201
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
202
|
Tetsworth K, Woloszyk A, Glatt V. 3D printed titanium cages combined with the Masquelet technique for the reconstruction of segmental femoral defects: Preliminary clinical results and molecular analysis of the biological activity of human-induced membranes. OTA Int 2019; 2:e016. [PMID: 33937652 PMCID: PMC7953522 DOI: 10.1097/oi9.0000000000000016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022]
Abstract
Introduction: Traumatic femoral segmental bone loss is a complex clinical problem, one that often requires extreme solutions. This study examines a new treatment strategy for segmental bone loss using patient-specific 3D printed titanium cages in conjunction with the Masquelet technique. Methods: The study was composed of a clinical observational case series, and a basic science investigation to evaluate the biological activity of the induced membranes using histology, immunohistochemistry (IHC), and gene expression analysis. Eligible patients were: adult; post-traumatic; with segmental femoral defects; minimum follow-up 1 year; managed under a 2-stage protocol, with an interim antibiotic poly (methyl methacrylate) (PMMA) spacer. Definitive reconstruction was completed with exchange to a 3D printed custom titanium cage filled with bone graft, and stabilized with either an intramedullary (IM) nail or a lateral locked plate. Results: Patient-specific 3D printed titanium cages were used in 5 consecutive patients to reconstruct post-traumatic segmental femoral defects. The mean interval between stages was 100.2 days (83–119 days), the mean defect length was 14.0 cm (10.3–18.4 cm), and the mean bone defect volume measured 192.4 cc (114–292 cc). The mean length of follow-up was 21.8 months (12–33 months). There were no deep infections, fractures, nerve injuries, loss of alignment, or nonunions identified during the period of follow-up. All of the patients achieved union clinically and radiographically. Histology and IHC demonstrated a greater number of vessels, cell nuclei, and extensive staining for cluster of differentiation 68 (CD68), platelet and endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial growth factor (VEGF) in the induced membranes compared to local fascia controls. Gene expression analysis revealed significant differential regulation of essential genes involved in inflammatory, angiogenic, and osteogenic pathways [interleukin 6 (IL-6), nuclear factor kappa B1 (NF-κB1), receptor activator of nuclear factor kappa-β ligand (RANKL), vascular endothelial growth factor A (VEGFA), angiogenin (ANG), transforming growth factor, beta 1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), growth differentiation factor 5 (GDF-5), growth differentiation factor 10 (GDF-10), and runt-related transcription factor 2 (RUNX-2)] in the induced membranes. Conclusions: This study demonstrates that the use of a patient-specific 3D printed custom titanium cage, inserted into an induced membrane in a 2-stage protocol, can achieve very acceptable clinical outcomes in selected cases of post-traumatic femoral segmental defects. Patient-specific 3D printed titanium cages, used in conjunction with the Masquelet technique, are a promising new treatment option for managing complex trauma patients with femoral bone loss. Level of Evidence: Level IV (observational case series).
Collapse
Affiliation(s)
- Kevin Tetsworth
- Royal Brisbane and Women's Hospital, Herston, Queensland.,Orthopaedic Research Centre of Australia, Brisbane, Queensland, Australia
| | - Anna Woloszyk
- Department of Orthopedic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Vaida Glatt
- Orthopaedic Research Centre of Australia, Brisbane, Queensland, Australia.,Department of Orthopedic Surgery, University of Texas Health Science Center San Antonio, Texas
| |
Collapse
|
203
|
Al-Qaissi A, Papageorgiou M, Deshmukh H, Madden LA, Rigby A, Kilpatrick ES, Atkin SL, Sathyapalan T. Effects of acute insulin-induced hypoglycaemia on endothelial microparticles in adults with and without type 2 diabetes. Diabetes Obes Metab 2019; 21:533-540. [PMID: 30264480 DOI: 10.1111/dom.13548] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
AIMS To assess whether endothelial microparticles (EMPs), novel surrogate markers of endothelial injury and dysfunction, are differentially produced in response to acute insulin-induced hypoglycaemia in adults with and without type 2 diabetes. MATERIALS AND METHODS A prospective, parallel study was conducted in individuals with type 2 diabetes (n = 23) and controls (n = 22). Hypoglycaemia (<2.2 mmoL/L: <40 mg/dL) was achieved by intravenous infusion of soluble insulin. Blood samples were collected at baseline and at 0, 30, 60, 120, 240 minutes and 24 hours after hypoglycaemia and analysed for CD31+ (platelet endothelial cell adhesion molecule-1), CD54+ (intercellular adhesion molecule 1), CD62-E+ (E-selectin), CD105+ (endoglin), CD106+ (vascular cell adhesion molecule 1) and CD142+ (tissue factor) EMPs by flow cytometry. The peak elevations (% rise from 0 minutes after hypoglycaemia) in EMP within 240 minutes after insulin-induced hypoglycaemia were modelled using a regression model, with adjustment for relevant covariates. All EMPs were expressed as percentage from 0 minutes hypoglycaemia for each time point and total areas under the curve (AUC0min-24h ) were calculated. RESULTS Following insulin-induced hypoglycaemia, levels of circulating EMPs were maximal at 240 minutes (P < 0.001) and returned to baseline values within 24 hours for both groups. The peak elevations (% rise from 0 minutes following hypoglycaemia) seen in CD31+ , CD54+ , CD62-E+ , CD105+ and CD142+ EMPs within 240 minutes were associated with diabetes status after adjustments for all relevant covariates. Individuals with type 2 diabetes showed increased CD31+ EMPs AUC0min-24h (P = 0.014) and CD105+ EMPs AUC0min-24h (P = 0.006) compared with controls, but there were no differences for CD54+ (P = 0.91), CD62-E+ (P = 0.14), CD106+ (P = 0.36) or CD142+ (P = 0.77) EMPs AUC0min-24h . CONCLUSIONS The associations between peak elevations within 240 minutes after insulin-induced hypoglycaemia for CD31+ , CD54+ , CD62-E+ , CD105+ and CD142+ and diabetes status indicate that the assessment of a panel of EMPs within this timeframe would identify a hypoglycaemic event in this population. The greater overall responses over time (AUCs) for apoptosis-induced CD31+ and CD105+ EMPs suggest that hypoglycaemia exerts greater endothelial stress in type 2 diabetes.
Collapse
Affiliation(s)
- Ahmed Al-Qaissi
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull Medical School, University of Hull, Hull, UK
| | - Maria Papageorgiou
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull Medical School, University of Hull, Hull, UK
| | - Harshal Deshmukh
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull Medical School, University of Hull, Hull, UK
| | - Leigh A Madden
- Department of Biological Sciences, School of Life Sciences, University of Hull, Hull, UK
| | - Alan Rigby
- Department of Academic Cardiology, Hull Medical School, University of Hull, Hull, UK
| | | | - Stephen L Atkin
- Weill Department of Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull Medical School, University of Hull, Hull, UK
| |
Collapse
|
204
|
Willemin AS, Zhang G, Velot E, Bianchi A, Decot V, Rousseau M, Gillet P, Moby V. The effect of nacre extract on cord blood-derived endothelial progenitor cells: A natural stimulus to promote angiogenesis? J Biomed Mater Res A 2019; 107:1406-1413. [PMID: 30737885 DOI: 10.1002/jbm.a.36655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 11/11/2022]
Abstract
Angiogenesis is a critical parameter to consider for the development of tissue-engineered bone substitutes. The challenge is to promote sufficient vascularization in the bone substitute to prevent cell death and to allow its efficient integration. The capacity of nacre extract to restore the osteogenic activity of osteoarthritis osteoblasts has already been demonstrated. However, their angiogenic potential on endothelial progenitor cells (EPCs) was not yet explored. Therefore, the current study aimed at investigating if nacreous molecules affect EPC behavior. The gene and protein expression levels of endothelial cell (EC)-specific markers were determined in EPCs cultivated in presence of a nacre extract (ethanol soluble matrix [ESM] at two concentrations: 100 μg/mL and 200 μg/mL (respectively abbreviated ESM100 and ESM200)). Cell functionality was explored by proangiogenic factors production and in vitro tube formation assay. ESM200 increased the expression of some EC-specific genes. The in vitro tube formation assay demonstrated that ESM200 stimulated tubulogenesis affecting angiogenic parameters. We demonstrated that a stimulation with 200 μg/mL of ESM increased angiogenesis key elements. This in vitro study strongly highlights the proangiogenic effect of ESM. Due to its osteogenic properties, previously demonstrated, ESM could constitute the key element to develop an ideal prevascularized bone substitute. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Anne-Sophie Willemin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, CNRS-Université de Lorraine, Vandœuvre-Lès-Nancy, F-54505, France
| | - Ganggang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Emilie Velot
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, CNRS-Université de Lorraine, Vandœuvre-Lès-Nancy, F-54505, France.,Faculté de Pharmacie, Vandœuvre-lès-Nancy, F-54505, France
| | - Arnaud Bianchi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, CNRS-Université de Lorraine, Vandœuvre-Lès-Nancy, F-54505, France
| | - Veronique Decot
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, CNRS-Université de Lorraine, Vandœuvre-Lès-Nancy, F-54505, France.,CHRU de Nancy, Unité de Thérapie Cellulaire et Tissus, Vandœuvre-lès-Nancy, F-54505, France
| | - Marthe Rousseau
- Université de Lyon, UJM-Saint Etienne, INSERM, SAINBIOSE U1089, Saint-Etienne, F-42000, France
| | - Pierre Gillet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, CNRS-Université de Lorraine, Vandœuvre-Lès-Nancy, F-54505, France
| | - Vanessa Moby
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, CNRS-Université de Lorraine, Vandœuvre-Lès-Nancy, F-54505, France.,CHRU de Nancy-Brabois, Service Odontologie, Vandœuvre-lès-Nancy, F-54500, France.,Faculté d'Odontologie, Université de Lorraine, Vandœuvre-lès-Nancy, F-54505, France
| |
Collapse
|
205
|
Avari H, Rogers KA, Savory E. Quantification of Morphological Modulation, F-Actin Remodeling and PECAM-1 (CD-31) Re-distribution in Endothelial Cells in Response to Fluid-Induced Shear Stress under Various Flow Conditions. J Biomech Eng 2019; 141:2723101. [PMID: 30673068 DOI: 10.1115/1.4042601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the number one cause of death globally. Arterial endothelial cell (EC) dysfunction plays a key role in many of these CVDs, such as atherosclerosis. Blood flow-induced wall shear stress (WSS), among many other pathophysiological factors, is known to significantly contribute to EC dysfunction. The present study reports an in vitro investigation of the effect of quantified WSS on ECs, analyzing the EC morphometric parameters as well as cytoskeletal remodeling. The effects of four different flow cases (low steady laminar (LSL), medium steady laminar (MSL), non-zero-mean sinusoidal laminar (NZMSL) and laminar carotid (LCRD) waveforms) on EC area, perimeter, shape index (SI), angle of orientation, F-actin bundle remodeling and PECAM-1 localization were studied. For the first time, a flow facility was fully quantified for the uniformity of flow over ECs as well as for WSS determination (as opposed to relying on analytical equations). The SI and angle of orientation were found to be the most flow-sensitive morphometric parameters. A 2D Fast Fourier Transform based image processing technique was applied to analyze the F-actin directionality and an alignment index (AI) was defined accordingly. Also, a significant peripheral loss of PECAM-1 in ECs subjected to atheroprone cases (LSL and NZMSL) with high cell surface/cytoplasm stain of this protein is reported, which may shed light on of the mechanosensory role of PECAM-1 in mechanotransduction.
Collapse
Affiliation(s)
- Hamed Avari
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Kem A Rogers
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Eric Savory
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| |
Collapse
|
206
|
Grosicka-Maciąg E, Kurpios-Piec D, Woźniak K, Kowalewski C, Szumiło M, Drela N, Kiernozek E, Suchocki P, Rahden-Staroń I. Selol (Se IV) modulates adhesive molecules in control and TNF-α-stimulated HMEC-1 cells. J Trace Elem Med Biol 2019; 51:106-114. [PMID: 30466918 DOI: 10.1016/j.jtemb.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Selol, an organic selenitetrigliceride formulation containing selenium at +4 oxidation level, has been suggested as anticancer drug. One of the causes of several diseases including cancer may be inflammation. This study aimed at determining the activity of Selol via measuring its effect on reactive oxygen species (ROS) generation, nuclear factor kappa B (NF-κB) activation, intercellular cell adhesion molecules-1 (ICAM-1), vascular cell adhesive molecule-1 (VCAM-1), and plateled-endothelial cell adhesive molecule-1 (PECAM-1) levels on control and on tumor necrosis factor-α (TNF-α)-stimulated human microvascular endothelial cells (HMEC-1). Cells were treated either with Selol 5% (4 or 8 μgSe/mL) or TNF-α (10 ng/mL) alone or with Selol concomitant with TNF-α. Selol treatment resulted in ROS generation, activation of NF-κB, downregulation of PECAM-1, VCAM-1 and slight upregulation ICAM-1 expression on the cell surface. TNF-α treatment reflected in sharp NF-κB activation, upregulation of both ICAM-1 and VCAM-1 in parallel with the downregulation of PECAM-1 expression on cell surface. Exposure to both compounds upregulated ICAM-1 and VCAM-1, downregulated PECAM-1 level on cell surface in parallel with no changes in level of NF-κB activation as compared with effects mediated by TNF-α alone. These results points to new look at Selol action since it shows a pro-inflammatory activity in parallel with effects on CAMs expression on the cell surface of human microvascular endothelial cells. However, since Selol enhances CAMs expression level when is present concomitantly with TNF-α this fact might suggest that selenium present in the condition of inflammation will make it worse.
Collapse
Affiliation(s)
- Emilia Grosicka-Maciąg
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Dagmara Kurpios-Piec
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Katarzyna Woźniak
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warszawa, Koszykowa 82a, Poland.
| | - Cezary Kowalewski
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warszawa, Koszykowa 82a, Poland.
| | - Maria Szumiło
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Nadzieja Drela
- Immunology Department, Faculty of Biology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland.
| | - Ewelina Kiernozek
- Immunology Department, Faculty of Biology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland.
| | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Iwonna Rahden-Staroń
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| |
Collapse
|
207
|
|
208
|
Villar J, Zhang H, Slutsky AS. Lung Repair and Regeneration in ARDS: Role of PECAM1 and Wnt Signaling. Chest 2018; 155:587-594. [PMID: 30392791 DOI: 10.1016/j.chest.2018.10.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
ARDS is an acute inflammatory pulmonary process triggered by severe pulmonary and systemic insults to the alveolar-capillary membrane. This causes increased vascular permeability and the development of interstitial and alveolar protein-rich edema, leading to acute hypoxemic respiratory failure. Supportive treatment includes the use of lung-protective ventilatory strategies that decrease the work of breathing, can improve oxygenation, and minimize ventilator-induced lung injury. Despite substantial advances in supportive measures, there are no specific pharmacologic treatments for ARDS, and the overall hospital mortality rate remains about 40% in most series. The pathophysiology of ARDS involves interactions among multiple mechanisms, including immune cell infiltration, cytokine storm, alveolar-capillary barrier disruption, cell apoptosis, and the development of fibrosis. Here we review some new developments in the molecular basis of lung injury, with a focus on possible novel pharmacologic interventions aimed at improving the outcomes of patients with ARDS. Our focus is on platelet-endothelial cell adhesion molecule-1, which contributes to the maintenance and restoration of vascular integrity following barrier disruption. We also highlight the wingless-related integration site signaling pathway, which appears to be a central mechanism for lung healing as well as for fibrotic development.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr Negrin, Las Palmas de Gran Canaria, Spain; Keenan Research Center for Biomedical Sciences at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Haibo Zhang
- Keenan Research Center for Biomedical Sciences at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Department of Anesthesia and Department of Physiology, University of Toronto, Toronto, Canada
| | - Arthur S Slutsky
- Keenan Research Center for Biomedical Sciences at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
209
|
Deng H, Hu N, Wang C, Chen M, Zhao MH. Interaction between CD177 and platelet endothelial cell adhesion molecule-1 downregulates membrane-bound proteinase-3 (PR3) expression on neutrophils and attenuates neutrophil activation induced by PR3-ANCA. Arthritis Res Ther 2018; 20:213. [PMID: 30236159 PMCID: PMC6148996 DOI: 10.1186/s13075-018-1710-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background A recent study found that CD177 served as a receptor of membrane-bound proteinase-3 (mPR3) in a subset of neutrophils. Furthermore, CD177 has been identified as a high-affinity heterophilic binding partner for the endothelial cell platelet endothelial cell adhesion molecule-1 (PECAM-1). The current study aimed to investigate whether the interaction between PECAM-1 and CD177 could influence mPR3 expression as well as PR3-antineutrophil cytoplasmic antibody (ANCA)-induced neutrophil activation and glomerular endothelial cell (GEnC) injury. Methods The effect of interaction between CD177 and PECAM-1 on mPR3 expression was explored by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The effect of PECAM-1 on neutrophil activation and GEnC injury induced by PR3-ANCA-positive immunoglobulin (Ig)Gs was evaluated by dihydrorhodamine (DHR) assay and ELISA. CD177-negative neutrophils were selected by magnetic cell sorting (MACS), and the inhibitory effect of PECAM-1 on CD177-negative and mixed neutrophils was explored by measuring neutrophil degranulation. Results The level of specific interaction between CD177 and PECAM-1 was elevated with increasing CD177 concentration. The expression of mPR3 significantly decreased in neutrophils preincubated with PECAM-1 in a dose-dependent manner. Consistently, the levels of respiratory burst and degranulation induced by PR3-ANCA-positive IgGs in recombinant human tumor necrosis factor-alpha (TNF-α)-primed neutrophils was significantly reduced by preincubation with PECAM-1 (440.6 ± 123.0 vs. 511.4 ± 95.5, p < 0.05; and 3155.0 ± 1733.0 ng/ml vs. 5903.0 ± 717.5 ng/ml, p < 0.05, respectively). In CD177-negative neutrophils incubated with PR3-ANCA-positive IgGs, the level of degranulation was not significantly changed by preincubation with PECAM-1. However, in mixed neutrophils, PECAM-1 significantly decreased the level of degranulation induced by PR3-ANCA-positive IgGs (1015.9 ± 229.2% vs. 1725.2 ± 412.4%, p < 0.01). Furthermore, with preincubation of TNF-α-primed neutrophils with PECAM-1, the level of soluble intercellular cell adhesion molecule-1 (sICAM-1), a marker of endothelial cell activation and injury, in the supernatant of GEnCs treated with primed neutrophils plus PR3-ANCA-positive IgGs was significantly attenuated (112.7 ± 24.2 pg/ml vs. 167.5 ± 27.7 pg/ml, p < 0.05). Conclusions PECAM-1 can decrease the level of mPR3 expression on neutrophils, resulting in attenuation of neutrophil activation and subsequent GEnC injury induced by PR3-ANCA-positive IgGs.
Collapse
Affiliation(s)
- Hui Deng
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China
| | - Nan Hu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China
| | - Chen Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China. .,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China. .,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, 100034, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China.
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China
| |
Collapse
|
210
|
Hoang QT, Nuzzo A, Louedec L, Delbosc S, Andreata F, Khallou-Laschet J, Assadi M, Montravers P, Longrois D, Corcos O, Caligiuri G, Nicoletti A, Michel JB, Tran-Dinh A. Peptide binding to cleaved CD31 dampens ischemia/reperfusion-induced intestinal injury. Intensive Care Med Exp 2018; 6:27. [PMID: 30112663 PMCID: PMC6093833 DOI: 10.1186/s40635-018-0192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD31 is a key transmembrane neutrophil immunoregulatory receptor. Mesenteric ischemia/reperfusion-induced neutrophil activation leads to a massive cleavage and shedding of the most extracellular domains of CD31 into plasma, enhancing the deleterious effect of neutrophil activation. We have evaluated the preventive therapeutic potential of an engineered synthetic octapeptide (P8RI), which restores the inhibitory intracellular signaling of cleaved CD31, in an experimental model of acute mesenteric ischemia/reperfusion. METHODS In a randomized, controlled, and experimenter-blinded preclinical study, mesenteric ischemia/reperfusion (I/R) was induced in Wistar rats by superior mesenteric artery occlusion for 30 min followed by 4 h of reperfusion. Three groups of rats were compared: I/R + saline perfusion (I/R controls group, n = 7), I/R + preventive P8RI perfusion (P8RI group, n = 7), and sham-operated rats + saline perfusion (sham group, n = 7). RESULTS Compared with I/R controls, P8RI perfusion significantly decreased intestinal ischemia/reperfusion injury (Chiu's score, P = 0.01; epithelial area, P = 0.001) and bacterial translocation (plasma Escherichia coli DNA, P = 0.04) and could limit intestinal bleeding (P = 0.09). P8RI decreased neutrophil activation assessed by matrix metalloproteinase-9 release in plasma (P < 0.001) and in the intestinal wall, albeit without statistical significance (P = 0.06 and P = 0.058 for myeloperoxydase). Inhibition of CD31 cleavage from neutrophils could play a major role in the protective effects of P8RI (P < 0.0001). CONCLUSIONS Preventive administration of P8RI, a CD31-agonist peptide, could decrease I/R-induced intestinal injury by potentially limiting neutrophil activation.
Collapse
Affiliation(s)
- Quoc Thang Hoang
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France.,Department of Anesthesiology and Surgical Critical Care, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Alexandre Nuzzo
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France.,Structure d'URgences Vasculaires Intestinales (SURVI), CHU Beaujon, Clichy, France
| | - Liliane Louedec
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France
| | - Sandrine Delbosc
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France
| | | | | | - Maksud Assadi
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France.,Département d'anesthésie-réanimation, CHU Bichat-Claude Bernard, 46, rue Henri Huchard, 75877, Paris Cedex 18, France
| | - Philippe Montravers
- Département d'anesthésie-réanimation, CHU Bichat-Claude Bernard, 46, rue Henri Huchard, 75877, Paris Cedex 18, France.,INSERM UMR 1152, Paris-Diderot, Université Sorbonne, Paris, France
| | - Dan Longrois
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France.,Département d'anesthésie-réanimation, CHU Bichat-Claude Bernard, 46, rue Henri Huchard, 75877, Paris Cedex 18, France
| | - Olivier Corcos
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France.,Structure d'URgences Vasculaires Intestinales (SURVI), CHU Beaujon, Clichy, France
| | | | | | | | - Alexy Tran-Dinh
- INSERM LVTS U1148, Paris-Diderot, Université Sorbonne, Paris, France. .,Département d'anesthésie-réanimation, CHU Bichat-Claude Bernard, 46, rue Henri Huchard, 75877, Paris Cedex 18, France.
| |
Collapse
|
211
|
Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, Alini M, Eslaminejad MB. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med 2018; 12:1925-1943. [PMID: 30011424 DOI: 10.1002/term.2727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Limb/digit amputation is a common event in humans caused by trauma, medical illness, or surgery. Although the loss of a digit is not lethal, it affects quality of life and imposes high costs on amputees. In recent years, the increasing interest in limb regeneration has led to enhanced scientific knowledge. However, the limited ability to develop functional limb regeneration in the clinical setting suggests that a challenging issue remains in limb regeneration. Recently, the emergence of regenerative engineering is a promising field to address this challenge and close the gap between science and clinical applications. Cell signalling and molecular mechanisms involved in the limb regeneration process have been extensively studied; however, there is still insufficient data on cell therapy and tissue engineering for limb regeneration. In this review, we intend to focus on therapeutic approaches for limb regeneration that are closely related to gene, immune, and stem cell therapies, as well as tissue engineering approaches that take into consideration the peculiar developmental properties of the limbs. In addition, we attempt to identify the challenges of these strategies for limb regeneration studies in terms of clinical settings and as a road map to accomplish the goal of functional human limb regeneration.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Safari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
212
|
Deng F, Wang S, Xu R, Yu W, Wang X, Zhang L. Endothelial microvesicles in hypoxic hypoxia diseases. J Cell Mol Med 2018; 22:3708-3718. [PMID: 29808945 PMCID: PMC6050493 DOI: 10.1111/jcmm.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023] Open
Abstract
Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuang Wang
- Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Riping Xu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenqian Yu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xianyu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
213
|
Xu T, Lv Z, Chen Q, Guo M, Wang X, Huang F. Vascular endothelial growth factor over-expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway. Biomed Pharmacother 2018; 106:491-498. [PMID: 29990837 DOI: 10.1016/j.biopha.2018.06.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
In the pathogenesis of diabetes mellitus (DM), islet microvasculares are severely damaged due to glucolipotoxicity and other reasons. Vascular endothelial growth factor (VEGF) is an indispensable and specific angiogenic factor in the pathogenesis and treatment of diabetic islet microvascular disease. Mesenchymal stem cells (MSCs) are regarded as a promising treatment of diabetes because of their immunosuppressive effect and multipotential differentiation potency. In this study, we tested whether MSCs over-expressing VEGF conditioned medium (MSC-VEGF-CM) could ameliorate pancreatic islet endothelial cells (MS-1) dysfunction induced by a common diabetic inducer palmitate (PA). We found that cell survival and migration were restrained by PA and partly repaired by the pro-protected of MSC-VEGF-CM. Meanwhile, PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathways were also up-regulated. Though apoptosis-related proteins, caspase-3 and caspase-9, had no significantly suppressed between MSC-VEGF-CM and MSC-CM alone, the expression levels of vascular surface factors such as CD31, VE-cadherin, occludin and ICAM-1, were remarkably up-regulated by the pro-protected of MSC-VEGF-CM. Our data suggested that MSC-VEGF-CM had therapeutic effect on the PA-induced dysfunction through the re-activation of PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Tianwei Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengbing Lv
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuhua Chen
- Intensive Care Unit, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xufang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
214
|
Kukumberg M, Yao Y, Goh SH, Neo DJ, Yao JY, Yim EK. Evaluation of the topographical influence on the cellular behavior of human umbilical vein endothelial cells. ADVANCED BIOSYSTEMS 2018; 2:1700217. [PMID: 30766915 PMCID: PMC6370334 DOI: 10.1002/adbi.201700217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Adhesion and proliferation of vascular endothelial cells are important parameters in the endothelialization of biomedical devices for vascular applications. Endothelialization is a complex process affected by endothelial cells and their interaction with the extracellular microenvironment. Although numerous approaches are taken to study the influence of the external environment, a systematic investigation of the impact of an engineered microenvironment on endothelial cell processes is needed. This study aims to investigate the influence of topography, initial cell seeding density, and collagen coating on human umbilical vein endothelial cells (HUVECs). Utilizing the MultiARChitecture (MARC) chamber, the effects of various topographies on HUVECs are identified, and those with more prominent effects were further evaluated individually using the MARC plate. Endothelial cell marker expression and monocyte adhesion assay are examined on the HUVEC monolayer. HUVECs on 1.8 μm convex and concave microlens topographies demonstrate the lowest cell adhesion and proliferation, regardless of initial cell seeding density and collagen I coating, and the HUVEC monolayer on the microlens shows the lowest monocyte adhesion. This property of lens topographies would potentially be a useful parameter in designing vascular biomedical devices. The MARC chamber and MARC plate show a great potential for faster and easy pattern identification for various cellular processes.
Collapse
Affiliation(s)
- Marek Kukumberg
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Seok Hong Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, 138634, Singapore, Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583
| | - Dawn Jh Neo
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411
| | - Jia Yi Yao
- Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583
| | - Evelyn Kf Yim
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411, Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583, Department of Surgery, National University of Singapore, NUHS Tower Block, Level 8,1E Kent Ridge Road, Singapore 119228, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
215
|
Khan OF, Kowalski PS, Doloff JC, Tsosie JK, Bakthavatchalu V, Winn CB, Haupt J, Jamiel M, Langer R, Anderson DG. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. SCIENCE ADVANCES 2018; 4:eaar8409. [PMID: 29963629 PMCID: PMC6021147 DOI: 10.1126/sciadv.aar8409] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 05/19/2023]
Abstract
Dysfunctional endothelial cells contribute to the pathophysiology of many diseases, including vascular disease, stroke, hypertension, atherosclerosis, organ failure, diabetes, retinopathy, and cancer. Toward the goal of creating a new RNA-based therapy to correct aberrant endothelial cell gene expression in humans, efficient gene silencing in the endothelium of nonhuman primates was achieved by delivering small interfering RNA (siRNA) with 7C1, a low-molecular weight, ionizable polymer that forms nanoparticles. After a single intravenous administration of 1 mg of siRNA per kilogram of animal, 7C1 nanoparticles delivering Tie2 siRNA caused Tie2 mRNA levels to decrease by approximately 80% in the endothelium of the lung. Significant decreases in Tie2 mRNA were also found in the heart, retina, kidney, pancreas, and bone. Blood chemistry and liver function analysis before and after treatment all showed protein and enzyme concentrations within the normal reference ranges. Furthermore, after controlling for siRNA-specific effects, no significant increases in inflammatory cytokine concentrations were found in the serum. Similarly, no gross lesions or significant underlying pathologies were observed after histological examination of nonhuman primate tissues. This study is the first demonstration of endothelial gene silencing in multiple nonhuman primate organs using systemically administered siRNA nanoparticles and highlights the potential of this approach for the treatment of disease in humans.
Collapse
Affiliation(s)
- Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Piotr S. Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan K. Tsosie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Jennifer Haupt
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Morgan Jamiel
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
216
|
Abraham V, Cao G, Parambath A, Lawal F, Handumrongkul C, Debs R, DeLisser HM. Involvement of TIMP-1 in PECAM-1-mediated tumor dissemination. Int J Oncol 2018; 53:488-502. [PMID: 29845213 PMCID: PMC6017270 DOI: 10.3892/ijo.2018.4422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is expressed on the vascular endothelium and has been implicated in the late progression of metastatic tumors. The activity of PECAM-1 appears to be mediated by modulation of the tumor microenvironment (TME) and promotion of tumor cell proliferation, rather than through the stimulation of tumor angiogenesis. The present study aimed to extend those initial findings by indicating that the presence of functional PECAM-1 on the endothelium promotes a proliferative tumor cell phenotype in vivo, as well as in tumor cell (B16-F10 melanoma and 4T1 breast cancer cell lines) co-culture assays with mouse endothelial cells (ECs) or a surrogate EC line (REN-MP). The pro-proliferative effects were mediated by soluble endothelial-derived factors that were dependent on PECAM-1 homophilic ligand interactions, but which were independent of PECAM-1-dependent signaling. Further analysis of the conditioned media obtained from tumor/EC and tumor/REN-MP co-cultures identified TIMP metallopeptidase inhibitor-1 (TIMP-1) as a PECAM-1-regulated factor, the targeting of which in the tumor cell/REN-MP system inhibited tumor cell proliferation. In addition, TIMP-1 expression was decreased in metastatic tumors from the lungs of PECAM-1-null mice, thus providing evidence of the in vivo significance of co-culture studies. Taken together, these studies indicated that endothelial PECAM-1, through PECAM-1-dependent homophilic binding interactions, may induce release of TIMP-1 from the endothelium into the TME, thus leading to increased tumor cell proliferation.
Collapse
Affiliation(s)
- Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew Parambath
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fareedah Lawal
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Robert Debs
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
217
|
Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis. Oncogene 2018; 37:4287-4299. [PMID: 29717262 DOI: 10.1038/s41388-018-0271-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 01/16/2023]
Abstract
Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1-/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1-/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1-/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.
Collapse
|
218
|
Baci D, Bruno A, Bassani B, Tramacere M, Mortara L, Albini A, Noonan DM. Acetyl-l-carnitine is an anti-angiogenic agent targeting the VEGFR2 and CXCR4 pathways. Cancer Lett 2018; 429:100-116. [PMID: 29678548 DOI: 10.1016/j.canlet.2018.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Carnitines play an important role in the energy exchange in cells, and are involved in the transport of fatty acids across the inner mitochondrial membrane. l-Acetylcarnitine (ALCAR) is an acetic acid ester of carnitine that has higher bioavailability and is considered a fat-burning energizer supplement. We previously found that in serum samples from prostate cancer (PCa) patients, 3 carnitine family members were significantly decreased, suggesting a potential protective role of carnitine against PCa. Several studies support beneficial effects of carnitines on cancer, no study has investigated the activities of carnitine on tumor angiogenesis. We examined whether ALCAR acts as an "angiopreventive" compound and studied the molecular mechanisms involved. We found that ALCAR was able to limit inflammatory angiogenesis by reducing stimulated endothelial cell and macrophage infiltration in vitro and in vivo. Molecularly, we show that ALCAR downregulates VEGF, VEGFR2, CXCL12, CXCR4 and FAK pathways. ALCAR blocked the activation of NF-κB and ICAM-1 and reduced the adhesion of a monocyte cell line to endothelial cells. This is the first study showing that ALCAR has anti-angiogenic and anti-inflammatory properties and might be an attractive candidate for cancer angioprevention.
Collapse
Affiliation(s)
- Denisa Baci
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Barbara Bassani
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Matilde Tramacere
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy; Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
219
|
Yehya AHS, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid AMSA, Oon CE. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E8. [PMID: 30344239 PMCID: PMC6037250 DOI: 10.3390/medicina54010008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Deregulated angiogenesis has been identified as a key contributor in a number of pathological conditions including cancer. It is a complex process, which involves highly regulated interaction of multiple signalling molecules. The pro-angiogenic signalling molecule, vascular endothelial growth factor (VEGF) and its cognate receptor 2 (VEGFR-2), which is often highly expressed in majority of human cancers, plays a central role in tumour angiogenesis. Owing to the importance of tumour vasculature in carcinogenesis, tumour blood vessels have emerged as an excellent therapeutic target. The anti-angiogenic therapies have been shown to arrest growth of solid tumours through multiple mechanisms, halting the expansion of tumour vasculature and transient normalization of tumour vasculature which help in the improvement of blood flow resulting in more uniform delivery of cytotoxic agents to the core of tumour mass. This also helps in reduction of hypoxia and interstitial pressure leading to reduced chemotherapy resistance and more uniform delivery of cytotoxic agents at the targeted site. Thus, complimentary combination of different agents that target multiple molecules in the angiogenic cascade may optimize inhibition of angiogenesis and improve clinical benefit in the cancer patients. This review provides an update on the current trend in exploitation of angiogenesis pathways as a strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Ashwaq Hamid Salem Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Muhammad Asif
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Sven Hans Petersen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117543, Singapore.
| | - Ayappa V Subramaniam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Koji Kono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117543, Singapore.
- Department of Surgery, National University of Singapore, Singapore 117543, Singapore.
- School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Amin Malik Shah Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 0200, Australia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
220
|
Zeng WJ, Tan Z, Lai XF, Xu YN, Mai CL, Zhang J, Lin ZJ, Liu XG, Sun SL, Zhou LJ. Topical delivery of l-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation. Chem Biol Interact 2018; 284:69-79. [PMID: 29458014 DOI: 10.1016/j.cbi.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/27/2017] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
l-theanine, the most abundant free amino acid in tea, has been documented to possess many different bioactive properties through oral or intragastrical delivery. However, little is known about the effect of topical delivery of l-theanine on acute inflammation. In the present study, by using 12-O-tetradecanoylphorbol-13-acetate (TPA, 2.5 μg/ear)-induced ear edema model in mice, we first found that single-dose local pretreatment of l-theanine 30 min before TPA time- and dose-dependently suppressed the increases in both skin thickness and weight. Subsequently l-theanine ameliorated TPA-induced erythema, vascular permeability increase, epidermal and dermal hyperplasia, neutrophil infiltration and activation via downregulating the expression of PECAM-1 (a platelet endothelial adhesion molecule-1) in blood vessels and the production of pro-inflammatory cytokines IL-1β, TNF-α, and mediator cyclooxygenase-2 (COX-2), which is mainly expressed in neutrophils. It highlighted the potential of l-theanine as a locally administrable therapeutic agent for acute cutaneous inflammation.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing-Fei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangdong Academy of Agricultural Sciences, Dafeng Road 6th, Guangzhou, 510640, China
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shi-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangdong Academy of Agricultural Sciences, Dafeng Road 6th, Guangzhou, 510640, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
221
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
222
|
Ramos-Vara JA, Miller MA, Dusold DM. Immunohistochemical Expression of CD31 (PECAM-1) in Nonendothelial Tumors of Dogs. Vet Pathol 2018; 55:402-408. [PMID: 29343200 DOI: 10.1177/0300985817751217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CD31 immunoreactivity has been reported in human nonendothelial tumors of both epithelial and mesenchymal origin. This study examined CD31 immunoreactivity of 347 formalin-fixed, paraffin-embedded normal, nonneoplastic, and neoplastic canine tissues. CD31 expression was considered positive if at least 10% of the cell population had membranous reactivity. Labeling with the CD31 antibody (clone JC/70A) was observed in 16 samples of normal organs (liver, kidney, lymph node), 6 of 6 specimens of hepatic nodular hyperplasia, 3 of 3 hepatic regenerative nodules, 1 of 4 anal sac carcinomas, 6 of 6 hemangiosarcomas, 18 of 20 hepatocellular carcinomas, 1 of 6 mammary carcinomas, 3 of 5 plasmacytomas, 18 of 53 renal cell carcinomas, and 1 of 5 cutaneous histiocytomas. CD31 expression did not correlate with case outcome in hepatocellular or renal cell carcinomas. Although distinguishing hemangiosarcoma from other neoplasms is typically straightforward, pathologists should be aware of potential cross-reactivity when relying on CD31 immunohistochemistry for diagnosis, particularly in small biopsy samples or when faced with an epithelioid or poorly differentiated vascular neoplasm.
Collapse
Affiliation(s)
- José A Ramos-Vara
- 1 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Margaret A Miller
- 1 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Dee M Dusold
- 1 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
223
|
Arpornmaeklong P, Pressler MJ. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells. Ann Anat 2018; 215:52-62. [DOI: 10.1016/j.aanat.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/13/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
|
224
|
Assessment of antimicrobial and wound healing effects of Brevinin-2Ta against the bacterium Klebsiella pneumoniae in dermally-wounded rats. Oncotarget 2017; 8:111369-111385. [PMID: 29340060 PMCID: PMC5762328 DOI: 10.18632/oncotarget.22797] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as promising alternatives for antibiotics due to their inherent capacity to prevent microbial drug resistance. Amphibians are rich source of bioactive molecules, which provide numerous AMPs with various structures as drug candidates. Here, we isolated and identified a novel AMP Brevinin-2Ta (B-2Ta) from the skin secretion of the European frog, Pelophylax kl. esculentus. In vitro studies revealed that it showed broad antimicrobial activities against S. aureus, E. coli and C. albicans with low cytotoxicity to erythrocytes. Furthermore, we examined the anti-inflammation effect in vivo by using Klebsiella pneumoniae-infected Sprague-Dawley (SD) rats. The wound closure outcomes revealed that B-2Ta effectively restrained the bacterial infection at a dose of 10 times minimal inhibitory concentration (MIC) during the 14 days of the wound healing process. Ultra-structure analyses showed that B-2Ta caused structural damage to the microorganism, and bacterial culture found that the number of microbes was significantly reduced by the end of treatment. Immunohistochemistry for the inflammatory marker IL-10 and the endothelial cell marker CD31 suggested positive effects on inflammatory status and epithelial migration and angiogenesis following treatment of the infected granulation tissues with B-2Ta. These results exhibited the continuous phase of inflammation reduction and wound healing acceleration in the B-2Ta-modulated re-epithelialisation of K. pneumoniae infected rats. Taken together, these data demonstrated that B-2Ta has great potential to be developed as antibacterial agents in clinic.
Collapse
|
225
|
Abraham V, Parambath A, Joe DS, DeLisser HM. Influence of PECAM-1 ligand interactions on PECAM-1-dependent cell motility and filopodia extension. Physiol Rep 2017; 4:4/22/e13030. [PMID: 27895229 PMCID: PMC5358002 DOI: 10.14814/phy2.13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/31/2023] Open
Abstract
Platelet endothelial cell adhesion molecule (PECAM‐1) has been implicated in angiogenesis through processes that involve stimulation of endothelial cell motility. Previous studies suggest that PECAM‐1 tyrosine phosphorylation mediates the recruitment and then activation of the tyrosine phosphatase SHP‐2, which in turn promotes the turnover of focal adhesions and the extension of filopodia, processes critical to cell motility. While these studies have implicated PECAM‐1‐dependent signaling in PECAM‐1‐mediated cell motility, the involvement of PECAM‐1 ligand binding in cell migration is undefined. Therefore to investigate the role of PECAM‐1 binding interactions in cell motility, mutants of PECAM‐1 were generated in which either homophilic or heparin/glycosaminoglycan (GAG)‐mediated heterophilic binding had been disabled and then expressed in an endothelial cell surrogate. We found that the ability of PECAM‐1 to stimulate cell migration, promote filopodia formation and trigger Cdc42 activation were lost if PECAM‐1‐dependent homophilic or heparin/GAG‐dependent heterophilic ligand binding was disabled. We further observed that PECAM‐1 concentrated at the tips of extended filopodia, an activity that was diminished if homophilic, but not heparin/GAG‐mediated heterophilic binding had been disrupted. Similar patterns of activities were seen in mouse endothelial cells treated with antibodies that specifically block PECAM‐1‐dependent homophilic or heterophilic adhesion. Together these data provide evidence for the differential involvement of PECAM‐1‐ligand interactions in PECAM‐1‐dependent motility and the extension of filopodia.
Collapse
Affiliation(s)
- Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Parambath
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debria S Joe
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
226
|
Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 2017; 7:brainsci7100131. [PMID: 29035306 PMCID: PMC5664058 DOI: 10.3390/brainsci7100131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium.
Collapse
|
227
|
Abstract
Circulating endothelial cells (CECs) are angiogenic cells that appear in increased numbers in the peripheral circulation either as a result of vascular injury or in response to angiogenic stimuli. Elevated levels of CECs have been correlated with various disease states, indicating the use of CECs as a biomarker of disease. Flow cytometry is a widely accepted method for detecting and quantitating CECs. Flow cytometry provides statistical information on large numbers of cells but no information on morphological characteristics. Imaging flow cytometry combines traditional flow cytometry and microscopy, providing a streamlined, multiparameter approach to characterize the biological properties and morphology of large numbers of cells, and is particularly amenable for rare event analysis such as CECs. This approach for identifying and characterizing CECs allows the morphological characterization of large numbers of live, nucleated, single CECs, and alleviates the need for prior enrichment.
Collapse
|
228
|
Deng F, Wang S, Zhang L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review. J Cell Mol Med 2017; 21:1698-1710. [PMID: 28316143 PMCID: PMC5571516 DOI: 10.1111/jcmm.13125] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022] Open
Abstract
Circulatory hypoxia-related diseases (CHRDs), including acute coronary syndromes, stroke and organ transplantation, attract increased attention due to high morbidity and mortality. Mounting evidence shows that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of CHRD-related vascular endothelial injury. Interestingly, hypoxia, even hypoxia-induced oxidative stress, coagulation and inflammation can all induce release of endothelial microparticles (EMPs). EMPs, shed from activated or apoptotic endothelial cells (ECs), reflect the degree of EC damage, and elevated EMP levels are found in several CHRDs. Furthermore, EMPs, which play an important role in cell-to-cell communication and function, have confirmed pro-coagulant, proinflammatory, angiogenic and other functions, affecting pathological processes. These findings suggest that EMPs and CHRDs have a very close relationship, and EMPs may help to identify CHRD phenotypes and stratify the severity of disease, to improve risk stratification for developing CHRDs, to better define prophylactic strategies and to ameliorate prognostic characterization of patients with CHRDs. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment and clinical prognosis of CHRDs.
Collapse
Affiliation(s)
- Fan Deng
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Shuang Wang
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Liangqing Zhang
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
229
|
Snyder JL, McBeath E, Thomas TN, Chiu YJ, Clark RL, Fujiwara K. Mechanotransduction properties of the cytoplasmic tail of PECAM-1. Biol Cell 2017. [DOI: 10.1111/boc.201600079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jessica L. Snyder
- Department of Biomedical Engineering; University of Rochester; Rochester NY 14611 USA
| | - Elena McBeath
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Tamlyn N. Thomas
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Yi Jen Chiu
- Research and Development Department; Chris Cam Mirror; Yungkang Tainan Hsien 71 Taiwan
| | - Robert L. Clark
- Department of Mechanical Engineering; University of Rochester; Rochester NY 14611 USA
| | - Keigi Fujiwara
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| |
Collapse
|
230
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is a frequently overlooked component of the pathogenesis of inflammatory bowel disease (IBD). However, the functional and clinically significant interactions between immune as well as nonimmune cells with the ECM have important implications for disease pathogenesis. In this review, we discuss how the ECM participates in process associated with IBD that involves diverse cell types of the intestine. RECENT FINDINGS Remodeling of the ECM is a consistent feature of IBD, and studies have implicated key ECM molecules in IBD pathogenesis. While the majority of prior studies have focused on ECM degradation by proteases, more recent studies have uncovered additional degrading enzymes, identified fragments of ECM components as potential biomarkers, and revealed that ECM synthesis is increased in IBD. These new studies support the notion that the ECM, rather than acting as a passive element, is an active participant in promoting inflammation. SUMMARY New studies have offered exciting clues about the function of the ECM during IBD pathogenesis. The balance of ECM synthesis and turnover is altered in IBD, and the molecules involved exhibit discreet biological functions that regulate inflammation on the basis of specific cell type and matrix molecule.
Collapse
|
231
|
Kuyucu E, Erdil M, Kara A, Bülbül M. Difference between biomarkers of tibial bone marrow and adipose tissue. SICOT J 2017; 3:46. [PMID: 28664842 PMCID: PMC5492787 DOI: 10.1051/sicotj/2017022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Stem cells, with their regeneration capacity, long-term viability, and differentiation characteristics, have indispensable biological properties. As described by Hauner and Grigoradis et al., mesenchymal stem cell originating from adipose or bone marrow can be differentiated into many tissues such as adipocyte, chondrocyte, myeloblast, and osteoblast. The aim of our study is to compare the use of adipose and tibial bone marrow derived stem cells for therapeutic purposes in orthopedic surgery, which has not been clearly evaluated in the literature to our knowledge and to also evaluate their use. MATERIAL AND METHOD Our study was performed between May 2014 and December 2016 in our clinic (Istanbul Medipol University, Department of Orthopedics and Traumatology) in 40 patients. Twelve patients were excluded. The ages of the 28 included patients ranged from 19 to 61 years, with a mean of 41.18 ± 13.39 years. The stem cell samples of these patients were analyzed by flow cytometry. RESULTS Tibial bone marrow stem cells were used in 15 cases and the mean age was 49.33 ± 9.15. Adipose-derived stem cells were used in 13 patients and the mean age was 31.77 ± 11.25. None of the patients had any minor/major complication in the areas where stem cells were collected. DISCUSSION Tibial-derived bone marrow has better results with regard to the complications, economic burden, and surgery time. Tibial-derived bone marrow harvesting and stem cell preparation time are one-fourth of the stem cell treatment prepared from adipose tissue and the surgical duration is shortened by 45 min. CONCLUSION If stem cell use is the preference of the surgeon, we have found that the tibial-derived stem cell system is more advantageous for ease of acquisition, cost analysis, and surgical time.
Collapse
Affiliation(s)
- Ersin Kuyucu
- Istanbul Medipol University, Orthopedics and Traumatology Clinic, 34214 Istanbul, Turkey
| | - Mehmet Erdil
- Istanbul Medipol University, Orthopedics and Traumatology Clinic, 34214 Istanbul, Turkey
| | - Adnan Kara
- Istanbul Medipol University, Orthopedics and Traumatology Clinic, 34214 Istanbul, Turkey
| | - Murat Bülbül
- Istanbul Medipol University, Orthopedics and Traumatology Clinic, 34214 Istanbul, Turkey
| |
Collapse
|
232
|
A Decrease of Brain MicroRNA-122 Level Is an Early Marker of Cerebrovascular Disease in the Stroke-Prone Spontaneously Hypertensive Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1206420. [PMID: 28751928 PMCID: PMC5494068 DOI: 10.1155/2017/1206420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/21/2017] [Indexed: 02/06/2023]
Abstract
Based on preliminary evidence that highlights microRNA-122 as a contributing factor to stroke pathogenesis, we aimed at assessing its expression level, along with the presence of early signs of cerebrovascular disease, in the brain of stroke-prone spontaneously hypertensive rat (SHRSP), a suitable model of human disease that accelerates stroke occurrence under a high sodium/low potassium (Japanese-style) diet (JD). After one month of JD, before stroke occurrence, brain microRNA-122 level was significantly decreased in SHRSP as compared to the stroke-resistant SHR (SHRSR). At this time, levels of markers of oxidative stress and inflammation, as well as of endothelial integrity and function, apoptosis and necrosis were differently modulated in the brains of JD-fed SHRSP as compared to SHRSR, pointing to a significant activation of all deleterious mechanisms underlying subsequent stroke development in SHRSP. We also showed that miR-122 improved survival of rat endothelial cerebral cells upon stress stimuli (excess NaCl, hydrogen peroxide). Our data suggest that a decrease of brain microRNA-122 level is deleterious and can be considered as an early marker of stroke in the SHRSP. Understanding the mechanisms by which microRNA-122 protects vascular cells from stress stimuli may provide a useful approach to improve preventive and treatment strategies against stroke.
Collapse
|
233
|
An SY, Lee YJ, Neupane S, Jun JH, Kim JY, Lee Y, Choi KS, An CH, Suh JY, Shin HI, Sohn WJ, Kim JY. Effects of vascular formation during alveolar bone process morphogenesis in mice. Histochem Cell Biol 2017; 148:435-443. [PMID: 28612087 DOI: 10.1007/s00418-017-1584-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 01/02/2023]
|
234
|
Lu WH, Huang SJ, Yuh YS, Hsieh KS, Tang CW, Liou HH, Ger LP. Platelet Endothelial Cell Adhesion Molecule-1 Gene Polymorphisms are Associated with Coronary Artery Lesions in the Chronic Stage of Kawasaki Disease. ACTA CARDIOLOGICA SINICA 2017; 33:273-284. [PMID: 28559658 DOI: 10.6515/acs20161010a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kawasaki disease is the most common cause of pediatric acquired heart disease. The role of platelet endothelial cell adhesion molecule-1 in the inflammatory process has been documented. To date, no report has investigated the relationship between coronary artery lesions of Kawasaki disease and platelet endothelial cell adhesion molecule-1 polymorphisms. METHODS A total of 114 Kawasaki disease children with coronary artery lesions and 185 Kawasaki disease children without coronary artery lesions were recruited in this study. The TaqMan assay was conducted to identify the genotype in this case-control study. RESULTS In three single nucleotide polymorphisms (Leu125Val, Ser563Asn, and Arg670Gly) of platelet endothelial cell adhesion molecule-1, we found that the Leu-Ser-Arg haplotype was associated with a significantly increased risk for coronary artery lesions in the chronic stage (odds ratio 3.05, 95% confidence interval 1.06-8.80, p = 0.039), but not for coronary artery lesions in the acute stage. Analysis based on the diplotypes of platelet endothelial cell adhesion molecule-1 also showed that Kawasaki disease with one or two alleles of Leu-Ser-Arg had a significantly increased risk of chronic coronary artery lesions (odds ratio 3.38, 95% confidence interval 1.11-10.28, p = 0.032) and had increased platelet counts after Kawasaki disease was diagnosed, as compared to those with other diplotypes. CONCLUSIONS The haplotype of platelet endothelial cell adhesion molecule-1 Leu-Ser-Arg might be associated with the increased platelet counts and the following risk of chronic coronary artery lesions in a dominant manner in Kawasaki disease.
Collapse
Affiliation(s)
- Wen-Hsien Lu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung.,National Yang-Ming University, Taipei.,Fooyin University
| | - Sin-Jhih Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Yeong-Seng Yuh
- Department of Pediatrics, Cheng Hsin General Hospital, Taipei
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Chia-Wan Tang
- Department of Pediatrics, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
235
|
Thiriot A, Perdomo C, Cheng G, Novitzky-Basso I, McArdle S, Kishimoto JK, Barreiro O, Mazo I, Triboulet R, Ley K, Rot A, von Andrian UH. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol 2017; 15:45. [PMID: 28526034 PMCID: PMC5438556 DOI: 10.1186/s12915-017-0381-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intravascular leukocyte recruitment in most vertebrate tissues is restricted to postcapillary and collecting venules, whereas capillaries and arterioles usually support little or no leukocyte adhesion. This segmental restriction is thought to be mediated by endothelial, rather than hemodynamic, differences. The underlying mechanisms are largely unknown, in part because effective tools to distinguish, isolate, and analyze venular endothelial cells (V-ECs) and non-venular endothelial cells (NV-ECs) have been unavailable. We hypothesized that the atypical chemokine receptor DARC (Duffy Antigen Receptor for Chemokines, a.k.a. ACKR1 or CD234) may distinguish V-ECs versus NV-ECs in mice. METHODS We generated a rat-anti-mouse monoclonal antibody (MAb) that specifically recognizes the erythroid and endothelial forms of native, surface-expressed DARC. Using this reagent, we characterized DARC expression and distribution in the microvasculature of murine tissues. RESULTS DARC was exquisitely restricted to post-capillary and small collecting venules and completely absent from arteries, arterioles, capillaries, veins, and most lymphatics in every tissue analyzed. Accordingly, intravital microscopy showed that adhesive leukocyte-endothelial interactions were restricted to DARC+ venules. DARC was detectable over the entire circumference of V-ECs, but was more concentrated at cell-cell junctions. Analysis of single-cell suspensions suggested that the frequency of V-ECs among the total microvascular EC pool varies considerably between different tissues. CONCLUSIONS Immunostaining of endothelial DARC allows the identification and isolation of intact V-ECs from multiple murine tissues. This strategy may be useful to dissect the mechanisms underlying segmental microvascular specialization in healthy and diseased tissues and to characterize the role of EC subsets in tissue-homeostasis, immune surveillance, infection, inflammation, and malignancies.
Collapse
Affiliation(s)
- Aude Thiriot
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Carolina Perdomo
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Guiying Cheng
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Igor Novitzky-Basso
- Center for Immunology and Infection, Department of Biology, University of York, YO10 5DD, Heslington, York, UK
- Present address: Blood and Marrow Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sara McArdle
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Jamie K Kishimoto
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Olga Barreiro
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Irina Mazo
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Antal Rot
- Center for Immunology and Infection, Department of Biology, University of York, YO10 5DD, Heslington, York, UK
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
236
|
Szulcek R, Happé CM, Rol N, Fontijn RD, Dickhoff C, Hartemink KJ, Grünberg K, Tu L, Timens W, Nossent GD, Paul MA, Leyen TA, Horrevoets AJ, de Man FS, Guignabert C, Yu PB, Vonk-Noordegraaf A, van Nieuw Amerongen GP, Bogaard HJ. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med 2017; 193:1410-20. [PMID: 26760925 DOI: 10.1164/rccm.201506-1231oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Altered pulmonary hemodynamics and fluid flow-induced high shear stress (HSS) are characteristic hallmarks in the pathogenesis of pulmonary arterial hypertension (PAH). However, the contribution of HSS to cellular and vascular alterations in PAH is unclear. OBJECTIVES We hypothesize that failing shear adaptation is an essential part of the endothelial dysfunction in all forms of PAH and tested whether microvascular endothelial cells (MVECs) or pulmonary arterial endothelial cells (PAECs) from lungs of patients with PAH adapt to HSS and if the shear defect partakes in vascular remodeling in vivo. METHODS PAH MVEC (n = 7) and PAH PAEC (n = 3) morphology, function, protein, and gene expressions were compared with control MVEC (n = 8) under static culture conditions and after 24, 72, and 120 hours of HSS. MEASUREMENTS AND MAIN RESULTS PAH MVEC showed a significantly delayed morphological shear adaptation (P = 0.03) and evidence of cell injury at sites of nonuniform shear profiles that are critical loci for vascular remodeling in PAH. In clear contrast, PAEC isolated from the same PAH lungs showed no impairments. PAH MVEC gene expression and transcriptional shear activation were not altered but showed significant decreased protein levels (P = 0.02) and disturbed interendothelial localization of the shear sensor platelet endothelial cell adhesion molecule-1 (PECAM-1). The decreased PECAM-1 levels were caused by caspase-mediated cytoplasmic cleavage but not increased cell apoptosis. Caspase blockade stabilized PECAM-1 levels, restored endothelial shear responsiveness in vitro, and attenuated occlusive vascular remodeling in chronically hypoxic Sugen5416-treated rats modeling severe PAH. CONCLUSIONS Delayed shear adaptation, which promotes shear-induced endothelial injury, is a newly identified dysfunction specific to the microvascular endothelium in PAH. The shear response is normalized on stabilization of PECAM-1, which reverses intimal remodeling in vivo.
Collapse
Affiliation(s)
| | | | - Nina Rol
- 1 Department of Pulmonology.,2 Department of Physiology
| | | | | | | | - Katrien Grünberg
- 5 Department of Pathology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Ly Tu
- 6 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,7 Université Paris-Sud, School of Médecine, Le Kremlin-Bicêtre, Paris, France
| | - Wim Timens
- 8 Department of Pathology and Medical Biology, and
| | - George D Nossent
- 9 Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and
| | | | | | | | | | - Christophe Guignabert
- 6 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,7 Université Paris-Sud, School of Médecine, Le Kremlin-Bicêtre, Paris, France
| | - Paul B Yu
- 10 Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
237
|
ITIM receptors: more than just inhibitors of platelet activation. Blood 2017; 129:3407-3418. [PMID: 28465343 DOI: 10.1182/blood-2016-12-720185] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbβ3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.
Collapse
|
238
|
Abir R, Fisch B, Fisher N, Samara N, Lerer-Serfaty G, Magen R, Herman-Edelstein M, Ben-Haroush A, Stein A, Orvieto R. Attempts to improve human ovarian transplantation outcomes of needle-immersed vitrification and slow-freezing by host and graft treatments. J Assist Reprod Genet 2017; 34:633-644. [PMID: 28315146 PMCID: PMC5427655 DOI: 10.1007/s10815-017-0884-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/24/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To investigate if needle-immersed vitrification or slow-freezing yields better implantation results for human ovarian tissue and which method benefits more when combined with the "improvement protocol" of host melatonin treatment and graft incubation with biological glue + vitamin E + vascular endothelial growth factor-A. METHODS Human ovarian tissue was preserved by needle-immersed vitrification or slow-freezing and transplanted into immunodeficient mice, either untreated (groups A and C, respectively) or treated with the improvement protocol (groups B and D, respectively). Grafted and ungrafted slices were evaluated by follicle counts, apoptosis assay and immunohistochemistry for Ki67 and platelet endothelial cell adhesion molecule (PECAM). RESULTS Follicle number in the recovered grafts was limited. The number of atretic follicles was significantly higher after vitrification with/without the improvement protocol and slow-freezing than that after slow-freezing + the improvement protocol. Stroma cell apoptosis was the lowest in the group D. PECAM staining showed a peripheral and diffuse pattern in the group D (mostly normal follicular morphology) and a diffuse pattern in all other groups (few follicles, mostly atretic), with significantly higher diffuse levels in the vitrification groups. Ki67 staining was identified in all normal follicles. Follicles did not survive transplantation in the vitrification groups. CONCLUSIONS Ovarian sample preparation with slow-freezing + the improvement protocol appears to yield better implantation outcomes than needle-immersed vitrification with/without the improvement protocol. The real quality of frozen tissue can be assessed only after grafting and not after thawing/warming.
Collapse
Affiliation(s)
- Ronit Abir
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Fisch
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Fisher
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nivin Samara
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- In Vitro Fertilization Unit, Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, 6423906, Tel Aviv, Israel
| | - Galit Lerer-Serfaty
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Roei Magen
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Faculty of Health Sciences, Goldman Medical School, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Michal Herman-Edelstein
- Department of Nephrology, Rabin Medical Center, Felsenstein Research Center 49100 and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Avi Ben-Haroush
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anat Stein
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Raoul Orvieto
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| |
Collapse
|
239
|
Vogel ME, Idelman G, Konaniah ES, Zucker SD. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling. J Am Heart Assoc 2017; 6:JAHA.116.004820. [PMID: 28365565 PMCID: PMC5532999 DOI: 10.1161/jaha.116.004820] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low‐density lipoprotein receptor‐deficient (Ldlr−/−) mice and elucidate the molecular processes underlying this effect. Methods and Results Bilirubin, at physiological concentrations (≤20 μmol/L), dose‐dependently inhibits THP‐1 monocyte migration across tumor necrosis factor α–activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross‐linking of endothelial vascular cell adhesion molecule 1 (VCAM‐1) or intercellular adhesion molecule 1 (ICAM‐1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM‐1 and ICAM‐1 signaling. When administered to Ldlr−/− mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin‐treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM‐1 or ICAM‐1 expression. Conclusions Bilirubin suppresses atherosclerotic plaque formation in Ldlr−/− mice by disrupting endothelial VCAM‐1‐ and ICAM‐1‐mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin.
Collapse
Affiliation(s)
- Megan E Vogel
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Gila Idelman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eddy S Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Disease Institute, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Stephen D Zucker
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
240
|
Inoue K, Patterson EK, Capretta A, Lawendy AR, Fraser DD, Cepinskas G. Carbon Monoxide-Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1121-1133. [PMID: 28320610 DOI: 10.1016/j.ajpath.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 01/13/2023]
Abstract
Carbon monoxide-releasing molecules (CORMs) suppress inflammation by reducing polymorphonuclear leukocyte (PMN) recruitment to the affected organs. We investigated modulation of PMN-endothelial cell adhesive interactions by water-soluble CORM-401 using an experimental model of endotoxemia in vitro. Human umbilical vein endothelial cells (HUVEC) grown on laminar-flow perfusion channels were stimulated with 1 μg/mL lipopolysaccharide for 6 hours and perfused with 100 μmol/L CORM-401 (or inactive compound iCORM-401)-pretreated PMN for 5 minutes in the presence of 1.0 dyn/cm2 shear stress. HUVEC PMN co-cultures were perfused for additional 15 minutes with PMN-free medium containing CORM-401/inactive CORM-401. The experiments were videorecorded (phase-contrast microscopy), and PMN adhesion/migration were assessed off-line. In parallel, CORM-401-dependent modulation of PMN chemotaxis, F-actin expression/distribution, and actin-regulating pathways [eg, p21-activated protein kinases (PAK1/2) and extracellular signal-regulated kinase (ERK)/C-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK)] were assessed in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. Pretreating PMN with CORM-401 did not suppress PMN adhesion to HUVEC, but significantly reduced PMN transendothelial migration (P < 0.0001) and fMLP-induced PMN chemotaxis (ie, migration directionality and velocity). These changes were associated with CORM-401-dependent suppression of F-actin levels/cellular distribution and fMLP-induced phosphorylation of PAK1/2 and ERK/JNK MAPK (P < 0.05). CORM-401 had no effect on p38 MAPK activation. In summary, this study demonstrates, for the first time, CORM-401-dependent suppression of neutrophil migratory potential associated with modulation of PAK1/2 and ERK/JNK MAPK signaling and F-actin dynamics.
Collapse
Affiliation(s)
- Ken Inoue
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Abdel R Lawendy
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
241
|
Milk fat globule-epidermal growth factor-factor VIII attenuates sepsis-induced acute kidney injury. J Surg Res 2017; 213:281-289. [PMID: 28601327 DOI: 10.1016/j.jss.2017.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is most commonly caused by sepsis in critically ill patients, and it is associated with high morbidity and mortality. The pathophysiology of sepsis-induced AKI is generally accepted to include direct inflammatory injury, endothelial cell dysfunction, and apoptosis. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein with a known role in the enhancement of apoptotic cell clearance and regulation of inflammation. We hypothesize that administration of recombinant mouse MFG-E8 (rmMFG-E8) can protect mice from kidney injuries caused by sepsis. METHODS Sepsis was induced in 8-wk-old male C57BL/6 mice by cecal ligation and puncture (CLP). rmMFG-E8 or phosphate-buffered saline (vehicle) was injected intravenously at a dosage of 20 μg/kg body weight at time of CLP (n = 5-8 mice per group). After 20 h, serum and renal tissue were harvested for various analyses. The renal injury markers blood urea nitrogen (BUN) and creatinine were determined by enzymatic and chemical reactions, respectively. The gene expression analysis was carried out by real-time quantitative polymerase chain reaction. RESULTS At 20 h after CLP, serum levels of BUN and creatinine were both significantly increased in the vehicle group compared with the sham group, whereas the mice treated with rmMFG-E8 had a significant reduction in BUN and creatinine levels by 28% and 24.1%, respectively (BUN: 197.7 ± 23.6 versus 142.3 ± 20.7 mg/dL; creatinine: 0.83 ± 0.12 versus 0.63 ± 0.06 mg/dL; P < 0.05). Expressions of novel biomarkers of renal tissue injury neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 were also significantly downregulated by 58.2% and 95%, respectively, after treatment with rmMFG-E8. Proinflammatory cytokine interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) were significantly reduced by 50.8% and 50.3%, respectively, in rmMFG-E8-treated mice compared with vehicle-treated mice. The mRNA levels of the chemokines keratinocyte chemoattractant and macrophage inhibitory protein-2 were reduced by 85.1% and 78%, respectively, in mice treated with rmMFG-E8 compared with the vehicle mice. In addition, the expression of intercellular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) mRNA was downregulated by 35.6% and 77.8%, respectively, in rmMFG-E8-treated mice compared with the vehicle animals (P < 0.05). CONCLUSIONS Treatment with rmMFG-E8 reduces renal tissue injury induced by sepsis through inhibiting the production of proinflammatory cytokines and chemokine, as well as through the activation of endothelial cells. Thus, MFG-E8 may have a therapeutic potential for treating AKI induced by sepsis.
Collapse
|
242
|
Walusimbi SS, Wetzel LM, Townson DH, Pate JL. Isolation of luteal endothelial cells and functional interactions with T lymphocytes. Reproduction 2017; 153:519-533. [PMID: 28174320 DOI: 10.1530/rep-16-0578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to optimize the isolation of luteal endothelial cells (LEC) and examine their functional interactions with autologous T lymphocytes. Analysis by flow cytometry showed that the purity of LEC isolated by filtration was nearly 90% as indicated by Bandeiraea simplicifolia (BS)-1 lectin binding. LEC expressed mRNA for progesterone receptor (PGR), prostaglandin receptors (PTGFR, PTGER2 and 4, and PTGIR), tumor necrosis factor receptors (TNFRSF1A&B) and interleukin (IL) 1B receptors (IL1R1&2). LEC were pretreated with either vehicle, progesterone (P4; 0-20 µM), prostaglandin (PG) E2 or PGF2α (0-0.2 µM), and further treated with or without TNF and IL1B (50 ng/mL each). LEC were then incubated with autologous T lymphocytes in an adhesion assay. Fewer lymphocytes adhered to LEC after exposure to high compared to low P4 concentrations (cubic response; P < 0.05). In contrast, 0.2 µM PGE2 and PGF2α each increased T lymphocyte adhesion in the absence of cytokines (P < 0.05). LEC induced IL2 receptor alpha (CD25) expression and proliferation of T lymphocytes. In conclusion, filtration is an effective way of isolating large numbers of viable LEC. It is proposed that PGs and P4 modulate the ability of endothelial cells to bind T lymphocytes, potentially regulating extravasation, and that LEC activate T lymphocytes migrating into or resident in the CL.
Collapse
Affiliation(s)
- S S Walusimbi
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - L M Wetzel
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D H Townson
- Department of Animal and Veterinary SciencesUniversity of Vermont, Burlington, Vermont, USA
| | - J L Pate
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
243
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf) 2017; 219:382-408. [PMID: 27246807 DOI: 10.1111/apha.12725] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/17/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Haemodynamic forces influence the functional properties of vascular endothelium. Endothelial cells (ECs) have a variety of receptors, which sense flow and transmit mechanical signals through mechanosensitive signalling pathways to recipient molecules that lead to phenotypic and functional changes. Arterial architecture varies greatly exhibiting bifurcations, branch points and curved regions, which are exposed to various flow patterns. Clinical studies showed that atherosclerotic plaques develop preferentially at arterial branches and curvatures, that is in the regions exposed to disturbed flow and shear stress. In the atheroprone regions, the endothelium has a proinflammatory phenotype associated with low nitric oxide production, reduced barrier function and increased proadhesive, procoagulant and proproliferative properties. Atheroresistant regions are exposed to laminar flow and high shear stress that induce prosurvival antioxidant signals and maintain the quiescent phenotype in ECs. Indeed, various flow patterns contribute to phenotypic and functional heterogeneity of arterial endothelium whose response to proatherogenic stimuli is differentiated. This may explain the preferential development of endothelial dysfunction in arterial sites with disturbed flow.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University; Moscow Russia
| | - A. N. Orekhov
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Institute for Atherosclerosis Research; Skolkovo Innovative Center; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research; University of New South Wales; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
244
|
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol 2017; 66:212-227. [PMID: 27423426 DOI: 10.1016/j.jhep.2016.07.009] [Citation(s) in RCA: 688] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells representing the interface between blood cells on the one side and hepatocytes and hepatic stellate cells on the other side. LSECs represent a permeable barrier. Indeed, the association of 'fenestrae', absence of diaphragm and lack of basement membrane make them the most permeable endothelial cells of the mammalian body. They also have the highest endocytosis capacity of human cells. In physiological conditions, LSECs regulate hepatic vascular tone contributing to the maintenance of a low portal pressure despite the major changes in hepatic blood flow occurring during digestion. LSECs maintain hepatic stellate cell quiescence, thus inhibiting intrahepatic vasoconstriction and fibrosis development. In pathological conditions, LSECs play a key role in the initiation and progression of chronic liver diseases. Indeed, they become capillarized and lose their protective properties, and they promote angiogenesis and vasoconstriction. LSECs are implicated in liver regeneration following acute liver injury or partial hepatectomy since they renew from LSECs and/or LSEC progenitors, they sense changes in shear stress resulting from surgery, and they interact with platelets and inflammatory cells. LSECs also play a role in hepatocellular carcinoma development and progression, in ageing, and in liver lesions related to inflammation and infection. This review also presents a detailed analysis of the technical aspects relevant for LSEC analysis including the markers these cells express, the available cell lines and the transgenic mouse models. Finally, this review provides an overview of the strategies available for a specific targeting of LSECs.
Collapse
Affiliation(s)
- Johanne Poisson
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sara Lemoinne
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Université Pierre et Marie Curie Paris 6, Paris, France; Service d'hépatologie, Hôpital Saint-Antoine, APHP, Paris, France
| | - Chantal Boulanger
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Durand
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Richard Moreau
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Dominique Valla
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France.
| |
Collapse
|
245
|
Khodabandehlou K, Masehi-Lano JJ, Poon C, Wang J, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood) 2017; 242:799-812. [PMID: 28195515 DOI: 10.1177/1535370217693116] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is a leading cause of death worldwide; in addition to lipid dysfunction, chronic arterial wall inflammation is a key component of atherosclerosis. Techniques that target cell adhesion molecules, which are overexpressed during inflammation, are effective methods to detect and treat atherosclerosis. Specifically, research groups have identified vascular cell adhesion molecule-1, intercellular adhesion molecule-1, platelet endothelial cell adhesion molecule, and selectins (E-selectin and P-selectin) as correlated to atherogenesis. In this review, we discuss recent strategies both in vivo and in vitro that target cell adhesion molecules. First, we discuss peptide-based and antibody (Ab)-based nanoparticles utilized in vivo for diagnostic, therapeutic, and theranostic applications. Second, we discuss flow-based in vitro models that serve to reduce the traditional disadvantages of in vivo studies such as variability, time to develop the disease, and ethical burden, but preserve physiological relevance. The knowledge gained from these targeting studies can be translated into clinical solutions for improved detection, prevention, and treatment of atherosclerosis. Impact statement As atherosclerosis remains the leading cause of death, there is an urgent need to develop better tools for treatment of the disease. The ability to improve current treatments relies on enhancing the accuracy of in vitro and in vivo atherosclerotic models. While in vivo models provide all the relevant testing parameters, variability between animals and among models used is a barrier to reproducible results and comparability of NP efficacy. In vitro cultures isolate cells into microenvironments that fail to take into account flow separation and shear stress, which are characteristics of atherosclerotic lesions. Flow-based in vitro models provide more physiologically relevant platforms, bridging the gap between in vivo and 2D in vitro models. This is the first review that presents recent advances regarding endothelial cell-targeting using adhesion molecules in light of in vivo and flow-based in vitro models, providing insights for future development of optimal strategies against atherosclerosis.
Collapse
Affiliation(s)
- Khosrow Khodabandehlou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacqueline J Masehi-Lano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
246
|
Zhu X, Okubo A, Igari N, Ninomiya K, Egashira Y. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 36:45-53. [PMID: 28439487 PMCID: PMC5395424 DOI: 10.12938/bmfh.16-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling.
Collapse
Affiliation(s)
- Xia Zhu
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Aya Okubo
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Naoki Igari
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Kentaro Ninomiya
- Marketing Planning & Support, Daiwa Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yukari Egashira
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
247
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to describe the function of the vascular cell adhesion and signaling molecule, platelet/endothelial cell adhesion molecule-1 (PECAM-1), in endothelial cells, with special emphasis on its role in maintaining and restoring the vascular permeability barrier following disruption of the endothelial cell junction. RECENT FINDINGS In addition to its role as an inhibitory receptor in circulating platelets and leukocytes, PECAM-1 is highly expressed at endothelial cell-cell junctions, where it functions as an adhesive stress-response protein to both maintain endothelial cell junctional integrity and speed restoration of the vascular permeability barrier following inflammatory or thrombotic challenge. SUMMARY Owing to the unique ability of antibodies that bind the membrane proximal region of the extracellular domain to trigger conformational changes leading to affinity modulation and homophilic adhesion strengthening, PECAM-1 might be an attractive target for treating vascular permeability disorders.
Collapse
|
248
|
Vascular alterations after photodynamic therapy mediated by 5-aminolevulinic acid in oral leukoplakia. Lasers Med Sci 2016; 32:379-387. [DOI: 10.1007/s10103-016-2127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
249
|
Pivotal Cytoprotective Mediators and Promising Therapeutic Strategies for Endothelial Progenitor Cell-Based Cardiovascular Regeneration. Stem Cells Int 2016; 2016:8340257. [PMID: 28090210 PMCID: PMC5206447 DOI: 10.1155/2016/8340257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, stroke, and myocardial infarction, is a major cause of death worldwide. In aspects of cell therapy against CVD, it is generally accepted that endothelial progenitor cells (EPCs) are potent neovascular modulators in ischemic tissues. In response to ischemic injury signals, EPCs located in a bone marrow niche migrate to injury sites and form new vessels by secreting various vasculogenic factors including VEGF, SDF-1, and FGF, as well as by directly differentiating into endothelial cells. Nonetheless, in ischemic tissues, most of engrafted EPCs do not survive under harsh ischemic conditions and nutrient depletion. Therefore, an understanding of diverse EPC-related cytoprotective mediators underlying EPC homeostasis in ischemic tissues may help to overcome current obstacles for EPC-mediated cell therapy for CVDs. Additionally, to enhance EPC's functional capacity at ischemic sites, multiple strategies for cell survival should be considered, that is, preconditioning of EPCs with function-targeting drugs including natural compounds and hormones, virus mediated genetic modification, combined therapy with other stem/progenitor cells, and conglomeration with biomaterials. In this review, we discuss multiple cytoprotective mediators of EPC-based cardiovascular repair and propose promising therapeutic strategies for the treatment of CVDs.
Collapse
|
250
|
Zimowska M, Kasprzycka P, Bocian K, Delaney K, Jung P, Kuchcinska K, Kaczmarska K, Gladysz D, Streminska W, Ciemerych MA. Inflammatory response during slow- and fast-twitch muscle regeneration. Muscle Nerve 2016; 55:400-409. [PMID: 27396429 DOI: 10.1002/mus.25246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so-called fast-twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow-twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. METHODS We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. RESULTS Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. CONCLUSIONS Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow- and fast-twitch muscles. Muscle Nerve 55: 400-409, 2017.
Collapse
Affiliation(s)
- Malgorzata Zimowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kamila Delaney
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Piotr Jung
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Kinga Kuchcinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Karolina Kaczmarska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Daria Gladysz
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| |
Collapse
|