201
|
Davies JE, Walker JT, Keating A. Concise Review: Wharton's Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells. Stem Cells Transl Med 2017; 6:1620-1630. [PMID: 28488282 PMCID: PMC5689772 DOI: 10.1002/sctm.16-0492] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
The umbilical cord has become an increasingly used source of mesenchymal stromal cells for preclinical and, more recently, clinical studies. Despite the increased activity, several aspects of this cell population have been under‐appreciated. Key issues are that consensus on the anatomical structures within the cord is lacking, and potentially different populations are identified as arising from a single source. To help address these points, we propose a histologically based nomenclature for cord structures and provide an analysis of their developmental origins and composition. Methods of cell isolation from Wharton's jelly are discussed and the immunophenotypic and clonal characteristics of the cells are evaluated. The perivascular origin of the cells is also addressed. Finally, clinical trials with umbilical cord cells are briefly reviewed. Interpreting the outcomes of the many clinical studies that have been undertaken with mesenchymal stromal cells from different tissue sources has been challenging, for many reasons. It is, therefore, particularly important that as umbilical cord cells are increasingly deployed therapeutically, we strive to better understand the derivation and functional characteristics of the cells from this important tissue source. Stem Cells Translational Medicine2017;6:1620–1630
Collapse
Affiliation(s)
- John E Davies
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - John T Walker
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Armand Keating
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Cell Therapy Program, Arthritis Program, Krembil Research Institute, and Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
202
|
Sun W, Tang H, Gao L, Sun X, Liu J, Wang W, Wu T, Lin H. Mechanisms of pulmonary fibrosis induced by core fucosylation in pericytes. Int J Biochem Cell Biol 2017; 88:44-54. [PMID: 28483669 DOI: 10.1016/j.biocel.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023]
Abstract
Pulmonary fibrosis is a common outcome of a variety of pulmonary interstitial diseases, and myofibroblasts are the main culprit for this process. Recent studies have found that pericytes are one of the major sources of myofibroblasts; the transformation of which involves a complex process of activation of TGF-β/Smad2/3 and PDGFβ/Erk signaling pathways. We have reported that the transforming growth factor-β receptor and platelet-derived growth factor-β receptor (TGF-βR I and PDGFβR, respectively) are modified by glycosylation. Thus, we hope to regulate the above-mentioned signal pathways through core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). Previous work has confirmed that TGF-β1 can induce the transformation of pericytes into myofibroblasts, while FUT8siRNA can inhibit such transformation. In the present study, we used an adenovirus packaging FUT8 shRNA to infect a bleomycin-induced pulmonary fibrosis mouse model and determined the effect of CF on pulmonary fibrosis by analyzing the mechanism of CF-mediated pericyte transformation. Our findings may shed new light on the mechanism of pulmonary interstitial fibrosis and provide a novel therapeutic target for clinical applications.
Collapse
Affiliation(s)
- Wei Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - HaiYing Tang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Lili Gao
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Xiuna Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Jia Liu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - WeiDong Wang
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Taihua Wu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China.
| | - Hongli Lin
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China.
| |
Collapse
|
203
|
Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM. Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 2017; 127:2262-2276. [PMID: 28463231 DOI: 10.1172/jci88629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.
Collapse
Affiliation(s)
- Christa F Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India
| | - Robert F Foronjy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Charles C Hong
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Department of Pathology and Laboratory Medicine or Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Anna L Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Loyd
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee USA
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Dwight J Klemm
- Department of Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA.,Geriatric Research Education and Clinical Center, Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
204
|
Dietrich A, Steinritz D, Gudermann T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017; 67:123-137. [PMID: 28499580 DOI: 10.1016/j.ceca.2017.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
The lungs as the gateways of our body to the external environment are essential for gas exchange. They are also exposed to toxicants from two sides, the airways and the vasculature. Apart from naturally produced toxic agents, millions of human made chemicals were produced since the beginning of the industrial revolution whose toxicity still needs to be determined. While the knowledge about toxic substances is increasing only slowly, a paradigm shift regarding the proposed mechanisms of toxicity at the plasma membrane emerged. According to their broad-range chemical reactivity, the mechanism of lung injury evoked by these agents has long been described as rather unspecific. Consequently, therapeutic options are still restricted to symptomatic treatment. The identification of molecular down-stream effectors in cells was a major step forward in the mechanistic understanding of the action of toxic chemicals and will pave the way for more causal and specific toxicity testing as well as therapeutic options. In this context, the involvement of Transient Receptor Potential (TRP) channels as chemosensors involved in the detection and effectors of toxicant action is an attractive concept intensively discussed in the scientific community. In this review we will summarize recent evidence for an involvement of TRP channels (TRPA1, TRPC4, TRPC6, TRPV1, TRPV4, TRPM2 and TRPM8) expressed in the lung in pathways of toxin sensing and as mediators of lung inflammation and associated diseases like asthma, COPD, lung fibrosis and edema formation. Specific modulators of these channels may offer new therapeutic options in the future and will endorse strategies for a causal, specifically tailored treatment based on the mechanistic understanding of molecular events induced by lung-toxic agents.
Collapse
Affiliation(s)
- Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany.
| | - Dirk Steinritz
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany; Bundeswehr-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| |
Collapse
|
205
|
Endale M, Ahlfeld S, Bao E, Chen X, Green J, Bess Z, Weirauch MT, Xu Y, Perl AK. Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development. Dev Biol 2017; 425:161-175. [PMID: 28408205 DOI: 10.1016/j.ydbio.2017.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα+ fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα+ fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα+ fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα+ fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29+ myofibroblasts and CD34+ lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization.
Collapse
Affiliation(s)
- Mehari Endale
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Shawn Ahlfeld
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Erik Bao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | - Jenna Green
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Zach Bess
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Matthew T Weirauch
- Center of Autoimmune Genomics and Ethology, USA; Divisions of Biomedical Informatics and Developmental Biology, USA
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Anne Karina Perl
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
206
|
Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract. Gene Ther 2017; 24:290-297. [PMID: 28346434 DOI: 10.1038/gt.2017.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022]
Abstract
An efficient adeno-associated virus (AAV) vector was constructed for the treatment of respiratory diseases. AAV serotypes, promoters and routes of administration potentially influencing the efficiency of gene transfer to airway cells were examined in the present study. Among the nine AAV serotypes (AAV1-9) screened in vitro and four serotypes (AAV1, 2, 6, 9) evaluated in vivo, AAV6 showed the strongest transgene expression. As for promoters, the cytomegalovirus (CMV) early enhancer/chicken β-actin (CAG) promoter resulted in more robust transduction than the CMV promoter. Regarding delivery routes, intratracheal administration resulted in strong transgene expression in the lung, whereas the intravenous and intranasal administration routes yielded negligible expression. The combination of the AAV6 capsid and CAG promoter resulted in sustained expression, and the intratracheally administered AAV6-CAG vector transduced bronchial cells and pericytes in the lung. These results suggest that AAV6-CAG vectors are more promising than the previously preferred AAV2 vectors for airway transduction, particularly when administered into the trachea. The present study offers an optimized strategy for AAV-mediated gene therapy for lung diseases, such as cystic fibrosis and pulmonary fibrosis.
Collapse
|
207
|
Marttila-Ichihara F, Elima K, Auvinen K, Veres TZ, Rantakari P, Weston C, Miyasaka M, Adams D, Jalkanen S, Salmi M. Amine oxidase activity regulates the development of pulmonary fibrosis. FASEB J 2017; 31:2477-2491. [PMID: 28251930 DOI: 10.1096/fj.201600935r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022]
Abstract
In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface-expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4+ lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3-knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Kati Elima
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Kaisa Auvinen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Tibor Z Veres
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Christopher Weston
- Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom; and
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, Turku, Finland.,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Japan
| | - David Adams
- Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom; and
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
208
|
Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol 2017; 10:341-351. [PMID: 27435108 PMCID: PMC5250615 DOI: 10.1038/mi.2016.61] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023]
Abstract
Fibrocytes are circulating mesenchymal precursors (CD45+, col 1+) recruited to fibrotic areas. Fibrocytes secrete profibrotic mediators including periostin; a matricellular protein that regulates cellular interactions with extracellular matrix (ECM) components. In bleomycin-induced fibrosis, periostin deficiency in structural or hematopoietic cells limits development of pulmonary fibrosis. To determine if hematopoietic-derived fibrocytes might secrete soluble factors to activate structural myofibroblast differentiation, wild-type (WT) fibroblasts were treated with conditioned medium from fibrocytes isolated from bleomycin-treated WT or periostin-/- mice. After 24 h we saw less α-smooth muscle actin expression in cells treated with conditioned medium from periostin-/- fibrocytes. Adoptive transfer of WT fibrocytes augmented lung fibrosis to a greater extent than transfer of fibrocytes from periostin-/- mice. In vitro analysis of fibrocytes and fibroblasts isolated from WT and periostin-/- mice treated with TGFβ1 or periostin demonstrated co-regulation of mesenchymal activation and beta 1 integrin as a potential receptor for periostin on fibrocytes. Additionally, connective tissue growth factor (CTGF) mRNA expression was increased in fibrocytes treated with periostin whereas CTGF and lysl oxidase (LOX) mRNA expression was low in bleomycin-treated periostin-/- fibrocytes. These data suggest fibrocytes may augment bleomycin-induced fibrosis via secretion of periostin and other soluble factors that promote myofibroblast differentiation.
Collapse
|
209
|
Xu H, He Y, Feng JQ, Shu R, Liu Z, Li J, Wang Y, Xu Y, Zeng H, Xu X, Xiang Z, Xue C, Bai D, Han X. Wnt3α and transforming growth factor-β induce myofibroblast differentiation from periodontal ligament cells via different pathways. Exp Cell Res 2017; 353:55-62. [PMID: 28223136 DOI: 10.1016/j.yexcr.2016.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023]
Abstract
Myofibroblasts are specialized cells that play a key role in connective tissue remodeling and reconstruction. Alpha-smooth muscle actin (α-SMA), vimentin and tenascin-C are myofibroblast phenotype, while α-SMA is the phenotypic marker. The observation that human periodontal ligament cells (hPDLCs) differentiate into myofibroblasts under orthodontic force has provided a new perspective for understanding of the biological and biomechanical mechanisms involved in orthodontic tooth movement. However, the cell-specific molecular mechanisms leading to myofibroblast differentiation in the periodontal ligament (PDL) remain unclear. In this study, we found that expression of Wnt3α, transforming growth factor-β1 (TGF-β1), α-SMA and tenascin-C increased in both tension and compression regions of the PDL under orthodontic load compared with unloaded control, suggesting that upregulated Wnt3α and TGF-β1 signaling might have roles in myofibroblast differentiation in response to orthodontic force. We reveal in vitro that both Wnt3α and TGF-β1 promote myofibroblast differentiation from hPDLCs. Dickkopf-1 (DKK1) impairs Wnt3α-induced myofibroblast differentiation in a β-catenin-dependent manner. TGF-β1 stimulates myofibroblast differentiation via a JNK-dependent mechanism. DKK1 has no significant effect on TGF-β1-induced myofibroblastic phenotype.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Yao He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, TX A&M University, 3302 Gaston Ave, Dallas, TX 75246, USA.
| | - Rui Shu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Zhe Liu
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Jingyu Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Yating Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Yang Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Huan Zeng
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Zichao Xiang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Chaoran Xue
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Ding Bai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| |
Collapse
|
210
|
Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, Schnapp LM, Liles WC, Duffield JS, Altemeier WA. Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L556-L567. [PMID: 28188224 DOI: 10.1152/ajplung.00349.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/26/2022] Open
Abstract
Pericytes are perivascular PDGF receptor-β+ (PDGFRβ+) stromal cells required for vasculogenesis and maintenance of microvascular homeostasis in many organs. Because of their unique juxtaposition to microvascular endothelium, lung PDGFRβ+ cells are well situated to detect proinflammatory molecules released following epithelial injury and promote acute inflammatory responses. Thus we hypothesized that these cells represent an unrecognized immune surveillance or injury-sentinel interstitial cell. To evaluate this hypothesis, we isolated PDGFRβ+ cells from murine lung and demonstrated that they have characteristics consistent with a pericyte population (referred to as pericyte-like cells for simplicity hereafter). We showed that pericyte-like cells expressed functional Toll-like receptors and upregulated chemokine expression following exposure to bronchoalveolar lavage fluid (BALF) collected from mice with sterile lung injury. Interestingly, BALF from mice without lung injury also induced chemokine expression in pericyte-like cells, suggesting that pericyte-like cells are primed to sense epithelial injury (permeability changes). Following LPS-induced lung inflammation, increased numbers of pericyte-like cells expressed IL-6, chemokine (C-X-C motif) ligand-1, chemokine (C-C motif) ligand 2/ monocyte chemotactic protein-1, and ICAM-1 in vivo. Sterile lung injury in pericyte-ablated mice was associated with decreased inflammation compared with normal mice. In summary, we found that pericyte-like cells are immune responsive and express diverse chemokines in response to lung injury in vitro and in vivo. Furthermore, pericyte-like cell ablation attenuated inflammation in sterile lung injury, suggesting that these cells play an important functional role in mediating lung inflammatory responses. We propose a model in which pericyte-like cells function as interstitial immune sentinels, detecting proinflammatory molecules released following epithelial barrier damage and participating in recruitment of circulating leukocytes.
Collapse
Affiliation(s)
- Chi F Hung
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - Kristen L Mittelsteadt
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - Rena Brauer
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bonnie L McKinney
- Department of Pathology, University of Washington, Seattle, Washington
| | - Teal S Hallstrand
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - William C Parks
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - Peter Chen
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - Lynn M Schnapp
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington
| | - W Conrad Liles
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington; and.,Department of Pharmacology, University of Washington, Seattle, Washington
| | - Jeremy S Duffield
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Washington; .,Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
211
|
Johnson BG, Ren S, Karaca G, Gomez IG, Fligny C, Smith B, Ergun A, Locke G, Gao B, Hayes S, MacDonnell S, Duffield JS. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6. J Am Soc Nephrol 2017; 28:1769-1782. [PMID: 28130402 DOI: 10.1681/asn.2016080826] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/β-catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis.
Collapse
Affiliation(s)
- Bryce G Johnson
- Research and Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine and.,Pathology and.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Shuyu Ren
- Research and Development, Biogen, Cambridge, Massachusetts; .,Division of Nephrology, Departments of Medicine and.,Pathology and.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Gamze Karaca
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Ivan G Gomez
- Research and Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine and.,Pathology and.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Cécile Fligny
- Division of Nephrology, Departments of Medicine and.,Pathology and
| | - Benjamin Smith
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Ayla Ergun
- Research and Development, Biogen, Cambridge, Massachusetts
| | - George Locke
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Benbo Gao
- Research and Development, Biogen, Cambridge, Massachusetts
| | | | | | - Jeremy S Duffield
- Research and Development, Biogen, Cambridge, Massachusetts; .,Division of Nephrology, Departments of Medicine and.,Pathology and.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
212
|
|
213
|
Chilosi M, Caliò A, Rossi A, Gilioli E, Pedica F, Montagna L, Pedron S, Confalonieri M, Doglioni C, Ziesche R, Grubinger M, Mikulits W, Poletti V. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Mod Pathol 2017; 30:26-38. [PMID: 27586205 DOI: 10.1038/modpathol.2016.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tubβ3), ZEB1, and β-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition. We investigated the immunohistochemical and immunofluorescent expression and precise location of ZEB1, Tubβ3, and β-catenin in tissue samples from 34 idiopathic pulmonary fibrosis cases and 21 controls (5 normal lungs and 16 other interstitial lung diseases). In 100% idiopathic pulmonary fibrosis samples, the three proteins were concurrently expressed in fibroblastic foci, as well in damaged epithelial cells overlying these lesions and in pericytes within neo-angiogenesis areas. These results were also confirmed by immunofluorescence assay. In controls the abnormal expression of the three proteins was absent or limited. This is the first study that relates concurrent expression of Tubβ3, ZEB1, and β-catenin to abnormal epithelial and myofibroblast differentiation in idiopathic pulmonary fibrosis, providing indirect but robust evidence of miR-200 deregulation and epithelial to mesenchymal transition activation in idiopathic pulmonary fibrosis. The abnormal expression and localization of these proteins in bronchiolar fibro-proliferative lesions are unique for idiopathic pulmonary fibrosis, and might represent a disease-specific marker in challenging lung biopsies.
Collapse
Affiliation(s)
- Marco Chilosi
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Anna Caliò
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Andrea Rossi
- Pulmonary Division, University and Hospital Trust, Verona, Italy
| | - Eliana Gilioli
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Federica Pedica
- Anatomic Pathology, University and Hospital Trust, Verona, Italy.,Department of Pathology, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Licia Montagna
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Serena Pedron
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Marco Confalonieri
- Department of Pulmonology, University Hospital of Cattinara, Trieste, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Rolf Ziesche
- Department of Pulmonary Medicine, Department of Medicine-II University of Wien, Vienna, Austria
| | - Markus Grubinger
- Department of Medicine I, Institute of Cancer Research, Medical University of Wien, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Medical University of Wien, Austria
| | - Venerino Poletti
- Pulmonology Unit, Department of Thoracic Diseases, GB Morgagni-L Pierantoni Hospital, Forlì, Italy.,Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
214
|
Nowarski R, Jackson R, Flavell RA. The Stromal Intervention: Regulation of Immunity and Inflammation at the Epithelial-Mesenchymal Barrier. Cell 2017; 168:362-375. [DOI: 10.1016/j.cell.2016.11.040] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022]
|
215
|
Classical transient receptor potential 6 (TRPC6) channels support myofibroblast differentiation and development of experimental pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2016; 1863:560-568. [PMID: 27932059 DOI: 10.1016/j.bbadis.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 11/21/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic progressive lung disease without effective medical treatment options leading to respiratory failure and death within 3-5years of diagnosis. The pathological process of PF is driven by aberrant wound-healing involving fibroblasts and myofibroblasts differentiated by secreted profibrotic transforming growth factor β (TGF-β1). Classical transient receptor potential 6 (TRPC6), a Na+- and Ca2+-permeable cation channel, is able to promote myofibroblast conversion of primary rat cardiac and human dermal fibroblasts and TRPC6-deficiency impaired wound healing after injury. To study a potential role of TRPC6 in the development of PF we analyzed lung function, gene and protein expression in wild-type (WT) and TRPC6-deficient (TRPC6-/-) lungs utilizing a bleomycin-induced PF-model. Fibrotic WT-mice showed a significant higher death rate while bleomycin-treated TRPC6-deficient mice were partly protected from fibrosis as a consequence of a lower production of collagen and an almost normal function of the respiratory system (reduced resistance and elastance compared to fibrotic WT-mice). On a molecular level TGF-β1 induced TRPC6 up-regulation, increased Ca2+ influx and nuclear NFAT localization in WT primary murine lung fibroblasts (PMLFs) resulting in higher stress fiber formation and accelerated contraction rates as compared to treated TRPC6-deficient fibroblasts. Therefore, we conclude that TRPC6 is an important determinant for TGF-β1-induced myofibroblast differentiation during fibrosis and specific channel inhibitors might be beneficial in a future treatment of PF.
Collapse
|
216
|
Lung remodeling associated with recovery from acute lung injury. Cell Tissue Res 2016; 367:495-509. [DOI: 10.1007/s00441-016-2521-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
|
217
|
Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Vascular Cells in Blood Vessel Wall Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:323-350. [PMID: 28212800 DOI: 10.1016/bs.apha.2016.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature.
Collapse
Affiliation(s)
- R Mazurek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - J M Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - R R Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - A Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - A Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - D M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
218
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
219
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
220
|
Cheng P, Wang J, Waghmare I, Sartini S, Coviello V, Zhang Z, Kim SH, Mohyeldin A, Pavlyukov MS, Minata M, Valentim CLL, Chhipa RR, Bhat KPL, Dasgupta B, La Motta C, Kango-Singh M, Nakano I. FOXD1-ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Res 2016; 76:7219-7230. [PMID: 27569208 DOI: 10.1158/0008-5472.can-15-2860] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Glioma stem-like cells (GSC) with tumor-initiating activity orchestrate the cellular hierarchy in glioblastoma and engender therapeutic resistance. Recent work has divided GSC into two subtypes with a mesenchymal (MES) GSC population as the more malignant subtype. In this study, we identify the FOXD1-ALDH1A3 signaling axis as a determinant of the MES GSC phenotype. The transcription factor FOXD1 is expressed predominantly in patient-derived cultures enriched with MES, but not with the proneural GSC subtype. shRNA-mediated attenuation of FOXD1 in MES GSC ablates their clonogenicity in vitro and in vivo Mechanistically, FOXD1 regulates the transcriptional activity of ALDH1A3, an established functional marker for MES GSC. Indeed, the functional roles of FOXD1 and ALDH1A3 are likely evolutionally conserved, insofar as RNAi-mediated attenuation of their orthologous genes in Drosophila blocks formation of brain tumors engineered in that species. In clinical specimens of high-grade glioma, the levels of expression of both FOXD1 and ALDH1A3 are inversely correlated with patient prognosis. Finally, a novel small-molecule inhibitor of ALDH we developed, termed GA11, displays potent in vivo efficacy when administered systemically in a murine GSC-derived xenograft model of glioblastoma. Collectively, our findings define a FOXD1-ALDH1A3 pathway in controling the clonogenic and tumorigenic potential of MES GSC in glioblastoma tumors. Cancer Res; 76(24); 7219-30. ©2016 AACR.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | - Vito Coviello
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Zhuo Zhang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Marat S Pavlyukov
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Claudia L L Valentim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rishi Raj Chhipa
- Department of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Biplab Dasgupta
- Department of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
221
|
Sandner P, Stasch JP. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respir Med 2016; 122 Suppl 1:S1-S9. [PMID: 28341058 DOI: 10.1016/j.rmed.2016.08.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022]
Abstract
It is now well established that the NO-sGC-cGMP signal transduction system mediates many different physiological functions in almost every conceivable organ system; this has been best characterized in the cardiovascular system where NO-driven cGMP production exerts a plethora of cytoprotective and anti-atherogenic effects, including dilatation, inhibition of vascular smooth muscle proliferation, blockade of leukocyte recruitment, and anti-platelet activity. Accordingly, dysfunctional NO-sGC-cGMP mediated signaling is perceived as the underlying pathophysiological cause of many cardiovascular and non-cardiovascular diseases. Due to the fundamental role of sGC in the signaling pathways triggered by NO, novel sGC 'modulators' have been identified that directly stimulate both heme-containing as well as heme-free sGC, the so-called 'sGC activators' and 'sGC stimulators', respectively. The beneficial effects of this new family of sGC 'modulators' extend beyond vasodilation, and their potential in other cardiovascular diseases aside from pulmonary arterial hypertension is promising. In animal models of hypertension and heart failure, reno-protective effects, attenuated cardiac fibrosis, and attenuated hypertrophy independent of hemodynamic effects have been shown. During recent years it has become obvious that cGMP increase by sGC modulators exerts direct antifibrotic efficacy in various organs as well as the skin. This review will provide an overview of the preclinical in vitro and in vivo studies for different fibrotic disorders including chronic renal, cardiac, liver, and lung fibrosis, as well as sclerosis and wound healing. Moreover, this review provides evidence for a new mode of action of sGC 'modulators' and its implication for clinical investigations in the treatment of fibrotic disorders such as pulmonary fibrosis and skin fibrosis.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer HealthCare AG, Drug Discovery, Wuppertal, Germany; Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Johannes Peter Stasch
- Bayer HealthCare AG, Drug Discovery, Wuppertal, Germany; Institute of Pharmacy, University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
222
|
Barron L, Gharib SA, Duffield JS. Lung Pericytes and Resident Fibroblasts: Busy Multitaskers. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2519-31. [PMID: 27555112 DOI: 10.1016/j.ajpath.2016.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Pericytes, resident fibroblasts, and mesenchymal stem cells are poorly described cell populations. They have recently been characterized in much greater detail in rodent lungs and have been shown to play important roles in development, homeostasis, response to injury and pathogens, as well as recovery from damage. These closely related mesenchymal cell populations form extensive connections to the lung's internal structure, as well as its internal and external surfaces. They generate and remodel extracellular matrix, coregulate the vasculature, help maintain and restore the epithelium, and act as sentries for the immune system. In this review, we revisit these functions in light of significant advances in characterizing and tracking lung fibroblast populations in rodents. Lineage tracing experiments have mapped the heritage, identified functions that discriminate lung pericytes from resident fibroblasts, identified a subset of mesenchymal stem cells, and shown these populations to be the predominant progenitors of pathological fibroblasts and myofibroblasts in lung diseases. These findings point to the importance of resident lung mesenchymal populations as therapeutic targets in acute lung injury as well as fibrotic and degenerative diseases. Far from being passive and quiescent, pericytes and resident fibroblasts are busily sensing and responding, through diverse mechanisms, to changes in lung health and function.
Collapse
Affiliation(s)
- Luke Barron
- Department of Research and Development, Biogen, Cambridge, Massachusetts
| | - Sina A Gharib
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Jeremy S Duffield
- Department of Research and Development, Biogen, Cambridge, Massachusetts; Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
223
|
Chen F, Fine A. Stem Cells in Lung Injury and Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2544-50. [PMID: 27524796 DOI: 10.1016/j.ajpath.2016.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
In this review, we summarize the recent literature on the biology of endogenous stem cells in adult lung injury repair. We focus on in vivo studies in mice with an emphasis on data generated using cell-specific Cre-dependent lineage-tracing systems. These studies provide new information on the identification of lung stem cells, their hierarchical relationships, the plasticity of their behavior in different types of injury, and the molecular signals that control their fates. Although most of this work has been on epithelial hierarchies, we expect that further development of robust genetic tools will foster meaningful investigations into how nonepithelial cell populations are controlled during lung injury repair in adults. The ultimate challenge will be to translate these findings to the pathogenesis and treatment of human lung diseases.
Collapse
Affiliation(s)
- Felicia Chen
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts.
| | - Alan Fine
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts; Division of Pulmonary, Critical Care, and Allergy, West Roxbury Veteran's Hospital, West Roxbury, Massachusetts
| |
Collapse
|
224
|
Xie T, Liang J, Liu N, Huan C, Zhang Y, Liu W, Kumar M, Xiao R, D'Armiento J, Metzger D, Chambon P, Papaioannou VE, Stripp BR, Jiang D, Noble PW. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J Clin Invest 2016; 126:3063-79. [PMID: 27400124 DOI: 10.1172/jci85328] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/12/2016] [Indexed: 01/21/2023] Open
Abstract
Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis.
Collapse
|
225
|
Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, Sato N, Yoshida M, Tsubouchi K, Kurita Y, Ito S, Fujita Y, Takasaka N, Utsumi H, Yanagisawa H, Hashimoto M, Wakui H, Kojima J, Shimizu K, Numata T, Kawaishi M, Kaneko Y, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Kuwano K. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2016; 197:504-16. [PMID: 27279371 DOI: 10.4049/jimmunol.1600265] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Fibroblastic foci, known to be the leading edge of fibrosis development in idiopathic pulmonary fibrosis (IPF), are composed of fibrogenic myofibroblasts. Autophagy has been implicated in the regulation of myofibroblast differentiation. Insufficient mitophagy, the mitochondria-selective autophagy, results in increased reactive oxygen species, which may modulate cell signaling pathways for myofibroblast differentiation. Therefore, we sought to investigate the regulatory role of mitophagy in myofibroblast differentiation as a part of IPF pathogenesis. Lung fibroblasts were used in in vitro experiments. Immunohistochemical evaluation in IPF lung tissues was performed. PARK2 was examined as a target molecule for mitophagy regulation, and a PARK2 knockout mouse was employed in a bleomycin-induced lung fibrosis model. We demonstrated that PARK2 knockdown-mediated mitophagy inhibition was involved in the mechanism for activation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway accompanied by enhanced myofibroblast differentiation and proliferation, which were clearly inhibited by treatment with both antioxidants and AG1296, a PDGFR inhibitor. Mitophagy inhibition-mediated activation of PDGFR signaling was responsible for further autophagy suppression, suggesting the existence of a self-amplifying loop of mitophagy inhibition and PDGFR activation. IPF lung demonstrated reduced PARK2 with concomitantly increased PDGFR phosphorylation. Furthermore, bleomycin-induced lung fibrosis was enhanced in PARK2 knockout mice and subsequently inhibited by AG1296. These findings suggest that insufficient mitophagy-mediated PDGFR/PI3K/AKT activation, which is mainly attributed to reduced PARK2 expression, is a potent underlying mechanism for myofibroblast differentiation and proliferation in fibroblastic foci formation during IPF pathogenesis.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Nayuta Saito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Nahoko Sato
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Masahiro Yoshida
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Kazuya Tsubouchi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Yusuke Kurita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Naoki Takasaka
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Haruhiko Yanagisawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Mitsuo Hashimoto
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Jun Kojima
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Kenichiro Shimizu
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Makoto Kawaishi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Yumi Kaneko
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Hisatoshi Asano
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Makoto Yamashita
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Makoto Odaka
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiaki Morikawa
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsutoshi Nakayama
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan; and
| |
Collapse
|
226
|
Zhou X, Gao T, Jiang XG, Xie ML. Protective effect of apigenin on bleomycin-induced pulmonary fibrosis in mice by increments of lung antioxidant ability and PPARγ expression. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
227
|
Abd El-Haliem NG. The possible role of milk thistle extract on titanium dioxide nanoparticles-induced lung toxicity in male albino rat. THE EGYPTIAN JOURNAL OF HISTOLOGY 2016; 39:179-190. [DOI: 10.1097/01.ehx.0000490004.09559.3a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
228
|
Gomez IG, Roach AM, Nakagawa N, Amatucci A, Johnson BG, Dunn K, Kelly MC, Karaca G, Zheng TS, Szak S, Peppiatt-Wildman CM, Burkly LC, Duffield JS. TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression of Fibrotic Kidney Disease. J Am Soc Nephrol 2016; 27:3639-3652. [PMID: 27026366 DOI: 10.1681/asn.2015111227] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.
Collapse
Affiliation(s)
- Ivan G Gomez
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Allie M Roach
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Naoki Nakagawa
- Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Aldo Amatucci
- Research & Development, Biogen, Cambridge, Massachusetts
| | - Bryce G Johnson
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Kadeshia Dunn
- Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
| | - Mark C Kelly
- Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
| | - Gamze Karaca
- Research & Development, Biogen, Cambridge, Massachusetts
| | | | - Suzanne Szak
- Research & Development, Biogen, Cambridge, Massachusetts
| | | | - Linda C Burkly
- Research & Development, Biogen, Cambridge, Massachusetts;
| | - Jeremy S Duffield
- Research & Development, Biogen, Cambridge, Massachusetts; .,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
229
|
Chow LN, Schreiner P, Ng BYY, Lo B, Hughes MR, Scott RW, Gusti V, Lecour S, Simonson E, Manisali I, Barta I, McNagny KM, Crawford J, Webb M, Underhill TM. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice. PLoS One 2016; 11:e0151765. [PMID: 26998906 PMCID: PMC4801399 DOI: 10.1371/journal.pone.0151765] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.
Collapse
Affiliation(s)
- Leola N. Chow
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
- * E-mail: (LNC); (TMU)
| | - Petra Schreiner
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Betina Y. Y. Ng
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bernard Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vionarica Gusti
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Samantha Lecour
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Eric Simonson
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Irina Manisali
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ingrid Barta
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Crawford
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray Webb
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - T. Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (LNC); (TMU)
| |
Collapse
|
230
|
Hammam OA, Elkhafif N, Attia YM, Mansour MT, Elmazar MM, Abdelsalam RM, Kenawy SA, El-Khatib AS. Wharton's jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep 2016; 6:21005. [PMID: 26876222 PMCID: PMC4753476 DOI: 10.1038/srep21005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is one of the most serious consequences of S. mansoni infection. The aim of the present study was to investigate the potential anti-fibrotic effect of human Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) combined with praziquantel (PZQ) in S. mansoni-infected mice. S. mansoni-infected mice received early (8th week post infection) and late (16th week post infection) treatment with WJMSCs, alone and combined with oral PZQ. At the 10th month post infection, livers were collected for subsequent flow cytometric, histopathological, morphometric, immunohistochemical, gene expression, and gelatin zymographic studies. After transplantation, WJMSCs differentiated into functioning liver-like cells as evidenced by their ability to express human hepatocyte-specific markers. Regression of S. mansoni-induced liver fibrosis was also observed in transplanted groups, as evidenced by histopathological, morphometric, and gelatin zymographic results besides decreased expression of three essential contributors to liver fibrosis in this particular model; alpha smooth muscle actin, collagen-I, and interleukin-13. PZQ additionally enhanced the beneficial effects observed in WJMSCs-treated groups. Our results suggest that combining WJMSCs to PZQ caused better enhancement in S. mansoni-induced liver fibrosis, compared to using each alone.
Collapse
Affiliation(s)
- Olfat A Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Nagwa Elkhafif
- Department of Electron Microscopy, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Yasmeen M Attia
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, P.O. Box 43, Cairo 11837, Egypt
| | - Mohamed T Mansour
- Department of Virology and Immunology, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr El-Aini, Cairo 11712, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, P.O. Box 43, Cairo 11837, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| |
Collapse
|
231
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Patrick A Link
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
232
|
Abstract
The extracellular matrix (ECM) of the lung serves as both a scaffold for resident cells and a mechanical support for respiratory function. The ECM is deposited during development and undergoes continuous turnover and maintenance during organ growth and homeostasis. Cells of the mesenchyme, including the tissue resident fibroblast, take a leading role in depositing and organizing the matrix and do so in an anatomically distinct fashion, with differing composition, organization, and mechanical properties within the airways, vessels, and alveoli of the lung. Recent technological advancements have allowed the lung's ECM biochemical composition and mechanical properties to be studied with improved resolution, thereby identifying novel disease-related changes in ECM characteristics. In parallel, efforts to study cells seeded on normal and disease-derived matrices have illustrated the powerful role the ECM can play in altering key functions of lung resident cells. The mechanical properties of the matrix have been identified as an important modifier of cell-matrix adhesions, with matrices of pathologic stiffness promoting profibrotic signaling and cell function. Ongoing work is identifying both mechanically activated pathways in mesenchymal cells and disease-related ECM molecules that biochemically regulate cell function. Uncovering the control systems by which cells respond to and regulate the matrix, and the failures in these systems that underlie aberrant repair, remains a major challenge. Progress in this area will be an essential element in efforts to engineer functional lung tissue for regenerative approaches and will be key to identifying new therapeutic strategies for lung diseases characterized by disturbed matrix architecture.
Collapse
|
233
|
Oliva-Olivera W, Leiva Gea A, Lhamyani S, Coín-Aragüez L, Alcaide Torres J, Bernal-López MR, García-Luna PP, Morales Conde S, Fernández-Veledo S, El Bekay R, Tinahones FJ. Differences in the Osteogenic Differentiation Capacity of Omental Adipose-Derived Stem Cells in Obese Patients With and Without Metabolic Syndrome. Endocrinology 2015; 156:4492-501. [PMID: 26372179 PMCID: PMC4655209 DOI: 10.1210/en.2015-1413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple studies have suggested that the reduced differentiation capacity of multipotent adipose tissue-derived mesenchymal stem cells (ASCs) in obese subjects could compromise their use in cell therapy. Our aim was to assess the osteogenic potential of omental ASCs and to examine the status of the isolated CD34(negative)-enriched fraction of omental-derived ASCs from subjects with different metabolic profiles. Omental ASCs from normal-weight subjects and subjects with or without metabolic syndrome were isolated, and the osteogenic potential of omental ASCs was evaluated. Additionally, osteogenic and clonogenic potential, proliferation rate, mRNA expression levels of proteins involved in redox balance, and fibrotic proteins were examined in the CD34(negative)-enriched fraction of omental-derived ASCs. Both the omental ASCs and the CD34(negative)-enriched fraction of omental ASCs from subjects without metabolic syndrome have a greater osteogenic potential than those from subjects with metabolic syndrome. The alkaline phosphatase and osteonectin mRNA were negatively correlated with nicotinamide adenine dinucleotide phosphate oxidase-2 mRNA and the mRNA expression levels of the fibrotic proteins correlated positively with nicotinamide adenine dinucleotide phosphate oxidase-5 mRNA and the homeostasis model assessment. Although the population doubling time was significantly higher in subjects with a body mass index of 25 kg/m(2) or greater, only the CD34(negative)-enriched omental ASC fraction in the subjects with metabolic syndrome had a higher population doubling time than the normal-weight subjects. The osteogenic, clonogenic, fibrotic potential, and proliferation rate observed in vitro suggest that omental ASCs from subjects without metabolic syndrome are more suitable for therapeutic osteogenic applications than those from subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Wilfredo Oliva-Olivera
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Antonio Leiva Gea
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Said Lhamyani
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Leticia Coín-Aragüez
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Juan Alcaide Torres
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Maria Rosa Bernal-López
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Pedro Pablo García-Luna
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Salvador Morales Conde
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Sonia Fernández-Veledo
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Rajaa El Bekay
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Francisco José Tinahones
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| |
Collapse
|
234
|
Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 2015; 6:254. [PMID: 26594173 PMCID: PMC4633493 DOI: 10.3389/fphar.2015.00254] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and devastating disorder. It is characterized by alveolar epithelial cell injury and activation, infiltration of inflammatory cells, initiation of epithelial mesenchymal transition (EMT), aberrant proliferation and activation of fibroblasts, exaggerated deposition of extracellular matrix (ECM) proteins, and finally leading to the destruction of lung parenchyma. MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that post-transcriptionally regulate gene expression in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis and metastasis. As a result, miRNAs have emerged as a major area of biomedical research with relevance to pulmonary fibrosis. In this context, the present review discusses specific patterns of dysregulated miRNAs in patients with IPF. Further, we discuss the current understanding of miRNAs involvement in regulating lung inflammation, TGF-β1-mediated EMT and fibroblast differentiation processes, ECM genes expression, and in the progression of lung fibrosis. The possible future directions that might lead to novel therapeutic strategies for the treatment of pulmonary fibrosis are also reviewed.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University Tiruchirappalli, India
| | - P Rajaguru
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University Tiruchirappalli, India
| | - P S Sudhakar Gandhi
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University Tiruchirappalli, India
| |
Collapse
|
235
|
Intratracheal Cell Transfer Demonstrates the Profibrotic Potential of Resident Fibroblasts in Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2939-48. [DOI: 10.1016/j.ajpath.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022]
|
236
|
Abstract
PURPOSE OF REVIEW Systemic sclerosis, an autoimmune disease of unknown origin, is characterized by progressive fibrosis that can affect all organs of the body. To date, there are no effective therapies for the disease. This paucity of treatment options is primarily because of limited understanding of the processes that initiate and promote fibrosis in general and a lack of animal models that specifically emulate the chronic nature of systemic sclerosis. Most models capitulate acute injury-induced fibrosis in specific organs. Yet, regardless of the model a major outstanding question in the field is the cellular origin of fibrosing cells. RECENT FINDINGS A multitude of origins have been proposed in a variety of tissues, including resident tissue stroma, fibrocytes, pericytes, adipocytes, epithelial cells and endothelial cells. Developmentally derived fibroblast lineages have recently been elucidated with fibrosing potential in injury models. Increasing data support the pericyte as a fibrosing cell origin in diverse fibrosis models and adipocytes have recently been proposed. Fibrocytes, epithelial cells and endothelial cells also have been examined, although data do not as strongly support these possible origins. SUMMARY In this review, we discuss recent evidence arguing in favor of and against proposed origins of fibrosing cells in diverse models of fibrosis. We highlight outstanding controversies and propose how future research may elucidate how fibrosing cells arise and what processes can be targeted in order to treat systemic sclerosis.
Collapse
Affiliation(s)
- Sarah Ebmeier
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Department of Dermatology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
237
|
Geng J, Huang X, Li Y, Xu X, Li S, Jiang D, Liang J, Jiang D, Wang C, Dai H. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis. Respir Res 2015; 16:124. [PMID: 26453058 PMCID: PMC4600336 DOI: 10.1186/s12931-015-0286-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by fibroblastic foci and progressive scarring of the pulmonary parenchyma. IPF fibroblasts display increased proliferation and enhanced migration and invasion, analogous to cancer cells. This transformation-like phenotype of fibroblasts plays an important role in the development of pulmonary fibrosis, but the mechanism for this is not well understood. Methods In this study, we compared gene expression profiles in fibrotic lung tissues from IPF patients and normal lung tissues from patients with primary spontaneous pneumothorax using a cDNA microarray to examine the mechanisms involved in the pathogenesis of IPF. In a cDNA microarray, we found that USP13 was decreased in lung tissues from patients with IPF, which was further confirmed by results from immunohistochemistry and western blot assays. Then, we used RNA interference in MRC-5 cells to inhibit USP13 and evaluated its effects by western blot, real-time RT-PCR, bromodeoxyuridine incorporation, and transwell assays. We also used co-immunoprecipitation and immunofluorescence staining to identify the correlation between USP13 and PTEN in IPF. Results USP13 expression levels were markedly reduced in fibroblastic foci and primary IPF fibroblast lines. The depletion of USP13 resulted in the transformation of fibroblasts into an aggressive phenotype with enhanced proliferative, migratory, and invasive capacities. Additionally, USP13 interacted with PTEN and mediated PTEN ubiquitination and degradation in lung fibroblasts. Conclusions Down-regulation of USP13 mediates PTEN protein loss and fibroblast phenotypic change, and thereby plays a crucial role in IPF pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0286-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Geng
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, P.R. China.
| | - Xiaoxi Huang
- Department of Medical Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, P.R. China.
| | - Ying Li
- Department of Medical Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, P.R. China.
| | - Xuefeng Xu
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, P.R. China. .,National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China.
| | - Shuhong Li
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, P.R. China.
| | - Dingyuan Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, P.R. China.
| | - Jiurong Liang
- Department of Medicine Pulmonary Division and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Dianhua Jiang
- Department of Medicine Pulmonary Division and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, P.R. China. .,National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China. .,China-Japan Friendship Hospital, Beijing, 100029, P.R. China.
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, P.R. China. .,China-Japan Friendship Hospital, Beijing, 100029, P.R. China.
| |
Collapse
|
238
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015. [PMID: 26389119 DOI: 10.3389/fmed.2015.00059.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
239
|
Snyder JM, Washington IM, Birkland T, Chang MY, Frevert CW. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry. J Histochem Cytochem 2015; 63:952-67. [PMID: 26385570 DOI: 10.1369/0022155415610383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023] Open
Abstract
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.
Collapse
Affiliation(s)
- Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF)
| | - Ida M Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF)
| | - Timothy Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| | - Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF),Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF),Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| |
Collapse
|
240
|
Sontake V, Shanmukhappa SK, DiPasquale BA, Reddy GB, Medvedovic M, Hardie WD, White ES, Madala SK. Fibrocytes Regulate Wilms Tumor 1-Positive Cell Accumulation in Severe Fibrotic Lung Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:3978-91. [PMID: 26371248 DOI: 10.4049/jimmunol.1500963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Collagen-producing myofibroblast transdifferentiation is considered a crucial determinant in the formation of scar tissue in the lungs of patients with idiopathic pulmonary fibrosis. Multiple resident pulmonary cell types and bone marrow-derived fibrocytes have been implicated as contributors to fibrotic lesions because of the transdifferentiation potential of these cells into myofibroblasts. In this study, we assessed the expression of Wilms tumor 1 (WT1), a known marker of mesothelial cells, in various cell types in normal and fibrotic lungs. We demonstrate that WT1 is expressed by both mesothelial and mesenchymal cells in idiopathic pulmonary fibrosis lungs but has limited or no expression in normal human lungs. We also demonstrate that WT1(+) cells accumulate in fibrotic lung lesions, using two different mouse models of pulmonary fibrosis and WT1 promoter-driven fluorescent reporter mice. Reconstitution of bone marrow cells into a TGF-α transgenic mouse model demonstrated that fibrocytes do not transform into WT1(+) mesenchymal cells, but they do augment accumulation of WT1(+) cells in severe fibrotic lung disease. Importantly, the number of WT1(+) cells in fibrotic lesions was correlated with severity of lung disease as assessed by changes in lung function, histology, and hydroxyproline levels in mice. Finally, inhibition of WT1 expression was sufficient to attenuate collagen and other extracellular matrix gene production by mesenchymal cells from both murine and human fibrotic lungs. Thus, the results of this study demonstrate a novel association between fibrocyte-driven WT1(+) cell accumulation and severe fibrotic lung disease.
Collapse
Affiliation(s)
- Vishwaraj Sontake
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Biochemistry, National Institute of Nutrition, Hyderabad 500007, India
| | - Shiva K Shanmukhappa
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Betsy A DiPasquale
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad 500007, India
| | - Mario Medvedovic
- Laboratory for Statistical Genomics and Systems Biology, University of Cincinnati, Cincinnati, OH 45267; and
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Eric S White
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
| |
Collapse
|
241
|
Shipe R, Burdick MD, Strieter BA, Liu L, Shim YM, Sung SS, Teague WG, Mehrad B, Strieter RM, Rose CE. Number, activation, and differentiation of circulating fibrocytes correlate with asthma severity. J Allergy Clin Immunol 2015; 137:750-7.e3. [PMID: 26371837 DOI: 10.1016/j.jaci.2015.07.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND A biomarker that predicts poor asthma control would be clinically useful. Fibrocytes are bone marrow-derived circulating progenitor cells that have been implicated in tissue fibrosis and T(H)2 responses in asthmatic patients. OBJECTIVE We sought to test the hypothesis that the concentration and activation state of peripheral blood fibrocytes correlates with asthma severity. METHODS By using fluorescence-activated cell sorting analysis, fibrocytes (CD45(+) and collagen 1 [Col1](+)) were enumerated and characterized in the buffy coats of fresh peripheral blood samples from 15 control subjects and 40 asthmatic patients. RESULTS Concentrations of peripheral blood total (CD45(+)Col1(+)), activated (the TGF-β transducing protein phosphorylated SMAD2/3 [p-SMAD2/3](+) or phosphorylated AKT [p-AKT](+)), and differentiated (α-smooth muscle actin [α-SMA](+)) fibrocytes were increased in asthmatic patients compared with control subjects. The increase in total and CD45(+)Col1(+)CXCR4(+) fibrocytes was primarily seen in patients with severe asthma (Global Initiative for Asthma steps 4-5) as opposed to those with milder asthma (Global Initiative for Asthma steps 1-3). In addition, numbers of circulating α-SMA(+) and α-SMA(+)CXCR4(+) fibrocytes were increased in asthmatic patients experiencing an asthma exacerbation in the preceding 12 months. A significant correlation (P < .05) was observed between CD45(+)Col1(+)CXCR4(+) fibrocytes and the activation phenotypes CD45(+)Col1(+)p-SMAD2/3(+) and CD45(+)Col1(+)p-AKT(+). CONCLUSION There was correlation between circulating fibrocyte subsets and asthma severity, and there was an increased number of activated/differentiated fibrocytes in circulating blood of asthmatic patients experiencing an exacerbation in the preceding 12 months.
Collapse
Affiliation(s)
- Ryan Shipe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Marie D Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Brett A Strieter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Ling Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Yun Michael Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Sun-sang Sung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - W Gerald Teague
- Pulmonary Division, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Borna Mehrad
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Robert M Strieter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - C Edward Rose
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
242
|
Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov 2015; 14:693-720. [PMID: 26338155 DOI: 10.1038/nrd4592] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis, which leads to progressive loss of tissue function and eventual organ failure, has been estimated to contribute to ~45% of deaths in the developed world, and so new therapeutics to modulate fibrosis are urgently needed. Major advances in our understanding of the mechanisms underlying pathological fibrosis are supporting the search for such therapeutics, and the recent approval of two anti-fibrotic drugs for idiopathic pulmonary fibrosis has demonstrated the tractability of this area for drug discovery. This Review examines the pharmacology and structural information for small molecules being evaluated for lung, liver, kidney and skin fibrosis. In particular, we discuss the insights gained from the use of these pharmacological tools, and how these entities can inform, and probe, emerging insights into disease mechanisms, including the potential for future drug combinations.
Collapse
|
243
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2:59. [PMID: 26389119 PMCID: PMC4558529 DOI: 10.3389/fmed.2015.00059] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
244
|
Li FZ, Cai PC, Song LJ, Zhou LL, Zhang Q, Rao SS, Xia Y, Xiang F, Xin JB, Greer PA, Shi HZ, Su Y, Ma WL, Ye H. Crosstalk between calpain activation and TGF-β1 augments collagen-I synthesis in pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1796-804. [DOI: 10.1016/j.bbadis.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/10/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
|
245
|
Cottin V, Crestani B, Danel C, Debray MP, Nunes H, Poletti V, Prévost G, Vergnon JM, Wallaert B, Cordier JF. [3rd French day of idiopathic pulmonary fibrosis. September 19, 2014]. REVUE DE PNEUMOLOGIE CLINIQUE 2015; 71:189-206. [PMID: 26232107 DOI: 10.1016/j.pneumo.2015.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Affiliation(s)
- V Cottin
- Service de pneumologie, CHU Bichat, 46, rue Henri-Huchard, 75877 Paris, France.
| | - B Crestani
- Département d'anatomie pathologique, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France
| | - C Danel
- Service de radiologie - imagerie médicale, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France
| | - M-P Debray
- Service de pneumologie, hôpital Avicenne, 125, route de Stalingrad, 93000 Bobigny, France
| | - H Nunes
- Dipartimento Toracico, Ospedale GB Morgagni, U.O. di Pneumologia, Via Carlo Forlanini 34, 47121 Forlì (FC), Italie
| | - V Poletti
- Service de pneumologie, CHU Larrey, 24, chemin de Pouvourville, 31059 Toulouse, France
| | - G Prévost
- Service de pneumologie, hôpital Nord, CHU de Saint-Étienne, bâtiment C, 42055 Saint-Étienne cedex 2, France
| | - J-M Vergnon
- Service de pneumologie, CHRU Calmette, boulevard du Professeur-J.-Leclercq, 59037 Lille, France
| | - B Wallaert
- Service de pneumologie, hôpital Louis-Pradel, université Claude-Bernard, BP Lyon Montchat, 69394 Lyon cedex 03, France
| | - J-F Cordier
- Service de pneumologie, CHU Louis-Pradel, 28, avenue du Doyen-Lépine, 69677 Lyon cedex, France
| |
Collapse
|
246
|
Bichsel CA, Hall SR, Schmid RA, Guenat OT, Geiser T. Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels. Tissue Eng Part A 2015; 21:2166-76. [DOI: 10.1089/ten.tea.2014.0545] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Colette A. Bichsel
- Lung Regeneration Technologies, ARTORG Center, University of Bern, Bern, Switzerland
- Division of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
| | - Sean R.R. Hall
- Division of Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Division of Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Lung Regeneration Technologies, ARTORG Center, University of Bern, Bern, Switzerland
- Division of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Division of Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Thomas Geiser
- Division of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
247
|
|
248
|
Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015; 74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
|
249
|
Hematopoietic Origin of Murine Lung Fibroblasts. Stem Cells Int 2015; 2015:159713. [PMID: 26185498 PMCID: PMC4491389 DOI: 10.1155/2015/159713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple origins, including the bone marrow, have been suggested to contribute to fibroblast populations in the lung. Using bone marrow reconstitution strategies, the present study tested the hypothesis that the bone marrow hematopoietic stem cell (HSC) gives rise to lung tissue fibroblasts in vivo. Data demonstrate that the nonadherent bone marrow fraction is enriched for CD45+ HSC-derived cells and was able to reconstitute hematopoiesis in lethally irradiated animals. Analysis of peripheral blood and lung tissues from engrafted mice demonstrated the ability of this population to give rise to CD45+/Discoidin-Domain Receptor-2+ (DDR2) circulating fibroblast precursors (CFPs) in blood and fibroblast populations in lung. An HSC origin for lung fibroblasts was confirmed using a novel clonal cell transplantation method in which the bone marrow is reconstituted by a clonal population derived from a single HSC. Together, these findings provide evidence for an HSC contribution to lung fibroblasts and demonstrate a circulating intermediate through the CD45+/DDR2+ HSC-derived CFP.
Collapse
|
250
|
Pippin JW, Kaverina NV, Eng DG, Krofft RD, Glenn ST, Duffield JS, Gross KW, Shankland SJ. Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease. Am J Physiol Renal Physiol 2015; 309:F341-58. [PMID: 26062877 DOI: 10.1152/ajprenal.00438.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 06/04/2015] [Indexed: 12/31/2022] Open
Abstract
Modified vascular smooth muscle cells of the kidney afferent arterioles have recently been shown to serve as progenitors for glomerular epithelial cells in response to glomerular injury. To determine whether such cells of renin lineage (CoRL) serve as progenitors for other cells in kidney disease characterized by both glomerular and tubulointerstitial injury, permanent genetic cell fate mapping of adult CoRL using Ren1cCreER × Rs-tdTomato-R reporter mice was performed. TdTomato-labeled CoRL were almost completely restricted to the juxtaglomerular compartment in healthy kidneys. Following 2 wk of antibody-mediated focal segmental glomerulosclerosis (FSGS) or 16 wk of ⅚ nephrectomy-induced chronic kidney diseases, tdTomato-mapped CoRL were identified in both interstitial and glomerular compartments. In the interstitium, PDGFβ receptor (R)-expressing cells significantly increased, and a portion of these expressed tdTomato. This was accompanied by a decrease in native pericyte number, but an increase in the number of tdTomato cells that coexpressed the pericyte markers PDGFβ-R and NG2. These cells surrounded vessels and coexpressed the pericyte markers CD73 and CD146, but not the endothelial marker ERG. Within glomeruli of reporter mice with the ⅚ nephrectomy model, a subset of labeled CoRL migrated to the glomerular tuft and coexpressed podocin and synaptopodin. By contrast, labeled CoRL were not detected in glomerular or interstitial compartments following uninephrectomy. These observations indicate that in addition to supplying new adult podocytes to glomeruli, CoRL have the capacity to become new adult pericytes in the setting of interstitial disease. We conclude that CoRL have the potential to function as progenitors for multiple adult cell types in kidney disease.
Collapse
Affiliation(s)
- Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington;
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Ronald D Krofft
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Sean T Glenn
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | - Jeremy S Duffield
- Division of Nephrology, University of Washington, Seattle, Washington; Biogen IDEC, Cambridge, Massachusetts
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | | |
Collapse
|