201
|
Santos HO, Price JC, Bueno AA. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020; 12:E3159. [PMID: 33081119 PMCID: PMC7602731 DOI: 10.3390/nu12103159] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - James C. Price
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| |
Collapse
|
202
|
Arnesen H, Myhre PL, Seljeflot I. Very Long Chain Marine n-3 Polyunsaturated Fatty Acids in Atherothrombotic Heart Disease. A Brief Review, with a Focus on Metabolic Effects. Nutrients 2020; 12:E3014. [PMID: 33008057 PMCID: PMC7601282 DOI: 10.3390/nu12103014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
The global burden of atherothrombotic heart disease should be considered as a life-style disorder where differences in dietary habits and related risk factors like limited physical activity and adiposity together play important roles. Related metabolic changes have been scientifically elucidated in recent decades, and the role of the very-long-chain marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been much focused on, especially their possible effects on processes like inflammation and thrombosis. In the present brief review of related metabolic mechanisms, the effects of these fatty acids in a clinical setting have been referred to, including some of the authors' work on this topic. The main focus is the divergent results in the field and the important differences between the study population, the type of supplements and fresh marine sources, the proportion of EPA versus DHA dosages, and the duration of supplementation in clinical trials. We conclude that daily intake of at least 1 g of EPA + DHA may improve a dysmetabolic state in the population. The potential to reduce the risk and progression of atherothrombotic heart disease is still a matter of debate.
Collapse
Affiliation(s)
- Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Pb 4956 Nydalen, 0424 Oslo, Norway;
- Faculty of Medicine, University of Oslo, 0424 Oslo, Norway;
| | - Peder L. Myhre
- Faculty of Medicine, University of Oslo, 0424 Oslo, Norway;
- Division of Medicine, Department of Cardiology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Pb 4956 Nydalen, 0424 Oslo, Norway;
- Faculty of Medicine, University of Oslo, 0424 Oslo, Norway;
| |
Collapse
|
203
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
204
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
205
|
Boden WE, Baum S, Toth PP, Fazio S, Bhatt DL. Impact of expanded FDA indication for icosapent ethyl on enhanced cardiovascular residual risk reduction. Future Cardiol 2020; 17:155-174. [PMID: 32959713 DOI: 10.2217/fca-2020-0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypertriglyceridemia is associated with increased cardiovascular disease (CVD) risk. The Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) demonstrated that the purified, stable ethyl ester of eicosapentaenoic acid, icosapent ethyl (IPE), added to statins reduced CVD events by 25% (p < 0.001), leading to an expanded indication in the USA. IPE is now approved as an adjunct to maximally tolerated statins to reduce CVD event risk in adults with triglyceride (TG) levels ≥150 mg/dl and either established CVD or diabetes mellitus plus ≥2 additional CVD risk factors. The new indication allows co-administration of IPE for elevated TG levels with statin treatment, enabling effective residual risk reduction in a broader at-risk population beyond what can be achieved with intensive low-density lipoprotein cholesterol control alone.
Collapse
Affiliation(s)
- William E Boden
- VA New England Healthcare System, Boston, MA, & Boston University School of Medicine, Boston, MA 02130, USA
| | - Seth Baum
- Boca Raton Regional Hospital, Boca Raton, FL 33486, USA
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, Johns Hopkins University School of Medicine, Baltimore, MD 61081, USA
| | - Sergio Fazio
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Deepak L Bhatt
- Brigham & Women's Hospital Heart & Vascular Center & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
206
|
Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J Nutr Biochem 2020; 88:108503. [PMID: 32956825 DOI: 10.1016/j.jnutbio.2020.108503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
207
|
Ayee MAA, Bunker BC, De Groot JL. Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions. CURRENT TOPICS IN MEMBRANES 2020; 86:57-81. [PMID: 33837698 DOI: 10.1016/bs.ctm.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, United States.
| | - Brendan C Bunker
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| | - Jordan L De Groot
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| |
Collapse
|
208
|
Lee CH, Fu Y, Yang SJ, Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092769. [PMID: 32932796 PMCID: PMC7551292 DOI: 10.3390/nu12092769] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Aim: Non-alcoholic fatty liver disease (NAFLD) is a prevalent disease worldwide. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) bear anti-inflammatory action and can ameliorate hyperlipidemia. We wish to appraise the effects of n-3 PUFAs supplement on NAFLD. (2) Methods: We searched CENTRAL, Embase, and MEDLINE on 29 March 2020 for randomized control trials (RCTs) on the effects of n-3 PUFAs supplementation in treating NAFLD. The Cochrane Collaboration's tool was used to assess the risk of bias of included RCTs. (3) Results: We included 22 RCTs with 1366 participants. The risk of bias of included RCTs was generally low or unclear. n-3 PUFAs supplementation significantly reduced liver fat compared with placebo (pooled risk ratio 1.52; 95% confidence interval (CI) 1.09 to 2.13). n-3 PUFAs supplementation also significantly improved the levels of triglyceride, total cholesterol, high-density lipoprotein, and body-mass index, with pooled mean difference and 95% CI being -28.57 (-40.81 to -16.33), -7.82 (-14.86 to -0.79), 3.55 (1.38 to 5.73), and -0.46 (-0.84 to -0.08), respectively. (4) Conclusions: The current evidence supports the effects of n-3 PUFAs supplementation in improving fatty liver. n-3 PUFAs supplementation may also improve blood lipid levels and obesity.
Collapse
Affiliation(s)
- Cheng-Han Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan;
| | - Yun Fu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan;
| | - Shih-Jyun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Chi Chi
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 3556)
| |
Collapse
|
209
|
Toth PP, Shah PK, Lepor NE. Targeting hypertriglyceridemia to mitigate cardiovascular risk: A review. Am J Prev Cardiol 2020; 3:100086. [PMID: 32929418 PMCID: PMC7481317 DOI: 10.1016/j.ajpc.2020.100086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
A causal relationship between elevated triglycerides and cardiovascular disease is controversial, as trials of triglyceride-lowering treatments have not shown significant impact on cardiovascular outcomes. However, hypertriglyceridemia is associated with atherogenesis and risk for acute cardiovascular events that persist despite optimal statin treatment. Although most trials of triglyceride-lowering treatments have been negative, in trials of niacin and fibrates, subgroup analyses in patients with higher baseline triglycerides and lower HDL-C levels suggest reduced incidence of cardiovascular endpoints. The REDUCE-IT trial demonstrated that addition of purified prescription eicosapentaenoic acid (icosapent ethyl) 4 g/day in high-risk patients with triglyceride levels 135-499 mg/dL and optimized statin treatment significantly reduced cardiovascular events versus placebo (hazard ratio 0.75; 95% confidence interval 0.68-0.83; P < 0.001). Benefit was seen regardless of baseline and on-treatment triglyceride levels, suggesting that other effects of eicosapentaenoic acid besides triglyceride reduction may have played a role.
Collapse
Affiliation(s)
- Peter P. Toth
- CGH Medical Center, Sterling, IL, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Prediman K. Shah
- Smidt Heart Institute at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Norman E. Lepor
- Smidt Heart Institute at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
210
|
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L, Scarano F, Nicita C, Coppoletta AR, Ruga S, Scicchitano M, Mollace R, Palma E, Mollace V. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020; 8:biomedicines8090306. [PMID: 32854210 PMCID: PMC7554783 DOI: 10.3390/biomedicines8090306] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Roberta Macrì
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Cristina Carresi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Francesca Bosco
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Saverio Nucera
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Federica Scarano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Caterina Nicita
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Stefano Ruga
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Rocco Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
- Correspondence:
| |
Collapse
|
211
|
Rizos EC, Markozannes G, Tsapas A, Mantzoros CS, Ntzani EE. Omega-3 supplementation and cardiovascular disease: formulation-based systematic review and meta-analysis with trial sequential analysis. Heart 2020; 107:150-158. [PMID: 32820013 DOI: 10.1136/heartjnl-2020-316780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Omega-3 supplements are popular for cardiovascular disease (CVD) prevention. We aimed to assess the association between dose-specific omega-3 supplementation and CVD outcomes. DESIGN We included double-blind randomised clinical trials with duration ≥1 year assessing omega-3 supplementation and estimated the relative risk (RR) for all-cause mortality, cardiac death, sudden death, myocardial infarction and stroke. Primary analysis was a stratified random-effects meta-analysis by omega-3 dose in 4 a priori defined categories (<1, 1, 2, ≥3 of 1 g capsules/day). Complementary approaches were trial sequential analysis and sensitivity analyses for triglycerides, prevention setting, intention-to-treat analysis, eicosapentaenoic acid, sample size, statin use, study duration. RESULTS Seventeen studies (n=83 617) were included. Omega-3 supplementation as ≤1 capsule/day was not associated with any outcome under study; futility boundaries were crossed for all-cause mortality and cardiac death. For two capsules/day, we observed a statistically significant reduction of cardiac death (n=3, RR 0.55, 95% CI 0.33 to 0.90, I2=0%); for ≥3 capsules/day we observed a statistically significant reduction of cardiac death (n=3, RR 0.82, 95% CI 0.68 to 0.99, I2=0%), sudden death (n=1, RR 0.70, 95% CI 0.51 to 0.97) and stroke (n=2, RR 0.74, 95% CI 0.57 to 0.95, I2=0%). CONCLUSION Omega-3 supplementation at <2 1 g capsules/day showed no association with CVD outcomes; this seems unlikely to change from future research. Compared with the robust scientific evidence available for low doses, the evidence for higher doses (2-4 1 g capsules/day) is weak. The emerging postulated benefit from high-dose supplementation needs replication and further evaluation as to the precise formulation and indication.
Collapse
Affiliation(s)
- Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece.,School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Markozannes
- Evidence-Based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.,Harris Manchester College, University of Oxford, Oxford, UK
| | - Christos S Mantzoros
- Department of Medicine, Beth Isreal Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Evangelia E Ntzani
- Evidence-Based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece .,Center for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, Rhode Island, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| |
Collapse
|
212
|
Thorsteinsdottir H, Christensen JJ, Holven KB, Tveiterås M, Brun H, Åsberg A, Bjerre A. Cardiovascular Risk Factors are Inversely Associated With Omega-3 Polyunsaturated Fatty Acid Plasma Levels in Pediatric Kidney Transplant Recipients. J Ren Nutr 2020; 31:278-285. [PMID: 32792219 DOI: 10.1053/j.jrn.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES High plasma levels of the omega-3 fatty acids eicosapentaenoic acid (EPA), docosahexaenoic acid, and docosapentaenoic acid associates with positive outcomes in adult renal transplant recipients. However, data from pediatric populations are scarce. The aim of the study was to assess the fatty acid profile in a pediatric renal transplantation cohort and to examine the associations between plasma omega-3 fatty acids and cardiovascular disease (CVD) risk factors. METHODS In this cross-sectional study comprising 53 children (median age, 12.2 years; 32 boys) with a renal transplant, we assessed the prevalence of CVD risk factors as well as markers of end organ damage: carotid intima-media thickness (cIMT) and left ventricular mass index. The associations between plasma omega-3 fatty acids and CVD risk factors were assessed. RESULTS Twenty-five (47%) patients were preemptively transplanted. Seventy-six percent had dyslipidemia and 51% had hypertension. The mean left ventricular mass index was 40.4 ± 14.3 g/m2.7, and 14% had left ventricular hypertrophy. The mean cIMT was 0.41 ± 0.04 mm. In a multivariate linear regression, EPA levels were inversely associated to blood pressure (β coeff. = -0.37, P = .007), triglycerides (β coeff. = -0.44, P = .01), and high-density lipoprotein cholesterol (β coeff. = -0.41, P = .01). CONCLUSION EPA levels are inversely associated with components of the metabolic syndrome, which may provide support for specific dietary advice or supplementation in this patient population. cIMT is less pronounced in our cohort than in comparable cohorts with lower rate of preemptive transplantations. Our results need replication in prospective cohorts.
Collapse
Affiliation(s)
- Hjørdis Thorsteinsdottir
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.
| | - Jacob Juel Christensen
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Målfrid Tveiterås
- Division of Radiology and Nuclear Medicine, Department of Paediatric Radiology, Oslo University Hospital, Oslo, Norway
| | - Henrik Brun
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo Norway; Section of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Anna Bjerre
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
213
|
Harris K, Oshima M, Sattar N, Würtz P, Jun M, Welsh P, Hamet P, Harrap S, Poulter N, Chalmers J, Woodward M. Plasma fatty acids and the risk of vascular disease and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE study. Diabetologia 2020; 63:1637-1647. [PMID: 32385604 PMCID: PMC7351876 DOI: 10.1007/s00125-020-05162-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 11/02/2022]
Abstract
AIMS/HYPOTHESIS This biomarker study aimed to quantify the association of essential and other plasma fatty acid biomarkers with macrovascular disease, microvascular disease and death in individuals with type 2 diabetes. METHODS A case-cohort study (N = 3576), including 654 macrovascular events, 341 microvascular events and 631 deaths during 5 years of (median) follow-up, was undertaken as a secondary analysis of the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified-Release Controlled Evaluation (ADVANCE) study (full details of the study design and primary endpoints of the ADVANCE trial and its case-cohort have been published previously). This current study considers new data: fatty acids measured from baseline plasma samples by proton NMR analysis. The fatty acids measured were n-3, docosahexaenoic acid (DHA), n-6, linoleic acid, and polyunsaturated, monounsaturated and saturated fatty acids. HRs were modelled per SD higher (percentage) fatty acid. C statistics and continuous net reclassification improvement were used to test the added value of fatty acids compared with traditional cardiovascular risk factors. RESULTS After adjustment for traditional cardiovascular risk factors, an inverse association was observed for n-3 fatty acids and DHA with the risk of macrovascular events (HR [95% CI]: 0.87 [0.80, 0.95] and 0.88 [0.81, 0.96], respectively, per 1 SD higher percentage), and for n-3 fatty acids with the risk of death (HR 0.91 [95% CI 0.84, 0.99] per 1 SD higher percentage). Such associations were also evident when investigating absolute levels of fatty acids. There were no statistically significant associations between any fatty acids and microvascular disease after adjustment. However, there was limited improvement in the predictive ability of models when any fatty acid was added. CONCLUSIONS/INTERPRETATION Plasma n-3 fatty acids and DHA were found to be inversely associated with macrovascular disease, while n-3 fatty acids were also inversely associated with death. These results support the cardioprotective effects of n-3 fatty acids and DHA and further merit testing the role of high-dose supplementation with n-3 fatty acids in individuals with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT00145925. Graphical abstract.
Collapse
Affiliation(s)
- Katie Harris
- The George Institute for Global Health, UNSW Sydney, Level 10, King George V Building, 83-117 Missenden Road, Camperdown, Sydney, NSW, 2050, Australia.
| | - Megumi Oshima
- The George Institute for Global Health, UNSW Sydney, Level 10, King George V Building, 83-117 Missenden Road, Camperdown, Sydney, NSW, 2050, Australia
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Min Jun
- The George Institute for Global Health, UNSW Sydney, Level 10, King George V Building, 83-117 Missenden Road, Camperdown, Sydney, NSW, 2050, Australia
| | - Paul Welsh
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Pavel Hamet
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Stephen Harrap
- Department of Physiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Neil Poulter
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - John Chalmers
- The George Institute for Global Health, UNSW Sydney, Level 10, King George V Building, 83-117 Missenden Road, Camperdown, Sydney, NSW, 2050, Australia
| | - Mark Woodward
- The George Institute for Global Health, UNSW Sydney, Level 10, King George V Building, 83-117 Missenden Road, Camperdown, Sydney, NSW, 2050, Australia.
- The George Institute for Global Health, University of Oxford, 1st Floor, Hayes House, 75 George Street, Oxford, OX1 2BQ, UK.
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
214
|
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159:4-33. [PMID: 32730849 DOI: 10.1016/j.addr.2020.07.019] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
With cardiovascular disease being the leading cause of morbidity and mortality worldwide, effective and cost-efficient therapies to reduce cardiovascular risk are highly needed. Lipids and lipoprotein particles crucially contribute to atherosclerosis as underlying pathology of cardiovascular disease and influence inflammatory processes as well as function of leukocytes, vascular and cardiac cells, thereby impacting on vessels and heart. Statins form the first-line therapy with the aim to block cholesterol synthesis, but additional lipid-lowering drugs are sometimes needed to achieve low-density lipoprotein (LDL) cholesterol target values. Furthermore, beyond LDL cholesterol, also other lipid mediators contribute to cardiovascular risk. This review comprehensively discusses low- and high-density lipoprotein cholesterol, lipoprotein (a), triglycerides as well as fatty acids and derivatives in the context of cardiovascular disease, providing mechanistic insights into their role in pathological processes impacting on cardiovascular disease. Also, an overview of applied as well as emerging therapeutic strategies to reduce lipid-induced cardiovascular burden is provided.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, the Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
215
|
Catch of the Day: Icosapent Ethyl for Reducing Cardiovascular Risk. Am J Med 2020; 133:802-804. [PMID: 32243872 DOI: 10.1016/j.amjmed.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
For decades, omega-3 fatty acids (O3FA) have been used for their cardioprotective effects. Although several prescription products are available, icosapent ethyl (IPE) is the lone pure, eicosapentaenoic acid (EPA)-only, O3FA product. Initially approved by the Food and Drug Administration (FDA) to reduce triglyceride (TG) levels in patients with TG levels ≥500 mg/dL, the Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial (REDUCE-IT) demonstrated that IPE reduces cardiovascular events in patients with either established atherosclerotic cardiovascular disease (ASCVD) or diabetes plus ≥2 ASCVD risk factors, a TG level between 135 mg/dL and 499 mg/dL, and who were taking a statin. IPE is generally well tolerated, but caution is advised if used in patients taking antiplatelet or anticoagulant therapies because of an increased risk of bleeding. Based on the REDUCE-IT trial, the Food and Drug Administration granted IPE an indication for ASCVD risk reduction, making it the first O3FA product to receive such an indication. IPE is a cost-effective approach to reducing residual cardiovascular risk in high risk patients treated with statins.
Collapse
|
216
|
Al-Hilphy AR, Al-Shatty SM, Al-Mtury AAA, Gavahian M. Infrared-assisted oil extraction for valorization of carp viscera: Effects of process parameters, mathematical modeling, and process optimization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
217
|
Schots PC, Pedersen AM, Eilertsen KE, Olsen RL, Larsen TS. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharmacol 2020; 11:961. [PMID: 32676029 PMCID: PMC7333527 DOI: 10.3389/fphar.2020.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod constituting a considerable biomass in the North Atlantic and is a novel source of omega-3 fatty acids. The oil is, however, different from other commercial marine oils in terms of chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by EPA and DHA. This review will discuss potential mechanisms behind these beneficial effects of the oil, focusing on the impact of the various components of the oil. The health effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty acids and long-chain fatty alcohols have to a large degree been overlooked in relation to human health. Recently, however the fatty alcohols have received interest as potential targets for improved health via conversion to their corresponding fatty acids. Together, the different lipid components of the oil from C. finmarchicus may have potential as nutraceuticals for reducing obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Pauke Carlijn Schots
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Steinar Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
218
|
Fotschki B, Opyd P, Juśkiewicz J, Wiczkowski W, Jurgoński A. Comparative Effects of Dietary Hemp and Poppy Seed Oil on Lipid Metabolism and the Antioxidant Status in Lean and Obese Zucker Rats. Molecules 2020; 25:molecules25122921. [PMID: 32630455 PMCID: PMC7356234 DOI: 10.3390/molecules25122921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 01/13/2023] Open
Abstract
The objective of this study was to compare the effects of the dietary inclusion of hemp seed oil (HO) and poppy seed oil (PO) on the lipid metabolism and antioxidant status of lean and genetically obese Zucker rats. The rats were fed a control diet for laboratory rodents or a modification with HO or PO. Both oils reduced body and epididymal fat and liver cholesterol levels and promoted oxidative stress in the liver of obese rats. The HO reduced plasma triglycerides and had a stronger liver cholesterol-lowering effect in obese rats than PO. In the lean rats, HO and PO had no effects on the body fat content, plasma lipid profile, or lipid metabolism in the liver. HO considerably elevated the content of α-linolenic acid in the liver and increased the liver ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) in the lean rats. In conclusion, the regular consumption of both oils increases the accumulation of essential fatty acids in the liver of healthy animals, whilst not having any adverse effects on the body, whereas in genetically obese rats, the effects of both dietary oils on the lipid metabolism and antioxidant status are unequivocal and only partially beneficial.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (P.O.); (J.J.)
| | - Paulina Opyd
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (P.O.); (J.J.)
| | - Jerzy Juśkiewicz
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (P.O.); (J.J.)
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Adam Jurgoński
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (P.O.); (J.J.)
- Correspondence:
| |
Collapse
|
219
|
Jing S, Zhang Z, Chen X, Miao R, Nilsson C, Lin Y. Pharmacokinetics of Single and Multiple Doses of Omega-3 Carboxylic Acids in Healthy Chinese Subjects: A Phase I, Open-Label Study. Clin Pharmacol Drug Dev 2020; 9:985-994. [PMID: 32567203 DOI: 10.1002/cpdd.800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/07/2020] [Indexed: 01/10/2023]
Abstract
In patients with coronary heart disease undergoing primary prevention, hypertriglyceridemia is a residual risk for cardiovascular events. Omega-3 carboxylic acid (OM3-CA), a mixture of the free fatty acid forms of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be beneficial in reducing triglyceride levels. As part of the clinical development program of OM3-CA in China, this phase I study evaluated the pharmacokinetics, safety, and tolerability profile of OM3-CA in healthy subjects. The pharmacokinetic results of this study were also compared with those of available data for Western populations. Fourteen healthy Chinese subjects (aged 18-45 years) received once-daily oral OM3-CA 4 g for 14 consecutive days. Pharmacokinetic parameters were assessed from both baseline-uncorrected and baseline-corrected plasma concentrations vs time profile of EPA, DHA, and EPA plus DHA. Following single and multiple oral doses of OM3-CA, the absorption of EPA, DHA, and EPA plus DHA was steady with median tmax occurring at 5.5-6 hours after both single and multiple dosing. Close to steady-state concentrations in plasma were reached after 14 days of continuous once-daily dosing, and accumulation was confirmed for EPA, DHA, and EPA plus DHA. Of the 14 subjects treated with OM3-CA, 6 (42.9%) reported at least 1 adverse event (diarrhea) during the study, which was determined as mild and treatment emergent. No serious adverse events were reported. In summary, the pharmacokinetic profile of oral OM3-CA 4 g after single and multiple dosing in healthy Chinese subjects is consistent with that observed in other ethnic populations.
Collapse
Affiliation(s)
- Shan Jing
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | | - Rui Miao
- R&D China, AstraZeneca, Shanghai, China
| | - Catarina Nilsson
- Quantitative Clinical Pharmacology, Early Clinical Development, AstraZeneca Research and Development, Gothenburg, Sweden
| | - Yang Lin
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
220
|
Omega-3 Eicosapentaenoic Acid (EPA) Rich Extract from the Microalga Nannochloropsis Decreases Cholesterol in Healthy Individuals: A Double-Blind, Randomized, Placebo-Controlled, Three-Month Supplementation Study. Nutrients 2020; 12:nu12061869. [PMID: 32585854 PMCID: PMC7353404 DOI: 10.3390/nu12061869] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this trial is to assess the effect of Almega®PL on improving the Omega-3 Index, cardio-metabolic parameters, and other biomarkers in generally healthy individuals. The benefits of long-chain omega-3 fatty acids for cardiovascular health are primarily built upon mixtures of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA). Highly purified EPA therapy has proven to be particularly effective in the treatment of cardiovascular disease, but less is known about the benefits of EPA-only supplementation for the general healthy population. Almega®PL is a polar rich oil (>15%) derived from the microalga Nannochloropsis that contains EPA (>25%) with no DHA. Participants (n = 120) were given a capsule of 1 g/day of either Almega®PL or placebo for 12 weeks. Differences in the Omega-3 Index, cardiometabolic markers, and other general health indicators were measured at the baseline, six, and 12 weeks. Compared to the placebo group, Almega®PL supplementation significantly increased the Omega-3 Index and EPA concentration from 4.96 ± 0.90 and 0.82 ± 0.37% at the baseline to 5.75 ± 0.90 and 1.27 ± 0.36 at week 12, respectively. Very-low-density lipoprotein cholesterol (VLDL) decreased by 25%, which resulted in a significant decrease in total cholesterol compared to the placebo. Interestingly, the decrease in VLDL was not associated with an increase in LDL, which seems to be a benefit associated with EPA-only based formulations. Collectively, these results show that Almega®PL provides a natural EPA-only option to increase EPA and manage cholesterol levels in the general population.
Collapse
|
221
|
Cavazos AT, Kinnun JJ, Williams JA, Wassall SR. Vitamin E - phosphatidylethanolamine interactions in mixed membranes with sphingomyelin: Studies by 2H NMR. Chem Phys Lipids 2020; 231:104910. [PMID: 32492380 DOI: 10.1016/j.chemphyslip.2020.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 01/13/2023]
Abstract
Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-toc appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Andres T Cavazos
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States.
| |
Collapse
|
222
|
Hannon BA, Edwards CG, Thompson SV, Reeser GE, Burd NA, Holscher HD, Teran-Garcia M, Khan NA. Single Nucleotide Polymorphisms Related to Lipoprotein Metabolism Are Associated with Blood Lipid Changes following Regular Avocado Intake in a Randomized Control Trial among Adults with Overweight and Obesity. J Nutr 2020; 150:1379-1387. [PMID: 32195538 DOI: 10.1093/jn/nxaa054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/05/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Avocados are rich in unsaturated fat and fiber; clinical trials have investigated their effects on metabolic disease. There is high variability in individual changes following avocado consumption, which may be in part due to individual genetic differences. OBJECTIVE Secondary analyses of the Persea americana for Total Health (PATH) Study were used to examine how single nucleotide polymorphisms (SNPs) impact blood lipid changes following a daily meal containing avocado compared with control. METHODS Adults (n = 115, 37% male) aged 25-45 y with overweight and obesity were randomly assigned to receive a daily isocaloric meal with (intervention) or without (control) a standardized amount (males: 175 g; females: 140 g) of avocado for 12 wk. Control meals were higher in saturated fat (17% of energy compared with 7%) and lower in fiber (4 g compared with 16 g) than intervention meals. Whole venous blood was taken at baseline and 12 wk to determine total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, and triglyceride (TG) concentrations. Seventeen SNPs in 10 genes related to lipoprotein metabolism were genotyped. Effects of SNP, diet, and SNP-diet interactions were determined using general linear models. RESULTS No group-by-time effects were detected for changes in TC (P = 0.96), HDL cholesterol (P = 0.28), or TG (P = 0.06) over 12 wk. Three SNP-diet interactions were associated with final TC concentrations: ANGPTL3-rs10889337 (P = 0.01), ANGPTL4-rs2278236 (P = 0.02), and CD36-rs10499859 (P = 0.01). SNPs in GCKR and LPL were associated with TC changes (P = 0.01). The interaction between GCKR-rs1260326 and diet was such that C-homozygotes receiving avocado (n = 23) had final TC concentrations that were significantly lower than the C-homozygotes in the control group (n = 20) (P = 0.02). CONCLUSIONS Results from these exploratory analyses indicate that avocado consumption may help manage dyslipidemia in adults with overweight and obesity; however, effectiveness may differ by genetic profile. Understanding the role of genetic variation in variability following dietary intervention can potentially inform personalized nutrition recommendations.
Collapse
Affiliation(s)
- Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caitlyn G Edwards
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sharon V Thompson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ginger E Reeser
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
223
|
Azab SM, de Souza RJ, Teo KK, Anand SS, Williams NC, Holzschuher J, McGlory C, Philips SM, Britz-McKibbin P. Serum nonesterified fatty acids have utility as dietary biomarkers of fat intake from fish, fish oil, and dairy in women. J Lipid Res 2020; 61:933-944. [PMID: 32234835 PMCID: PMC7269757 DOI: 10.1194/jlr.d120000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Nutritional studies rely on various biological specimens for FA determination, yet it is unclear how levels of serum NEFAs correlate with other circulating lipid pools. Here, we used a high-throughput method (<4 min/sample) based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry (MSI-NACE-MS) to investigate whether specific serum NEFAs have utility as biomarkers of dietary fat intake in women. We first identified circulating NEFAs correlated with long-term/habitual food intake among pregnant women with contrasting dietary patterns (n = 50). Acute changes in serum NEFA trajectories were also studied in nonpregnant women (n = 18) following high-dose (5 g/day) fish oil (FO) supplementation or isoenergetic sunflower oil placebo over 56 days. In the cross-sectional study, serum ω-3 FAs correlated with self-reported total ω-3 daily intake, notably EPA as its NEFA (r = 0.46; P = 0.001), whereas pentadecanoic acid was associated with full-fat dairy intake (r = 0.43; P = 0.002), outcomes consistent with results from total FA serum hydrolysates. In the intervention cohort, serum ω-3 NEFAs increased 2.5-fold from baseline within 28 days following FO supplementation, and this increase was most pronounced for EPA (P = 0.0004). Unlike for DHA, circulating EPA as its NEFA also strongly correlated to EPA concentrations measured from erythrocyte phospholipid hydrolysates (r = 0.66; P = 4.6 × 10-10) and was better suited to detect dietary nonadherence. We conclude that MSI-NACE-MS offers a rapid method to quantify serum NEFAs and objectively monitor dietary fat intake in women that is complementary to food-frequency questionnaires.
Collapse
Affiliation(s)
- Sandi M Azab
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada; Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Russell J de Souza
- Medicine, McMaster University, Hamilton, ON, Canada; Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Koon K Teo
- Medicine, McMaster University, Hamilton, ON, Canada
| | - Sonia S Anand
- Medicine, McMaster University, Hamilton, ON, Canada; Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Jordan Holzschuher
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Chris McGlory
- Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Philip Britz-McKibbin
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada. mailto:
| |
Collapse
|
224
|
Thomsen BJ, Chow EY, Sapijaszko MJ. The Potential Uses of Omega-3 Fatty Acids in Dermatology: A Review. J Cutan Med Surg 2020; 24:481-494. [PMID: 32463305 DOI: 10.1177/1203475420929925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND A growing interest exists in the relationship between diet and skin disease, with many recent studies identifying a role for omega-3 fatty acids (O3FAs) in various dermatological conditions. OBJECTIVE Our objective was to identify the spectrum of uses for O3FA supplementation reported in literature and to evaluate the current level of evidence for its clinical application in skin disease prevention and management. METHODS A search was conducted using Ovid MEDLINE for primary literature that examined O3FA intake and skin health. A manual search of reference lists was performed to identify additional articles for inclusion. RESULTS A total of 38 studies met eligibility for review, reporting benefits for O3FA supplementation in the treatment of psoriasis, atopic dermatitis, acne, and skin ulcers. Additionally, a reduced incidence of skin cancer and a decrease in the severity of drug-associated mucocutaneous side effects were reported with O3FA supplementation. CONCLUSION This review yielded many well-studied benefits of O3FA uses in dermatology. Given its high safety profile, low cost, and ease of supplementation, O3FA is a reasonable supplement that may benefit patients wishing to improve inflammatory skin conditions through diet. Areas of particular clinical interest where supplementation may be valuable include O3FAs for systemic UV photoprotection, as well as adjuvant treatment for acne to reduce both inflammatory lesion count and the severity of mucocutaneous side effects associated with isotretinoin use.
Collapse
Affiliation(s)
- Bryce J Thomsen
- 3158 University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Eunice Y Chow
- Division of Dermatology, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Mariusz J Sapijaszko
- Division of Dermatology, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| |
Collapse
|
225
|
Zuo S, Wang G, Han Q, Xiao H, O Santos H, Avelar Rodriguez D, Khani V, Tang J. The effects of tocotrienol supplementation on lipid profile: A meta-analysis of randomized controlled trials. Complement Ther Med 2020; 52:102450. [PMID: 32951713 DOI: 10.1016/j.ctim.2020.102450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND & OBJECTIVE Tocotrienol supplementation has been emerged as a potent candidate for the treatment of dyslipidemia. In the present study, a systematic review and meta-analysis of randomized controlled trials was performed with the aim of examining the effects of tocotrienol supplementation on the lipid profile. METHODS Four databases (Scopus, PubMed/Medline, Web of Science and Embase) were used to accomplish the literature search up to November 2019. Clinical trials encompassing the impact of tocotrienol supplementation on lipid profile were extracted regardless of clinical condition, with studies included involving only adults patients. RESULTS A total of 15 articles with 20 arms were eligible and included in the meta-analysis to estimate the pooled effect size. Overall results showed a significant effect of tocotrienol supplementation on increasing high-density lipoprotein cholesterol (HDL-C) levels (weight mean difference (WMD): 0.146 mmol/L, I2 = 85.9%) and a non-significant influence on total cholesterol (TC) (WMD: 0.010 mmol/L, I2 = 64.5%), low-density lipoprotein cholesterol (LDL-C) (WMD: 0.095 mmol/L, I2 = 87.4%), and triglycerides (TG) (WMD: -0.112 mmol/L, I2 = 67.4%) levels. Increment in HDL-C levels was significant greater for the tocotrienol dosage ≥ 200 mg/d (WMD: 0.202 mmol/L) and ≤8 weeks (WMD: 0.278 mmol/L). Moreover, studies that investigated tocotrienol dose ≥200 mg had no heterogeneity, while showing a significant decrease in TG levels (WMD: -0.177 mmol/L). CONCLUSION The present meta-analysis demonstrated that supplementing with tocotrienols does not decrease the concentrations of LDL-C, TC and TG. However, tocotrienol supplementation was considered a candidate for increasing HDL-C levels.
Collapse
Affiliation(s)
- Shuping Zuo
- Department of cardiology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, China
| | - Guiping Wang
- Department of cardiology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, China
| | - QuanLe Han
- Department of cardiology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, China
| | - Hongling Xiao
- School of Nursing, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - David Avelar Rodriguez
- Department of Pediatric Gastroenterology and Nutrition, Instituto Nacional De Pediatría, Mexico City, Mexico
| | - Vahid Khani
- Department of Radiology, Taleghani Hospital, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jianlei Tang
- Endocrinology, Second People's Hospital of Lianyungang, Jiangsu, Lianyungang 222000, China.
| |
Collapse
|
226
|
Abstract
PURPOSE OF REVIEW To discuss the current evidence regarding the relationship between omega-3 fatty acid intake and atherosclerotic cardiovascular disease (ASCVD) risk. RECENT FINDINGS Combined results from randomized controlled trials using low-dosage (≤1.8 g/day of ethyl esters) eicosapentaenoic acid (EPA) or EPA + docosahexaenoic acid (DHA) suggest a small benefit for reducing coronary heart disease risk. The Reduction of Cardiovascular Events with EPA-Intervention Trial (REDUCE-IT) that administered 4 g/day icosapent ethyl (IPE) to individuals on statin at high or very high ASCVD risk with elevated triglycerides demonstrated a 25% relative risk reduction in the composite primary endpoint (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization and unstable angina) for IPE vs. placebo, and a lower hazard for all prespecified individual endpoints other than total mortality. Several national organizations have recommended IPE for ASCVD risk reduction in populations aligning with REDUCE-IT; the Food and Drug Administration has approved IPE for ASCVD risk reduction. However, the Outcomes Study to Assess Statin Residual Risk Reduction with Epanova (EPA + DHA carboxylic acids) in High Cardiovascular Risk Patients with Hypertriglyceridemia was recently stopped for futility. SUMMARY At present, the best available evidence for a role of omega-3 fatty acids in ASCVD risk reduction is for 4 g/day of IPE, as an adjunct to statin therapy, for patients with ASCVD or diabetes mellitus and elevated triglycerides.
Collapse
|
227
|
Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients 2020; 12:nu12051363. [PMID: 32397619 PMCID: PMC7284582 DOI: 10.3390/nu12051363] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
The long-chain omega-3 polyunsaturated fatty acids (LC-omega-3 PUFAs) eicosapentaenoic acid and docosahexaenoic acid are the most popular dietary supplements recommended for the prevention/management of lipid dysmetabolisms and related diseases. However, remarkable inconsistencies exist among the outcomes of the human intervention studies in this field, which contrast with the impressive homogeneity of positive results of most of the preclinical studies. In the present review, we will firstly examine a series of factors-such as background diet composition, gut microbiota and genetic/epigenetic variants, which may lie beneath these inconsistencies. Moreover, we will discuss the recent advance in the knowledge of possible specific biomarkers (genetic-, epigenetic- and microbiota-related) that are being investigated with the goal to apply them in a personalized supplementation with omega-3 PUFAs. We will also consider the possibility of using already available parameters (Omega-3 index, Omega-6 PUFA/Omega-3 PUFA ratio) able to predict the individual responsiveness to these fatty acids and will discuss the optimal timing for their use. Finally, we will critically examine the results of those human studies that have already adopted the distinction of the subjects into omega-3 PUFA responders and non-responders and will discuss the advantage of using such an approach.
Collapse
|
228
|
Pahlavani M, Ramalingam L, Miller EK, Davis H, Scoggin S, Moustaid-Moussa N. Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients 2020; 12:E1342. [PMID: 32397139 PMCID: PMC7284763 DOI: 10.3390/nu12051342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widespread epidemic that increases the risk for several metabolic diseases. Despite several beneficial health effects of eicosapentaenoic acid (C20:5n-3, EPA), previous studies have used very high doses of EPA. In this study, dose-dependent effects of EPA on metabolic outcomes were determined in diet-induced obese mice. We used B6 male mice, fed high-fat diet (HF, 45% kcal fat) or HF diet supplemented with 9, 18, and 36 g/kg of EPA-enriched fish oil for 14 weeks. We conducted metabolic phenotyping during the feeding period, and harvested tissues and blood at termination. Only mice fed 36 g/kg of EPA significantly (p < 0.05) lowered body weight, fat content and epididymal fat pad weight, compared to HF. Both 18 and 36 g/kg doses of EPA significantly increased glucose clearance and insulin sensitivity, compared to HF or 9 g/kg of EPA. Locomotor activity was significantly increased with both 18 and 36 g/kg doses of EPA. Interestingly, all doses of EPA compared to HF, significantly increased energy expenditure and oxygen consumption and significantly reduced serum insulin, leptin, and triglycerides levels. These results demonstrate weight- and adiposity-independent metabolic benefits of EPA, at doses comparable to those currently used to treat hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (M.P.); (L.R.); (E.K.M.); (H.D.); (S.S.)
| |
Collapse
|
229
|
Lechner K, McKenzie AL, Kränkel N, Von Schacky C, Worm N, Nixdorff U, Lechner B, Scherr J, Weingärtner O, Krauss RM. High-Risk Atherosclerosis and Metabolic Phenotype: The Roles of Ectopic Adiposity, Atherogenic Dyslipidemia, and Inflammation. Metab Syndr Relat Disord 2020; 18:176-185. [PMID: 32119801 PMCID: PMC7196362 DOI: 10.1089/met.2019.0115] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Current algorithms for assessing risk of atherosclerotic cardiovascular disease (ASCVD) and, in particular, the reliance on low-density lipoprotein (LDL) cholesterol in conditions where this measurement is discordant with apoB and LDL-particle concentrations fail to identify a sizeable part of the population at high risk for adverse cardiovascular events. This results in missed opportunities for ASCVD prevention, most notably in those with metabolic syndrome, prediabetes, and diabetes. There is substantial evidence that accumulation of ectopic fat and associated metabolic traits are markers for and pathogenic components of high-risk atherosclerosis. Conceptually, the subset of advanced lesions in high-risk atherosclerosis that triggers vascular complications is closely related to a set of coordinated high-risk traits clustering around a distinct metabolic phenotype. A key feature of this phenotype is accumulation of ectopic fat, which, coupled with age-related muscle loss, creates a milieu conducive for the development of ASCVD: atherogenic dyslipidemia, nonresolving inflammation, endothelial dysfunction, hyperinsulinemia, and impaired fibrinolysis. Sustained vascular inflammation, a hallmark of high-risk atherosclerosis, impairs plaque stabilization in this phenotype. This review describes how metabolic and inflammatory processes that are promoted in large measure by ectopic adiposity, as opposed to subcutaneous adipose tissue, relate to the pathogenesis of high-risk atherosclerosis. Clinical biomarkers indicative of these processes provide incremental information to standard risk factor algorithms and advanced lipid testing identifies atherogenic lipoprotein patterns that are below the discrimination level of standard lipid testing. This has the potential to enable improved identification of high-risk patients who are candidates for therapeutic interventions aimed at prevention of ASCVD.
Collapse
Affiliation(s)
- Katharina Lechner
- Department of Prevention, Rehabilitation and Sports Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Nicolle Kränkel
- Klinik Für Kardiologie, Campus Benjamin Steglitz, Charité—Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Clemens Von Schacky
- Preventive Cardiology, Ludwig-Maximilians University, Munich, Germany
- Omegametrix, Martinsried, Germany
| | - Nicolai Worm
- German University for Prevention and Health Care Management, Saarbrücken, Germany
| | | | - Benjamin Lechner
- Department of Internal Medicine IV, Ludwig-Maximilians University, Munich, Germany
| | - Johannes Scherr
- Department of Prevention, Rehabilitation and Sports Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- University Center for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Ronald M. Krauss
- University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
230
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
231
|
Novel therapeutics in hypertriglyceridaemia and chylomicronaemia. Med Clin (Barc) 2020; 154:308-314. [PMID: 31932043 DOI: 10.1016/j.medcli.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Currently there is evidence on hypertriglyceridaemia as an independent risk factor of atherosclerosis. Chylomicronaemia associated with very high concentration of triglycerides may cause severe and recurrent acute pancreatitis. The cause of most cases is a combination of a polygenetic basis with some lifestyles and pathological conditions. Some rare and familial chylomicronaemias are mendelian diseases with an autosomal recessive pattern. On the other hand, plasma triglycerides have considerable biological variability and usually descend with non-pharmacological interventions alone. In some cases, drugs are also required for their control, but their impact on vascular risk reduction or pancreatitis prevention is more controversial. The recent advances in knowledge of molecular lipid metabolism and pharmacological technologies are resulting in the development of new therapeutic strategies, which can be applied to patients with refractory hypertrigliceridaemia. The challenge may be how the health systems can cover its high costs.
Collapse
|
232
|
Abstract
Introduction Hypertriglyceridemia is associated with increased atherosclerotic cardiovascular disease (ASCVD) event risk, which persists even in statin-treated patients. The objective of this analysis was to estimate the prevalence of triglyceride (TG) levels ≥ 150 mg/dl in statin-treated adults with diabetes or ASCVD in the United States. Methods Laboratory data, medical history, and prescription data from 40,617 subjects who participated in the US National Health and Nutrition Examination Survey (NHANES) spanning 8 years (four 2-year surveys; 2007–2014) were analyzed. Patients included were ≥ 20 years old and had morning fasting (at least 8.5 h) TG values available. The proportion and weighted number of individuals in the US population with TG ≥ 150 mg/dl was calculated according to statin use, as well as in key subgroups of statin-treated patients including those with low-density lipoprotein cholesterol (LDL-C) levels < 100 mg/dl, type 2 diabetes, ASCVD, and those with type 2 diabetes and ASCVD. Results A total of 9593 subjects, projected to represent 219.9 million Americans, met the study entry criteria and were included in the analysis. Of these, 2523 had TG levels ≥ 150 mg/dl, translating to a prevalence of 25.9% and representing 56.9 million Americans. Among statin-treated adults, the proportion with TG levels ≥ 150 mg/dl was 31.6% (12.3 million) and ranged from 27.6 to 39.5% for those who also had LDL-C levels < 100 mg/dl and type 2 diabetes or ASCVD. Conclusions Over 12 million Americans are treated with a statin and have TG levels ≥ 150 mg/dl. Interventions such as icosapent ethyl that have been shown to reduce ASCVD event risk in this elevated TG population with type 2 diabetes or established ASCVD can provide substantial clinical benefit for these patients.
Collapse
|
233
|
Omega-3 Fatty Acids and Eye Health: Opinions and Self-Reported Practice Behaviors of Optometrists in Australia and New Zealand. Nutrients 2020; 12:nu12041179. [PMID: 32331489 PMCID: PMC7230711 DOI: 10.3390/nu12041179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
This study investigated optometrists’ attitudes and self-reported practice behaviors towards omega-3 fatty acids for eye health, and knowledge and understanding of their potential risks and benefits. An anonymous online survey was distributed to optometrists in Australia and New Zealand. Questions included practitioner demographics and practice modality; self-reported practices and recommendations relating to diet, nutritional supplements, and omega-3 fatty acids for age-related macular degeneration (AMD) and dry eye disease (DED); and practitioner knowledge about omega-3 fatty acids. Of 206 included surveys, most respondents (79%) indicated recommending for their patients to consume omega-3 fatty acids to improve their eye health. Sixty-eight percent of respondents indicated recommending omega-3-rich foods for AMD management, while 62% indicated recommending omega-3 supplements. Most respondents (78%) indicated recommending omega-3-rich foods or supplements for DED. For DED, recommended omega-3 supplement dosages were (median [inter-quartile range, IQR]) 2000 mg [1000–2750 mg] per day. The main sources of information reported by respondents to guide their clinical decision making were continuing education articles and conferences. In conclusion, optometrists routinely make clinical recommendations about diet and omega-3 fatty acids. Future education could target improving optometrists’ knowledge of differences in the evidence for whole-food versus supplement sources of omega-3 fatty acids in AMD. Further research is needed to address uncertainties in the evidence regarding optimal omega-3 dosage and formulation composition in DED.
Collapse
|
234
|
Tan M, MacEachern MP. Treating Dyslipidemias in the Primary Prevention of Atherosclerotic Cardiovascular Disease in Older Adults with Diabetes Mellitus. Clin Geriatr Med 2020; 36:457-476. [PMID: 32586475 DOI: 10.1016/j.cger.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
People with diabetes mellitus (DM), especially those who are older, are at higher risk for premature morbidity and mortality related to atherosclerotic cardiovascular disease (ASCVD). Clinical practice guidelines recommend statin therapy for people with DM ages 40 to 75 years. The evidence for those greater than 75 years of age is relatively limited at present. Other health problems should be considered when planning ASCVD primary prevention in adults ages greater than 75 years with DM. Clinicians should discuss the risks and benefits of each plan with these patients and their caregivers.
Collapse
Affiliation(s)
- MengHee Tan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, Ann Arbor, MI 48105, USA.
| | - Mark Paul MacEachern
- Taubman Health Sciences Library, University of Michigan, 1135 Catherine Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
235
|
Hypoxia-Inducible Factor Inhibitors Derived from Marine Products Suppress a Murine Model of Neovascular Retinopathy. Nutrients 2020; 12:nu12041055. [PMID: 32290307 PMCID: PMC7231390 DOI: 10.3390/nu12041055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Neovascular retinal degenerative diseases are the leading causes of blindness in developed countries. Anti-vascular endothelial growth factor (VEGF) therapy is commonly used to treat these diseases currently. However, recent reports indicate that long term suppression of VEGF in the eye is associated with chorioretinal atrophy. Therefore, a physiological amount of VEGF is required for retinal homeostasis. Hypoxia-inducible factor (HIF) is a transcriptional factor upstream of VEGF. We previously reported that HIF regulated pathological angiogenesis in the retina of murine models of oxygen-induced retinopathy and laser-induced choroidal neovascularization. Most of the known HIF inhibitors are anti-cancer agents which may have systemic adverse effects in for clinical use; thus, there is a need for safer and less invasive HIF inhibitors. In this study, we screened marine products, especially fish ingredients, and found that six species of fish had HIF inhibitory effects. Among them, administration of Decapterus tabl ingredients significantly suppressed retinal neovascular tufts by inhibiting HIF expression in a murine oxygen-induced retinopathy model. These results indicate that particular fish ingredients can act as anti-angiogenic agents in retinal neovascularization diseases.
Collapse
|
236
|
Monoacylglycerol Form of Omega-3s Improves Its Bioavailability in Humans Compared to Other Forms. Nutrients 2020; 12:nu12041014. [PMID: 32272659 PMCID: PMC7230359 DOI: 10.3390/nu12041014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous benefits are attributed to omega-3 fatty acids (OM3) especially in cardiovascular health. However, bioavailability and clinical efficacy depend on numerous factors, including OM3 form, food matrix effects (especially the lipid content of the diet), and metabolic capacity. Here, we show in humans that a "pre-digested" OM3-sn-1(3)-monoacylglycerol lipid structure (OM3-MAG) has a significantly greater absorption at high therapeutic doses (2.9 g/day) than the most commonly OM3-ethyl ester (3.1 g/day) form (used for the treatment of hypertriglyceridemia), and a comparable profile to other pre-digested OM3 free fatty acids (OM3-FFA) structure (3.2 g/day). Nutritional supplement doses of MAG resulted in similar increases in OM3 blood level, compared to OM3 triacylglycerols (OM3-TAG) supplements in obese subjects (1.2 g/day) under low fat diet, and in children with cystic fibrosis (1.0 g/day). These results suggest that both forms of pre-digested OM3-MAG and OM3-FFA are effectively absorbed and re-incorporated effectively into triacylglycerols inside the enterocytes, before being exported into the chylomicrons lipid transport system. The pre-digested OM3-MAG might provide a more effective therapy in severe cardiovascular conditions where high doses of OM3 are required and a low-fat diet is indicated, which limited digestive lipase activity.
Collapse
|
237
|
Bazarbashi N, Miller M. Icosapent ethyl: drug profile and evidence of reduced residual cardiovascular risk in patients with statin-managed LDL-C cholesterol. Expert Rev Cardiovasc Ther 2020; 18:175-180. [DOI: 10.1080/14779072.2020.1749596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Najdat Bazarbashi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Miller
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
238
|
Das A, Roy B, Bandyopadhyay D, Dasgupta S, Chakraborty S, Soudant C, Gulati M, Ray KK, Lavie CJ. Non-statin interventions in the prevention of cardiovascular events: Sex-based meta-analysis. Prog Cardiovasc Dis 2020; 63:228-232. [PMID: 32224114 DOI: 10.1016/j.pcad.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To explore the sex-specific association of non-statin classes of drugs in reducing cardiovascular outcomes. METHODS Published data search up to November 2019 reporting primary outcomes that approximate with major vascular events (MVEs) after treatment with non-statin group of drugs was performed. The primary outcome was the sex-specific association with MVEs. Random-effects meta-analysis was performed to estimate relative risk (RR) of the individual classes of therapies. RESULTS Seven Randomized Clinical Trials (RCTs) including 122,164 patients were included in our analysis. Four studies compared the Triglyceride (TG)-lowering group of drugs with placebo and 3 studies compared low-density lipoprotein cholesterol (LDL-c) lowering drugs with placebo. Overall, with non-statin drugs, there was no difference in the risk reduction of cardiovascular (CV) events between men (RR 0.86; 95% CI 0.79-0.94, p-value <0.001) and women (RR 0.88; 95% CI 0.83-0.93, p-value 0.91). However, TG targeting interventions showed no cardiovascular outcome benefits in men (RR 0.85; 95% CI 0.71-1.02, p-value <0.001) while no significant benefit was seen in women (RR 0.87; 95% CI 0.77-0.98, p value = 0.85). No such difference existed in non-statin LDL-c lowering group of drugs in between men (RR 0.88; 95% CI 0.81-0.94, p value = 0.18) and women (RR 0.88; 95% CI 0.82-0.94, p value = 0.46). However, lowering of TG was only associated with a higher risk reduction of CV events (RR 0.86; 95% CI 0.77-0.95, p value = 0.03) in the entire study population. CONCLUSION Non-statin group of drugs was effective in reducing adverse CV outcomes for both sexes. Lowering TG was associated with higher risk reduction in CV events in general.
Collapse
Affiliation(s)
- Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA..
| | - Bhaskar Roy
- Department of Neurology, Division of Neuromuscular Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Subhajit Dasgupta
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Celine Soudant
- Gustave L. and Janet W. Levy Library, Mount Sinai Health System, One Gustave L. Levy Place, New York, NY, USA
| | - Martha Gulati
- Division of Cardiology, University of Arizona, Phoenix, AZ, USA
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Carl J Lavie
- Cardiac Rehabilitation and Preventive Cardiology, John Ochsner Heart and Vascular Institute, Ochsner Clinical School - The University of Queensland School of Medicine, New Orleans, LA, USA
| |
Collapse
|
239
|
Preventing Lethal Prostate Cancer with Diet, Supplements, and Rx: Heart Healthy Continues to Be Prostate Healthy and "First Do No Harm" Part II. Curr Urol Rep 2020; 21:15. [PMID: 32185555 DOI: 10.1007/s11934-020-0967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To discuss the overall and latest observations of the effect of diet, lifestyle, supplements, and some prescription heart healthy medications for prostate cancer prevention. RECENT FINDINGS The concept of maximizing heart health to prevent aggressive prostate cancer continues to be solidified with the addition of more prospective observational and randomized controlled trial data. Heart healthy is prostate healthy, and heart unhealthy is prostate unhealthy. The primary goal of reducing the risk of all-cause and cardiovascular disease (CVD) morbidity and mortality also coincides with maximizing prostate cancer prevention. The obesity epidemic in children and adults along with recent diverse research has only strengthened the nexus between heart and prostate health. Greater dietary adherence toward a variety of healthy foods is associated with a graded improved probability of CVD and potentially aggressive cancer risk reduction. Preventing prostate cancer via dietary supplements should encourage a "first do no harm," or less is more approach until future evidence can reverse the concerning trend that more supplementation has resulted in either no impact or an increased risk of prostate cancer. Supplements to reduce side effects of some cancer treatments appear to have more encouraging data. A discussion of quality (QC) before utilizing any pill also requires attention. Medications or interventions that potentially improve heart health including statins, aspirin, and metformin (S.A.M.), specific beta-blocker medications, and even preventive vaccines are in general generic, low-cost, "natural," and should continue to garner research interest. A watershed moment in medical education has arrived where the past perception of a diverse number of trees seemingly separated by vast distances, in reality, now appear to exist within the same forest.
Collapse
|
240
|
Comparison of Omega-3 Eicosapentaenoic Acid Versus Docosahexaenoic Acid-Rich Fish Oil Supplementation on Plasma Lipids and Lipoproteins in Normolipidemic Adults. Nutrients 2020; 12:nu12030749. [PMID: 32178279 PMCID: PMC7146314 DOI: 10.3390/nu12030749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both shared and different cardiovascular effects, and commonly used fish oil supplements have considerably varied EPA/DHA ratios. Aims: We compared the effects of fish oil supplements with different EPA/DHA ratios on lipoprotein metabolism. Methods: In a double-blind, randomized cross-over study, normolipidemic adults (n = 30) consumed 12 g/day of EPA-rich (EPA/DHA: 2.3) or DHA-rich (EPA/DHA: 0.3) fish oil for 8-weeks, separated by an 8-week washout period. Results: Both fish oil supplements similarly lowered plasma TG levels and TG-related NMR parameters versus baseline (p < 0.05). There were no changes in plasma cholesterol-related parameters due to either fish oil, although on-treatment levels for LDL particle number were slightly higher for DHA-rich oil compared with EPA-rich oil (p < 0.05). Both fish oil supplements similarly altered HDL subclass profile and proteome, and down regulated HDL proteins related to inflammation, with EPA-rich oil to a greater extent. Furthermore, EPA-rich oil increased apoM abundance versus DHA-rich oil (p < 0.05). Conclusions: Overall, fish oil supplements with varied EPA/DHA ratios had similar effects on total lipids/lipoproteins, but differences were observed in lipoprotein subfraction composition and distribution, which could impact on the use of EPA versus DHA for improving cardiovascular health.
Collapse
|
241
|
EPA-enriched ethanolamine plasmalogen alleviates atherosclerosis via mediating bile acids metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103824] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
242
|
Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil. PLoS One 2020; 15:e0229435. [PMID: 32107491 PMCID: PMC7046235 DOI: 10.1371/journal.pone.0229435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated. Both conjugated EPA (CEPA) and conjugated DHA (CDHA) were prepared by alkaline isomerization of all PUFAs contained in shark oil. Different concentrations of conjugated and nonconjugated PUFAs were placed in contact with precontracted aortic rings of Wistar rats to assess their effect on vascular tone. All tested samples exerted a vasorelaxant effect. Compared to nonconjugated PUFAs, conjugated isomers exhibited an increase in the dilatation of the aortic rings (P<0.001) in a dose-dependent manner (P<0.001). In addition, nonconjugated PUFAs produced nitric oxide (NO) in a dose-dependent manner, while conjugated PUFAs did not, suggesting that their dilatation mechanism is not totally dependent on NO.
Collapse
|
243
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
244
|
Uwaezuoke SN, Muoneke UV, Mbanefo NR. The Supportive Treatment of IgA Nephropathy and Idiopathic Nephrotic Syndrome: How Useful are Omega-3 Polyunsaturated Fatty Acids? Int J Nephrol Renovasc Dis 2020; 13:27-35. [PMID: 32161487 PMCID: PMC7049740 DOI: 10.2147/ijnrd.s237527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
IgA nephropathy (IgAN) is the most prevalent glomerular disease in young adults worldwide, while idiopathic nephrotic syndrome (INS) represents the most frequent manifestation of glomerular disease in childhood. Over the years, studies have speculated about the potential benefits of omega-3 polyunsaturated fatty acids (PUFAs) in improving morbidity in both forms of chronic kidney disease (CKD). The proposed mechanisms of action include reduction of proteinuria and modulation of dyslipidemia. Although in vitro and in vivo experimental studies report the suppressive effect of omega-3 PUFAs on inflammatory pathways linked with the progression of nephropathy, the evidence supporting their beneficial effect in IgAN and INS is still weak. Also, their ability to regulate levels of total cholesterol, low-density lipoprotein-cholesterol (LDL-C), and triglycerides (TG) suggests that they could delay both dyslipidemia-associated nephrotoxicity and atherosclerosis. Most of the clinical trials that were conducted on their therapeutic benefits in IgAN patients reported positive outcomes with low and high doses of omega-3 PUFAs. However, few of the trials noted inconclusive findings, with low-quality evidence suggesting potential improvements in surrogate renal function outcomes. If the beneficial effect of omega-3 PUFAs is predicated on their hypolipidemic action, much higher doses could be used in well-designed randomized-controlled trials (RCTs) to determine if they could produce better renal function outcomes and provide much stronger evidence of their therapeutic benefits in IgAN and INS. However, the current hypothetical mechanisms of action in these forms of CKD also include the effect of omega-3 PUFAs on renal inflammatory pathways and glomerular proteinuria. Perhaps, the unresolved therapeutic efficacy of these fatty acids in IgAN and INS suggests that their exact mechanisms of action are yet to be fully established. In this narrative review, we aim to appraise the current evidence of their potential therapeutic benefits in these diseases.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Uzoamaka V Muoneke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
245
|
Vallejo-Vaz AJ, Leiter LA, Del Prato S, Taskinen MR, Müller-Wieland D, Bujas-Bobanovic M, Letierce A, Mandel J, Samuel R, Ray KK. Triglyceride concentrations and non-high-density lipoprotein cholesterol goal attainment in the ODYSSEY phase 3 trials with alirocumab. Eur J Prev Cardiol 2020; 27:1663-1674. [PMID: 32089006 PMCID: PMC7549294 DOI: 10.1177/2047487320905185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aims Guidelines recommend targeting non-high-density lipoprotein cholesterol to reduce
cardiovascular risk. We assessed the impact of baseline triglycerides on
non-high-density lipoprotein cholesterol goal attainment in 10 phase 3 trials with
alirocumab versus control (n = 4983). Methods Trials were grouped into four pools based on alirocumab dose (75–150 mg every 2 weeks),
control (placebo/ezetimibe) and statin use. Baseline triglyceride quintiles were built
within each pool. Non-high-density lipoprotein cholesterol goal attainment (very high
risk: <100 mg/dl; moderate/high risk: <130 mg/dl), low-density lipoprotein
cholesterol goal attainment (very high risk: <70 mg/dl; moderate/high risk:
<100 mg/dl) and changes from baseline in lipid parameters were assessed at Week 24
among baseline triglyceride quintiles. Results Higher baseline triglycerides were associated with a worse cardiovascular risk profile.
Low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol
increased with higher triglycerides, but the magnitude in non-high-density lipoprotein
cholesterol was three- to four-fold higher compared with the increase in low-density
lipoprotein cholesterol. Non-high-density lipoprotein cholesterol and low-density
lipoprotein cholesterol percentage reductions from baseline with alirocumab were similar
regardless of baseline triglycerides. A greater proportion of alirocumab-treated
patients attained non-high-density lipoprotein cholesterol and low-density lipoprotein
cholesterol goals compared with placebo or ezetimibe. Unlike low-density lipoprotein
cholesterol goal attainment, non-high-density lipoprotein cholesterol goal attainment
significantly declined with increasing baseline triglycerides
(p < 0.05 for trend tests). A single standard deviation increase in
baseline log(triglycerides) was significantly associated with lower odds ratios of
attaining non-high-density lipoprotein cholesterol goals in the different pools and
treatment (alirocumab/placebo/ezetimibe) groups, unlike low-density lipoprotein
cholesterol goal attainment. Conclusion Individuals with increased triglycerides have higher non-high-density lipoprotein
cholesterol levels and lower rates of non-high-density lipoprotein cholesterol goal
attainment (unlike low-density lipoprotein cholesterol goal attainment). Alirocumab
improves non-high-density lipoprotein cholesterol goal attainment in this population.
These results highlight the impact of triglycerides on non-high-density lipoprotein
cholesterol and the need for novel therapies targeting triglyceride-related
pathways.
Collapse
Affiliation(s)
| | | | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | | | | | | | - Jonas Mandel
- Sanofi, Chilly-Mazarin, France.,IviData Stats, France
| | | | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College, UK
| |
Collapse
|
246
|
Innes JK, Calder PC. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int J Mol Sci 2020; 21:ijms21041362. [PMID: 32085487 PMCID: PMC7072971 DOI: 10.3390/ijms21041362] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood (especially fatty fish), supplements and concentrated pharmaceutical preparations. Long-term prospective cohort studies consistently demonstrate an association between higher intakes of fish, fatty fish and marine n-3 fatty acids (EPA + DHA) or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease (CHD) and myocardial infarction (MI), and cardiovascular mortality in the general population. This cardioprotective effect of EPA and DHA is most likely due to the beneficial modulation of a number of known risk factors for CVD, such as blood lipids, blood pressure, heart rate and heart rate variability, platelet aggregation, endothelial function, and inflammation. Evidence for primary prevention of CVD through randomised controlled trials (RCTs) is relatively weak. In high-risk patients, especially in the secondary prevention setting (e.g., post-MI), a number of large RCTs support the use of EPA + DHA (or EPA alone) as confirmed through a recent meta-analysis. This review presents some of the key studies that have investigated EPA and DHA in the primary and secondary prevention of CVD, describes potential mechanisms for their cardioprotective effect, and evaluates the more recently published RCTs in the context of existing scientific literature.
Collapse
Affiliation(s)
- Jacqueline K. Innes
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-23281-205250
| |
Collapse
|
247
|
The effects of omega-3 fatty acids on diabetic nephropathy: A meta-analysis of randomized controlled trials. PLoS One 2020; 15:e0228315. [PMID: 32045421 PMCID: PMC7012392 DOI: 10.1371/journal.pone.0228315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate the effects of omega-3 long-chain polyunsaturated fatty acids on proteinuria, estimated glomerular filtration rate (eGFR) and metabolic biomarkers among patients with diabetes. STUDY DESIGN Meta-analysis of randomized controlled clinical trials (RCTs). SETTING & SUBJECTS Patients with diabetes. SELECTION CRITERIA FOR STUDIES We conducted electronic searches in PubMed, Embase and Cochrane Central Register of Controlled Trials from January 1960 to April 2019 to identify RCTs, which examined the effects of omega-3 fatty acids on proteinuria, eGFR and metabolic biomarkers among diabetic patients. RESULTS Ten RCTs with 344 participants were included in our meta-analysis. Omega-3 fatty acids reduced the amount of proteinuria among type 2 diabetes mellitus (type 2 DM) and type 1 diabetes mellitus (type 1 DM). This association was only significant among type 2 DM (SMD = -0.29 (95% CI: -0.54, -0.03; p = 0.03). Only studies with duration of intervention of 24 weeks or longer demonstrated a significant lower proteinuria among omega-3 fatty acids compared to control group (SMD = -0.30 (95% CI: -0.58, -0.02; p = 0.04). There was a higher eGFR for both type 1 and type 2 DM groups among omega-3 fatty acids compared to control group, however, the effect was not statistically significant. Regarding serum total cholesterol, LDL-cholesterol and HbA1C, there was no significant difference comparing omega-3 fatty acids to control group. There was a non-significant systolic blood pressure reduction in the omega-3 fatty acids supplementation group compared to control. CONCLUSION Omega-3 fatty acids could help ameliorate proteinuria among type 2 DM who received omega-3 supplementation for at least 24 weeks without adverse effects on HbA1C, total serum cholesterol and LDL-cholesterol.
Collapse
|
248
|
Bhatt DL, Miller M, Brinton EA, Jacobson TA, Steg PG, Ketchum SB, Doyle RT, Juliano RA, Jiao L, Granowitz C, Tardif JC, Olshansky B, Chung MK, Gibson CM, Giugliano RP, Budoff MJ, Ballantyne CM. REDUCE-IT USA: Results From the 3146 Patients Randomized in the United States. Circulation 2020; 141:367-375. [PMID: 31707829 PMCID: PMC7004453 DOI: 10.1161/circulationaha.119.044440] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Some trials have found that patients from the United States derive less benefit than patients enrolled outside the United States. This prespecified REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl - Intervention Trial) subgroup analysis was conducted to determine the degree of benefit of icosapent ethyl in the United States. METHODS REDUCE-IT randomized 8179 statin-treated patients with qualifying triglycerides ≥135 and <500 mg/dL and low-density lipoprotein cholesterol >40 and ≤100 mg/dL and a history of atherosclerosis or diabetes mellitus to icosapent ethyl 4 g/d or placebo. The primary composite end point was cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or hospitalization for unstable angina. The key secondary composite end point was cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. A hierarchy was prespecified for examination of individual and composite end points. RESULTS A total of 3146 US patients (38.5% of the trial) were randomized and followed for a median of 4.9 years; 32.3% were women and 9.7% were Hispanic. The primary composite end point occurred in 24.7% of placebo-treated patients versus 18.2% of icosapent ethyl-treated patients (hazard ratio [HR], 0.69 [95% CI, 0.59-0.80]; P=0.000001); the key secondary composite end point occurred in 16.6% versus 12.1% (HR, 0.69 [95% CI, 0.57-0.83]; P=0.00008). All prespecified hierarchical end points were meaningfully and significantly reduced, including cardiovascular death (6.7% to 4.7%; HR, 0.66 [95% CI, 0.49-0.90]; P=0.007), myocardial infarction (8.8% to 6.7%; HR, 0.72 [95% CI, 0.56-0.93]; P=0.01), stroke (4.1% to 2.6%; HR, 0.63 [95% CI, 0.43-0.93]; P=0.02), and all-cause mortality (9.8% to 7.2%; HR, 0.70 [95% CI, 0.55-0.90]; P=0.004); for all-cause mortality in the US versus non-US patients, Pinteraction=0.02. Safety and tolerability findings were consistent with the full study cohort. CONCLUSIONS Whereas the non-US subgroup showed significant reductions in the primary and key secondary end points, the US subgroup demonstrated particularly robust risk reductions across a variety of individual and composite end points, including all-cause mortality. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01492361.
Collapse
Affiliation(s)
- Deepak L. Bhatt
- Brigham and Women’s Hospital Heart & Vascular Center and Harvard Medical School, Boston, MA (D.L.B.)
| | - Michael Miller
- Department of Medicine, University of Maryland School of Medicine, Baltimore (M.M.)
| | | | - Terry A. Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Department of Medicine, Emory University School of Medicine, Atlanta, GA (T.A.J.)
| | - Ph. Gabriel Steg
- French Alliance for Cardiovascular Trials, Hôpital Bichat, Paris, France (P.G.S.)
- Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM Unité 1148, Paris, France (P.G.S.)
| | - Steven B. Ketchum
- Amarin Pharma, Inc., Bridgewater, NJ (S.B.K., R.T.D., R.A.J., L.J., C.G.)
| | - Ralph T. Doyle
- Amarin Pharma, Inc., Bridgewater, NJ (S.B.K., R.T.D., R.A.J., L.J., C.G.)
| | - Rebecca A. Juliano
- Amarin Pharma, Inc., Bridgewater, NJ (S.B.K., R.T.D., R.A.J., L.J., C.G.)
| | - Lixia Jiao
- Amarin Pharma, Inc., Bridgewater, NJ (S.B.K., R.T.D., R.A.J., L.J., C.G.)
| | - Craig Granowitz
- Amarin Pharma, Inc., Bridgewater, NJ (S.B.K., R.T.D., R.A.J., L.J., C.G.)
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Quebec, Canada (J.-C.T.)
| | | | | | - C. Michael Gibson
- Beth Israel Deaconess Hospital, Boston, MA (C.M.G.)
- Baim Clinical Research Institute, Boston, MA (C.M.G.)
| | - Robert P. Giugliano
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.G.)
| | - Matthew J. Budoff
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA (M.J.B.)
| | | |
Collapse
|
249
|
Vors CÉC, Couture P, Lamarche B. Omega-3 fatty acids: new insights into the impact of eicosapentaenoic and docosahexaenoic acids on lipid and lipoprotein metabolism. Curr Opin Lipidol 2020; 31:38-39. [PMID: 31876659 DOI: 10.1097/mol.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C É Cile Vors
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada
| | | | | |
Collapse
|
250
|
Hilleman DE, Wiggins BS, Bottorff MB. Critical Differences Between Dietary Supplement and Prescription Omega-3 Fatty Acids: A Narrative Review. Adv Ther 2020; 37:656-670. [PMID: 31919792 PMCID: PMC6999166 DOI: 10.1007/s12325-019-01211-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Currently available omega-3 (OM-3) fatty acid products in the US are either nonprescription dietary supplements (e.g., fish oils) or prescription (Rx) medications. As such, we aimed to describe critical therapeutic differences among the OM-3 fatty acids, focusing on differences between fish oil supplements and Rx OM-3s. METHODS A narrative review of known papers salient to this topic was conducted. RESULTS Despite the multiple purported clinical benefits, the published evidence for OM-3 dietary supplements is generally insufficient, inconsistent, or negative. Rx OM-3 products are indicated as an adjunct to diet to reduce triglycerides (TG) in adults with severe hypertriglyceridemia (TG ≥ 500 mg/dl). Recently, the Rx eicosapentaenoic acid (EPA)-only OM-3, icosapent ethyl, demonstrated cardiovascular (CV) risk reduction among statin-treated patients at high risk of CV disease in a large CV outcomes trial (CVOT), and is now also indicated as an adjunct to maximally tolerated statin therapy to reduce the risk of myocardial infarction, stroke, coronary revascularization, and unstable angina requiring hospitalization in adult patients with elevated TG (≥ 150 mg/dL) and established CVD or diabetes mellitus and ≥ 2 additional risk factors for CVD. In contrast to the rigorous regulatory standards for safety, efficacy, and manufacturing of medications (whether Rx or over the counter), the Food and Drug Administration manages dietary supplements as food. Issues specific to OM-3 dietary supplements include variable content, labeling inconsistencies, and poor product quality/impurity. Given these issues, OM-3 dietary supplements should not be substituted for Rx OM-3 products. The efficacy of the EPA-only Rx OM-3 product in a large CVOT cannot be extrapolated to other OM-3 products. CONCLUSION Consumers and health care providers need to recognize critical differences between Rx and OM-3 dietary supplements to ensure appropriate use of each OM-3 product.
Collapse
Affiliation(s)
- Daniel E Hilleman
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA.
| | | | - Michael B Bottorff
- Department of Pharmacy Practice, Manchester University, Fort Wayne, IN, USA
| |
Collapse
|