201
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
202
|
Scalici JM, Thomas S, Harrer C, Raines TA, Curran J, Atkins KA, Conaway MR, Duska L, Kelly KA, Slack-Davis JK. Imaging VCAM-1 as an indicator of treatment efficacy in metastatic ovarian cancer. J Nucl Med 2013; 54:1883-9. [PMID: 24029657 DOI: 10.2967/jnumed.112.117796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The inability to successfully treat women with ovarian cancer is due in large part to the advanced stage of disease at diagnosis, the development of platinum resistance, and the lack of sensitive methods to monitor tumor progression and response to treatment. Vascular cell adhesion molecule-1 (VCAM-1) is expressed on the mesothelium of ovarian cancer patients. We investigated VCAM-1 expression as a marker of peritoneal metastasis and tumor response to platinum-based chemotherapy. METHODS Peritoneal or omental biopsies obtained from women diagnosed with stage I, stage II, or stage III/IV ovarian cancer were evaluated by immunohistochemistry. The effects of carboplatin on mesothelial VCAM-1 expression were determined in cultured cells by Western blot. Radiolabeled VCAM-1-specific peptide imaging probes and SPECT were used in a mouse model of ovarian cancer peritoneal metastasis to identify VCAM-1 as a viable imaging target. RESULTS VCAM-1 expression correlated with tumor stage. All specimens from stage I patients were negative, whereas 29% of stage II patients and 73% of stage III/IV patients were positive. Although most women with advanced stage disease expressed VCAM-1, the incidence of expression was reduced among women who received neoadjuvant chemotherapy, suggesting a role for chemotherapy in regulating VCAM-1 expression. Treatment of mesothelial cells in culture with carboplatin resulted in a transient decrease in VCAM-1 expression 4 h after treatment that returned to baseline within 16-24 h. In vivo imaging of VCAM-1 also demonstrated an acute decrease in expression 4 h after carboplatin administration that recovered within 48 h in mice harboring platinum-resistant tumors. Chronic VCAM-1 expression reflected the effect of platinum-based treatment on tumor burden. Specifically, carboplatin treatment of mice with platinum-sensitive tumors showed reduced VCAM-1 expression, which correlated with reduced tumor burden; mice with platinum-resistant tumors retained elevated VCAM-1 expression and tumor burden after treatment. CONCLUSION Clinically relevant VCAM-1-specific imaging probes identify VCAM-1 expression as an indicator of ovarian cancer peritoneal metastasis and therapeutic response to platinum-based agents. These observations support testing the utility of VCAM-1 imaging probes to monitor treatment response in ovarian cancer patients, thus providing the potential to improve management of women with this disease.
Collapse
Affiliation(s)
- Jennifer M Scalici
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Klug G, Metzler B. Assessing myocardial recovery following ST-segment elevation myocardial infarction: short- and long-term perspectives using cardiovascular magnetic resonance. Expert Rev Cardiovasc Ther 2013; 11:203-19. [PMID: 23405841 DOI: 10.1586/erc.12.173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial recovery after revascularization for ST-segment elevation myocardial infarction (STEMI) remains a significant diagnostic and, despite novel treatment strategies, a therapeutic challenge. Cardiovascular magnetic resonance (CMR) has emerged as a valuable clinical and research tool after acute STEMI. It represents the gold standard for functional and morphological evaluation of the left ventricle. Gadolinium-based perfusion and late-enhancement viability imaging has expanded our knowledge about the underlying pathologies of inadequate myocardial recovery. T2-weighted imaging of myocardial salvage after early reperfusion of the infarct-related artery underlines the effectiveness of current invasive treatment for STEMI. In the last decade, the number of publications on CMR after acute STEMI continued to rise, with no plateau in sight. Currently, CMR research is gathering robust prognostic data on standardized CMR protocols with the aim to substantially improve patient care and prognosis. Beyond established CMR protocols, more specific methods such as magnetic resonance relaxometry, myocardial tagging, 4D phase-contrast imaging and novel superparamagnetic contrast agents are emerging. This review will discuss the currently available data on the use of CMR after acute STEMI and take a brief look at developing new methods currently under investigation.
Collapse
Affiliation(s)
- Gert Klug
- University Clinic of Internal Medicine III (Cardiology), Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
204
|
Heidt T, Nahrendorf M. Multimodal iron oxide nanoparticles for hybrid biomedical imaging. NMR IN BIOMEDICINE 2013; 26:756-765. [PMID: 23065771 PMCID: PMC3549036 DOI: 10.1002/nbm.2872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 08/01/2012] [Accepted: 08/29/2012] [Indexed: 05/31/2023]
Abstract
Iron oxide core nanoparticles are attractive imaging agents because their material properties allow the tuning of pharmacokinetics as well as the attachment of multiple moieties to their surface. In addition to affinity ligands, these include fluorochromes and radioisotopes for detection with optical and nuclear imaging. As the iron oxide core can be detected by MRI, options for combining imaging modalities are manifold. Already, preclinical imaging strategies have combined noninvasive imaging with higher resolution techniques, such as intravital microscopy, to gain unprecedented insight into steady-state biology and disease. Going forward, hybrid iron oxide nanoparticles will help to merge modalities, creating a synergy that will enable imaging in basic research and, potentially, also in the clinic.
Collapse
Affiliation(s)
- Timo Heidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
205
|
Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJM. Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality. NMR IN BIOMEDICINE 2013; 26:766-80. [PMID: 23303729 PMCID: PMC3674179 DOI: 10.1002/nbm.2909] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 10/23/2012] [Accepted: 11/21/2012] [Indexed: 05/18/2023]
Abstract
Inorganic nanocrystals have myriad applications in medicine, including their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. In MRI, nanocrystals can produce contrast themselves, with iron oxides having been the most extensively explored, or can be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used for imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. As a result of these exciting applications, the synthesis and rendering of these nanocrystals as water soluble and biocompatible are therefore highly desirable. We discuss aqueous phase and organic phase methods for the synthesis of inorganic nanocrystals, such as gold, iron oxides and quantum dots. The pros and cons of the various methods are highlighted. We explore various methods for making nanocrystals biocompatible, i.e. direct synthesis of nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples are highlighted and their applications explained. These examples signify that the synthesis of biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied to a wide range of applications. Therefore, we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings.
Collapse
Affiliation(s)
- David P. Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, PA, 19104
| | - Brenda L. Sanchez-Gaytan
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| | - Aneta J. Mieszawska
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| |
Collapse
|
206
|
Cheng W, Ping Y, Zhang Y, Chuang KH, Liu Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:23-45. [PMID: 23502248 DOI: 10.1260/2040-2295.4.1.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on MRI contrast agents for tumor diagnosis. Several types of low molecular weight Gd3+-based complexes and dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles have been used for clinical tumor diagnosis as longitudinal relaxation time (T1) and transverse relaxation time (T2) MRI contrast agents, respectively. To further improve the sensitivity of MRI, new types of chelates for T1 MRI contrast agents and combination of low molecular weight T1 MRI contrast agents with different types of carriers have been investigated. Different types of materials for forming secure coating layers of SPIO and novel superparamagnetic particles with higher relaxivity values have been explored. Various types of ligands were applied to improve the capability to target tumor for both T1 and T2 contrast agents. Furthermore, MRI contrast agents for detection of tumor metabolism were also pursued.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering, Singapore Singapore Bioimaging Consortium, Singapore
| | | | | | | | | |
Collapse
|
207
|
Dimastromatteo J, Broisat A, Perret P, Ahmadi M, Boturyn D, Dumy P, Fagret D, Riou LM, Ghezzi C. In vivo molecular imaging of atherosclerotic lesions in ApoE-/- mice using VCAM-1-specific, 99mTc-labeled peptidic sequences. J Nucl Med 2013; 54:1442-9. [PMID: 23719858 DOI: 10.2967/jnumed.112.115675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Vascular cell adhesion molecule 1 (VCAM-1) plays a major role in the chronic inflammatory processes involved in vulnerable atherosclerotic plaque development. We previously showed that the (99m)Tc-labeled major histocompatibility complex 1-derived peptide B2702p bound specifically to VCAM-1 and allowed the ex vivo imaging of atherosclerotic lesions in Watanabe heritable hyperlipidemic rabbits. However, B2702p target-to-background ratio was suboptimal for the in vivo imaging of VCAM-1 expression in atherosclerotic lesions. To improve the target-to-background ratio, 20 derivatives of B2702p (B2702p1-B2702p20) were synthesized using the alanine scan methodology. We hypothesized that (99m)Tc-radiolabeled B2702p derivatives might allow the molecular imaging of VCAM-1 expression in an experimental model of atherosclerosis. METHODS A mouse model of focal atherosclerotic plaque development induced by left carotid artery ligation in apolipoprotein E double-knockout (ApoE(-/-)) mice was used (n = 82). (99m)Tc-B2702p and (99m)Tc-B2702p1-(99m)Tc-B2702p20 were injected intravenously in anesthetized animals 3 wk after the ligation. Whole-body planar imaging was performed for 3 h. SPECT imaging of 6 additional ligated ApoE(-/-) mice was also performed with (99m)Tc-B2702p1. The animals were then euthanized, and the biodistribution of (99m)Tc-labeled peptides was evaluated by γ-well counting of excised organs. Expression of VCAM-1 in the ligated and contralateral carotid arteries was evaluated by immunohistology. RESULTS Robust VCAM-1 immunostaining was observed in the left carotid atherosclerotic lesions as a consequence of artery ligation, whereas no VCAM-1 expression was detected in the contralateral carotid artery. Among all evaluated peptides, (99m)Tc-B2702p1 exhibited the most favorable properties. By γ-well counting, there was a significant 2.0-fold increase in the (99m)Tc-B2702p1 left-to-right carotid artery activity ratio (2.6 ± 0.6) and a 3.4-fold increase in the left carotid-to-blood activity ratio (1.4 ± 0.4) in comparison to (99m)Tc-B2702p (1.3 ± 0.2 and 0.4 ± 0.1, respectively, P < 0.05 for both comparisons). Similarly, planar image quantification indicated a higher left-to-right carotid activity ratio in (99m)Tc-B2702p1- than in (99m)Tc-B2702p-injected mice (1.2 ± 0.1 vs. 1.0 ± 0.0, respectively, P < 0.05). Finally, a significantly higher (99m)Tc-B2702p1 activity in the left than in the right carotid artery was observed by SPECT imaging (2.2 ± 0.4 vs. 1.4 ± 0.3 cpm/mm(2)/injected dose, respectively, P < 0.05). CONCLUSION (99m)Tc-B2702p1 is a potentially useful radiotracer for the in vivo molecular imaging of VCAM-1 expression in atherosclerotic plaques.
Collapse
|
208
|
Masseau I, Davis MJ, Bowles DK. Carotid inflammation is unaltered by exercise in hypercholesterolemic Swine. Med Sci Sports Exerc 2013; 44:2277-89. [PMID: 22776877 DOI: 10.1249/mss.0b013e318266af0a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Reduction of vascular inflammation might contribute to the beneficial effects of exercise. We hypothesized that 1) exercise would reduce carotid endothelial vascular cell adhesion molecule-1 (VCAM-1) and that 2) in vivo detection of carotid inflammation can be achieved in a large animal model using contrast-enhanced ultrasound (CEU) with VCAM-1-targeted microbubbles (MBs). METHODS Familial hypercholesterolemic (FH) swine were divided into sedentary (Sed) and exercise-trained (Ex) groups. Ex pigs underwent 16-20 wk of treadmill aerobic exercise. At the end of the study, in vivo CEU with VCAM-1-targeted MBs and assessment of endothelial-dependent dilation (EDD) were performed in carotid arteries. VCAM-1 mRNA and protein expression were compared with markers of atherosclerotic disease and health, and in vitro EDD was assessed in carotid arteries. RESULTS Exercise training neither reduced inflammation nor improved EDD in carotid arteries of FH swine. Markers of atherosclerosis including VCAM-1 were prominent in the bifurcation compared with the proximal or distal common carotid artery and inversely associated with phosphorylated and total endothelial nitric oxide synthase. Signal intensity from VCAM-1-to-control MBs positively correlated with carotid VCAM-1 protein expression, validating our technique. CONCLUSION These results first demonstrate that aerobic exercise has no effect on carotid endothelial inflammatory markers and EDD in FH swine. Second, our findings indicate that CEU using VCAM-1-targeted MBs can detect inflammation in vivo, providing strong foundations for longitudinal studies examining the effect of therapeutic interventions on the inflammatory status of the endothelium.
Collapse
Affiliation(s)
- Isabelle Masseau
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
209
|
|
210
|
Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 2013; 15:253-82. [PMID: 23642243 DOI: 10.1146/annurev-bioeng-071812-152409] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in nanotechnology and growing needs in biomedical applications have driven the development of multifunctional nanoparticles. These nanoparticles, through nanocrystalline synthesis, advanced polymer processing, and coating and functionalization strategies, have the potential to integrate various functionalities, simultaneously providing (a) contrast for different imaging modalities, (b) targeted delivery of drug/gene, and (c) thermal therapies. Although still in its infancy, the field of multifunctional nanoparticles has shown great promise in emerging medical fields such as multimodal imaging, theranostics, and image-guided therapies. In this review, we summarize the techniques used in the synthesis of complex nanostructures, review the major forms of multifunctional nanoparticles that have emerged over the past few years, and provide a perceptual vision of this important field of nanomedicine.
Collapse
Affiliation(s)
- Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
211
|
Application of nanoparticles on diagnosis and therapy in gliomas. BIOMED RESEARCH INTERNATIONAL 2013; 2013:351031. [PMID: 23691498 PMCID: PMC3652126 DOI: 10.1155/2013/351031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/13/2013] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed.
Collapse
|
212
|
den Adel B, Daemen MJ, Poelmann RE, van der Weerd L. Molecular Magnetic Resonance Imaging for the Detection of Vulnerable Plaques: Is It Possible?: Retracted. Arterioscler Thromb Vasc Biol 2013:ATVBAHA.112.300108. [PMID: 23413424 DOI: 10.1161/atvbaha.112.300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/13/2013] [Indexed: 11/16/2022]
Abstract
Recent advances in molecular resonance imaging of atherosclerosis enable to visualize atherosclerotic plaques in vivo using molecular targeted contrast agents. This offers opportunities to study atherosclerosis development and plaque vulnerability noninvasively. In this review, we discuss MRI contrast agents targeted toward atherosclerotic plaques and illustrate how these new imaging platforms could assist in our understanding of atherogenesis and atheroprogression. In particular, we highlight the challenges and limitations of the different contrast agents and hurdles for clinical application. We describe the most promising existing compounds to detect atherosclerosis and plaque vulnerability. Of particular interest are the fibrin-targeted compounds that detect thrombi and, furthermore, the contrast agents targeted to integrins that allow to visualize plaque neovascularization. Moreover, vascular cell adhesion molecule 1-targeted iron oxides seem promising for early detection of atherosclerosis. These targeted MRI contrast agents, however promising and well characterized in (pre)clinical models, lack specificity for plaque vulnerability.
Collapse
Affiliation(s)
- Brigit den Adel
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (B.d.A., R.E.P., L.v.d.W.)
| | | | | | | |
Collapse
|
213
|
CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res 2013; 31:1426-37. [PMID: 23568520 DOI: 10.1007/s11095-013-1021-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/04/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE The cell surface adhesion molecule CD44 plays important roles in the initiation and development of atherosclerotic plaques. We aim to develop nanoparticles that can selectively target CD44 for the non-invasive detection of atherosclerotic plaques by magnetic resonance imaging. METHODS Magnetic glyconanoparticles with hyaluronan immobilized on the surface have been prepared. The binding of these nanoparticles with CD44 was evaluated in vitro by enzyme linked immunosorbent assay, flow cytometry and confocal microscopy. In vivo magnetic resonance imaging of plaques was performed on an atherosclerotic rabbit model. RESULTS The magnetic glyconanoparticles can selectively bind CD44. In T2* weighted magnetic resonance images acquired in vivo, significant contrast changes in aorta walls were observed with a very low dose of the magnetic nanoparticles, allowing the detection of atherosclerotic plaques. Furthermore, imaging could be performed without significant delay after probe administration. The selectivity of hyaluronan nanoparticles in plaque imaging was established by several control experiments. CONCLUSIONS Magnetic nanoparticles bearing surface hyaluronan enabled the imaging of atherosclerotic plaques in vivo by magnetic resonance imaging. The low dose of nanoparticles required, the possibility to image without much delay and the high biocompatibility are the advantages of these nanoparticles as contrast agents for plaque imaging.
Collapse
|
214
|
Khanicheh E, Mitterhuber M, Xu L, Haeuselmann SP, Kuster GM, Kaufmann BA. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS One 2013; 8:e58761. [PMID: 23554922 PMCID: PMC3598944 DOI: 10.1371/journal.pone.0058761] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/06/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) with contrast enhanced ultrasound (CEU) could assess treatment effects on endothelial phenotype in early atherosclerosis. METHODS Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day). At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM)) and control microbubbles (MB(Ctr)). Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression. RESULTS Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM) in non-treated animals (MB(VCAM) 2±0.3 vs MB(Ctr) 0.7±0.2, p<0.01), but not in statin-treated animals (MB(VCAM) 0.8±0.2 vs MB(Ctr) 1.0±0.2, p = ns; p<0.01 for the effect of statin on MB(VCAM) signal). CONCLUSIONS Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.
Collapse
Affiliation(s)
- Elham Khanicheh
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Martina Mitterhuber
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stéphanie P. Haeuselmann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Gabriela M. Kuster
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, Basel, Switzerland
| | - Beat A. Kaufmann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
215
|
Imaging Atherosclerotic Plaques with MRI: Role of Contrast Agents. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
216
|
Abstract
Although cardiovascular magnetic resonance allows the non-invasive and radiation free visualization of both the coronary arteries and veins, coronary vessel wall imaging is still undergoing technical development to improve diagnostic quality. Assessment of the coronary vessels is a valuable addition to the analysis of cardiac function, cardiac anatomy, viability and perfusion which magnetic resonance imaging reliably allows. However, cardiac and respiratory motion and the small size of the coronary vessels present a challenge and require several technical solutions for image optimization. Furthermore, the acquisition protocols need to be adapted to the specific clinical question. This review provides an update on the current clinical applications of cardiovascular magnetic resonance coronary angiography, recent technical advances and describes the acquisition protocols in use.
Collapse
Affiliation(s)
- Amedeo Chiribiri
- Division of Imaging Sciences and Biomedical Engineering, King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre, London, SE1 7EH, UK.
| | | | | |
Collapse
|
217
|
Savic-Radojevic A, Radovanovic S, Pekmezovic T, Pljesa-Ercegovac M, Simic D, Djukic T, Matic M, Simic T. The role of serum VCAM-1 and TNF-α as predictors of mortality and morbidity in patients with chronic heart failure. J Clin Lab Anal 2013; 27:105-12. [PMID: 23349048 DOI: 10.1002/jcla.21570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/14/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To assess the prognostic significance of four inflammatory markers (TNF-α, high sensitive C-reactive protein (hs-CRP), intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)) in chronic heart failure (CHF) patients with respect to individual outcomes, especially disease exacerbation and mortality. METHODS Plasma adhesion molecules, ICAM-1, and VCAM-1, together with TNF-α and hs-CRP were determined in 120 CHF patients and 69 healthy controls. Endothelial function was also estimated by flow-mediated brachial artery dilatation. RESULTS Increased levels of all investigated inflammatory markers were found in CHF patients compared to controls, with the rise more pronounced in New York Heart association (NYHA) functional IV class. Significant correlations were obtained for VCAM-1 and brain natriuretic peptide (r = 0.191; P = 0.038), as well as, ICAM-1 and endothelium-dependent vasodilatation (r = -0.235; P = 0.01). Kaplan-Meier analysis showed disease exacerbation in patients with TNF-α levels >2.78 pg/ml significantly shorter compared to those with TNF-α levels <2.78 pg/ml (log-rank test = 8.270; P = 0.004), while similar association was observed for patients with hs-CRP levels >4.76 mg/l (log-rank test = 5.052; P = 0.025) and VCAM-1 levels >1200 ng/l (log-rank test = 5.45; P = 0.020) with respect to mortality. Cox regression analysis demonstrated only VCAM-1 (HR = 4.7; 95% confidence interval (CI): 1.1-18.7; P = 0.030) as independent death predictor, while TNF-α was associated with disease exacerbation (HR = 8.2; 95%CI: 1.1-23.0; P = 0.045). CONCLUSIONS VCAM-1 appears to be useful in risk stratification of CHF patients and in screening, to identify subjects at risk for heart failure related events.
Collapse
Affiliation(s)
- Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Dellinger A, Olson J, Link K, Vance S, Sandros MG, Yang J, Zhou Z, Kepley CL. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2013; 15:7. [PMID: 23324435 PMCID: PMC3562260 DOI: 10.1186/1532-429x-15-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/17/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hallmark of atherosclerosis is the accumulation of plaque in vessel walls. This process is initiated when monocytic cells differentiate into macrophage foam cells under conditions with high levels of atherogenic lipoproteins. Vulnerable plaque can dislodge, enter the blood stream, and result in acute myocardial infarction and stroke. Imaging techniques such as cardiovascular magnetic resonance (CMR) provides one strategy to identify patients with plaque accumulation. METHODS We synthesized an atherosclerotic-targeting contrast agent (ATCA) in which gadolinium (Gd)-containing endohedrals were functionalized and formulated into liposomes with CD36 ligands intercalated into the lipid bilayer. In vitro assays were used to assess the specificity of the ATCA for foam cells. The ability of ATCA to detect atherosclerotic plaque lesions in vivo was assessed using CMR. RESULTS The ATCA was able to detect scavenger receptor (CD36)-expressing foam cells in vitro and were specifically internalized via the CD36 receptor as determined by focused ion beam/scanning electron microscopy (FIB-SEM) and Western blotting analysis of CD36 receptor-specific signaling pathways. The ATCA exhibited time-dependent accumulation in atherosclerotic plaque lesions of ApoE -/- mice as determined using CMR. No ATCA accumulation was observed in vessels of wild type (C57/b6) controls. Non-targeted control compounds, without the plaque-targeting moieties, were not taken up by foam cells in vitro and did not bind plaque in vivo. Importantly, the ATCA injection was well tolerated, did not demonstrate toxicity in vitro or in vivo, and no accumulation was observed in the major organs. CONCLUSIONS The ATCA is specifically internalized by CD36 receptors on atherosclerotic plaque providing enhanced visualization of lesions under physiological conditions. These ATCA may provide new tools for physicians to non-invasively detect atherosclerotic disease.
Collapse
Affiliation(s)
- Anthony Dellinger
- Luna Innovations Incorporated, Luna nanoWorks Division, 521 Bridge St, Danville, VA, 24541, USA
- Joint School of Nanoscience and Nanoengineering, 2907 E Lee St, Greensboro, NC, 27401, USA
| | - John Olson
- Center for Biomolecular Imaging, Wake Forest University, 1 Medical Center Blvd, Winston Salem, NC, 27157, USA
| | - Kerry Link
- Center for Biomolecular Imaging, Wake Forest University, 1 Medical Center Blvd, Winston Salem, NC, 27157, USA
| | - Stephen Vance
- Joint School of Nanoscience and Nanoengineering, 2907 E Lee St, Greensboro, NC, 27401, USA
| | - Marinella G Sandros
- Joint School of Nanoscience and Nanoengineering, 2907 E Lee St, Greensboro, NC, 27401, USA
| | - Jijin Yang
- Carl Zeiss Microscopy, LLC, One Zeiss Drive, Thornwood, NY, 10594, USA
| | - Zhiguo Zhou
- Luna Innovations Incorporated, Luna nanoWorks Division, 521 Bridge St, Danville, VA, 24541, USA
| | - Christopher L Kepley
- Joint School of Nanoscience and Nanoengineering, 2907 E Lee St, Greensboro, NC, 27401, USA
| |
Collapse
|
219
|
Hjortnaes J, New SEP, Aikawa E. Visualizing novel concepts of cardiovascular calcification. Trends Cardiovasc Med 2013; 23:71-9. [PMID: 23290463 DOI: 10.1016/j.tcm.2012.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 12/19/2022]
Abstract
Cardiovascular calcification is currently viewed as an active disease process similar to embryonic bone formation. Cardiovascular calcification mainly affects the aortic valve and arteries and is associated with increased mortality risk. Aortic valve and arterial calcification share similar risk factors, including age, gender, diabetes, chronic renal disease, and smoking. However, the exact cellular and molecular mechanism of cardiovascular calcification is unknown. Late-stage cardiovascular calcification can be visualized with conventional imaging modalities such as echocardiography and computed tomography. However, these modalities are limited in their ability to detect the development of early calcification and the progression of calcification until advanced tissue mineralization is apparent. Due to the subsequent late diagnosis of cardiovascular calcification, treatment is usually comprised of invasive interventions such as surgery. The need to understand the process of calcification is therefore warranted and requires new imaging modalities which are able to visualize early cardiovascular calcification. This review focuses on the use of new imaging techniques to visualize novel concepts of cardiovascular calcification.
Collapse
Affiliation(s)
- Jesper Hjortnaes
- Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB741J, Boston, MA 02115, USA
| | | | | |
Collapse
|
220
|
Molecular Targeting of Imaging and Drug Delivery Probes in Atherosclerosis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
221
|
Tourdias T, Dousset V. Neuroinflammatory imaging biomarkers: relevance to multiple sclerosis and its therapy. Neurotherapeutics 2013; 10:111-23. [PMID: 23132327 PMCID: PMC3557362 DOI: 10.1007/s13311-012-0155-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging is an established tool in the management of multiple sclerosis (MS). Loss of blood brain barrier integrity assessed by gadolinium (Gd) enhancement is the current standard marker of MS activity. To explore the complex cascade of the inflammatory events, other magnetic resonance imaging, but also positron emission tomographic markers reviewed in this article are being developed to address active neuroinflammation with increased sensitivity and specificity. Alternative magnetic resonance contrast agents, positron emission tomographic tracers and imaging techniques could be more sensitive than Gd to early blood brain barrier alteration, and they could assess the inflammatory cell recruitment and/or the associated edema accumulation. These markers of active neuroinflammation, although some of them are limited to experimental studies, could find great relevance to complete Gd information and thereby increase our understanding of acute lesion pathophysiology and its noninvasive follow-up, especially to monitor treatment efficacy. Furthermore, such accurate markers of inflammation combined with those of neurodegeneration hold promise to provide a more complete picture of MS, which will be of great benefit for future therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Tourdias
- INSERM Unit 1049 Neuroinflammation, Imagerie et Thérapie de la Sclérose en Plaques, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux, F-33076, France.
| | | |
Collapse
|
222
|
McAteer MA, Choudhury RP. Targeted molecular imaging of vascular inflammation in cardiovascular disease using nano- and micro-sized agents. Vascul Pharmacol 2013; 58:31-8. [DOI: 10.1016/j.vph.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/15/2023]
|
223
|
Tavakoli S, Asmis R. Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal 2012; 17:1785-95. [PMID: 22540532 PMCID: PMC3474194 DOI: 10.1089/ars.2012.4638] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Despite the recent decline in the prevalence of cardiovascular diseases, atherosclerosis remains the leading cause of death in industrialized countries. Monocyte recruitment into the vessel wall is a rate-limiting step in atherogenesis. Death of macrophage-derived foam cells promotes lesion progression and the majority of acute complications of atherosclerotic disease (e.g., myocardial infarction) occur in lesions that are intensely infiltrated with monocyte-derived macrophages, underlining the critical roles monocytes and macrophages play in this complex chronic inflammatory disease. RECENT ADVANCES A rapidly growing body of literature supports a critical role for reactive oxygen species (ROS) in the regulation of monocyte and macrophage (dys)function associated with atherogenesis and macrophage death in atherosclerotic plaque. CRITICAL ISSUES In this review we highlight the important roles of NADHP oxidase 4 recently identified in monocytes and macrophages and the role of ROS and (thiol) redox signaling in different aspects of monocytes and macrophage biology associated with atherosclerosis. FUTURE DIRECTIONS Studies aimed at identifying the intracellular targets of ROS involved in redox signaling in macrophages and at elucidating the redox signaling mechanisms that control differentiation, activation, polarization, and death of monocytes and macrophages may ultimately lead to the development of novel preventive and therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Sina Tavakoli
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
224
|
Zhao XQ, Kerwin WS. Utilizing imaging tools in lipidology: examining the potential of MRI for monitoring cholesterol therapy. ACTA ACUST UNITED AC 2012. [PMID: 23197995 DOI: 10.2217/clp.12.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipid abnormalities play important roles in the development of atherosclerosis. Lipid therapies result in alterations in atherosclerotic plaques including halting of progression of the plaque, lipid transport out of the plaque and reducing inflammatory activity, which lead to plaque morphologies that are less prone to disruption, the main cause of clinical events. In order to investigate and monitor plaque morphological changes during lipid therapy in vivo we need an imaging method that can provide accurate assessment of plaque tissue components and activity. MRI of atherosclerosis has been validated as a reliable assessment of the size of the vessel lumen, but also the size of the plaque, its tissue composition and plaque activity, including inflammation. The purpose of this review is to summarize the state of evidence for the direct assessment of atherosclerotic plaque and its change by MRI, and to establish the proven role of MRI of atherosclerosis in pharmaceutical trials with lipid therapy.
Collapse
Affiliation(s)
- Xue-Qiao Zhao
- University of Washington School of Medicine, Seattle, WA 98105, USA
| | | |
Collapse
|
225
|
Sosnovik DE, Caravan P. Molecular MRI of the Cardiovascular System in the Post-NSF Era. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:61-68. [PMID: 23504765 DOI: 10.1007/s12410-012-9182-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new molecular MRI agents have been approved for clinical use within the last 3 years, and a third agent has completed phase-2 clinical trials. A wealth of preclinical data is also emerging on the general safety of many molecular MR imaging agents. In addition, since the guidelines to avoid nephrogenic systemic fibrosis (NSF) were adopted, at most institutions no new cases of NSF have been reported. Nevertheless, in the post-NSF environment, both those developing and using molecular MR imaging agents need to be increasingly aware of safety issues. This awareness should begin with the design of the agent and, even in early preclinical studies, the demonstration of safety and efficacy should both be given high priority. In this review we discuss some of the issues relevant to the design of safe molecular MR imaging agents and highlight the excellent safety profile of those agents that have been used clinically to date.
Collapse
Affiliation(s)
- David E Sosnovik
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston MA ; Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston MA ; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | | |
Collapse
|
226
|
Gonzalez-Molina J, Riegler J, Southern P, Ortega D, Frangos CC, Angelopoulos Y, Husain S, Lythgoe MF, Pankhurst QA, Day RM. Rapid magnetic cell delivery for large tubular bioengineered constructs. J R Soc Interface 2012; 9:3008-16. [PMID: 22696487 PMCID: PMC3479910 DOI: 10.1098/rsif.2012.0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/14/2012] [Indexed: 12/22/2022] Open
Abstract
Delivery of cells into tubular tissue constructs with large diameters poses significant spatial and temporal challenges. This study describes preliminary findings for a novel process for rapid and uniform seeding of cells onto the luminal surface of large tubular constructs. Fibroblasts, tagged with superparamagnetic iron oxide nanoparticles (SPION), were directed onto the luminal surface of tubular constructs by a magnetic field generated by a k4-type Halbach cylinder device. The spatial distribution of attached cells, as measured by the mean number of cells, was compared with a conventional, dynamic, rotational cell-delivery technique. Cell loading onto the constructs was measured by microscopy and magnetic resonance imaging. The different seeding techniques employed had a significant effect on the spatial distribution of the cells (p < 0.0001). The number of attached cells at defined positions within the same construct was significantly different for the dynamic rotation technique (p < 0.05). In contrast, no significant differences in the number of cells attached to the luminal surface were found between the defined positions on the construct loaded with the Halbach cylinder. The technique described overcomes limitations associated with existing cell-delivery techniques and is amenable to a variety of tubular organs where rapid loading and uniform distribution of cells for therapeutic applications are required.
Collapse
Affiliation(s)
- J. Gonzalez-Molina
- Biomedical Engineering Group, Centre for Gastroenterology and Nutrition, Division of Medicine, University College London (UCL), London WC1E 6DD, UK
| | - J. Riegler
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine and Institute of Child 5 Health, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London (UCL), London WC1E 6DD, UK
| | - P. Southern
- Davy-Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - D. Ortega
- Davy-Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - C. C. Frangos
- Biomedical Engineering Group, Centre for Gastroenterology and Nutrition, Division of Medicine, University College London (UCL), London WC1E 6DD, UK
| | - Y. Angelopoulos
- Biomedical Engineering Group, Centre for Gastroenterology and Nutrition, Division of Medicine, University College London (UCL), London WC1E 6DD, UK
| | - S. Husain
- Biomedical Engineering Group, Centre for Gastroenterology and Nutrition, Division of Medicine, University College London (UCL), London WC1E 6DD, UK
| | - M. F. Lythgoe
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine and Institute of Child 5 Health, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London (UCL), London WC1E 6DD, UK
| | - Q. A. Pankhurst
- Davy-Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - R. M. Day
- Biomedical Engineering Group, Centre for Gastroenterology and Nutrition, Division of Medicine, University College London (UCL), London WC1E 6DD, UK
| |
Collapse
|
227
|
Engineering imaging probes and molecular machines for nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2012; 55:843-61. [DOI: 10.1007/s11427-012-4380-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
|
228
|
Rouleau L, Berti R, Ng VWK, Matteau-Pelletier C, Lam T, Saboural P, Kakkar AK, Lesage F, Rhéaume E, Tardif JC. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 8:27-39. [DOI: 10.1002/cmmi.1491] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leonie Rouleau
- Department of Electrical Engineering, École Polytechnique de Montréal; Montréal Canada
- Montreal Heart Institute; Montréal Canada
- Génie Chimique et Génie Biotechnologique; Université de Sherbrooke; Sherbrooke Canada
| | - Romain Berti
- Department of Electrical Engineering, École Polytechnique de Montréal; Montréal Canada
- Montreal Heart Institute; Montréal Canada
| | | | - Carl Matteau-Pelletier
- Department of Electrical Engineering, École Polytechnique de Montréal; Montréal Canada
- Montreal Heart Institute; Montréal Canada
| | - Tina Lam
- Department of Chemistry; McGill University; Montréal Canada
| | - Pierre Saboural
- Department of Electrical Engineering, École Polytechnique de Montréal; Montréal Canada
| | | | - Frédéric Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal; Montréal Canada
- Montreal Heart Institute; Montréal Canada
| | - Eric Rhéaume
- Montreal Heart Institute; Montréal Canada
- Department of Medicine; Université de Montréal; Montréal Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute; Montréal Canada
- Department of Medicine; Université de Montréal; Montréal Canada
| |
Collapse
|
229
|
Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 2012; 264:349-68. [PMID: 22821695 DOI: 10.1148/radiol.12111703] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular imaging is expected to have a major impact on the early diagnosis of diseases and disease monitoring in the next decade. Traditionally, nuclear imaging techniques have been the mainstay of molecular imaging in the clinical arena. However, with continued development of molecularly targeted contrast agents for nonnuclear imaging techniques such as magnetic resonance (MR), computed tomography (CT), and ultrasonography (US), the spectrum of clinical molecular imaging applications is expanding. In the second part of this review series, an overview of applications of molecular MR imaging-, CT-, and US-based imaging strategies that show promise for clinical translation is presented, and key challenges that need to be addressed to successfully translate these promising techniques in the future are discussed. © RSNA, 2012.
Collapse
Affiliation(s)
- Moritz F Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
230
|
Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent. Invest Radiol 2012; 47:438-44. [PMID: 22627945 DOI: 10.1097/rli.0b013e3182588263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. MATERIALS AND METHODS The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. RESULTS Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P < 0.05 and 41.9 ± 9.1 vs 5.2 ± 2.0, P < 0.05). A significant correlation (0.96; P < 0.01) between area measurements derived from ESMA scans and aortic MR angiography scans could be found. Electron microscopy and inductively coupled plasma mass spectroscopy confirmed the colocalization of ESMA with elastic fibers. CONCLUSION We demonstrate the feasibility of aortic vessel wall imaging using a novel ESMA in a large animal model under conditions resembling a clinical setting. Such an approach could be useful for the fast 3-dimensional assessment of the arterial vessel wall in the context of atherosclerosis, aortic aneurysms, and hypertension.
Collapse
|
231
|
Phinikaridou A, Andia ME, Shah AM, Botnar RM. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. Am J Physiol Heart Circ Physiol 2012; 303:H1397-410. [PMID: 23064836 DOI: 10.1152/ajpheart.00583.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
232
|
Michalska M, Machtoub L, Manthey HD, Bauer E, Herold V, Krohne G, Lykowsky G, Hildenbrand M, Kampf T, Jakob P, Zernecke A, Bauer WR. Visualization of Vascular Inflammation in the Atherosclerotic Mouse by Ultrasmall Superparamagnetic Iron Oxide Vascular Cell Adhesion Molecule-1–Specific Nanoparticles. Arterioscler Thromb Vasc Biol 2012; 32:2350-7. [DOI: 10.1161/atvbaha.112.255224] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective—
Noninvasive imaging of atherosclerosis remains challenging in clinical applications. Here, we applied noninvasive molecular imaging to detect vascular cell adhesion molecule-1 in early and advanced atherosclerotic lesions of apolipoprotein E–deficient mice.
Methods and Results—
Ultrasmall superparamagnetic iron oxide particles functionalized with (P03011) or without (P3007) vascular cell adhesion molecule-1−binding peptide were visualized by ultra high-field (17.6 T) magnetic resonance. Injection of P03011 resulted in a marked signal loss in the aortic root of apolipoprotein E–deficient mice fed a Western diet for 8 and 26 weeks in vivo and ex vivo, compared with preinjection measurements, P3007-injected mice, and P03011- or P3007-injected age-matched C57BL/6 controls. Histological analyses revealed iron accumulations in the intima, in colocalization with vascular cell adhesion molecule-1−expressing macrophages and endothelial cells. Coherent anti-Stokes Raman scattering microscopy demonstrated iron signals in the intima and media of the aortic root in the P03011-injected but not untreated apolipoprotein E–deficient mice, localized to macrophages, luminal endothelial-like cells, and medial regions containing smooth muscle cells. Electron microscopy confirmed iron particles enclosed in endothelial cells and in the vicinity of smooth muscle cells.
Conclusion—
Using a combination of innovative imaging modalities, in this study, we demonstrate the feasibility of applying P03011 as a contrast agent for imaging of atherosclerosis.
Collapse
Affiliation(s)
- Marta Michalska
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Lina Machtoub
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Helga D. Manthey
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Elisabeth Bauer
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Volker Herold
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Georg Krohne
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Gunthard Lykowsky
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Markus Hildenbrand
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Thomas Kampf
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Peter Jakob
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Alma Zernecke
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| | - Wolfgang R. Bauer
- From the Experimentelle Physik V, Universität Würzburg, Würzburg, Germany (M.M., V.H., G.L., T.K., P.J.); Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany (M.M., E.B., W.R.B.); Universitätsklinik für Radiodiagnostik, Innsbruck Medical University, Innsbruck, Austria (L.M.); Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany (H.D.M., A.Z.); Biozentrum, Universität Würzburg, Würzburg, Germany (G.K.); MRB Research Center
| |
Collapse
|
233
|
Grieve SM, Lønborg J, Mazhar J, Tan TC, Ho E, Liu CC, Lay W, Gill AJ, Kuchel P, Bhindi R, Figtree GA. Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia-reperfusion injury. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:61-70. [PMID: 23052973 DOI: 10.1007/s00249-012-0857-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/26/2012] [Accepted: 09/03/2012] [Indexed: 12/23/2022]
Abstract
Inflammatory response plays an important role in myocardial ischaemia-reperfusion (IR) injury. Up-regulation of vascular cell adhesion molecule-1 (VCAM) contributes to this. We examined the feasibility of using intravenously administered VCAM-MPIO (microparticle iron oxide) to characterize VCAM expression patterns in myocardial IR injury. Myocardial ischemia was simulated by 30 min of transient ligation of the left coronary vessel in rats. Purified, monoclonal, rat-specific, mouse VCAM antibody coupled to MPIO was administered through the tail vein at 3 h post reperfusion and the rats were sacrificed 1 h later. High resolution 3D ex vivo MRI images were acquired at 9.4 Tesla. Extensive foci of signal voids were observed on T2*-weighted gradient-echo sequences, which corresponded to focal deposits of MPIOs observed in histological sections. The spatial density of the signal voids (expressed as a percentage of pixels below a threshold value) was increased in the peri-infarct zone compared with non-infarct zone (32.5 ± 4% vs. 13.9 ± 5%; n = 6; p < 0.05) and was substantially greater than the signal loss due to non-specific binding seen in rats administered IgG control MPIO (2.0 ± 1%; n = 6; p < 0.05). The VCAM-specific MPIO signal was also seen in myocardium and pericardium in segments remote from the IR injury, but not in rats undergoing a sham operation. In conclusion, molecular imaging in a model of myocardial IR injury is possible using high field MRI and VCAM-MPIOs and may provide novel insights beyond those achieved by standard histological and molecular analysis.
Collapse
Affiliation(s)
- Stuart M Grieve
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Despite recent progress, cardiovascular and allied metabolic disorders remain a worldwide health challenge. We must identify new targets for therapy, develop new agents for clinical use, and deploy them in a clinically effective and cost-effective manner. Molecular imaging of atherosclerotic lesions has become a major experimental tool in the last decade, notably by providing a direct gateway to the processes involved in atherogenesis and its complications. This review summarizes the current status of molecular imaging approaches that target the key processes implicated in plaque formation, development, and disruption and highlights how the refinement and application of such tools might aid the development and evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Thibaut Quillard
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
235
|
Kusunose J, Zhang H, Gagnon MKJ, Pan T, Simon SI, Ferrara KW. Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow. Ann Biomed Eng 2012; 41:89-99. [PMID: 22855121 DOI: 10.1007/s10439-012-0634-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum-sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (K (D) ~ 300 μM) and VCAM-1-targeting (K (D) ~ 30 μM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm(2)), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium.
Collapse
Affiliation(s)
- Jiro Kusunose
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
236
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
237
|
Geelen T, Paulis LEM, Coolen BF, Nicolay K, Strijkers GJ. Contrast-enhanced MRI of murine myocardial infarction - part I. NMR IN BIOMEDICINE 2012; 25:953-968. [PMID: 22308108 DOI: 10.1002/nbm.2768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/07/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The use of contrast agents has added considerable value to the existing cardiac MRI toolbox that can be used to study murine myocardial infarction, as it enables detailed in vivo visualization of the molecular and cellular processes that occur in the infarcted and remote tissue. A variety of non-targeted and targeted contrast agents to study myocardial infarction are available and under development. Manganese, which acts as a calcium analogue, can be used to assess cell viability. Traditionally, low-molecular-weight Gd-containing contrast agents are employed to measure infarct size in a late gadolinium enhancement experiment. Gd-based blood-pool agents are used to study the vascular status of the myocardium. The use of targeted contrast agents facilitates more detailed imaging of pathophysiological processes in the acute and chronic infarct. Cell death was visualized by contrast agents functionalized with annexin A5 that binds specifically to phosphatidylserine accessible on dying cells and with an agent that binds to the exposed DNA of dead cells. Inflammation in the myocardium was depicted by contrast agents that target cell adhesion molecules expressed on activated endothelium, by contrast agents that are phagocytosed by inflammatory cells, and by using a probe that targets enzymes excreted by inflammatory cells. Cardiac remodeling processes were visualized with a contrast agent that binds to angiogenic vasculature and with an MR probe that specifically binds to collagen in the fibrotic myocardium. These recent advances in murine contrast-enhanced cardiac MRI have made a substantial contribution to the visualization of the pathophysiology of myocardial infarction, cardiac remodeling processes and the progression to heart failure, which helps to design new treatments. This review discusses the advances and challenges in the development and application of MRI contrast agents to study murine myocardial infarction.
Collapse
Affiliation(s)
- Tessa Geelen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | | | | | | | | |
Collapse
|
238
|
de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012; 2:39. [PMID: 22809406 PMCID: PMC3441881 DOI: 10.1186/2191-219x-2-39] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/05/2012] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new class of agent with great potential for clinical applications. This is partly due to their long blood circulation time and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes.
Collapse
|
239
|
Nahrendorf M, McCarthy JR, Libby P. Over a hump for imaging atherosclerosis: nanobodies visualize vascular cell adhesion molecule-1 in inflamed plaque. Circ Res 2012; 110:902-3. [PMID: 22461358 DOI: 10.1161/circresaha.112.267260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
240
|
Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, Ahmadi M, Thielens N, Wernery U, Caveliers V, Muyldermans S, Lahoutte T, Fagret D, Ghezzi C, Devoogdt N. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 2012; 110:927-37. [PMID: 22461363 DOI: 10.1161/circresaha.112.265140] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE A noninvasive tool allowing the detection of vulnerable atherosclerotic plaques is highly needed. By combining nanomolar affinities and fast blood clearance, nanobodies represent potential radiotracers for cardiovascular molecular imaging. Vascular cell adhesion molecule-1 (VCAM1) constitutes a relevant target for molecular imaging of atherosclerotic lesions. OBJECTIVE We aimed to generate, radiolabel, and evaluate anti-VCAM1 nanobodies for noninvasive detection of atherosclerotic lesions. METHODS AND RESULTS Ten anti-VCAM1 nanobodies were generated, radiolabeled with technetium-99m, and screened in vitro on mouse and human recombinant VCAM1 proteins and endothelial cells and in vivo in apolipoprotein E-deficient (ApoE(-/-)) mice. A nontargeting control nanobody was used in all experiments to demonstrate specificity. All nanobodies displayed nanomolar affinities for murine VCAM1. Flow cytometry analyses using human human umbilical vein endothelial cells indicated murine and human VCAM1 cross-reactivity for 6 of 10 nanobodies. The lead compound cAbVCAM1-5 was cross-reactive for human VCAM1 and exhibited high lesion-to-control (4.95±0.85), lesion-to-heart (8.30±1.11), and lesion-to-blood ratios (4.32±0.48) (P<0.05 versus control C57Bl/6J mice). Aortic arch atherosclerotic lesions of ApoE(-/-) mice were successfully identified by single-photon emission computed tomography imaging. (99m)Tc-cAbVCAM1-5 binding specificity was demonstrated by in vivo competition experiments. Autoradiography and immunohistochemistry further confirmed cAbVCAM1-5 uptake in VCAM1-positive lesions. CONCLUSIONS The (99m)Tc-labeled, anti-VCAM1 nanobody cAbVCAM1-5 allowed noninvasive detection of VCAM1 expression and displayed mouse and human cross-reactivity. Therefore, this study demonstrates the potential of nanobodies as a new class of radiotracers for cardiovascular applications. The nanobody technology might evolve into an important research tool for targeted imaging of atherosclerotic lesions and has the potential for fast clinical translation.
Collapse
Affiliation(s)
- Alexis Broisat
- Laboratoire des Radiopharmaceutiques Bioclinique, INSERM 1039, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Golestani R, Slart RHJA, Dullaart RPF, Glaudemans AWJM, Zeebregts CJ, Boersma HH, Tio RA, Dierckx RAJO. Adverse cardiovascular effects of anabolic steroids: pathophysiology imaging. Eur J Clin Invest 2012; 42:795-803. [PMID: 22299602 DOI: 10.1111/j.1365-2362.2011.02642.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Anabolic-androgenic steroids (AAS) are widely abused for enhancing muscle mass, strength, growth and improving athletic performance. MATERIALS AND METHODS In recent years, many observational and interventional studies have shown important adverse cardiovascular effects of AAS abuse. CONCLUSIONS This review discusses established and future perspectives of novel molecular imaging techniques that may serve as potential tools for early detection of AAS-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Reza Golestani
- Departments of Nuclear Medicine and Molecular Imaging Endocrinology, Division of Vascular Surgery, Department of University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Lin CAJ, Chuang WK, Huang ZY, Kang ST, Chang CY, Chen CT, Li JL, Li JK, Wang HH, Kung FC, Shen JL, Chan WH, Yeh CK, Yeh HI, Lai WFT, Chang WH. Rapid transformation of protein-caged nanomaterials into microbubbles as bimodal imaging agents. ACS NANO 2012; 6:5111-5121. [PMID: 22607131 DOI: 10.1021/nn300768d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a general method for converting colloidal nanomaterials into microbubbles as ultrasound contrast agents. Protein-caged nanomaterials, made either by self-assembled nanoparticles' protein corona or by fluorescent gold nanoclusters, can be rapidly transformed into microbubbles via a sonochemical route, which promote disulfide cross-linking of cysteine residues between protein-caged nanomaterials and free albumin during acoustic cavitation. The proposed methods yielded microbubbles with multiple functions by adjusting the original nanoparticle/protein mixture. We also showed a new dual-modal imaging agent of fluorescent gold microbubbles in vitro and in vivo, which can hold many potential applications in medical diagnostics and therapy.
Collapse
Affiliation(s)
- Cheng-An J Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Burtea C, Ballet S, Laurent S, Rousseaux O, Dencausse A, Gonzalez W, Port M, Corot C, Elst LV, Muller RN. Development of a Magnetic Resonance Imaging Protocol for the Characterization of Atherosclerotic Plaque by Using Vascular Cell Adhesion Molecule-1 and Apoptosis-Targeted Ultrasmall Superparamagnetic Iron Oxide Derivatives. Arterioscler Thromb Vasc Biol 2012; 32:e36-48. [DOI: 10.1161/atvbaha.112.245415] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective—
Acute ischemic events are often caused by the disruption of lipid-rich plaques, which are frequently not angiographically visible. Vascular cell adhesion molecule-1 and apoptotic cell-targeted peptides studied during our previous work were conjugated to ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-R832 for vascular cell adhesion molecule-1 targeting; USPIO-R826 for apoptosis targeting) and assessed by magnetic resonance imaging.
Methods and Results—
Apolipoprotein E knockout mice were injected with 0.1 mmol Fe/kg body weight and were imaged on a 4.7-T Bruker magnetic resonance imaging until 24 hours after contrast agent administration. Aortic samples were then harvested and examined by histochemistry, and the magnetic resonance images and histological micrographs were analyzed with ImageJ software. The plaques enhanced by USPIO-R832 contained macrophages concentrated in the cap and a large necrotic core, whereas USPIO-R826 produced a negative enhancement of plaques rich in macrophages and neutral fats concentrated inside the plaque. Both USPIO derivatives colocalized with their target on histological sections and were able to detect plaques with a vulnerable morphology, but each one is detecting a specific environment.
Conclusion—
Our vascular cell adhesion molecule-1 and apoptotic cell targeted USPIO derivatives seem to be highly promising tools for atherosclerosis imaging contributing to the detection of vulnerable plaques. They are able to attain their target in low doses and as fast as 30 minutes after administration.
Collapse
Affiliation(s)
- Carmen Burtea
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Sébastien Ballet
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Sophie Laurent
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Olivier Rousseaux
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Anne Dencausse
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Walter Gonzalez
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Marc Port
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Claire Corot
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Luce Vander Elst
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| | - Robert N. Muller
- From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France
| |
Collapse
|
244
|
Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come? Nanomedicine (Lond) 2012; 7:899-916. [DOI: 10.2217/nnm.12.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, immunoinflammatory disease of the large and medium-sized arteries, and a major cause of cardiovascular diseases. Atherosclerosis often progresses silently for decades until the occurrence of a major catastrophic clinical event such as myocardial infarction, cardiac arrest and stroke. The main challenge in the diagnosis and management of atherosclerosis is to develop a safe, noninvasive technique that is accurate and reproducible, which can detect the biologically active high-risk vulnerable plaques (with ongoing active inflammation, angiogenesis and apoptosis) before the occurrence of an acute clinical event. This article reviews the events involved in the pathogenesis of atherosclerosis in light of recently advanced understanding of the molecular pathogenesis of the disease. Next, we elaborate on the interesting developments in molecular MRI, by describing the recently engineered magnetic nanoparticulate probes targeting clinically promising molecular and cellular players/processes, involved in early atherosclerotic lesion formation to plaque rupture and erosion.
Collapse
Affiliation(s)
- Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Rajneesh Chaudhary
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Takuya Tsuzuki
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
245
|
Site-specific targeting of antibody activity in vivo mediated by disease-associated proteases. J Control Release 2012; 161:804-12. [PMID: 22634092 DOI: 10.1016/j.jconrel.2012.05.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 01/19/2023]
Abstract
As a general strategy to selectively target antibody activity in vivo, a molecular architecture was designed to render binding activity dependent upon proteases in disease tissues. A protease-activated antibody (pro-antibody) targeting vascular cell adhesion molecule 1 (VCAM-1), a marker of atherosclerotic plaques, was constructed by tethering a binding site-masking peptide to the antibody via a matrix metalloprotease (MMP) susceptible linker. Pro-antibody activation in vitro by MMP-1 yielded a 200-fold increase in binding affinity and restored anti-VCAM-1 binding in tissue sections from ApoE⁻/⁻ mice ex vivo. The pro-antibody was efficiently activated by native proteases in aorta tissue extracts from ApoE⁻/⁻, but not from normal mice, and accumulated in aortic plaques in vivo with enhanced selectivity when compared to the unmodified antibody. Pro-antibody accumulation in aortic plaques was MMP-dependent, and significantly inhibited by a broad-spectrum MMP inhibitor. These results demonstrate that the activity of disease-associated proteases can be exploited to site-specifically target antibody activity in vivo.
Collapse
|
246
|
Clofent-Sanchez G, Jacobin-Valat MJ, Laroche-Traineau J. The growing interest of fibrin imaging in atherosclerosis. Atherosclerosis 2012; 222:22-5. [DOI: 10.1016/j.atherosclerosis.2012.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 12/19/2022]
|
247
|
Affiliation(s)
- S. Anna Sargsyan
- From the Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Joshua M. Thurman
- From the Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
248
|
Approaching the Asymptote: Obstacles and Opportunities for Nanomedicine in Cardiovascular Disease. Curr Atheroscler Rep 2012; 14:247-53. [DOI: 10.1007/s11883-012-0249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
249
|
Camici PG, Rimoldi OE, Gaemperli O, Libby P. Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J 2012; 33:1309-17. [PMID: 22507974 DOI: 10.1093/eurheartj/ehs067] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the last several decades, basic cardiovascular research has significantly enhanced our understanding of pathobiological processes leading to formation, progression, and complications of atherosclerotic plaques. By harnessing these advances in cardiovascular biology, imaging has advanced beyond its traditional anatomical domains to a tool that permits probing of particular molecular structures to image cellular behaviour and metabolic pathways involved in atherosclerosis. From the nascent atherosclerotic plaque to the death of inflammatory cells, several potential molecular and micro-anatomical targets for imaging with particular selective imaging probes and with a variety of imaging modalities have emerged from preclinical and animal investigations. Yet, substantive barriers stand between experimental use and wide clinical application of these novel imaging strategies. Each of the imaging modalities described herein faces hurdles-for example, sensitivity, resolution, radiation exposure, reproducibility, availability, standardization, or costs. This review summarizes the published literature reporting on functional imaging of vascular inflammation in atherosclerotic plaques emphasizing those techniques that have the greatest and/or most immediate potential for broad application in clinical practice. The prospective evaluation of these techniques and standardization of protocols by multinational networks could serve to determine their added value in clinical practice and guide their development and deployment.
Collapse
Affiliation(s)
- Paolo G Camici
- Vita-Salute University and Scientific Institute San Raffaele, Via Olgettina 60, Milan, Italy.
| | | | | | | |
Collapse
|
250
|
McAteer MA, Mankia K, Ruparelia N, Jefferson A, Nugent HB, Stork LA, Channon KM, Schneider JE, Choudhury RP. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscler Thromb Vasc Biol 2012; 32:1427-35. [PMID: 22499989 DOI: 10.1161/atvbaha.111.241844] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Endothelial cell activation is an important mediator of monocyte recruitment to sites of vascular inflammation. We hypothesized that high-affinity dual-ligand microparticles of iron oxide (MPIO), targeted to P-selectin and vascular cell adhesion molecule-1 (PV-MPIO), would identify activated endothelial cells during atherosclerosis progression. METHODS AND RESULTS In vivo magnetic resonance imaging in apolipoprotein E-deficient mice showed rapid binding of PV-MPIO to the aortic root, which was maximal 30 minutes post-MPIO injection and maintained at 60 minutes. Minimal binding was observed for control IgG-MPIO. Intensely low magnetic resonance signal areas, corresponding to PV-MPIO binding, were detected early (14 weeks), during foam cell formation. Contrast effects increased at 20 weeks during fibrofatty lesion development (P<0.05), but reduced by 30 weeks (P<0.01). Across all lesion severities, magnetic resonance imaging contrast effects correlated with lesion macrophage area quantified by immunohistochemistry (R=0.53; P<0.01). Near-infrared fluorescently labeled PV-MPIO were shown, by flow cytometry, to bind only activated endothelial cells and not to macrophages. Using en face immunofluorescence, we further demonstrate selective PV-MPIO accumulation at atherosclerosis-susceptible sites, with minimal binding to atherosclerosis-spared regions. CONCLUSIONS This high-affinity leukocyte-mimetic magnetic resonance imaging agent reveals endothelial activation. PV-MPIO demonstrate exceptionally rapid in vivo steady state accumulation, providing conspicuous magnetic resonance contrast effects that can be objectively quantified. In atherosclerosis progression, PV-MPIO tracked closely with the burden and distribution of plaque macrophages, not merely plaque size. On a biocompatible platform, this approach has potential for quantitative magnetic resonance imaging of inflammatory disease activity.
Collapse
Affiliation(s)
- Martina A McAteer
- Department of Cardiovascular Medicine, Level 6 West Wing, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|