201
|
Bisht P, Kumar VU, Pandey R, Velayutham R, Kumar N. Role of PARP Inhibitors in Glioblastoma and Perceiving Challenges as Well as Strategies for Successful Clinical Development. Front Pharmacol 2022; 13:939570. [PMID: 35873570 PMCID: PMC9297740 DOI: 10.3389/fphar.2022.939570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiform is the most aggressive primary type of brain tumor, representing 54% of all gliomas. The average life span for glioblastoma multiform is around 14-15 months instead of treatment. The current treatment for glioblastoma multiform includes surgical removal of the tumor followed by radiation therapy and temozolomide chemotherapy for 6.5 months, followed by another 6 months of maintenance therapy with temozolomide chemotherapy (5 days every month). However, resistance to temozolomide is frequently one of the limiting factors in effective treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have recently been investigated as sensitizing drugs to enhance temozolomide potency. However, clinical use of PARP inhibitors in glioblastoma multiform is difficult due to a number of factors such as limited blood-brain barrier penetration of PARP inhibitors, inducing resistance due to frequent use of PARP inhibitors, and overlapping hematologic toxicities of PARP inhibitors when co-administered with glioblastoma multiform standard treatment (radiation therapy and temozolomide). This review elucidates the role of PARP inhibitors in temozolomide resistance, multiple factors that make development of these PARP inhibitor drugs challenging, and the strategies such as the development of targeted drug therapies and combination therapy to combat the resistance of PARP inhibitors that can be adopted to overcome these challenges.
Collapse
Affiliation(s)
- Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - V. Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| |
Collapse
|
202
|
Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2123227119. [PMID: 35759659 PMCID: PMC9271208 DOI: 10.1073/pnas.2123227119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.
Collapse
Affiliation(s)
- Aksinija A. Kogan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael J. Topper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Anna J. Dellomo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lora Stojanovic
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lena J. McLaughlin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - T. Michael Creed
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Christian L. Eberly
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tami J. Kingsbury
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Maria R. Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael D. Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Stephen B. Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Feyruz V. Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
203
|
Yu X, Wang X, Sun L, Yamazaki A, Li X. Tumor microenvironment regulation - enhanced radio - immunotherapy. BIOMATERIALS ADVANCES 2022; 138:212867. [PMID: 35913249 DOI: 10.1016/j.bioadv.2022.212867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Radiotherapy (RT) is frequently utilized for cancer treatment in clinical practice and has been proved to have immune stimulation potency in recent years. However, its inhibitory effect on tumor growth, especially on tumor metastasis, is still limited by many factors, including the complex tumor microenvironment (TME). Therefore, the TME - regulating SiO2@MnO2 nanoparticles (SM NPs) were prepared and applied to the combination of RT and immunotherapy. In a bilateral animal model, SM NPs not only enhanced the inhibitory effect of RT on primary tumor growth, but also strengthened the abscopal effect to inhibit the growth of distant untreated tumors. As for the distant untreated tumor, 40% of mice showed complete inhibition of tumor growth and 40% showed a suppressed tumor growth. Moreover, SM NPs showed modulation functions for TME through inducing the increase in intracellular levels of oxygen and reactive oxygen species after their reaction with hydrogen peroxide and the main antioxidative agent glutathione in TME. Lastly, SM NPs also effectively induced the increase in the amounts of cytokines secreted by macrophage - like cells, indicating modulation functions for immune responses. This work highlighted a potential strategy of simultaneously inhibiting tumor growth and metastasis through the regulation of TME and immune responses by SM NPs - enhanced radio - immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
204
|
Staniszewska AD, Armenia J, King M, Michaloglou C, Reddy A, Singh M, San Martin M, Prickett L, Wilson Z, Proia T, Russell D, Thomas M, Delpuech O, O'Connor MJ, Leo E, Angell H, Valge-Archer V. PARP inhibition is a modulator of anti-tumor immune response in BRCA-deficient tumors. Oncoimmunology 2022; 11:2083755. [PMID: 35756843 PMCID: PMC9225208 DOI: 10.1080/2162402x.2022.2083755] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PARP inhibitors are synthetically lethal with BRCA1/2 mutations, and in this setting, accumulation of DNA damage leads to cell death. Because increased DNA damage and subsequent immune activation can prime an anti-tumor immune response, we studied the impact of olaparib ± immune checkpoint blockade (ICB) on anti-tumor activity and the immune microenvironment. Concurrent combination of olaparib, at clinically relevant exposures, with ICB gave durable and deeper anti-tumor activity in the Brca1m BR5 model vs. monotherapies. Olaparib and combination treatment modulated the immune microenvironment, including increases in CD8+ T cells and NK cells, and upregulation of immune pathways, including type I IFN and STING signaling. Olaparib also induced a dose-dependent upregulation of immune pathways, including JAK/STAT, STING and type I IFN, in the tumor cell compartment of a BRCA1m (HBCx-10) but not a BRCA WT (HBCx-9) breast PDX model. In vitro, olaparib induced BRCAm tumor cell–specific dendritic cell transactivation. Relevance to human disease was assessed using patient samples from the MEDIOLA (NCT02734004) trial, which showed increased type I IFN, STING, and JAK/STAT pathway expression following olaparib treatment, in line with preclinical findings. These data together provide evidence for a mechanism and schedule underpinning potential benefit of ICB combination with olaparib.
Collapse
Affiliation(s)
| | - Joshua Armenia
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthew King
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Avinash Reddy
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Maneesh Singh
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Laura Prickett
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Zena Wilson
- Early Oncology, Oncology R&D, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Theresa Proia
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Deanna Russell
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Morgan Thomas
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Oona Delpuech
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Elisabetta Leo
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Helen Angell
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
205
|
McClurg DP, Urquhart G, McGoldrick T, Chatterji S, Miedzybrodzka Z, Speirs V, Elsberger B. Analysis of the Clinical Advancements for BRCA-Related Malignancies Highlights the Lack of Treatment Evidence for BRCA-Positive Male Breast Cancer. Cancers (Basel) 2022; 14:3175. [PMID: 35804947 PMCID: PMC9264767 DOI: 10.3390/cancers14133175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease that accounts for less than 1% of all breast cancers and male malignancies. Despite recognised clinico-pathological and molecular differences to female breast cancer (FBC), the clinical management of MBC follows established FBC treatment strategies. Loss of function mutations in the DNA damage response genes BRCA1 and BRCA2, have been strongly implicated in the pathogenesis of MBC. While there have been extensive clinical advancements in other BRCA-related malignancies, including FBC, improvements in MBC remain stagnant. Here we present a review that highlights the lack of treatment evidence for BRCA-related MBC and the required national and global collaborative effort to address this unmet need. In doing so, we summarise the transformative clinical advancements with poly(ADP-ribose) polymerase (PARP) inhibitors in other BRCA-related cancers namely, FBC and prostate cancer.
Collapse
Affiliation(s)
- Dylan P. McClurg
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (D.P.M.); (S.C.); (Z.M.)
| | - Gordan Urquhart
- Aberdeen Royal Infirmary, Department of Oncology, Foresterhill Road, Aberdeen AB25 2ZN, UK; (G.U.); (T.M.)
| | - Trevor McGoldrick
- Aberdeen Royal Infirmary, Department of Oncology, Foresterhill Road, Aberdeen AB25 2ZN, UK; (G.U.); (T.M.)
| | - Subarnarekha Chatterji
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (D.P.M.); (S.C.); (Z.M.)
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (D.P.M.); (S.C.); (Z.M.)
| | - Valerie Speirs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (D.P.M.); (S.C.); (Z.M.)
| | - Beatrix Elsberger
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (D.P.M.); (S.C.); (Z.M.)
- Aberdeen Royal Infirmary, Breast Unit, Foresterhill Road, Aberdeen AB25 2ZN, UK
| |
Collapse
|
206
|
Zhang X, Kong W, Gao M, Huang W, Peng C, Huang Z, Xie Z, Guo H. Robust prognostic model based on immune infiltration-related genes and clinical information in ovarian cancer. J Cell Mol Med 2022; 26:3659-3674. [PMID: 35735060 PMCID: PMC9258710 DOI: 10.1111/jcmm.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient's prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Institute Sanqu Technology (Hangzhou) Co., Ltd., Hangzhou, China
| | - Miaomiao Gao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiran Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Peng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhengwei Xie
- Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
207
|
Kornepati AV, Boyd JT, Murray CE, Saifetiarova J, de la Peña Avalos B, Rogers CM, Bai H, Padron AS, Liao Y, Ontiveros C, Svatek RS, Hromas R, Li R, Hu Y, Conejo-Garcia JR, Vadlamudi RK, Zhao W, Dray E, Sung P, Curiel TJ. Tumor Intrinsic PD-L1 Promotes DNA Repair in Distinct Cancers and Suppresses PARP Inhibitor-Induced Synthetic Lethality. Cancer Res 2022; 82:2156-2170. [PMID: 35247877 PMCID: PMC9987177 DOI: 10.1158/0008-5472.can-21-2076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
BRCA1-mediated homologous recombination is an important DNA repair mechanism that is the target of FDA-approved PARP inhibitors, yet details of BRCA1-mediated functions remain to be fully elucidated. Similarly, immune checkpoint molecules are targets of FDA-approved cancer immunotherapies, but the biological and mechanistic consequences of their application are incompletely understood. We show here that the immune checkpoint molecule PD-L1 regulates homologous recombination in cancer cells by promoting BRCA1 nuclear foci formation and DNA end resection. Genetic depletion of tumor PD-L1 reduced homologous recombination, increased nonhomologous end joining, and elicited synthetic lethality to PARP inhibitors olaparib and talazoparib in vitro in some, but not all, BRCA1 wild-type tumor cells. In vivo, genetic depletion of tumor PD-L1 rendered olaparib-resistant tumors sensitive to olaparib. In contrast, anti-PD-L1 immune checkpoint blockade neither enhanced olaparib synthetic lethality nor improved its efficacy in vitro or in wild-type mice. Tumor PD-L1 did not alter expression of BRCA1 or its cofactor BARD1 but instead coimmunoprecipitated with BARD1 and increased BRCA1 nuclear accumulation. Tumor PD-L1 depletion enhanced tumor CCL5 expression and TANK-binding kinase 1 activation in vitro, similar to known immune-potentiating effects of PARP inhibitors. Collectively, these data define immune-dependent and immune-independent effects of PARP inhibitor treatment and genetic tumor PD-L1 depletion. Moreover, they implicate a tumor cell-intrinsic, immune checkpoint-independent function of PD-L1 in cancer cell BRCA1-mediated DNA damage repair with translational potential, including as a treatment response biomarker. SIGNIFICANCE PD-L1 upregulates BRCA1-mediated homologous recombination, and PD-L1-deficient tumors exhibit BRCAness by manifesting synthetic lethality in response to PARP inhibitors, revealing an exploitable therapeutic vulnerability and a candidate treatment response biomarker. See related commentary by Hanks, p. 2069.
Collapse
Affiliation(s)
- Anand V.R Kornepati
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, Texas
| | - Jacob T. Boyd
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, Texas
| | - Clare E. Murray
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, Texas
| | | | | | - Cody M. Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, Texas
| | - Haiyan Bai
- Department of Medicine, University of Texas Health, San Antonio, Texas
| | - Alvaro S. Padron
- Department of Medicine, University of Texas Health, San Antonio, Texas
| | - Yiji Liao
- Department of Medicine, University of Texas Health, San Antonio, Texas
| | - Carlos Ontiveros
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, Texas
| | - Robert S. Svatek
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, Texas
| | - Robert Hromas
- Department of Medicine, University of Texas Health, San Antonio, Texas
- UT Health Mays Cancer Center, University of Texas Health, San Antonio, Texas
| | - Rong Li
- Department of Medicine, University of Texas Health, San Antonio, Texas
- Department of Molecular Medicine, University of Texas Health, San Antonio, Texas
| | - Yanfen Hu
- Department of Medicine, University of Texas Health, San Antonio, Texas
- Department of Molecular Medicine, University of Texas Health, San Antonio, Texas
| | | | | | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, Texas
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, Texas
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, Texas
| | - Tyler J. Curiel
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, Texas
- Department of Medicine, University of Texas Health, San Antonio, Texas
- UT Health Mays Cancer Center, University of Texas Health, San Antonio, Texas
| |
Collapse
|
208
|
Wang F, Zhao M, Chang B, Zhou Y, Wu X, Ma M, Liu S, Cao Y, Zheng M, Dang Y, Xu J, Chen L, Liu T, Tang F, Ren Y, Xu Z, Mao Z, Huang K, Luo M, Li J, Liu H, Ge B. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Mol Cell 2022; 82:2032-2049.e7. [PMID: 35460603 DOI: 10.1016/j.molcel.2022.03.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
Abstract
Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.
Collapse
Affiliation(s)
- Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengmeng Zhao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilong Zhou
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Siyu Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yajuan Cao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengge Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifang Dang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Tianhao Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Fen Tang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yefei Ren
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
209
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
210
|
Juncheng P, Joseph A, Lafarge A, Martins I, Obrist F, Pol J, Saavedra E, Li S, Sauvat A, Cerrato G, Lévesque S, Leduc M, Kepp O, Durand S, Aprahamian F, Nirmalathansan N, Michels J, Kroemer G, Castedo M. Cancer cell-autonomous overactivation of PARP1 compromises immunosurveillance in non-small cell lung cancer. J Immunother Cancer 2022; 10:jitc-2021-004280. [PMID: 35772809 PMCID: PMC9247697 DOI: 10.1136/jitc-2021-004280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background High activity of poly(ADP-ribose) polymerase-1 (PARP1) in non-small cell lung cancer (NSCLC) cells leads to an increase in immunohistochemically detectable PAR, correlating with poor prognosis in patients with NSCLC, as well as reduced tumor infiltration by cytotoxic T lymphocytes (CTLs). Intrigued by this observation, we decided to determine whether PARP1 activity in NSCLC cells may cause an alteration of anticancer immunosurveillance. Methods Continuous culture of mouse NSCLC cells in the presence of cisplatin led to the generation of cisplatin-resistant PARhigh clones. As compared with their parental controls, such PARhigh cells formed tumors that were less infiltrated by CTLs when they were injected into immunocompetent mice, suggesting a causative link between high PARP1 activity and compromised immunosurveillance. To confirm this cause-and-effect relationship, we used CRISPR/Cas9 technology to knock out PARP1 in two PARhigh NSCLC mouse cell lines (Lewis lung cancer [LLC] and tissue culture number one [TC1]), showing that the removal of PARP1 indeed restored cisplatin-induced cell death responses. Results PARP1 knockout (PARP1KO) cells became largely resistant to the PARP inhibitor niraparib, meaning that they exhibited less cell death induction, reduced DNA damage response, attenuated metabolic shifts and no induction of PD-L1 and MHC class-I molecules that may affect their immunogenicity. PARhigh tumors implanted in mice responded to niraparib irrespective of the presence or absence of T lymphocytes, suggesting that cancer cell-autonomous effects of niraparib dominate over its possible immunomodulatory action. While PARhigh NSCLC mouse cell lines proliferated similarly in immunocompetent and T cell-deficient mice, PARP1KO cells were strongly affected by the presence of T cells. PARP1KO LLC tumors grew more quickly in immunodeficient than in immunocompetent mice, and PARP1KO TC1 cells could only form tumors in T cell-deficient mice, not in immunocompetent controls. Importantly, as compared with PARhigh controls, the PARP1KO LLC tumors exhibited signs of T cell activation in the immune infiltrate such as higher inducible costimulator (ICOS) expression and lower PD-1 expression on CTLs. Conclusions These results prove at the genetic level that PARP1 activity within malignant cells modulates the tumor microenvironment.
Collapse
Affiliation(s)
- Pan Juncheng
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Adrien Joseph
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Antoine Lafarge
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Isabelle Martins
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florine Obrist
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Jonathan Pol
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ester Saavedra
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sijing Li
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Allan Sauvat
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Giulia Cerrato
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sarah Lévesque
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Marion Leduc
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sylvère Durand
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fanny Aprahamian
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nitharsshini Nirmalathansan
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Judith Michels
- Département de Médecine Oncologique, Gustave Roussy Cancer Campus, F-94805, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assitance Publique-Hôpitaux de Paris, Paris, France
| | - Maria Castedo
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM UMR1138, Paris, France .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
211
|
Wang Q, Bergholz JS, Ding L, Lin Z, Kabraji SK, Hughes ME, He X, Xie S, Jiang T, Wang W, Zoeller JJ, Kim HJ, Roberts TM, Konstantinopoulos PA, Matulonis UA, Dillon DA, Winer EP, Lin NU, Zhao JJ. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun 2022; 13:3022. [PMID: 35641483 PMCID: PMC9156717 DOI: 10.1038/s41467-022-30568-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
PARP inhibitors (PARPi) have drastically changed the treatment landscape of advanced ovarian tumors with BRCA mutations. However, the impact of this class of inhibitors in patients with advanced BRCA-mutant breast cancer is relatively modest. Using a syngeneic genetically-engineered mouse model of breast tumor driven by Brca1 deficiency, we show that tumor-associated macrophages (TAMs) blunt PARPi efficacy both in vivo and in vitro. Mechanistically, BRCA1-deficient breast tumor cells induce pro-tumor polarization of TAMs, which in turn suppress PARPi-elicited DNA damage in tumor cells, leading to reduced production of dsDNA fragments and synthetic lethality, hence impairing STING-dependent anti-tumor immunity. STING agonists reprogram M2-like pro-tumor macrophages into an M1-like anti-tumor state in a macrophage STING-dependent manner. Systemic administration of a STING agonist breaches multiple layers of tumor cell-mediated suppression of immune cells, and synergizes with PARPi to suppress tumor growth. The therapeutic benefits of this combination require host STING and are mediated by a type I IFN response and CD8+ T cells, but do not rely on tumor cell-intrinsic STING. Our data illustrate the importance of targeting innate immune suppression to facilitate PARPi-mediated engagement of anti-tumor immunity in breast cancer.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liya Ding
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ziying Lin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sheheryar K Kabraji
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Melissa E Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason J Zoeller
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
212
|
Upregulation of CXCL1 and LY9 contributes to BRCAness in ovarian cancer and mediates response to PARPi and immune checkpoint blockade. Br J Cancer 2022; 127:916-926. [DOI: 10.1038/s41416-022-01836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
|
213
|
Xie B, Luo A. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Front Cell Dev Biol 2022; 10:903781. [PMID: 35557952 PMCID: PMC9089908 DOI: 10.3389/fcell.2022.903781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.
Collapse
Affiliation(s)
- Bingteng Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| |
Collapse
|
214
|
Liu X, Ge Z, Yang F, Contreras A, Lee S, White JB, Lu Y, Labrie M, Arun BK, Moulder SL, Mills GB, Piwnica-Worms H, Litton JK, Chang JT. Identification of biomarkers of response to preoperative talazoparib monotherapy in treatment naïve gBRCA+ breast cancers. NPJ Breast Cancer 2022; 8:64. [PMID: 35538088 PMCID: PMC9090765 DOI: 10.1038/s41523-022-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Germline mutations in BRCA1 or BRCA2 exist in ~2–7% of breast cancer patients, which has led to the approval of PARP inhibitors in the advanced setting. We have previously reported a phase II neoadjuvant trial of single agent talazoparib for patients with germline BRCA pathogenic variants with a pathologic complete response (pCR) rate of 53%. As nearly half of the patients treated did not have pCR, better strategies are needed to overcome treatment resistance. To this end, we conducted multi-omic analysis of 13 treatment naïve breast cancer tumors from patients that went on to receive single-agent neoadjuvant talazoparib. We looked for biomarkers that were predictive of response (assessed by residual cancer burden) after 6 months of therapy. We found that all resistant tumors exhibited either the loss of SHLD2, expression of a hypoxia signature, or expression of a stem cell signature. These results indicate that the deep analysis of pre-treatment tumors can identify biomarkers that are predictive of response to talazoparib and potentially other PARP inhibitors, and provides a framework that will allow for better selection of patients for treatment, as well as a roadmap for the development of novel combination therapies to prevent emergence of resistance.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alejandro Contreras
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Genome Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marilyne Labrie
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA. .,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
215
|
Brest P, Refae S, Mograbi B, Ferrero JM, Bontoux C, Hofman P, Milano G. Checkpoint inhibitors in a marriage: consented or arranged? Br J Cancer 2022; 126:1834-1836. [PMID: 35523880 PMCID: PMC9174256 DOI: 10.1038/s41416-022-01820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
There is currently a strong development of therapeutic combinations with checkpoint inhibitors (CPIs). The most promising combinations with CPIs concern anti-angiogenic agents and BRAF/MEK inhibitors. The timing of the initiation of the combination should be particularly well investigated for chemotherapy. Combinations between CPIs raise questions about risk/benefit ratio and overall clinical activity.
Collapse
Affiliation(s)
- Patrick Brest
- Université Côte d'Azur, Centre Antoine Lacassagne, CNRS, Inserm, IRCAN, FHU-OncoAge, F-06189, Nice, France
| | - Sadal Refae
- Ministry of National Guard-Health Affairs (NGHA), Al Madinah Kingdom of Saudi Arabia, Riyadh, 11426, Saudi Arabia
| | - Baharia Mograbi
- Université Côte d'Azur, Centre Antoine Lacassagne, CNRS, Inserm, IRCAN, FHU-OncoAge, F-06189, Nice, France
| | | | - Christophe Bontoux
- Université Côte d'Azur, CHU-Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Centre Antoine Lacassagne, CNRS, Inserm, IRCAN, FHU-OncoAge, F-06189, Nice, France.,Université Côte d'Azur, CHU-Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Nice, France
| | | |
Collapse
|
216
|
Takahashi N, Takekuma M. Current trends in chemotherapy for advanced ovarian cancer. Jpn J Clin Oncol 2022; 52:806-815. [PMID: 35521913 DOI: 10.1093/jjco/hyac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy for advanced ovarian cancer has progressed over the past several decades with the introduction of cytotoxic agents. Various methods, including single agents, combination therapy and changes in the method of administration, have been validated in many clinical trials and have been combined in an attempt to improve the prognosis of advanced ovarian cancer. In recent years, molecular-targeted agents have been added to cytotoxic agents as a treatment option for maintenance therapy; however, their efficacy has been limited, and further development of treatment options is expected. The advent of poly(ADP-ribose) polymerase inhibitors has considerably improved prognosis and has affected treatment strategies for advanced ovarian cancer over the past few years. With the addition of the recently introduced immune checkpoint inhibitors, future treatment strategies for advanced ovarian cancer may become more complex. In this review, we introduce the latest advances in chemotherapy for advanced ovarian cancer and discuss future perspectives.
Collapse
|
217
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
218
|
Radiation-induced non-targeted effect of immunity provoked by mitochondrial DNA damage triggered cGAS/ AIM2 pathways. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
219
|
Wanderley CWS, Correa TS, Scaranti M, Cunha FQ, Barroso-Sousa R. Targeting PARP1 to Enhance Anticancer Checkpoint Immunotherapy Response: Rationale and Clinical Implications. Front Immunol 2022; 13:816642. [PMID: 35572596 PMCID: PMC9094400 DOI: 10.3389/fimmu.2022.816642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reinvigorating the antitumor immune response using immune checkpoint inhibitors (ICIs) has revolutionized the treatment of several malignancies. However, extended use of ICIs has resulted in a cancer-specific response. In tumors considered to be less immunogenic, the response rates were low or null. To overcome resistance and improve the beneficial effects of ICIs, novel strategies focused on ICI-combined therapies have been tested. In particular, poly ADP-ribose polymerase inhibitors (PARPi) are a class of agents with potential for ICI combined therapy. PARPi impairs single-strand break DNA repair; this mechanism involves synthetic lethality in tumor cells with deficient homologous recombination. More recently, novel evidence indicated that PAPRi has the potential to modulate the antitumor immune response by activating antigen-presenting cells, infiltrating effector lymphocytes, and upregulating programmed death ligand-1 in tumors. This review covers the current advances in the immune effects of PARPi, explores the potential rationale for combined therapy with ICIs, and discusses ongoing clinical trials.
Collapse
Affiliation(s)
- Carlos Wagner S. Wanderley
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, Ribeirao Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | | | | | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, Ribeirao Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
220
|
Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, Letizia O, De Vita F, Daniele B, Ciardiello F, Orditura M. Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice. Cancers (Basel) 2022; 14:cancers14092102. [PMID: 35565233 PMCID: PMC9103968 DOI: 10.3390/cancers14092102] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been considered for many years an orphan disease in terms of therapeutic options, with conventional chemotherapy (CT) still representing the mainstay of treatment in the majority of patients. Although breast cancer (BC) has been historically considered a "cold tumor", exciting progress in the genomic field leading to the characterization of the molecular portrait and the immune profile of TNBC has opened the door to novel therapeutic strategies, including Immune Checkpoint Inhibitors (ICIs), Poly ADP-Ribose Polymerase (PARP) inhibitors and Antibody Drug Conjugates (ADCs). In particular, compared to standard CT, the immune-based approach has been demonstrated to improve progression-free survival (PFS) and overall survival (OS) in metastatic PD-L1-positive TNBC and the pathological complete response rate in the early setting, regardless of PD-L1 expression. To date, PD-L1 has been widely used as a predictor of the response to ICIs; however, many patients do not benefit from the addition of immunotherapy. Therefore, PD-L1 is not a reliable predictive biomarker of the response, and its accuracy remains controversial due to the lack of a consensus about the assay, the antibody, and the scoring system to adopt, as well as the spatial and temporal heterogeneity of the PD-L1 status. In the precision medicine era, there is an urgent need to identify more sensitive biomarkers in the BC immune oncology field other than just PD-L1 expression. Through the characterization of the tumor microenvironment (TME), the analysis of peripheral blood and the evaluation of immune gene signatures, novel potential biomarkers have been explored, such as the Tumor Mutational Burden (TMB), Microsatellite Instability/Mismatch Repair Deficiency (MSI/dMMR) status, genomic and epigenomic alterations and tumor-infiltrating lymphocytes (TILs). This review aims to summarize the recent knowledge on BC immunograms and on the biomarkers proposed to support ICI-based therapy in TNBC, as well as to provide an overview of the potential strategies to enhance the immune response in order to overcome the mechanisms of resistance.
Collapse
Affiliation(s)
- Francesca Carlino
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
- Correspondence: ; Tel.: +39-349-5152216
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Antonio Piccolo
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Anna Ventriglia
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Vincenzo Bruno
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ortensio Letizia
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ferdinando De Vita
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Michele Orditura
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| |
Collapse
|
221
|
Shakfa N, Li D, Nersesian S, Wilson-Sanchez J, Koti M. The STING pathway: Therapeutic vulnerabilities in ovarian cancer. Br J Cancer 2022; 127:603-611. [PMID: 35383278 PMCID: PMC9381712 DOI: 10.1038/s41416-022-01797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer is the leading cause of mortality due to gynecologic malignancy. The majority of women diagnosed with the most common subtype, high-grade serous ovarian carcinoma (HGSC), develop resistance to conventional therapies despite initial response to treatment. HGSC tumors displaying DNA damage repair (DDR) gene deficiency and high chromosomal instability mainly associate with higher cytotoxic immune cell infiltration and expression of genes associated with these immune pathways. Despite the high level of immune infiltration observed, the majority of patients with HGSC have not benefited from immunomodulatory treatments as the mechanistic basis of this infiltration is unclear. This lack of response can be primarily attributed to heterogeneity at the levels of both cancer cell genetic alterations and the tumour immune microenvironment. Strategies to enhance anti-tumour immunity have been investigated in ovarian cancer, of which interferon activating therapies present as an attractive option. Of the several type I interferon (IFN-1) stimulating therapies, exogenously activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is emerging as a promising avenue. Herein, we highlight our current understanding of how constitutive and induced cGAS-STING pathway activation influences the ovarian tumour microenvironment. We further elaborate on the links between the genomic alterations prevalent in ovarian tumours and how the resultant immune phenotypes can make them more susceptible to exogenous STING pathway activation and potentiate immune-mediated killing of cancer cells. The therapeutic potential of cGAS-STING pathway activation in ovarian cancer and factors implicating treatment outcomes are discussed, providing a rationale for future combinatorial treatment approaches on the backbone of chemotherapy.
Collapse
Affiliation(s)
- Noor Shakfa
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Deyang Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Juliette Wilson-Sanchez
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
222
|
Zhao Y, Jiang Y. Remarkable Response to the Triplet Combination of Olaparib with Pembrolizumab and Bevacizumab in the Third-Line Treatment of an Ovarian Clear Cell Carcinoma Patient with an ARID1A Mutation: A Case Report. Onco Targets Ther 2022; 15:323-328. [PMID: 35401005 PMCID: PMC8985820 DOI: 10.2147/ott.s362267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a highly aggressive malignancy with a poor prognosis, and most patients experience recurrence after primary treatment. Currently, there is no standard treatment option for recurrent OCCC. Herein, we report the case of a 32-year-old female patient with OCCC. The patient received primary cytoreductive surgery with adjuvant chemotherapy and remained disease-free for four months. She then experienced retroperitoneal lymph node recurrence and was treated with liposomal doxorubicin chemotherapy followed by secondary debulking surgery. The patient experienced a second relapse in the lower left lung 11 months later. Genomic profiling of tumor samples revealed a deleterious AT-rich interactive domain 1A (ARID1A) mutation and homologous recombination deficiency. Thus, the triplet combination of the poly (ADP-ribose) polymerase (PARP) inhibitor, olaparib; the PD-1 inhibitor, pembrolizumab; and the antiangiogenic agent, bevacizumab was administered. The patient achieved partial response, which was sustained for 12 months. Our study provides the first clinical evidence that the combination of olaparib with pembrolizumab and bevacizumab could be an effective treatment for patients with platinum-resistant, recurrent OCCC.
Collapse
Affiliation(s)
- Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Yao Jiang, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Tel +86 13797011369, Fax +86-027-85873062, Email
| |
Collapse
|
223
|
Maiorano BA, Lorusso D, Maiorano MFP, Ciardiello D, Parrella P, Petracca A, Cormio G, Maiello E. The Interplay between PARP Inhibitors and Immunotherapy in Ovarian Cancer: The Rationale behind a New Combination Therapy. Int J Mol Sci 2022; 23:3871. [PMID: 35409229 PMCID: PMC8998760 DOI: 10.3390/ijms23073871] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) has a high impact on morbidity and mortality in the female population. Survival is modest after platinum progression. Therefore, the search for new therapeutic strategies is of utmost importance. BRCA mutations and HR-deficiency occur in around 50% of OC, leading to increased response and survival after Poly (ADP-ribose) polymerase inhibitors (PARPis) administration. PARPis represent a breakthrough for OC therapy, with three different agents approved. On the contrary, immune checkpoint inhibitors (ICIs), another breakthrough therapy for many solid tumors, led to modest results in OC, without clinical approvals and even withdrawal of clinical trials. Therefore, combinations aiming to overcome resistance mechanisms have become of great interest. Recently, PARPis have been evidenced to modulate tumor microenvironment at the molecular and cellular level, potentially enhancing ICIs responsiveness. This represents the rationale for the combined administration of PARPis and ICIs. Our review ought to summarize the preclinical and translational features that support the contemporary administration of these two drug classes, the clinical trials conducted so far, and future directions with ongoing studies.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of the Sacred Heart, Scientific Directorate, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.P.M.); (G.C.)
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Paola Parrella
- Oncology Laboratory, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Gennaro Cormio
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.P.M.); (G.C.)
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
| |
Collapse
|
224
|
Yap TA, Bessudo A, Hamilton E, Sachdev J, Patel MR, Rodon J, Evilevitch L, Duncan M, Guo W, Kumar S, Lu S, Dezube BJ, Gabrail N. IOLite: phase 1b trial of doublet/triplet combinations of dostarlimab with niraparib, carboplatin-paclitaxel, with or without bevacizumab in patients with advanced cancer. J Immunother Cancer 2022; 10:jitc-2021-003924. [PMID: 35332062 PMCID: PMC8948406 DOI: 10.1136/jitc-2021-003924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Doublet combination therapies targeting immune checkpoints have shown promising efficacy in patients with advanced solid tumors, but it is unknown if rational triplet combinations will be well tolerated and associated with improved antitumor activity. The objective of this trial was to determine the recommended phase 2 doses (RP2Ds) and to assess the safety and efficacy of the programmed cell death protein 1 (PD-1) inhibitor dostarlimab in combination with (1) the poly(ADP-ribose) polymerase inhibitor niraparib with or without vascular endothelial growth factor inhibitor bevacizumab or (2) carboplatin-paclitaxel chemotherapy with or without bevacizumab, in patients with advanced cancer. METHODS IOLite is a multicenter, open-label, multi-arm clinical trial. Patients with advanced solid tumors were enrolled. Patients received dostarlimab in combination with niraparib with or without bevacizumab or in combination with carboplatin-paclitaxel with or without bevacizumab until disease progression, unacceptable toxicity, or withdrawal from the study. Prespecified endpoints in all parts were to evaluate the dose-limiting toxicities (DLTs), RP2Ds, pharmacokinetics (PKs), and preliminary efficacy for each combination. RESULTS A total of 55 patients were enrolled; patients received dostarlimab and: (1) niraparib in part A (n=22); (2) carboplatin-paclitaxel in part B (n=14); (3) niraparib plus bevacizumab in part C (n=13); (4) carboplatin-paclitaxel plus bevacizumab in part D (n=6). The RP2Ds of all combinations were determined. All combinations were safe and tolerable, with no new safety signals observed. DLTs were reported in 2, 1, 2, and 0 patients, in parts A-D, respectively. Preliminary antitumor activity was observed, with confirmed Response Evaluation Criteria in Solid Tumors v1.1 complete/partial responses reported in 4 of 22 patients (18.2%), 6 of 14 patients (42.9%), 4 of 13 patients (30.8%), and 3 of 6 (50.0%) patients, in parts A-D, respectively. Disease control rates were 40.9%, 57.1%, 84.6%, and 83.3%, in parts A-D, respectively. Dostarlimab PK was unaffected by any combinations tested. Coadministration of bevacizumab showed no impact on niraparib PKs. The overall mean PD-1 receptor occupancy was 99.0%. CONCLUSIONS Dostarlimab was well tolerated in both doublet and triplet regimens tested, with promising antitumor activity observed with all combinations. We observed higher disease control rates in the triplet regimens than in doublet regimens. TRIAL REGISTRATION NUMBER NCT03307785.
Collapse
Affiliation(s)
- Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alberto Bessudo
- California Cancer Associates for Research and Excellence, San Diego, California, USA
| | - Erika Hamilton
- Sara Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee, USA
| | - Jasgit Sachdev
- HonorHealth Research Institute/TGen, Scottsdale, Arizona, USA
| | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Wei Guo
- GlaxoSmithKline, Waltham, Massachusetts, USA
| | | | - Sharon Lu
- GlaxoSmithKline, Waltham, Massachusetts, USA
| | | | - Nashat Gabrail
- Department of Oncology, Gabrail Cancer Center, Canton, Ohio, USA
| |
Collapse
|
225
|
Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022; 122:5977-6039. [PMID: 35107989 PMCID: PMC8994686 DOI: 10.1021/acs.chemrev.1c00750] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stimulator of interferon genes (STING) cellular signaling pathway is a promising target for cancer immunotherapy. Activation of the intracellular STING protein triggers the production of a multifaceted array of immunostimulatory molecules, which, in the proper context, can drive dendritic cell maturation, antitumor macrophage polarization, T cell priming and activation, natural killer cell activation, vascular reprogramming, and/or cancer cell death, resulting in immune-mediated tumor elimination and generation of antitumor immune memory. Accordingly, there is a significant amount of ongoing preclinical and clinical research toward further understanding the role of the STING pathway in cancer immune surveillance as well as the development of modulators of the pathway as a strategy to stimulate antitumor immunity. Yet, the efficacy of STING pathway agonists is limited by many drug delivery and pharmacological challenges. Depending on the class of STING agonist and the desired administration route, these may include poor drug stability, immunocellular toxicity, immune-related adverse events, limited tumor or lymph node targeting and/or retention, low cellular uptake and intracellular delivery, and a complex dependence on the magnitude and kinetics of STING signaling. This review provides a concise summary of the STING pathway, highlighting recent biological developments, immunological consequences, and implications for drug delivery. This review also offers a critical analysis of an expanding arsenal of chemical strategies that are being employed to enhance the efficacy, safety, and/or clinical utility of STING pathway agonists and lastly draws attention to several opportunities for therapeutic advancements.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - Taylor L Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
| |
Collapse
|
226
|
CXCL9 inhibits tumour growth and drives anti-PD-L1 therapy in ovarian cancer. Br J Cancer 2022; 126:1470-1480. [PMID: 35314795 PMCID: PMC9090786 DOI: 10.1038/s41416-022-01763-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Background Response to immune checkpoint blockade (ICB) in ovarian cancer remains disappointing. Several studies have identified the chemokine CXCL9 as a robust prognosticator of improved survival in ovarian cancer and a characteristic of the immunoreactive subtype, which predicts ICB response. However, the function of CXCL9 in ovarian cancer has been poorly studied. Methods Impact of Cxcl9 overexpression in the murine ID8-Trp53−/− and ID8-Trp53−/–Brca2−/− ovarian cancer models on survival, cellular immune composition, PD-L1 expression and anti-PD-L1 therapy. CXCL9 expression analysis in ovarian cancer subtypes and correlation to reported ICB response. Results CXCL9 overexpression resulted in T-cell accumulation, delayed ascites formation and improved survival, which was dependent on adaptive immune function. In the ICB-resistant mouse model, the chemokine was sufficient to enable a successful anti-PD-L1 therapy. In contrast, these effects were abrogated in Brca2-deficient tumours, most likely due to an already high intrinsic chemokine expression. Finally, in ovarian cancer patients, the clear-cell subtype, known to respond best to ICB, displayed a significantly higher proportion of CXCL9high tumours than the other subtypes. Conclusions CXCL9 is a driver of successful ICB in preclinical ovarian cancer. Besides being a feasible predictive biomarker, CXCL9-inducing agents thus represent attractive combination partners to improve ICB in this cancer entity.
Collapse
|
227
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
228
|
Birrer MJ, Fujiwara K, Oaknin A, Randall L, Ojalvo LS, Valencia C, Ray-Coquard I. The Changing Landscape of Systemic Treatment for Cervical Cancer: Rationale for Inhibition of the TGF-β and PD-L1 Pathways. Front Oncol 2022; 12:814169. [PMID: 35280818 PMCID: PMC8905681 DOI: 10.3389/fonc.2022.814169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is one of the most common and lethal cancers among women worldwide. Treatment options are limited in patients with persistent, recurrent, or metastatic cervical cancer, with <20% of women living >5 years. Persistent human papillomavirus (HPV) infection has been implicated in almost all cases of cervical cancer. HPV infection not only causes normal cervical cells to transform into cancer cells, but also creates an immunosuppressive environment for cancer cells to evade the immune system. Recent clinical trials of drugs targeting the PD-(L)1 pathway have demonstrated improvement in overall survival in patients with cervical cancer, but only 20% to 30% of patients show overall survival benefit beyond 2 years, and resistance to these treatments remains common. Therefore, novel treatment strategies targeting HPV infection-associated factors are currently being evaluated in clinical trials. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human immunoglobulin G1 monoclonal antibody that blocks PD-L1. Early clinical trials of bintrafusp alfa have shown promising results in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas Medical School, Little Rock, AR, United States
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ana Oaknin
- Gynaecological Cancer Program, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Leslie Randall
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Christian Valencia
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Isabelle Ray-Coquard
- GINECO Group & Department of Medical Oncology, Centre Leon Berard, University Claude Bernard Lyon, Lyon, France
| |
Collapse
|
229
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
230
|
Giudice E, Gentile M, Salutari V, Ricci C, Musacchio L, Carbone MV, Ghizzoni V, Camarda F, Tronconi F, Nero C, Ciccarone F, Scambia G, Lorusso D. PARP Inhibitors Resistance: Mechanisms and Perspectives. Cancers (Basel) 2022; 14:1420. [PMID: 35326571 PMCID: PMC8945953 DOI: 10.3390/cancers14061420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
PolyADP-ribose polymerase (PARP) inhibitors (PARPis) represent the first clinically approved drugs able to provoke "synthetic lethality" in patients with homologous recombination-deficient (HRD) tumors. Four PARPis have just received approval for the treatment of several types of cancer. Besides, another three additional PARPis underlying the same mechanism of action are currently under investigation. Despite the success of these targeted agents, the increasing use of PARPis in clinical practice for the treatment of different tumors raised the issue of PARPis resistance, and the consequent disease relapse and dismal prognosis for patients. Several mechanisms of resistance have been investigated, and ongoing studies are currently focusing on strategies to address this challenge and overcome PARPis resistance. This review aims to analyze the mechanisms underlying PARPis resistance known today and discuss potential therapeutic strategies to overcome these processes of resistance in the future.
Collapse
Affiliation(s)
- Elena Giudice
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy; (E.G.); (V.G.); (G.S.)
| | - Marica Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Vanda Salutari
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Caterina Ricci
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Lucia Musacchio
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Maria Vittoria Carbone
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Viola Ghizzoni
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy; (E.G.); (V.G.); (G.S.)
| | - Floriana Camarda
- Medical Oncology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Francesca Tronconi
- Medical Oncology, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy;
| | - Camilla Nero
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Francesca Ciccarone
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy; (E.G.); (V.G.); (G.S.)
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| | - Domenica Lorusso
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy; (E.G.); (V.G.); (G.S.)
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (C.R.); (L.M.); (M.V.C.); (C.N.); (F.C.)
| |
Collapse
|
231
|
Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther 2022; 30:1006-1017. [PMID: 35121107 PMCID: PMC8899703 DOI: 10.1016/j.ymthe.2022.01.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The correct duplication and transfer of genetic material to daughter cells is the major event of cell division. Dysfunction of DNA replication or chromosome segregation presents challenges in cancer initiation and development as well as opportunities for cancer treatment. Cyclic GMP-AMP synthase (cGAS) of the innate immune system detects cytoplasmic DNA and mediates downstream immune responses through the molecule stimulator of interferon genes (STING). However, how cytosolic DNA sensor cGAS participates in guaranteeing accurate cell division and preventing tumorigenesis is still unclear. Recent evidence indicates malfunction of cGAS/STING pathway in cancer progression. Cell cycle-targeted therapy synergizes with immunotherapy via cGAS/STING activation, leading to promising therapeutic benefit. Here, we review the interactions between cell cycle regulation and cGAS/STING signaling, thus enabling us to understand the role of cGAS/STING in cancer initiation, development, and treatment.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jue-Qiong Xu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| |
Collapse
|
232
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
233
|
Fucikova J, Palova-Jelinkova L, Klapp V, Holicek P, Lanickova T, Kasikova L, Drozenova J, Cibula D, Álvarez-Abril B, García-Martínez E, Spisek R, Galluzzi L. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 2022; 8:426-444. [PMID: 35181272 DOI: 10.1016/j.trecan.2022.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
At odds with other solid tumors, epithelial ovarian cancer (EOC) is poorly sensitive to immune checkpoint inhibitors (ICIs), largely reflecting active immunosuppression despite CD8+ T cell infiltration at baseline. Accumulating evidence indicates that both conventional chemotherapeutics and targeted anticancer agents commonly used in the clinical management of EOC not only mediate a cytostatic and cytotoxic activity against malignant cells, but also drive therapeutically relevant immunostimulatory or immunosuppressive effects. Here, we discuss such an immunomodulatory activity, with a specific focus on molecular and cellular pathways that can be harnessed to develop superior combinatorial regimens for clinical EOC care.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| | - Lenka Palova-Jelinkova
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Peter Holicek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Tereza Lanickova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Jana Drozenova
- Department of Pathology, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Beatriz Álvarez-Abril
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain; Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Centre, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
234
|
PARP Inhibitors and Radiometabolic Approaches in Metastatic Castration-Resistant Prostate Cancer: What’s Now, What’s New, and What’s Coming? Cancers (Basel) 2022; 14:cancers14040907. [PMID: 35205654 PMCID: PMC8869833 DOI: 10.3390/cancers14040907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Prostate cancer still represents an important health problem in men, considering its high frequency. Over the last decade, novel treatment options have emerged, leading to notable clinical benefits. These recent scientific acquisitions are creating the basis to widen the treatment scenario of this tumor, evolving from targeting the androgen receptor axis or the traditional chemotherapy approach. Abstract In recent years, the advances in the knowledge on the molecular characteristics of prostate cancer is allowing to explore novel treatment scenarios. Furthermore, technological discoveries are widening diagnostic and treatment weapons at the clinician disposal. Among these, great relevance is being gained by PARP inhibitors and radiometabolic approaches. The result is that DNA repair genes need to be altered in a high percentage of patients with metastatic prostate cancer, making these patients optimal candidates for PARP inhibitors. These compounds have already been proved to be active in pretreated patients and are currently being investigated in other settings. Radiometabolic approaches combine specific prostate cancer cell ligands to radioactive particles, thus allowing to deliver cytotoxic radiations in cancer cells. Among these, radium-223 and lutetium-177 have shown promising activity in metastatic pretreated prostate cancer patients and further studies are ongoing to expand the applications of this therapeutic approach. In addition, nuclear medicine techniques also have an important diagnostic role in prostate cancer. Herein, we report the state of the art on the knowledge on PARP inhibitors and radiometabolic approaches in advanced prostate cancer and present ongoing clinical trials that will hopefully expand these two treatment fields.
Collapse
|
235
|
Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Mater Today Bio 2022; 13:100218. [PMID: 35243293 PMCID: PMC8861407 DOI: 10.1016/j.mtbio.2022.100218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
The grand challenges of ovarian cancer early diagnosis have led to an alarmingly high mortality rate from ovarian cancer (OC) in the past half century. In vitro diagnosis (IVD) has great potential in the early diagnosis of OC through non-invasive and dynamic analysis of biomarkers. However, common IVDs often fail to provide reliable test results due to lack of sensitivity, specificity, and convenience. In recent years, the discovery of new biomarkers and the progress of nanomaterials can solve the shortcomings of traditional IVD for early OC. These emerging biosensors based on nanomaterials offer great improvements in convenience, speed, selectivity, and sensitivity of IVD. In this review, we firstly systematically summarized the limits of commercial IVD biosensors of OC and the latest discovery of new biomarkers for OC. The representative optimization strategies for six potential ovarian cancer biomarkers are systematically discussed with emphasis on nanomaterial selection and the design of detection principles. Then, various strategies adopted by emerging biosensors based on nanomaterials are also introduced in detail, including optical, electrochemical, microfluidic, and surface plasmon sensors. Finally, current challenges of early OC IVD are proposed, and future research directions on this promising field are also discussed. Failure to diagnose OC early will lead to high mortality. The detection of OC-related biomarkers by IVD method will achieve early diagnosis of OC. The development of nanomaterials-based biosensors is expected to enhance efficiency of detection. Strategies and progress for nanomaterials-based biosensors are systematically reviewed.
Collapse
|
236
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
237
|
Abstract
Innate immunity and the DNA damage response (DDR) pathway are inextricably linked. Within the DDR, ataxia telangiectasia and Rad3-related (ATR) is a key kinase responsible for sensing replication stress and facilitating DNA repair through checkpoint activation, cell cycle arrest, and promotion of fork recovery. Recent studies have shed light on the immunomodulatory role of the ATR-CHK1 pathway in the tumor microenvironment and the specific effects of ATR inhibition in stimulating an innate immune response. With several potent and selective ATR inhibitors in developmental pipelines, the combination of dual ATR and PD-(L)1 blockade has attracted increasing interest in cancer therapy. In this review, we summarize the clinical and preclinical data supporting the combined inhibition of ATR and PD-(L)1, discuss the potential challenges surrounding this approach, and highlight biomarkers relevant for selected patients who are most likely to benefit from the blockade of these two checkpoints.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119260
- Phase I Clinical Trials Program, Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Timothy A Yap
- Phase I Clinical Trials Program, Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Khalifa Institute for Personalized Cancer Therapy; Department of Thoracic/Head and Neck Medical Oncology; and Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
238
|
Bonazzi VF, Kondrashova O, Smith D, Nones K, Sengal AT, Ju R, Packer LM, Koufariotis LT, Kazakoff SH, Davidson AL, Ramarao-Milne P, Lakis V, Newell F, Rogers R, Davies C, Nicklin J, Garrett A, Chetty N, Perrin L, Pearson JV, Patch AM, Waddell N, Pollock PM. Patient-derived xenograft models capture genomic heterogeneity in endometrial cancer. Genome Med 2022; 14:3. [PMID: 35012638 PMCID: PMC8751371 DOI: 10.1186/s13073-021-00990-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models. Methods Here, we report whole exome or whole genome sequencing of 11 PDX models and their matched primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR) pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant and mismatch-repair deficient molecular subtypes of EC. Results PDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas. The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature. Conclusions EC PDX models represent the four molecular subtypes of disease and can capture intra-tumor heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00990-z.
Collapse
Affiliation(s)
- Vanessa F Bonazzi
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Olga Kondrashova
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deborah Smith
- Mater Health Services, South Brisbane, QLD, Australia.,Mater Pathology, Mater Research, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Katia Nones
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Asmerom T Sengal
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia
| | - Robert Ju
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia
| | - Leisl M Packer
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stephen H Kazakoff
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aimee L Davidson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Priya Ramarao-Milne
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lakis
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felicity Newell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca Rogers
- Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - Claire Davies
- Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - James Nicklin
- The Wesley Hospital, Auchenflower, QLD, Australia.,Icon Cancer Centre Wesley, Auchenflower, QLD, Australia
| | - Andrea Garrett
- The Wesley Hospital, Auchenflower, QLD, Australia.,Icon Cancer Centre Wesley, Auchenflower, QLD, Australia
| | - Naven Chetty
- Mater Health Services, South Brisbane, QLD, Australia.,Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - Lewis Perrin
- Mater Health Services, South Brisbane, QLD, Australia.,Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - John V Pearson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ann-Marie Patch
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Nicola Waddell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Pamela M Pollock
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
239
|
Hu Y, Burkard ME. Classes of therapeutics to amplify the immune response. Breast Cancer Res Treat 2022; 191:277-289. [PMID: 34787761 PMCID: PMC11646685 DOI: 10.1007/s10549-021-06369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Conventional chemotherapies are a mainstay for metastatic breast cancers, though durable response is rare. Immunotherapies promise long-term responses thorough immune activation but have been underwhelming in breast cancer relative to other cancer types. Here, we review the mechanisms of existing strategies including chemotherapies and how they may cause breast cancers to become immunogenic to identify potential biomarkers for combinations of conventional and immunotherapies. CONCLUSION Mechanistic considerations should inform biomarker development and patient selection for therapeutic combinations of drugs to combine with immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Yang Hu
- Department of Medicine, Hematology/Oncology and Palliative Care, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark E Burkard
- Department of Medicine, Hematology/Oncology and Palliative Care, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Institutes for Medical Research, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
240
|
Zong C, Zhu T, He J, Huang R, Jia R, Shen J. PARP mediated DNA damage response, genomic stability and immune responses. Int J Cancer 2021; 150:1745-1759. [PMID: 34952967 DOI: 10.1002/ijc.33918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) enzymes, especially PARP1, play important roles in the DNA damage response and in the maintenance of genome stability, which makes PARPis a classic synthetic lethal therapy for BRCA-deficient tumors. Conventional mechanisms suggest that PARPis exert their effects via catalytic inhibition and PARP-DNA trapping. Recently, PARP1 has been found to play a role in the immune modulation of tumors. The blockade of PARP1 is able to induce innate immunity through a series of molecular mechanisms, thus allowing the prediction of the feasibility of PARPis combined with immune agents in the treatment of tumors. PARPis combined with immunomodulators may have a stronger tumor suppressive effect on inhibiting tumor growth and blocking immune escape. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunyan Zong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
241
|
Ka NL, Lim GY, Hwang S, Kim SS, Lee MO. IFI16 inhibits DNA repair that potentiates type-I interferon-induced antitumor effects in triple negative breast cancer. Cell Rep 2021; 37:110138. [PMID: 34936865 DOI: 10.1016/j.celrep.2021.110138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/12/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Tumor DNA-damage response (DDR) has an important role in driving type-I interferon (IFN)-mediated host antitumor immunity, but it is not clear how tumor DNA damage is interconnected with the immune response. Here, we report the role of IFN-γ-inducible protein 16 (IFI16) in DNA repair, which amplifies the stimulator of IFN genes (STING)-type-I IFN signaling, particularly in triple-negative breast cancer (TNBC). IFI16 is rapidly induced and accumulated to the histone-evicted DNA at double-stranded breakage (DSB) sites, where it inhibits recruitment of DDR factors. Subsequently, IFI16 increases the release of DNA fragments to the cytoplasm and induces STING-mediated type-I IFN production. Synergistic cytotoxic and immunomodulatory effects of doxorubicin and type-I IFNs are decreased upon IFI16 depletion in vivo. Furthermore, IFI16 expression correlates with improved clinical outcome in patients with TNBC treated with chemotherapy. Together, our findings suggest that type-I IFNs and IFI16 could offer potential therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea; Bio-MAX institute, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
242
|
Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol 2021; 14:206. [PMID: 34930377 PMCID: PMC8686226 DOI: 10.1186/s13045-021-01218-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China.
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
243
|
The Clinical Challenges, Trials, and Errors of Combatting Poly(ADP-Ribose) Polymerase Inhibitors Resistance. Cancer J 2021; 27:491-500. [PMID: 34904812 DOI: 10.1097/ppo.0000000000000562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitor (PARPi) exploits synthetic lethality in solid tumors with homologous recombination repair (HRR) defects. Significant clinical benefit has been established in breast and ovarian cancers harboring BRCA1/2 mutations, as well as tumors harboring characteristics of "BRCAness." However, the durability of treatment responses is limited, and emerging data have demonstrated the clinical challenge of PARPi resistance. With the expanding use of PARPi, the significance of PARP therapy in patients pretreated with PARPi remains in need of significant further investigation. Molecular mechanisms contributing to this phenomenon include restoration of HRR function, replication fork stabilization, BRCA1/2 reversion mutations, and epigenetic changes. Current studies are evaluating the utility of combination therapies of PARPi with cell cycle checkpoint inhibitors, antiangiogenic agents, phosphatidylinositol 3-kinase/AKT pathway inhibitors, MEK inhibitors, and epigenetic modifiers to overcome this resistance. In this review, we address the mechanisms of PARPi resistance supported by preclinical models, examine current clinical trials applying combination therapy to overcome PARPi resistance, and discuss future directions to enhance the clinical efficacy of PARPi.
Collapse
|
244
|
With Our Powers Combined: Exploring PARP Inhibitors and Immunotherapy. Cancer J 2021; 27:511-520. [PMID: 34904815 DOI: 10.1097/ppo.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapies has seen substantial clinical success in oncology therapeutic development. Although multiple agents within these classes have achieved regulatory approval globally-in several malignancies in early and advanced stages-drug resistance remains an issue. Building on preclinical evidence, several early trials and late-phase studies are underway. This review explores the therapeutic potential of combination poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapy in solid tumors, including the scientific and therapeutic rationale, available clinical evidence, and considerations for future trial and biomarker development across different malignancies using ovarian and other solid cancer subtypes as key examples.
Collapse
|
245
|
Abstract
ABSTRACT Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the therapeutic landscape for advanced ovarian cancer and expanded treatment options for other tumor types, including breast, pancreas, and prostate cancer. Yet, despite the success of PARP inhibitors in our current therapeutic armamentarium, not all patients benefit because of primary resistance, whereas different acquired resistance mechanisms can lead to disease progression on therapy. In addition, the toxicity profile of PARP inhibitors, primarily myelosuppression, has led to adverse events in a proportion of patients as monotherapy, and has limited the use of PARP inhibitors for certain rational combination strategies, such as chemotherapy and targeted therapy regimens. Currently approved PARP inhibitors are essentially equipotent against PARP1 and PARP2 enzymes. In this review, we describe the development of next-generation PARP1-selective inhibitors that have entered phase I clinical trials. These inhibitors have demonstrated increased PARP1 inhibitory potency and exquisitely high PARP1 selectivity in preclinical studies-features that may lead to improved clinical efficacy and a wider therapeutic window. First-in-human clinical trials seeking to establish the safety, tolerability, and recommended phase II dose, as well as antitumor activity of these novel agents, have commenced. If successful, this next-generation of PARP1-selective agents promises to build on the succeses of current PARP inhibitor treatment paradigms in cancer medicine.
Collapse
|
246
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
247
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
248
|
Luo Q, Duan Z, Li X, Gu L, Ren L, Zhu H, Tian X, Chen R, Zhang H, Gong Q, Gu Z, Luo K. Branched Polymer‐Based Redox/Enzyme‐Activatable Photodynamic Nanoagent to Trigger STING‐Dependent Immune Responses for Enhanced Therapeutic Effect. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202110408] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiang Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Long Ren
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
249
|
Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points. Cancers (Basel) 2021; 13:cancers13236063. [PMID: 34885169 PMCID: PMC8656861 DOI: 10.3390/cancers13236063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Ovarian cancer has remained the leading cause of death among gynecologic malignancies. The current standard of treatment, in most cases, is a combination of surgery and chemotherapy, based on platinum agents and taxanes. Despite the increasing usage of newer drug groups, such as bevacizumab and PARP inhibitors, and the expansion of patient groups for these drugs, ovarian cancer is characterized by recurrences, particularly in the form of peritoneal implants. This review focuses on immunotherapy for ovarian cancer. It considers the current state of knowledge in areas such as cancer vaccines, adoptive cell therapy, CAR-T therapy, and anti-CTLA-4 monotherapy. The paper specifically considers PD-1/PDL-1 as drug targets. Anti-PD-1/PD-L1 monotherapy, and anti-PD-1/PD-L1 immunotherapy in combination with other agents, are analyzed. Abstract Ovarian cancer is one of the most fatal cancers in women worldwide. Cytoreductive surgery combined with platinum-based chemotherapy has been the current first-line treatment standard. Nevertheless, ovarian cancer appears to have a high recurrence rate and mortality. Immunological processes play a significant role in tumorigenesis. The production of ligands for checkpoint receptors can be a very effective, and undesirable, immunosuppressive mechanism for cancers. The CTLA-4 protein, as well as the PD-1 receptor and its PD-L1 ligand, are among the better-known components of the control points. The aim of this paper was to review current research on immunotherapy in the treatment of ovarian cancer. The authors specifically considered immune checkpoints molecules such as PD-1/PDL-1 as targets for immunotherapy. We found that immune checkpoint-inhibitor therapy does not have an improved prognosis in ovarian cancer; although early trials showed that a combination of anti-PD-1/PD-L1 therapy with targeted therapy might have the potential to improve responses and outcomes in selected patients. However, we must wait for the final results of the trials. It seems important to identify a group of patients who could benefit significantly from treatment with immune checkpoints inhibitors. However, despite numerous trials, ICIs have not become part of routine clinical practice for the treatment of ovarian cancer.
Collapse
|
250
|
Chen YX, Tan LM, Gong JP, Huang MS, Yin JY, Zhang W, Zhou HH, Liu ZQ. Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Acta Pharmacol Sin 2021; 42:1970-1980. [PMID: 33589795 PMCID: PMC8632930 DOI: 10.1038/s41401-020-00604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/20/2020] [Indexed: 01/31/2023]
Abstract
PARP inhibitors are a group of inhibitors targeting poly(ADP-ribose) polymerases (PARP1 or PARP2) involved in DNA repair and transcriptional regulation, which may induce synthetic lethality in BRCAness tumors. Systematic analyzes of genomic sequencing in prostate cancer show that ~10%-19% of patients with primary prostate cancer have inactivated DNA repair genes, with a notably higher proportion of 23%-27% in patients with metastatic castration-resistant prostate cancer (mCRPC). These characteristic genomic alterations confer possible vulnerability to PARP inhibitors in patients with mCRPC who benefit only modestly from other therapies. However, only a small proportion of patients with mCRPC shows sensitivity to PARP inhibitors, and these sensitive patients cannot be fully identified by existing response prediction biomarkers. In this review, we provide an overview of the potential response prediction biomarkers and synergistic combinations studied in the preclinical and clinical stages, which may expand the population of patients with prostate cancer who may benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Yi-Xin Chen
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Jian-Ping Gong
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|