefore become a primary goal in the field. In addition, knowledge gained from investigating the striking parallels between mechanisms orchestrating normal embryogenesis and those that invoke tumorigenesis may well serve as the foundation for developing novel cancer treatments. Emerging discoveries have demonstrated that epigenetic regulatory machinery plays important roles in normal stem cell functions, cancer development, and cancer stem cell identity. These studies provide valuable insights into both the shared and distinct mechanisms by which pluripotency and oncogenicity are established and regulated. In this review, the cancer-related epigenetic mechanisms found in pluripotent stem cells and cancer stem cells will be discussed, focusing on both the similarities and the differences.
Collapse
Affiliation(s)
- P-Y Tung
- 1] Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA [2] UC Davis Genome Center, University of California Davis, Davis, CA, USA [3] UC Davis Comprehensive Cancer Center, Sacramento, CA, USA [4] Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
| | - P S Knoepfler
- 1] Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA [2] UC Davis Genome Center, University of California Davis, Davis, CA, USA [3] UC Davis Comprehensive Cancer Center, Sacramento, CA, USA [4] Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
| |
Collapse
|
227
|
Mino K, Nishimura S, Ninomiya S, Tujii H, Matsumori Y, Tsuchida M, Hosoi M, Koseki K, Wada S, Hasegawa M, Sasaki R, Murakami-Yamaguchi Y, Narita H, Suzuki T, Miyata N, Mizukami T. Regulation of tissue factor pathway inhibitor-2 (TFPI-2) expression by lysine-specific demethylase 1 and 2 (LSD1 and LSD2). Biosci Biotechnol Biochem 2014; 78:1010-7. [PMID: 25036127 DOI: 10.1080/09168451.2014.910104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a major inhibitor of extracellular matrix degradation. Decreases in TFPI-2 contribute to malignant tumor cell production, and TFPI-2 is a presumed tumor suppressor. TFPI-2 gene transcription is regulated by two epigenetic mechanisms: DNA methylation of the promoter and K4 methylation of histone 3 (H3). Lysine-specific demethylase 1 (LSD1) and LSD2 demethylate H3K4me2/1. LSD1 has been implicated in TFPI-2 regulation through both epigenetic mechanisms, but the involvement of LSD2 remains unknown. We prepared a monoclonal anti-LSD2 antibody that clearly distinguishes LSD2 from LSD1. Knockdown of LSD1 or LSD2 by siRNAs increased TFPI-2 protein and mRNA. Simultaneous knockdown of both LSD1 and LSD2 showed additive effects. Bisulfite sequencing revealed that CpG sites in the TFPI-2 promoter region were unmethylated. These results indicate that LSD2 also contributes to TFPI-2 regulation through histone modification, and that further studies of the involvement of LSD2 in tumor malignancy are warranted.
Collapse
Affiliation(s)
- Koshiki Mino
- a Graduate School of Bio-Science , Nagahama Institute of Bio-Science and Technology , Nagahama , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Kang C, Song JJ, Lee J, Kim MY. Epigenetics: An emerging player in gastric cancer. World J Gastroenterol 2014; 20:6433-6447. [PMID: 24914365 PMCID: PMC4047329 DOI: 10.3748/wjg.v20.i21.6433] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cancers, like other diseases, arise from gene mutations and/or altered gene expression, which eventually cause dysregulation of numerous proteins and noncoding RNAs. Changes in gene expression, i.e., upregulation of oncogenes and/or downregulation of tumor suppressor genes, can be generated not only by genetic and environmental factors but also by epigenetic factors, which are inheritable but nongenetic modifications of cellular chromosome components. Identification of the factors that contribute to individual cancers is a prerequisite to a full understanding of cancer mechanisms and the development of customized cancer therapies. The search for genetic and environmental factors has a long history in cancer research, but epigenetic factors only recently began to be associated with cancer formation, progression, and metastasis. Epigenetic alterations of chromatin include DNA methylation and histone modifications, which can affect gene-expression profiles. Recent studies have revealed diverse mechanisms by which chromatin modifiers, including writers, erasers and readers of the aforementioned modifications, contribute to the formation and progression of cancer. Furthermore, functional RNAs, such as microRNAs and long noncoding RNAs, have also been identified as key players in these processes. This review highlights recent findings concerning the epigenetic alterations associated with cancers, especially gastric cancer.
Collapse
|
229
|
Qin Y, Zhu W, Xu W, Zhang B, Shi S, Ji S, Liu J, Long J, Liu C, Liu L, Xu J, Yu X. LSD1 sustains pancreatic cancer growth via maintaining HIF1α-dependent glycolytic process. Cancer Lett 2014; 347:225-232. [PMID: 24561118 DOI: 10.1016/j.canlet.2014.02.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
The histone demethylase LSD1 (lysine specific demethylase 1) plays an important role in the epigenetic regulation of gene transcription. Our study investigated the role of LSD1 in pancreatic cancer and demonstrated that LSD1 was significantly up-regulated in pancreatic cancer patient tissue samples, and elevated LSD1 protein levels positively correlated with overall survival of pancreatic cancer patients. Using in vitro and in vivo models, we demonstrated that knock-down of LSD1 repressed proliferation and tumorigenicity of pancreatic cancer cells. Mechanistically, our study demonstrated that LSD1 synergized with HIF1α (hypoxia inducible factor-1α) in maintaining glycolytic process, which fueled pancreatic cancer uncontrolled proliferation.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Wenwei Zhu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China.
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
230
|
Mishra VK, Johnsen SA. Targeted therapy of epigenomic regulatory mechanisms controlling the epithelial to mesenchymal transition during tumor progression. Cell Tissue Res 2014; 356:617-30. [PMID: 24833164 DOI: 10.1007/s00441-014-1912-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/05/2014] [Indexed: 11/28/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible change in cell phenotype that plays a crucial role during normal development and cancer metastasis. EMT imparts embryonic epithelial cells with the ability to migrate and to give rise to organs or tissues at distant sites. During cancer progression, the same developmental process is utilized in an analogous manner to enable cancer cells to move to distant organs and form metastases. The reversion of EMT via the mesenchymal-to-epithelial transition (MET) appears to be required for the formation of secondary tumors at distal sites. The plasticity of epigenomic modifications that control the transcriptional program of cells enables cells to switch back and forth from epithelial and mesenchymal phenotypes during these transitions. Here, we review the interplay between complex epigenomic regulatory mechanisms and various transcription factors involved in EMT leading to changes in gene expression and cell phenotype. We also discuss the way that a deeper understanding of the epigenomic regulation of EMT might shed light onto the process of cancer progression and reveal new targets for novel and more specific anticancer epigenomic therapies.
Collapse
Affiliation(s)
- Vivek Kumar Mishra
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | | |
Collapse
|
231
|
Abstract
Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, while a plethora of enzymes, such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), and histone demethylases (HDMs) regulate covalent histone modifications. In many diseases, such as cancer, the epigenetic regulatory system is often disturbed. Vitamin D interacts with the epigenome on multiple levels. Firstly, critical genes in the vitamin D signaling system, such as those coding for vitamin D receptor (VDR) and the enzymes 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) have large CpG islands in their promoter regions and therefore can be silenced by DNA methylation. Secondly, VDR protein physically interacts with coactivator and corepressor proteins, which in turn are in contact with chromatin modifiers, such as HATs, HDACs, HMTs, and with chromatin remodelers. Thirdly, a number of genes encoding for chromatin modifiers and remodelers, such as HDMs of the Jumonji C (JmjC)-domain containing proteins and lysine-specific demethylase (LSD) families are primary targets of VDR and its ligands. Finally, there is evidence that certain VDR ligands have DNA demethylating effects. In this review we will discuss regulation of the vitamin D system by epigenetic modifications and how vitamin D contributes to the maintenance of the epigenome, and evaluate its impact in health and disease.
Collapse
Affiliation(s)
- Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| |
Collapse
|
232
|
Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SGT, Liu K, Iyer SP, Bearss D, Bhalla KN. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia 2014; 28:2155-64. [PMID: 24699304 PMCID: PMC4739780 DOI: 10.1038/leu.2014.119] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/11/2014] [Accepted: 03/24/2014] [Indexed: 12/21/2022]
Abstract
The histone demethylase LSD1 (KDM1A) demethylates mono- and di-methylated (Me2) lysine (K) 4 on histone H3. High LSD1 expression blocks differentiation and confers a poor prognosis in AML. Here, treatment with the novel LSD1 antagonist SP2509 attenuated the binding of LSD1 with the co-repressor CoREST, increased the permissive H3K4Me3 mark on the target gene promoters, and increased the levels of p21, p27 and C/EBPα in cultured AML cells. Additionally, SP2509 treatment or LSD1 shRNA inhibited the colony growth of AML cells. SP2509 also induced morphologic features of differentiation in the cultured and primary AML blasts. SP2509 induced more apoptosis of AML cells expressing mutant NPM1 than MLL fusion oncoproteins. Treatment with SP2509 alone significantly improved the survival of immune-depleted mice following tail-vein infusion and engraftment of cultured or primary human AML cells. Co-treatment with pan-HDAC inhibitor (HDI) panobinostat (PS) and SP2509 was synergistically lethal against cultured and primary AML blasts. Compared to each agent alone, co-treatment with SP2509 and PS significantly improved the survival of the mice engrafted with the human AML cells, without exhibiting any toxicity. Collectively, these findings show that the combination of LSD1 antagonist and pan-HDI is a promising therapy warranting further testing against AML.
Collapse
Affiliation(s)
- W Fiskus
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - S Sharma
- Huntsman Cancer Institute, University of Utah, UT, Salt Lake City, USA
| | - B Shah
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - B P Portier
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - S G T Devaraj
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - K Liu
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - S P Iyer
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - D Bearss
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - K N Bhalla
- Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
233
|
Lin Y, Dong C, Zhou B. Epigenetic Regulation of EMT: The Snail Story. Curr Pharm Des 2014; 20:1698-705. [PMID: 23888971 DOI: 10.2174/13816128113199990512] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/18/2013] [Indexed: 12/22/2022]
|
234
|
Lin Y, Kang T, Zhou BP. Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner. Cell Cycle 2014; 13:1708-16. [PMID: 24675890 DOI: 10.4161/cc.28619] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcription factor Snail not only functions as a master regulator of epithelial-mesenchymal transition (EMT), but also mediates cell proliferation and survival. While previous studies have showed that Snail protects tumor cells from apoptosis through transcriptional repression of PTEN, the specific mechanism remains unclear. In this study, we demonstrated that Snail cooperates with LSD1 to repress PTEN in a PARP1-dependent manner. Upon doxorubicin treatment, Snail becomes tightly associated with PARP1 through its pADPr-binding motif and is subject to poly(ADP-ribosyl)ation. This modification can enhance Snail-LSD1 interaction and promote the recruitment of LSD1 to PTEN promoter, where LSD1 removes methylation on histone H3 lysine 4 for transcription repression. Furthermore, treatment of tumor cells with PARP1 inhibitor AZD2281 can compromise doxorubicin-induced PTEN suppression and enhance the inhibitory effect of doxorubicin. Together, we proposed a tentative drug-resistant mechanism through which tumor cells defend themselves against DNA damage-induced apoptosis. PARP1 inhibitors in combination with DNA damaging reagents might represent a promising treatment strategy targeting tumors with over-activated Snail and LSD1.
Collapse
Affiliation(s)
- Yiwei Lin
- Departments of Molecular and Cellular Biochemistry and Markey Cancer Center; University of Kentucky College of Medicine; Lexington, KY USA
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Guangzhou, China
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry and Markey Cancer Center; University of Kentucky College of Medicine; Lexington, KY USA; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Guangzhou, China
| |
Collapse
|
235
|
Itoh Y, Ogasawara D, Ota Y, Mizukami T, Suzuki T. Synthesis, LSD1 Inhibitory Activity, and LSD1 Binding Model of Optically Pure Lysine-PCPA Conjugates. Comput Struct Biotechnol J 2014; 9:e201402002. [PMID: 24757500 PMCID: PMC3995212 DOI: 10.5936/csbj.201402002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 01/22/2023] Open
Abstract
Compounds that inhibit the catalytic function of lysine-specific demethylase 1 (LSD1) are interesting as therapeutic agents. Recently, we identified three lysine-phenylcyclopropylamine conjugates, NCD18, NCD25, and NCD41, which are potent LSD1 inactivators. However, in our previous study, because we tested those compounds as mixtures of (1S,2R)- and (1R,2S)-disubstituted cyclopropane rings, the relationship between the stereochemistry of the cyclopropane ring and their biological activity remained unknown. In this work, we synthesized optically active compounds of NCD18, NCD25, and NCD41 and evaluated their LSD1 inhibitory activities. In enzyme assays, the LSD1 inhibitory activities of (1R,2S)-NCD18 and (1R,2S)-NCD25 were approximately eleven and four times more potent than those of the corresponding (1S,2R)-isomers, respectively. On the other hand, (1S,2R)-NCD41 was four times more potent than (1R,2S)-NCD41. Binding simulation with LSD1 indicated that the aromatic rings of the compounds and the amino group of the cyclopropylamine were important for the interaction with LSD1, and that the stereochemistry of the 1,2-disubstituted cyclopropane ring affected the position of the aromatic rings and the hydrogen bond formation of the amino group in the LSD1 catalytic site. These findings are expected to contribute to the further development of LSD1 inactivators.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-cho, Kita-ku, Kyoto 603-8334, Japan
| | - Daisuke Ogasawara
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-cho, Kita-ku, Kyoto 603-8334, Japan
| | - Yosuke Ota
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-cho, Kita-ku, Kyoto 603-8334, Japan
| | - Tamio Mizukami
- Graduate School of Bio-Science, Nagahama Institute of Bio-Science Technology, 1226 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-cho, Kita-ku, Kyoto 603-8334, Japan ; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
236
|
Kumarasinghe I, Woster PM. Synthesis and evaluation of novel cyclic Peptide inhibitors of lysine-specific demethylase 1. ACS Med Chem Lett 2014; 5:29-33. [PMID: 24883177 PMCID: PMC4027766 DOI: 10.1021/ml4002997] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/08/2013] [Indexed: 01/02/2023] Open
Abstract
Lysine specific demethylase 1 (LSD1) selectively removes methyl groups from mono- and dimethylated histone 3 lysine 4 (H3K4), resulting in gene silencing. LSD1 is overexpressed in many human cancers, resulting in aberrant silencing of tumor suppressor genes. Thus, LSD1 is a validated target for the discovery of antitumor agents. Using a ligand-based approach, we designed and synthesized a series of cyclic and linear peptides that are effective inhibitors of LSD1. Linear peptide 7 and cyclic peptide 9 inhibited LSD1 in vitro by 91 and 94%, respectively, at a concentration of 10 μM. Compound 9 was a potent LSD1 inhibitor (IC50 2.1 μM; K i 385 nM) and had moderate antitumor activity in the MCF-7 and Calu-6 cell lines in vitro. Importantly, 9 is significantly more stable to hydrolysis in rat plasma than the linear analogue 7. The cyclic peptides described herein represent important lead structures in the search for inhibitors of flavin-dependent histone demethylases.
Collapse
Affiliation(s)
- Isuru
R. Kumarasinghe
- Department of Drug Discovery
and Biomedical Sciences, Medical University
of South Carolina, 70
President Street, Charleston, South Carolina 29425, United States
| | - Patrick M. Woster
- Department of Drug Discovery
and Biomedical Sciences, Medical University
of South Carolina, 70
President Street, Charleston, South Carolina 29425, United States
| |
Collapse
|
237
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
238
|
Sakane C, Okitsu T, Wada A, Sagami H, Shidoji Y. Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives. Biochem Biophys Res Commun 2014; 444:24-9. [DOI: 10.1016/j.bbrc.2013.12.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/31/2013] [Indexed: 11/26/2022]
|
239
|
Barbieri E, De Preter K, Capasso M, Chen Z, Hsu DM, Tonini GP, Lefever S, Hicks J, Versteeg R, Pession A, Speleman F, Kim ES, Shohet JM. Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. Cancer Res 2013; 74:765-74. [PMID: 24335960 DOI: 10.1158/0008-5472.can-13-1315] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma arises from the embryonal neural crest secondary to a block in differentiation. Long-term patient survival correlates inversely with the extent of differentiation, and treatment with retinoic acid or other prodifferentiation agents improves survival modestly. In this study, we show the histone chaperone and epigenetic regulator CHAF1A functions in maintaining the highly dedifferentiated state of this aggressive malignancy. CHAF1A is a subunit of the chromatin modifier chromatin assembly factor 1 and it regulates H3K9 trimethylation of key target genes regulating proliferation, survival, and differentiation. Elevated CHAF1A expression strongly correlated with poor prognosis. Conversely, CHAF1A loss-of-function was sufficient to drive neuronal differentiation in vitro and in vivo. Transcriptome analysis of cells lacking CHAF1A revealed repression of oncogenic signaling pathways and a normalization of glycolytic metabolism. Our findings demonstrate that CHAF1A restricts neural crest differentiation and contributes to the pathogenesis of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Eveline Barbieri
- Authors' Affiliations: Texas Children's Cancer Center and Center for Cell and Gene Therapy; Department of Surgery, Baylor College of Medicine, Houston, Texas; Center for Medical Genetics, Ghent University, Ghent, Belgium; CEINGE Biotecnologie Avanzate, Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples; Pediatric Research Institute, University of Padua, Padua; Paediatric Oncology and Haematology Unit "Lalla Seràgnoli," Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; and Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
miR-329 suppresses the growth and motility of neuroblastoma by targeting KDM1A. FEBS Lett 2013; 588:192-7. [DOI: 10.1016/j.febslet.2013.11.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022]
|
241
|
Helin K, Dhanak D. Chromatin proteins and modifications as drug targets. Nature 2013; 502:480-8. [PMID: 24153301 DOI: 10.1038/nature12751] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation is complex, new inhibitors such as these will hopefully be of clinical use in the coming years.
Collapse
Affiliation(s)
- Kristian Helin
- 1] Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. [2] Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. [3] The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | |
Collapse
|
242
|
Sorna V, Theisen ER, Stephens B, Warner SL, Bearss DJ, Vankayalapati H, Sharma S. High-Throughput Virtual Screening Identifies Novel N′-(1-Phenylethylidene)-benzohydrazides as Potent, Specific, and Reversible LSD1 Inhibitors. J Med Chem 2013; 56:9496-508. [DOI: 10.1021/jm400870h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Venkataswamy Sorna
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Emily R. Theisen
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
- Department
of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 301 Skaggs Hall, Salt Lake City, Utah 84112, United States
| | - Bret Stephens
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Steven L. Warner
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - David J. Bearss
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| | - Hariprasad Vankayalapati
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
- School
of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, Utah 84132, United States
| | - Sunil Sharma
- Center
for Investigational Therapeutics (CIT), Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
- School
of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, Utah 84132, United States
- Division
of Medical Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, United States
| |
Collapse
|
243
|
Abstract
It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes.
Collapse
|
244
|
LSD1 regulates pluripotency of embryonic stem/carcinoma cells through histone deacetylase 1-mediated deacetylation of histone H4 at lysine 16. Mol Cell Biol 2013; 34:158-79. [PMID: 24190971 DOI: 10.1128/mcb.00631-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LSD1 is essential for the maintenance of pluripotency of embryonic stem (ES) or embryonic carcinoma/teratocarcinoma (EC) cells. We have previously developed novel LSD1 inhibitors that selectively inhibit ES/EC cells. However, the critical targets of LSD1 remain unclear. Here, we found that LSD1 interacts with histone deacetylase 1 (HDAC1) to regulate the proliferation of ES/EC cells through acetylation of histone H4 at lysine 16 (H4K16), which we show is a critical substrate of HDAC1. The LSD1 demethylase and HDAC1 deacetylase activities were both inactivated if one of them in the complex was chemically inhibited in ES/EC cells or in reconstituted protein complexes. Loss of HDAC1 phenocopied the selective growth-inhibitory effects and increased the levels of H3K4 methylation and H4K16 acetylation of LSD1 inactivation on ES/EC cells. Reduction of acetylated H4K16 by ablation of the acetyltransferase males absent on the first (MOF) is sufficient to rescue the growth inhibition induced by LSD1 inactivation. While LSD1 or HDAC1 inactivation caused the downregulation of Sox2 and Oct4 and induction of differentiation genes, such as FOXA2 or BMP2, depletion of MOF restored the levels of Sox2, Oct4, and FoxA2 in LSD1-deficient cells. Our studies reveal a novel mechanism by which LSD1 acts through the HDAC1- and MOF-mediated regulation of H4K16 acetylation to maintain the pluripotency of ES/EC cells.
Collapse
|
245
|
Konovalov S, Garcia-Bassets I. Analysis of the levels of lysine-specific demethylase 1 (LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in ovarian cancer cell lines. J Ovarian Res 2013; 6:75. [PMID: 24165091 PMCID: PMC4176291 DOI: 10.1186/1757-2215-6-75] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/18/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lysine-specific demethylase 1 (LSD1, also known as KDM1A and AOF2) is a chromatin-modifying activity that catalyzes the removal of methyl groups from lysine residues in histone and non-histone proteins, regulating gene transcription. LSD1 is overexpressed in several cancer types, and chemical inhibition of the LSD1 activity has been proposed as a candidate cancer therapy. Here, we examine the levels of LSD1 mRNA in human ovarian tumors and the cytotoxicity of several chemical LSD1 inhibitors in a panel of ovarian cancer cell lines. METHODS We measured LSD1 mRNA levels in a cohort of n = 177 normal and heterogeneous tumor specimens by quantitative real time-PCR (qRT-PCR). Tumors were classified by FIGO stage, FIGO grade, and histological subtypes. We tested the robustness of our analyses in an independent cohort of n = 573 serous tumor specimens (source: TCGA, based on microarray). Statistical analyses were based on Kruskal-Wallis/Dunn's and Mann Whitney tests. Changes in LSD1 mRNA levels were also correlated with transcriptomic alterations at genome-wide scale. Effects on cell viability (MTS/PMS assay) of six LSD1 inhibitors (pargyline, TCP, RN-1, S2101, CAS 927019-63-4, and CBB1007) were also evaluated in a panel of ovarian cancer cell lines (SKOV3, OVCAR3, A2780 and cisplatin-resistant A2780cis). RESULTS We found moderate but consistent LSD1 mRNA overexpression in stage IIIC and high-grade ovarian tumors. LSD1 mRNA overexpression correlated with a transcriptomic signature of up-regulated genes involved in cell cycle and down-regulated genes involved in the immune/inflammatory response, a signature previously observed in aggressive tumors. In fact, some ovarian tumors showing high levels of LSD1 mRNA are associated with poor patient survival. Chemical LSD1 inhibition induced cytotoxicity in ovarian cancer lines, which roughly correlated with their reported LSD1 inhibitory potential (RN-1,S2101 >> pargyline,TCP). CONCLUSIONS Our findings may suggest a role of LSD1 in the biology of some ovarian tumors. It is of special interest to find a correlation of LSD1 mRNA overexpression with a transcriptomic signature relevant to cancer. Our findings, therefore, prompt further investigation of the role of LSD1 in ovarian cancer, as well as the study of its enzymatic inhibition in animal models for potential therapeutic purposes in the context of this disease.
Collapse
Affiliation(s)
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
246
|
Wu Y, Wang Y, Yang XH, Kang T, Zhao Y, Wang C, Evers BM, Zhou BP. The deubiquitinase USP28 stabilizes LSD1 and confers stem-cell-like traits to breast cancer cells. Cell Rep 2013; 5:224-36. [PMID: 24075993 DOI: 10.1016/j.celrep.2013.08.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 06/28/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022] Open
Abstract
LSD1 is a critical chromatin modulator that controls cellular pluripotency and differentiation through the demethylation of H3K4me1/2. Overexpression of LSD1 has been observed in many types of tumors and is correlated with its oncogenic effects in tumorigenesis. However, the mechanism leading to LSD1 upregulation in tumors remains unclear. Using an unbiased siRNA screening against all the human deubiquitinases, we identified USP28 as a bona fide deubiquitinase of LSD1. USP28 interacted with and stabilized LSD1 via deubiquitination. USP28 overexpression correlated with LSD1 upregulation in multiple cancer cell lines and breast tumor samples. Knockdown of USP28 resulted in LSD1 destabilization, leading to the suppression of cancer stem cell (CSC)-like characteristics in vitro and inhibition of tumorigenicity in vivo, which can be rescued by ectopic LSD1 expression. Our study reveals a critical mechanism underlying the epigenetic regulation by USP28 and provides another treatment approach against breast cancer.
Collapse
Affiliation(s)
- Yadi Wu
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, College of Medicine, Lexington, KY 40506, USA; Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Jiang K, Ren C, Nair VD. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res 2013; 11:1299-313. [PMID: 24084696 DOI: 10.1016/j.scr.2013.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 02/01/2023] Open
Abstract
MicroRNA-137 (miR-137) has been shown to play an important role in the differentiation of neural stem cells. Embryonic stem (ES) cells have the potential to differentiate into different cell types including neurons; however, the contribution of miR-137 in the maintenance and differentiation of ES cells remains unknown. Here, we show that miR-137 is mainly expressed in ES cells at the mitotic phase of the cell cycle and highly upregulated during differentiation. We identify that ES cell transcription factors, Klf4 and Tbx3, are downstream targets of miR-137, and we show that endogenous miR-137 represses the 3' untranslated regions of Klf4 and Tbx3. Transfection of ES cells with mature miR-137 RNA duplexes led to a significant reduction in cell proliferation and the expression of Klf4, Tbx3, and other self-renewal genes. Furthermore, we demonstrate that increased miR-137 expression accelerates differentiation of ES cells in vitro. Loss of miR-137 during ES cell differentiation significantly impeded neuronal gene expression and morphogenesis. Taken together, our results suggest that miR-137 regulates ES cell proliferation and differentiation by repressing the expression of downstream targets, including Klf4 and Tbx3.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
248
|
Synergistic re-activation of epigenetically silenced genes by combinatorial inhibition of DNMTs and LSD1 in cancer cells. PLoS One 2013; 8:e75136. [PMID: 24040395 PMCID: PMC3765366 DOI: 10.1371/journal.pone.0075136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/10/2013] [Indexed: 01/21/2023] Open
Abstract
Epigenetic gene silencing, mediated by aberrant promoter DNA hypermethylation and repressive histone modifications, is a hallmark of cancer. Although heritable, the dynamic nature and potential reversibility through pharmacological interventions make such aberrations attractive targets. Since cancers contain multiple epigenetic abnormalities, combining therapies that target different defects could potentially enhance their individual efficacies. 5-Aza-2'-deoxycytidine (5-Aza-CdR), FDA-approved drug for the treatment of myelodysplastic syndrome, can inhibit DNA methyltransferases (DNMTs) upon incorporation into the DNA of dividing cells, resulting in global demethylation. More recently, the first histone demethylase, lysine specific demethylase 1 (LSD1), which demethylates both histone and non-histone substrates, has become a new target for epigenetic therapy. Using, clorgyline, an LSD1 inhibitor (LSD1i) to treat cancer cell lines, we show that clorgyline employs two mechanisms of action depending on the cell type: it can either induce global DNA demethylation or inhibit LSD1-driven H3K4me2 and H3K4me1 demethylation to establish an active chromatin configuration. We also investigate the therapeutic efficacy of combining 5-Aza-CdR with clorgyline and determine that this combinatorial treatment has synergistic effects on reactivating aberrantly silenced genes by enriching H3K4me2 and H3K4me1. Many of the reactivated genes are categorized as cancer testis antigens or belong to the interferon-signaling pathway, suggesting potential implications for immunotherapy. Together, our results demonstrate that combinatorial treatment consisting of a DNMT inhibitor (DNMTi) and an LSD1i have enhanced therapeutic values and could improve the efficacy of epigenetic therapy.
Collapse
|
249
|
Sareddy GR, Nair BC, Krishnan SK, Gonugunta VK, Zhang QG, Suzuki T, Miyata N, Brenner AJ, Brann DW, Vadlamudi RK. KDM1 is a novel therapeutic target for the treatment of gliomas. Oncotarget 2013; 4:18-28. [PMID: 23248157 PMCID: PMC3702204 DOI: 10.18632/oncotarget.725] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioma development is a multistep process, involving alterations in genetic and epigenetic mechanisms. Understanding the mechanisms and enzymes that promote epigenetic changes in gliomas are urgently needed to identify novel therapeutic targets. We examined the role of histone demethylase KDM1 in glioma progression. KDM1 was overexpressed in gliomas and its expression positively correlated with histological malignancy. Knockdown of KDM1 expression or its pharmacological inhibition using pargyline or NCL-1 significantly reduced the proliferation of glioma cells. Inhibition of KDM1 promoted up regulation of the p53 target genes p21 and PUMA. Patient-derived primary GBM cells expressed high levels of KDM1 and pharmacological inhibition of KDM1 decreased their proliferation. Further, KDM1 inhibition reduced the expression of stemness markers CD133 and nestin in GBM cells. Mouse xenograft assays revealed that inhibition of KDM1 significantly reduced glioma xenograft tumor growth. Inhibition of KDM1 increased levels of H3K4-me2 and H3K9-Ac histone modifications, reduced H3K9-me2 modification and promoted expression of p53 target genes (p21 and PUMA), leading to apoptosis of glioma xenograft tumors. Our results suggest that KDM1 is overexpressed in gliomas and could be a potential therapeutic target for the treatment of gliomas.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Tang M, Shen H, Jin Y, Lin T, Cai Q, Pinard MA, Biswas S, Tran Q, Li G, Shenoy AK, Tongdee E, Lin S, Gu Y, Law BK, Zhou L, Mckenna R, Wu L, Lu J. The malignant brain tumor (MBT) domain protein SFMBT1 is an integral histone reader subunit of the LSD1 demethylase complex for chromatin association and epithelial-to-mesenchymal transition. J Biol Chem 2013; 288:27680-27691. [PMID: 23928305 DOI: 10.1074/jbc.m113.482349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin readers decipher the functional readouts of histone modifications by recruiting specific effector complexes for subsequent epigenetic reprogramming. The LSD1 (also known as KDM1A) histone demethylase complex modifies chromatin and represses transcription in part by catalyzing demethylation of dimethylated histone H3 lysine 4 (H3K4me2), a mark for active transcription. However, none of its currently known subunits recognizes methylated histones. The Snai1 family transcription factors are central drivers of epithelial-to-mesenchymal transition (EMT) by which epithelial cells acquire enhanced invasiveness. Snai1-mediated transcriptional repression of epithelial genes depends on its recruitment of the LSD1 complex and ensuing demethylation of H3K4me2 at its target genes. Through biochemical purification, we identified the MBT domain-containing protein SFMBT1 as a novel component of the LSD1 complex associated with Snai1. Unlike other mammalian MBT domain proteins characterized to date that selectively recognize mono- and dimethylated lysines, SFMBT1 binds di- and trimethyl H3K4, both of which are enriched at active promoters. We show that SFMBT1 is essential for Snai1-dependent recruitment of LSD1 to chromatin, demethylation of H3K4me2, transcriptional repression of epithelial markers, and induction of EMT by TGFβ. Carcinogenic metal nickel is a widespread environmental and occupational pollutant. Nickel alters gene expression and induces EMT. We demonstrate the nickel-initiated effects are dependent on LSD1-SFMBT1-mediated chromatin modification. Furthermore, in human cancer, expression of SFMBT1 is associated with mesenchymal markers and unfavorable prognosis. These results highlight a critical role of SFMBT1 in epigenetic regulation, EMT, and cancer.
Collapse
Affiliation(s)
- Ming Tang
- Department of Biochemistry and Molecular Biology; Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Huangxuan Shen
- Department of Molecular Genetics and Microbiology; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Yue Jin
- Department of Biochemistry and Molecular Biology
| | - Tong Lin
- Department of Biochemistry and Molecular Biology; Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Qingsong Cai
- Department of Biochemistry and Molecular Biology
| | | | | | - Quyen Tran
- Agnes Scott College, Decatur, Georgia 30030
| | - Guangyao Li
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610; Department of Molecular Genetics and Microbiology
| | | | | | - Shuibin Lin
- Department of Molecular Genetics and Microbiology
| | - Yumei Gu
- Department of Molecular Genetics and Microbiology
| | - Brian K Law
- Department of Pharmacology and Therapeutics, Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Lei Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610; Department of Molecular Genetics and Microbiology
| | | | - Lizi Wu
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610; Department of Molecular Genetics and Microbiology.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology; Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|