201
|
Burks CA, Rhodes SD, Bessler WK, Chen S, Smith A, Gehlhausen JR, Hawley ET, Jiang L, Li X, Yuan J, Lu Q, Jacobsen M, Sandusky GE, Jones DR, Clapp DW, Blakeley JO. Ketotifen Modulates Mast Cell Chemotaxis to Kit-Ligand, but Does Not Impact Mast Cell Numbers, Degranulation, or Tumor Behavior in Neurofibromas of Nf1-Deficient Mice. Mol Cancer Ther 2019; 18:2321-2330. [PMID: 31527226 DOI: 10.1158/1535-7163.mct-19-0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes in humans. Mutant NF1 results in dysregulated RAS allowing neoplasms throughout the neuroaxis. Plexiform neurofibromas (pNF) afflict up to 50% of patients with NF1. They are complex tumors of the peripheral nerve that cause major morbidity via nerve dysregulation and mortality via conversion to malignant sarcoma. Genetically engineered mouse models (GEMM) of NF1 provide valuable insights for the identification of therapies that have utility in people with pNF. Preclinical studies in GEMMs implicate mast cells and the c-Kit/Kit ligand pathway in pNF tumorigenesis. Kit ligand is a potent chemokine secreted by tumorigenic, Nf1-deficient Schwann cells. Ketotifen is an FDA-approved drug for the treatment of allergic conjunctivitis and asthma that promotes mast cell stabilization and has been used in prior case studies to treat or prevent pNFs. This study investigated the effect of ketotifen on mast cell infiltration and degranulation in the presence and absence of Kit ligand provocation and the effect of ketotifen on shrinking or preventing pNF formation in the Nf1flox/flox ;PostnCre + GEMM. Ketotifen decreased mast cell infiltration in response to exogenous Kit ligand administration, but did not affect mast cell degranulation. Importantly, ketotifen did not reduce mast cells numbers or activity in pNF and did not prevent pNF formation or decrease the volume of established pNF despite administration of pharmacologically active doses. These findings suggest that ketotifen has limited use as monotherapy to prevent or reduce pNF burden in the setting of Nf1 mutations.
Collapse
Affiliation(s)
- Ciersten A Burks
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Steven D Rhodes
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Shi Chen
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Abbi Smith
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | | | - Eric T Hawley
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Li Jiang
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Xiaohong Li
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Jin Yuan
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Qingbo Lu
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David R Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - D Wade Clapp
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
202
|
Yang TLB, Kim BS. Pruritus in allergy and immunology. J Allergy Clin Immunol 2019; 144:353-360. [PMID: 31395149 PMCID: PMC6690370 DOI: 10.1016/j.jaci.2019.06.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/20/2022]
Abstract
Although evolutionarily conserved to expel ectoparasites and aid in the clearance of toxins and noxious environmental stimuli from the host, the type 2 immune response can become pathologic in the setting of a variety of allergic disorders. Itch can be a behavioral extension of type 2 immunity by evoking scratching and, in the setting of disease, can become chronic and thus highly pathologic as well. Classically, our understanding of itch mechanisms has centered around the canonical IgE-mast cell-histamine axis. However, therapies aimed at blocking the histaminergic itch pathway have been largely ineffective, suggesting the existence of nonhistaminergic itch pathways. Indeed, recent advances in itch biology have provided critical new insight into a variety of novel therapeutic avenues for chronic itch in the setting of a number of allergic disorders. Here we highlight how these new developments will likely inform the problem of pruritus in a variety of well-established and emerging conditions in the field of allergy.
Collapse
Affiliation(s)
- Ting-Lin B Yang
- Center for the Study of Itch, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
203
|
Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20143395. [PMID: 31295950 PMCID: PMC6678575 DOI: 10.3390/ijms20143395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cells are pluripotent leukocytes that reside in the mucosa and connective tissue. Recent studies show an increased prevalence of cardiovascular disease among patients with mastocytosis, which is a hematological disease that is characterized by the accumulation of mast cells due to clonal proliferation. This association suggests an important role for mast cells in cardiovascular disease. Indeed, the evidence establishing the contribution of mast cells to the development and progression of atherosclerosis is continually increasing. Mast cells may contribute to plaque formation by stimulating the formation of foam cells and causing a pro-inflammatory micro-environment. In addition, these cells are able to promote plaque instability by neo-vessel formation and also by inducing intraplaque hemorrhage. Furthermore, mast cells appear to stimulate the formation of fibrosis after a cardiac infarction. In this review, the available data on the role of mast cells in cardiovascular disease are summarized, containing both in vitro research and animal studies, followed by a discussion of human data on the association between cardiovascular morbidity and diseases in which mast cells are important: Kounis syndrome, mastocytosis and allergy.
Collapse
|
204
|
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Marone G, Spadaro G. Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function. Front Cell Neurosci 2019; 13:299. [PMID: 31333418 PMCID: PMC6616107 DOI: 10.3389/fncel.2019.00299] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated via aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10−7 M – 5 × 10−6 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10−5 M – 3 × 10−4 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the de novo synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Felice Rivellese
- Center for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Arturo Genovese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
205
|
Ebo DG, Clarke RC, Mertes PM, Platt PR, Sabato V, Sadleir PH. Molecular mechanisms and pathophysiology of perioperative hypersensitivity and anaphylaxis: a narrative review. Br J Anaesth 2019; 123:e38-e49. [DOI: 10.1016/j.bja.2019.01.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
|
206
|
Blake KJ, Jiang XR, Chiu IM. Neuronal Regulation of Immunity in the Skin and Lungs. Trends Neurosci 2019; 42:537-551. [PMID: 31213389 DOI: 10.1016/j.tins.2019.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
The nervous and immune systems are classically studied as two separate entities. However, their interactions are crucial for maintaining barrier functions at tissues constantly exposed to the external environment. We focus here on the role of neuronal signaling in regulating the immune system at two major barriers: the skin and respiratory tract. Barrier tissues are heavily innervated by sensory and autonomic nerves, and are densely populated by resident immune cells, allowing rapid, coordinated responses to noxious stimuli, as well as to bacterial and fungal pathogens. Neural release of neurotransmitters and neuropeptides allows fast communication with immune cells and their recruitment. In addition to maintaining homeostasis and fighting infections, neuroimmune interactions are also implicated in several chronic inflammatory conditions such as atopic dermatitis (AD), chronic obstructive pulmonary disease (COPD), and asthma.
Collapse
Affiliation(s)
- Kimbria J Blake
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xin Ru Jiang
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
207
|
Zhao T, Hu S, Ma P, Che D, Liu R, Zhang Y, Wang J, Li C, Ding Y, Fu J, An H, Gao Z, Zhang T. Neohesperidin suppresses IgE‐mediated anaphylactic reactions and mast cell activation via Lyn‐PLC‐Ca
2+
pathway. Phytother Res 2019; 33:2034-2043. [PMID: 31197891 DOI: 10.1002/ptr.6385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Zhao
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Shiling Hu
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Pengyu Ma
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Delu Che
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Rui Liu
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Yongjing Zhang
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Jue Wang
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Chaomei Li
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Yuanyuan Ding
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Jia Fu
- College of PharmacyXi'an Jiaotong University Xi'an China
| | - Hongli An
- Center for Translational MedicineFirst Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Zijun Gao
- Department of AnesthesiologyXi'an Honghui Hospital of Xi'an Jiaotong University Xi'an China
| | - Tao Zhang
- College of PharmacyXi'an Jiaotong University Xi'an China
| |
Collapse
|
208
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
209
|
Role of Mast Cell-Derived Adenosine in Cancer. Int J Mol Sci 2019; 20:ijms20102603. [PMID: 31137883 PMCID: PMC6566897 DOI: 10.3390/ijms20102603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has highlighted the accumulation of mast cells (MCs) in tumors. However, their impact on tumor development remained controversial. Indeed, cumulative data indicate an enigmatic role for MCs in cancer, whereby depending on the circumstances, which still need to be resolved, MCs function to promote or restrict tumor growth. By responding to multiple stimuli MCs release multiple inflammatory mediators, that contribute to the resolution of infection and resistance to envenomation, but also have the potency to promote or inhibit malignancy. Thus, MCs seem to possess the power to define tumor projections. Given this remarkable plasticity of MC responsiveness, there is an urgent need of understanding how MCs are activated in the tumor microenvironment (TME). We have recently reported on the direct activation of MCs upon contact with cancer cells by a mechanism involving an autocrine formation of adenosine and signaling by the A3 adenosine receptor. Here we summarized the evidence on the role of adenosine signaling in cancer, in MC mediated inflammation and in the MC-cancer crosstalk.
Collapse
|
210
|
Mayerhofer A, Walenta L, Mayer C, Eubler K, Welter H. Human testicular peritubular cells, mast cells and testicular inflammation. Andrologia 2019; 50:e13055. [PMID: 30569646 DOI: 10.1111/and.13055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022] Open
Abstract
In man, the wall of seminiferous tubules forms a testicular compartment, which contains several layers of smooth muscle-like, "myoid", peritubular cells and extracellular matrix. Its architecture and its cellular composition change in male infertility associated with impaired spermatogenesis. Increased deposits of extracellular matrix, changes in the smooth muscle-like phenotype of peritubular cells and accumulation of immune cells, especially mast cells, are among the striking alterations. Taken together, the changes indicate that inflammatory events take place in particular within this compartment. This short review summarises recent studies, which pinpoint possible mechanisms of the interplay between peritubular cells and mast cells, which may contribute to sterile inflammation and impairments of testicular function. These insights are based mainly on cellular studies, for which we used isolated human testicular peritubular cells (HTPCs), and on the examination of human testicular sections. Recent data on immunological properties of peritubular cells, unexpected roles of the extracellular matrix factor, biglycan, which is secreted by peritubular cells and functions of mast cell products (chymase, tryptase and ATP) are presented. We believe that the results may foster a better understanding of peritubular cells, their roles in the human testis and specifically their involvement in infertility.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Lena Walenta
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Christine Mayer
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Katja Eubler
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Harald Welter
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| |
Collapse
|
211
|
Wang Q, Lepus CM, Raghu H, Reber LL, Tsai MM, Wong HH, von Kaeppler E, Lingampalli N, Bloom MS, Hu N, Elliott EE, Oliviero F, Punzi L, Giori NJ, Goodman SB, Chu CR, Sokolove J, Fukuoka Y, Schwartz LB, Galli SJ, Robinson WH. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. eLife 2019; 8:39905. [PMID: 31084709 PMCID: PMC6516833 DOI: 10.7554/elife.39905] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 04/10/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis is characterized by articular cartilage breakdown, and emerging evidence suggests that dysregulated innate immunity is likely involved. Here, we performed proteomic, transcriptomic, and electron microscopic analyses to demonstrate that mast cells are aberrantly activated in human and murine osteoarthritic joint tissues. Using genetic models of mast cell deficiency, we demonstrate that lack of mast cells attenuates osteoarthritis in mice. Using genetic and pharmacologic approaches, we show that the IgE/FcεRI/Syk signaling axis is critical for the development of osteoarthritis. We find that mast cell-derived tryptase induces inflammation, chondrocyte apoptosis, and cartilage breakdown. Our findings demonstrate a central role for IgE-dependent mast cell activation in the pathogenesis of osteoarthritis, suggesting that targeting mast cells could provide therapeutic benefit in human osteoarthritis. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Qian Wang
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Christin M Lepus
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Harini Raghu
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Mindy M Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Heidi H Wong
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Ericka von Kaeppler
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Nithya Lingampalli
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Michelle S Bloom
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Nick Hu
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Eileen E Elliott
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Nicholas J Giori
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, United States
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, United States
| | - Constance R Chu
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, United States
| | - Jeremy Sokolove
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| | - Yoshihiro Fukuoka
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Lawrence B Schwartz
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - William H Robinson
- GRECC, VA Palo Alto Health Care System, Palo Alto, United States.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
212
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
213
|
|
214
|
Phenothiazine antipsychotics exhibit dual properties in pseudo-allergic reactions: Activating MRGPRX2 and inhibiting the H 1 receptor. Mol Immunol 2019; 111:118-127. [PMID: 31051313 DOI: 10.1016/j.molimm.2019.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 11/23/2022]
Abstract
Phenothiazines are a class of antipsychotics that share the same tricyclic structure and are widely used in clinical settings. Adverse reactions from these drugs, however, have been regularly reported, with allergic skin reactions noted in some cases. Nevertheless, the mechanisms underlying anaphylaxis by these drugs have not been described. In the present study, we found that phenothiazine antipsychotics increased calcium mobilization and activated mast cells to release β-hexosaminidase, histamine, and tumor necrosis factor-α via Mas-related G-protein-coupled receptor member X2 (MRGPRX2) in vitro. In addition, they induced histamine release in serum via Mrgprb2 in C57BL/6 mice without Evans blue extravasation or paw swell. Further experiments indicated these drugs had good interaction with the histamine H1 receptor (H1R) and show an anti-calcium mobilization effect on H1R-HEK293 cells, which confirmed a potential antagonist effect of these drugs on the H1R. The molecular docking and activity experiments indicated that the N-methyl substitution on the side chain of these drugs played a significant role in activating MRGPRX2, while the phenothiazine tricyclic ring was associated with the inhibiting effect on the H1R. Therefore, due to their dual properties of increasing histamine levels without obvious allergic symptoms, clinicians should be highly vigilant for damage from histamine accumulation and long-term inflammatory reactions during the clinical use of phenothiazine antipsychotics.
Collapse
|
215
|
Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X. Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled Receptors Drives Non-histaminergic Itch. Immunity 2019; 50:1163-1171.e5. [PMID: 31027996 DOI: 10.1016/j.immuni.2019.03.013] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 11/28/2022]
Abstract
Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.
Collapse
Affiliation(s)
- James Meixiong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Anderson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathachit Limjunyawong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark F Sabbagh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Hu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Madison R Mack
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Landon K Oetjen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fang Wang
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute.
| |
Collapse
|
216
|
Wang Z, Guhl S, Franke K, Artuc M, Zuberbier T, Babina M. IL-33 and MRGPRX2-Triggered Activation of Human Skin Mast Cells-Elimination of Receptor Expression on Chronic Exposure, but Reinforced Degranulation on Acute Priming. Cells 2019; 8:cells8040341. [PMID: 30979016 PMCID: PMC6523246 DOI: 10.3390/cells8040341] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Clinically relevant exocytosis of mast cell (MC) mediators can be triggered by high-affinity IgE receptor (FcεRI)-aggregation (allergic route) or by the so-called pseudo-allergic pathway elicited via MAS-related G protein-coupled receptor-X2 (MRGPRX2). The latter is activated by drugs and endogenous neuropeptides. We recently reported that FcεRI-triggered degranulation is attenuated when human skin mast cells are chronically exposed to IL-33. Here, we were interested in the regulation of the MRGPRX2-route. Chronic exposure of skin MCs to IL-33 basically eliminated the pseudo-allergic/neurogenic route as a result of massive MRGPRX2 reduction. This downregulation seemed to partially require c-Jun N-terminal Kinase (JNK), but not p38, the two kinases activated by IL-33 in skin MCs. Surprisingly, however, JNK had a positive effect on MRGPRX2 expression in the absence of IL-33. This was evidenced by Accell®-mediated JNK knockdown and JNK inhibition. In stark contrast to the dampening effect upon prolonged exposure, IL-33 was able to prime for increased degranulation by MRGPRX2 ligands when administered directly before stimulation. This supportive effect depended on p38, but not on JNK activity. Our data reinforce the concept that exposure length dictates whether IL-33 will enhance or attenuate secretion. IL-33 is, thus, the first factor to acutely enhance MRGPRX2-triggered degranulation. Finally, we reveal that p38, rarely associated with MC degranulation, can positively affect exocytosis in a context-dependent manner.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sven Guhl
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Kristin Franke
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Metin Artuc
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Magda Babina
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
217
|
Morimoto Y, Satake S, Kamitani A, Yamada M, Saitou M, Torii Y, Shiba R, Hadase C, Yamamoto T. Rocuronium anaphylaxis in a 7-year-old boy during the induction of anesthesia. Immunol Med 2019; 41:85-88. [PMID: 30938264 DOI: 10.1080/13497413.2018.1481580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We report a case of rocuronium-induced anaphylaxis in a previously healthy 7-year-old boy. The first presenting sign of anaphylaxis was bronchospasm, appearing 11 min after he received intravenous doses of rocuronium (1 mg/kg) (Eslax®, MSD Co. Ltd., Tokyo, Japan), propofol (2 mg/kg), and cefazolin sodium (25 mg/kg). After the administration of adrenalin and ephedrine hydrochloride, bronchospasm resolved, and the vital signs became stable. Percutaneous pinning of his left humeral supracondylar fracture was performed without problems. The next day, he was successfully liberated from the ventilator support and discharged on the fifth hospital day. On the 76th postoperative day, we performed intradermal tests of rocuronium, propofol, and cefazolin. It showed that diluted rocuronium alone induced 14 mm of flare and 8 mm of wheal within 5 min, both of which disappeared within 15 min after the intradermal injection. The reaction was too quick to mention the possible contribution of rocuronium-specific IgE. His rapid reaction at the rocuronium skin test and anaphylactic reaction upon the first exposure to this drug may highlight the association of rocuronium anaphylaxis with IgE independent mast cell stimulation through mas-related G-protein coupled receptor X2 (MRGPRX2 receptor).
Collapse
Affiliation(s)
- Yoshiko Morimoto
- a Department of Pediatrics , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Sakiko Satake
- b Department of Anesthesiology , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Aguri Kamitani
- c Department of Orthopedics , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Manabu Yamada
- c Department of Orthopedics , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Mutsumi Saitou
- d Department of Dermatology , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Yuki Torii
- b Department of Anesthesiology , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Rokuro Shiba
- b Department of Anesthesiology , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Chika Hadase
- a Department of Pediatrics , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| | - Toru Yamamoto
- a Department of Pediatrics , JCHO Kyoto Kuramaguchi Medical Center , Kyoto , Japan
| |
Collapse
|
218
|
Pilkington S, Barron M, Watson R, Griffiths C, Bulfone‐Paus S. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive intestinal peptide-positive nerve fibres. Br J Dermatol 2019; 180:849-858. [PMID: 30291626 PMCID: PMC6619242 DOI: 10.1111/bjd.17268] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skin health declines with age and this is partially attributed to immunosenescence. Mast cells (MCs) are innate immune cells that coordinate tissue immune responses integral to skin homeostasis and disease. OBJECTIVES To understand how MCs contribute to human skin ageing, we investigated how intrinsic ageing impacts MC phenotype and MC relationships with other immune cells and skin structures. METHODS In photoprotected skin biopsies from young (≤ 30 years) and aged (≥ 75 years) individuals, immunostaining and spatial morphometry were performed to identify changes in MC phenotype, number, distribution and interaction with the vasculature and nerve fibres. Quantitative polymerase chain reaction was used to measure changes in gene expression related to immune cell activity and neuropeptide signalling. RESULTS Skin MCs, macrophages and CD8+ T cells increased in number in intrinsically aged vs. young skin by 40%, 44% and 90%, respectively (P < 0·05), while CD4+ T cells and neutrophils were unchanged. In aged skin, MCs were more numerous in the papillary dermis and showed a reduced incidence of degranulation (50% lower than in young, P < 0·01), a conserved tryptase-chymase phenotype and coexpression of granzyme B. In aged skin, MCs increased their association with macrophages (~ 48% vs. ~27%, P < 0·05) and nerve fibres (~29% vs. 16%, P < 0·001), while reducing their interactions with blood vessels (~34% vs. 45%, P < 0·001). Additionally, we observed modulation of gene expression of vasoactive intestinal peptide (VIP; increased) and substance P (decreased) with age; this was associated with an increased frequency of VIP+ nerve fibres (around three times higher in aged skin, P < 0·05), which were strongly associated with MCs (~19% in aged vs. 8% in young, P < 0·05). CONCLUSIONS In photoprotected skin we observed an accumulation of MCs with increasing age. These MCs have both altered functionality and distribution within the skin, which supports a role for these cells in altered tissue homeostasis during ageing.
Collapse
Affiliation(s)
- S.M. Pilkington
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - M.J. Barron
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - R.E.B. Watson
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - C.E.M. Griffiths
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - S. Bulfone‐Paus
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| |
Collapse
|
219
|
Kordowski A, Reinicke AT, Wu D, Orinska Z, Hagemann P, Huber-Lang M, Lee JB, Wang YH, Hogan SP, Köhl J. C5a receptor 1 -/- mice are protected from the development of IgE-mediated experimental food allergy. Allergy 2019; 74:767-779. [PMID: 30341777 DOI: 10.1111/all.13637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Food-induced anaphylaxis is a serious allergic reaction caused by Fcε-receptor activation on mast cells (MCs). The exact mechanisms breaking oral tolerance and the effector pathways driving food allergy remain elusive. As complement is activated in food-induced anaphylaxis, we aimed to assess the role of C5a in disease pathogenesis. METHODS Oral antigen-induced food-induced anaphylaxis was induced in BALB/c wild-type (wt) and C5ar1-/- mice. Readouts included diarrhea development, changes in rectal temperature, hematocrit, antigen-specific serum IgE, MCPT-1, and intestinal MC numbers, as well as FcεR1-mediated MC functions including C5a receptor 1 (C5aR1) regulation. Further, histamine-mediated hypothermia and regulation of endothelial tight junctions were determined. RESULTS Repeated oral OVA challenge resulted in diarrhea, hypothermia, increased hematocrit, high OVA-specific serum IgE, and MCPT-1 levels in wt mice. Male C5ar1-/- mice were completely whereas female C5ar1-/- mice were partially protected from anaphylaxis development. Serum MCPT-1 levels were reduced gender-independent, whereas IgE levels were reduced in male but not in female C5ar1-/- mice. Mechanistically, IgE-mediated degranulation and IL-6 production from C5ar1-/- BMMCs of both sexes were significantly reduced. Importantly, FcεR1 cross-linking strongly upregulated C5aR1 MC expression in vitro and in vivo. Finally, C5ar1-/- male mice were largely protected from histamine-induced hypovolemic shock, which was associated with protection from histamine-induced barrier dysfunction in vitro following C5aR targeting. CONCLUSIONS Our findings identify C5aR1 activation as an important driver of IgE-mediated food allergy through regulation of allergen-specific IgE production, FcεR1-mediated MC degranulation, and histamine-driven effector functions preferentially in male mice.
Collapse
Affiliation(s)
- Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Anna T Reinicke
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Philipp Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Jee-Boong Lee
- Division of Allergy and Immunology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
220
|
Klein O, Sagi-Eisenberg R. Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J Immunol Res 2019; 2019:9542656. [PMID: 31011586 PMCID: PMC6442490 DOI: 10.1155/2019/9542656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023] Open
Abstract
Anaphylaxis is a notorious type 2 immune response which may result in a systemic response and lead to death. A precondition for the unfolding of the anaphylactic shock is the secretion of inflammatory mediators from mast cells in response to an allergen, mostly through activation of the cells via the IgE-dependent pathway. While mast cells are specialized secretory cells that can secrete through a variety of exocytic modes, the most predominant mode exerted by the mast cell during anaphylaxis is compound exocytosis-a specialized form of regulated exocytosis where secretory granules fuse to one another. Here, we review the modes of regulated exocytosis in the mast cell and focus on compound exocytosis. We review historical landmarks in the research of compound exocytosis in mast cells and the methods available for investigating compound exocytosis. We also review the molecular mechanisms reported to underlie compound exocytosis in mast cells and expand further with reviewing key findings from other cell types. Finally, we discuss the possible reasons for the mast cell to utilize compound exocytosis during anaphylaxis, the conflicting evidence in different mast cell models, and the open questions in the field which remain to be answered.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
221
|
Mast cells in mastocytosis and allergy - Important player in metabolic and immunological homeostasis. Adv Med Sci 2019; 64:124-130. [PMID: 30641273 DOI: 10.1016/j.advms.2018.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/27/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
Abstract
The role of mast cell (MC) activity in pathophysiology is complex and challenging and its clinical effects are difficult to predict. Apart from the known role of MCs in basic immunological processes and allergy, underlined is their importance in bone mineralization and in regulation of autoimmune reactions. Mast cell mediators, especially those released from mast cells in degranulation, but also those released constitutively, are important both in metabolic and immunological processes. Mastocytosis is a heterogeneous group of disorders characterized by accumulation of MC in one or more organs. There are scientific data indicating that mastocytosis patients are at increased risk of osteoporosis in the systemic form of the disease and children with cutaneous mastocytosis have a higher rate of hypogammaglobulinemia. Moreover, the origin of osteoporosis in patients with allergy is no longer considered as linked to steroid therapy only, but to the mast cell mediators' activity as well. There are indications that osteoporosis symptoms in this group of patients may develop independently of the cumulative steroids' dose. Thus, the influence of mast cells on metabolic and immunologic processes in allergic patients should be investigated. The assessment of mast cell activity and burden in mastocytosis may be used to guide clinical management of patients with allergy.
Collapse
|
222
|
Vercellotti GM, Dalmasso AP, Schaid TR, Nguyen J, Chen C, Ericson ME, Abdulla F, Killeen T, Lindorfer MA, Taylor RP, Belcher JD. Critical role of C5a in sickle cell disease. Am J Hematol 2019; 94:327-337. [PMID: 30569594 DOI: 10.1002/ajh.25384] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022]
Abstract
Innate immune complement activation may contribute to sickle cell disease (SCD) pathogenesis. Ischemia-reperfusion physiology is a key component of the inflammatory and vaso-occlusive milieu in SCD and is associated with complement activation. C5a is an anaphylatoxin, a potent pro-inflammatory mediator that can activate leukocytes, platelets, and endothelial cells, all of which play a role in vaso-occlusion. We hypothesize that hypoxia-reoxygenation (H/R) in SCD mice activates complement, promoting inflammation and vaso-occlusion. At baseline and after H/R, sickle Townes-SS mice had increased C3 activation fragments and C5b-9 deposition in kidneys, livers and lungs and alternative pathway Bb fragments in plasma compared to control AA-mice. Activated complement promoted vaso-occlusion (microvascular stasis) in SS-mice; infusion of zymosan-activated, but not heat-inactivated serum, induced substantial vaso-occlusion in the skin venules of SS-mice. Infusion of recombinant C5a induced stasis in SS, but not AA-mice that was blocked by anti-C5a receptor (C5aR) IgG. C5a-mediated stasis was accompanied by inflammatory responses in SS-mice including NF-κB activation and increased expression of TLR4 and adhesion molecules VCAM-1, ICAM-1, and E-selectin in the liver. Anti-C5aR IgG blocked these inflammatory responses. Also, C5a rapidly up-regulated Weibel-Palade body P-selectin and von Willebrand factor on the surface of human umbilical vein endothelial cells in vitro and on vascular endothelium in vivo. In SS-mice, a blocking antibody to P-selectin inhibited C5a-induced stasis. Similarly, an antibody to C5 that blocks murine C5 cleavage or an antibody that blocks C5aR inhibited H/R-induced stasis in SS-mice. These results suggest that inhibition of C5a may be beneficial in SCD.
Collapse
Affiliation(s)
- Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | | | - Terry R. Schaid
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Marna E. Ericson
- Department of Dermatology; University of Minnesota; Minneapolis Minnesota
| | - Fuad Abdulla
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Trevor Killeen
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Margaret A. Lindorfer
- Department of Biochemistry and Molecular Genetics; University of Virginia School of Medicine; Charlottesville Virginia
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics; University of Virginia School of Medicine; Charlottesville Virginia
| | - John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| |
Collapse
|
223
|
New Insights of Biomarkers in IgE and Non-IgE-Mediated Drug Hypersensitivity. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-0201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
224
|
Zhang L, McNeil BD. Beta-defensins are proinflammatory pruritogens that activate Mrgprs. J Allergy Clin Immunol 2019; 143:1960-1962.e5. [PMID: 30682457 DOI: 10.1016/j.jaci.2019.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Li Zhang
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Benjamin D McNeil
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
225
|
Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2019; 282:35-46. [PMID: 29431204 DOI: 10.1111/imr.12636] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | - Riccardo Sibilano
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | |
Collapse
|
226
|
Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, Weninger W. Imaging of mast cells. Immunol Rev 2019; 282:58-72. [PMID: 29431206 DOI: 10.1111/imr.12631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | - Natasja Barki
- LS Human Biology, Technical University München, München, Germany
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | | | - Sabine Buhner
- LS Human Biology, Technical University München, München, Germany
| | - Michael Schemann
- LS Human Biology, Technical University München, München, Germany
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
227
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
228
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
229
|
Wilcock A, Bahri R, Bulfone‐Paus S, Arkwright PD. Mast cell disorders: From infancy to maturity. Allergy 2019; 74:53-63. [PMID: 30390314 DOI: 10.1111/all.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Mast cells are typically linked to immediate hypersensitivity and anaphylaxis. This review looks beyond this narrow role, focusing on how these cells have evolved and diversified via natural selection promoting serine protease gene duplication, augmenting their innate host defense function against helminths and snake envenomation. Plasticity of mast cell genes has come at a price. Somatic activating mutations in the mast cell growth factor KIT gene cause cutaneous mastocytosis in young children and systemic mastocytosis with a more guarded prognosis in adults who may also harbor other gene mutations with oncogenic potential as they age. Allelic TPSAB1 gene duplication associated with higher basal mast cell tryptase is possibly one of the commonest autosomal dominantly inherited multi-system diseases affecting the skin, gastrointestinal tract, circulation and musculoskeletal system. Mast cells are also establishing a new-found importance in severe asthma, and in remodeling of blood vessels in cancer and atherosclerotic vascular disease. Furthermore, recent evidence suggests that mast cells sense changes in oxygen tension, particularly in neonates, and that subsequent degranulation may contribute to common lung, eye, and brain diseases of prematurity classically associated with hypoxic insults. One hundred and forty years since Paul Ehrlich's initial description of "mastzellen," this review collates and highlights the complex and diverse roles that mast cells play in health and disease.
Collapse
Affiliation(s)
- Amy Wilcock
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Silvia Bulfone‐Paus
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| |
Collapse
|
230
|
Forsythe P. Mast Cells in Neuroimmune Interactions. Trends Neurosci 2019; 42:43-55. [DOI: 10.1016/j.tins.2018.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
|
231
|
Arifuzzaman M, Mobley YR, Choi HW, Bist P, Salinas CA, Brown ZD, Chen SL, Staats HF, Abraham SN. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. SCIENCE ADVANCES 2019; 5:eaav0216. [PMID: 30613778 PMCID: PMC6314830 DOI: 10.1126/sciadv.aav0216] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 05/22/2023]
Abstract
Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance of Staphylococcus aureus from infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+ dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Yuvon R. Mobley
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hae Woong Choi
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | | | - Zachary D. Brown
- Undergraduate Program in Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Swaine L. Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Herman F. Staats
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Corresponding author.
| |
Collapse
|
232
|
Porebski G, Kwiecien K, Pawica M, Kwitniewski M. Mas-Related G Protein-Coupled Receptor-X2 (MRGPRX2) in Drug Hypersensitivity Reactions. Front Immunol 2018; 9:3027. [PMID: 30619367 PMCID: PMC6306423 DOI: 10.3389/fimmu.2018.03027] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
The human ortholog MRGPRX2 and the mice ortholog, Mrgprb2 are activated by basic secretagogues and neurokinins. A number of commonly used small-molecule drugs (e.g., neuromuscular blocking agents, fluoroquinolones, vancomycin) have been recently shown to activate these receptors under in vitro experimental conditions, what results in mast cell degranulation. The above drugs are also known to cause IgE-mediated anaphylactic reactions in allergic patients. The new findings on mechanisms of drug-induced mast cell degranulation may modify the current management of drug hypersensitivity reactions. Clinical interpretation of mild drug-provoked hypersensitivity reactions, interpretation of skin test with a drug of interest or further recommendations for patients suspected of drug allergy are likely to be reconsidered. In the paper we discussed future directions in research on identification and differentiation of MRGPRX2-mediated and IgE-dependent mast cell degranulation in patients presenting clinical features of drug-induced hypersensitivity reactions.
Collapse
Affiliation(s)
- Grzegorz Porebski
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Kwiecien
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pawica
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
233
|
Dudeck J, Froebel J, Kotrba J, Lehmann CHK, Dudziak D, Speier S, Nedospasov SA, Schraven B, Dudeck A. Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. J Allergy Clin Immunol 2018; 143:1849-1864.e4. [PMID: 30339853 DOI: 10.1016/j.jaci.2018.08.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/13/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mast cells (MCs) are best known as key effector cells of allergic reactions, but they also play an important role in host defense against pathogens. Despite increasing evidence for a critical effect of MCs on adaptive immunity, the underlying mechanisms are poorly understood. OBJECTIVE Here we monitored MC intercellular communication with dendritic cells (DCs), MC activation, and degranulation and tracked the fate of exocytosed mast cell granules (MCGs) during skin inflammation. METHODS Using a strategy to stain intracellular MCGs in vivo, we tracked the MCG fate after skin inflammation-induced MC degranulation. Furthermore, exogenous MCGs were applied to MC-deficient mice by means of intradermal injection. MCG effects on DC functionality and adaptive immune responses in vivo were assessed by combining intravital multiphoton microscopy with flow cytometry and functional assays. RESULTS We demonstrate that dermal DCs engulf the intact granules exocytosed by MCs on skin inflammation. Subsequently, the engulfed MCGs are actively shuttled to skin-draining lymph nodes and finally degraded inside DCs within the lymphoid tissue. Most importantly, MCG uptake promotes DC maturation and migration to skin-draining lymph nodes, partially through MC-derived TNF, and boosts their T-cell priming efficiency. Surprisingly, exogenous MCGs alone are sufficient to induce a prominent DC activation and T-cell response. CONCLUSION Our study highlights a unique feature of peripheral MCs to affect lymphoid tissue-borne adaptive immunity over distance by modifying DC functionality through delivery of granule-stored mediators.
Collapse
Affiliation(s)
- Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia Froebel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
234
|
Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation 2018; 41:859-869. [PMID: 29404871 DOI: 10.1007/s10753-018-0740-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we aimed to investigate the effect of electro-acupuncture (EA) at the Zusanli acupoint (ST36) on interleukin (IL)-33-mediated mast cell activation. Firstly, 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in rats was developed with or without EA treatment. Then, rat peritoneal mast cells (RPMCs) were obtained and cultured in the presence of IL-33. EA treatment relieved ear swelling and reduced mast cell infiltration in the local inflammation area with DNFB challenge, accompanying the decrement of IL-33 production. RPMCs isolated from ACD rats with EA treatment showed significant downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation. However, there was no obvious difference in surface ST2 receptor expression among different groups. In addition, EA selectively altered IL-33 signaling, suppressing p38 phosphorylation as well as NF-κB- and AP-1-mediated transcription but not Akt phosphorylation. Importantly, EA lowered microRNA (miR)-155 expression in the RPMCs, which presented a positive correlation with IL-33-induced IL-6 production. Furthermore, overexpression of miR-155 in the RPMCs was established following miR-155 mimic transfection. RPMCs with the overexpressed miR-155 displayed an obvious increment of inflammatory cytokine and abrogated the inhibitive effect of EA on NF-κB- and AP-1-regulated transcription in response to IL-33 compared with those without transfected-miR-155. These findings demonstrate EA treatment inhibits NF-κB and AP-1 activation as well as promotes the negative feedback regulation of IL-33 signaling via targeting miR-155 in mast cells, which contribute to the anti-inflammatory effect of EA on DNFB-induced ACD in rats.
Collapse
|
235
|
Jadkauskaite L, Bahri R, Farjo N, Farjo B, Jenkins G, Bhogal R, Haslam I, Bulfone-Paus S, Paus R. Nuclear factor (erythroid-derived 2)-like-2 pathway modulates substance P-induced human mast cell activation and degranulation in the hair follicle. J Allergy Clin Immunol 2018; 142:1331-1333.e8. [PMID: 29859202 DOI: 10.1016/j.jaci.2018.04.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | | | - Bessam Farjo
- Farjo Medical Centre, Manchester, United Kingdom
| | - Gail Jenkins
- Unilever R&D Colworth, Colworth Science Park, Bedfordshire, United Kingdom
| | - Ranjit Bhogal
- Unilever R&D Colworth, Colworth Science Park, Bedfordshire, United Kingdom
| | - Iain Haslam
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Silvia Bulfone-Paus
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Department of Dermatology, University of Miami, Miller School of Medicine, Miami, Fla.
| |
Collapse
|
236
|
Babina M, Wang Z, Artuc M, Guhl S, Zuberbier T. MRGPRX2 is negatively targeted by SCF and IL-4 to diminish pseudo-allergic stimulation of skin mast cells in culture. Exp Dermatol 2018; 27:1298-1303. [PMID: 30091263 DOI: 10.1111/exd.13762] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
MRGPRX2 was recently uncovered as the "missing link" in clinically relevant mast cell (MC) activation explaining previously puzzling phenomena. It is the receptor for various endogenous ligands and exogenous compounds alike, whose binding evokes rapid degranulation much like allergen-mediated exocytosis. While the perceivable outcomes are similar, the two activation routes differ regarding mechanism and regulation. We recently reported that acute SCF administration curbs responses evoked by MRGPRX2 in human skin MCs. Maintenance of MCs in culture requires the presence of MC supportive factors and renders the cells functionally and molecularly unequal to ex vivo counterparts. Here, we asked whether expansion in culture impacts the pseudo-allergic route, and if so, what contribution SCF and IL-4 play in this scenario. We report that the in vitro micromilieu dampens (but does not erase) pseudo-allergic responses and that this is accompanied by strongly reduced MRGPRX2 expression. Withdrawal of SCF or IL-4 individually, but most potently of both collectively, partially reinstates the MRGPRX2 pathway, revealing that SCF and IL-4 make negative adjustments to the pseudo-allergic pathway. Under all conditions, the FcεRI-triggered route showed the inverse pattern of regulation, substantiating that allergic and pseudo-allergic MC activation can obey opposite rules, hinting at possible competition between them.
Collapse
Affiliation(s)
- Magda Babina
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Zhao Wang
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Metin Artuc
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sven Guhl
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
237
|
Nadolni W, Zierler S. The Channel-Kinase TRPM7 as Novel Regulator of Immune System Homeostasis. Cells 2018; 7:cells7080109. [PMID: 30126133 PMCID: PMC6115979 DOI: 10.3390/cells7080109] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The enzyme-coupled transient receptor potential channel subfamily M member 7, TRPM7, has been associated with immunity and immune cell signalling. Here, we review the role of this remarkable signalling protein in lymphocyte proliferation, differentiation, activation and survival. We also discuss its role in mast cell, neutrophil and macrophage function and highlight the potential of TRPM7 to regulate immune system homeostasis. Further, we shed light on how the cellular signalling cascades involving TRPM7 channel and/or kinase activity culminate in pathologies as diverse as allergic hypersensitivity, arterial thrombosis and graft versus host disease (GVHD), stressing the need for TRPM7 specific pharmacological modulators.
Collapse
Affiliation(s)
- Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| |
Collapse
|
238
|
Catgut Implantation at Acupoint Reduces Immune Reaction in a Rat Model of Allergic Rhinitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7629239. [PMID: 30069225 PMCID: PMC6057314 DOI: 10.1155/2018/7629239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
Allergic rhinitis (AR), an IgE-mediated response, is characterized by a Th2-type immunological pattern together with mast cells activation. Acupuncture, with the use of implanted catgut, is a traditional therapy that has been widely applied for the treatment of AR. However, the exact mechanism of the immunomodulatory effects of catgut implantation at acupoint (CIAA) remains unclear, in part due to the lack of a suitable laboratory animal model. We developed and optimized a rat model of ovalbumin- (OVA-) induced allergic inflammation, characterized by increased IL-4, sIgE, and SP and reciprocal decrease of IFN-γ. In the present study, we have further used this model to address the immunomodulatory effects of CIAA stimulation at Yingxiang (LI20) and Zusanli (ST36) acupoints and to elucidate the mechanisms involved in the regulation of SP, sIgE, IL-4, IFN-γ, TLR2, and TLR4. After AR model was established via OVA challenge, the rats were randomized as follows: control, model, sham-operated, 1-week CIAA (C1), 2-week CIAA (C2), and Budesonide nasal spray. The C1 and C2 groups were subjected to the bilateral acupoint Yingxiang (LI20) and Zusanli (ST36), respectively. Multiple analyses and quantifications were performed, which revealed that due to the persistent stimulus to acupoints by embedding catgut, the C2 group improved AR symptoms, compared to the C1 group. We conclude that CIAA at the Yingxiang (LI20) and Zusanli (ST36) acupoints effectively reduces allergic symptoms and inflammatory parameters in the rat model of AR. Thus, CIAA treatment is potentially an alternative therapeutic modality in AR.
Collapse
|
239
|
MRGPRX2-mediated mast cell response to drugs used in perioperative procedures and anaesthesia. Sci Rep 2018; 8:11628. [PMID: 30072729 PMCID: PMC6072780 DOI: 10.1038/s41598-018-29965-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
The study of anaphylactoid reactions during perioperative procedures and anaesthesia represents a diagnostic challenge for allergists, as many drugs are administered simultaneously, and approximately half of them trigger allergic reactions without a verifiable IgE-mediated mechanism. Recently, mast cell receptor MRGPRX2 has been identified as a cause of pseudo-allergic drug reactions. In this study, we analyse the ability of certain drugs used during perioperative procedures and anaesthesia to induce MRGPRX2-dependent degranulation in human mast cells and sera from patients who experienced an anaphylactoid reaction during the perioperative procedure. Using a β-hexosaminidase release assay, several drugs were seen to cause mast cell degranulation in vitro in comparison with unstimulated cells, but only morphine, vancomycin and cisatracurium specifically triggered this receptor, as assessed by the release of β-hexosaminidase in the control versus the MRGPRX2-silenced cells. The same outcome was seen when measuring degranulation based on the percentage of CD63 expression at identical doses. Unlike that of the healthy controls, the sera of patients who had experienced an anaphylactoid reaction induced mast-cell degranulation. The degranulation ability of these sera decreased when MRGPRX2 was silenced. In conclusion, MRGPRX2 is a candidate for consideration in non-IgE-mediated allergic reactions to some perioperative drugs, reinforcing its role in mast cell responses and their pathophysiology.
Collapse
|
240
|
Mast cells signal their importance in health and disease. J Allergy Clin Immunol 2018; 142:381-393. [DOI: 10.1016/j.jaci.2018.01.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
|
241
|
Stigmasterol Alleviates Cutaneous Allergic Responses in Rodents. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3984068. [PMID: 30140696 PMCID: PMC6081592 DOI: 10.1155/2018/3984068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
The therapeutic potential of stigmasterol, a natural steroid alcohol with established immune-modulatory properties, was assessed on allergic cutaneous responses. We examined its suppressive effect on immunoglobulin E (IgE)-mediated active cutaneous anaphylaxis (ACA), compound 48/80 (C48/80)-induced pruritus, and irritant dermatitis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Stigmasterol at 10–100 mg/kg significantly inhibited ACA with reduction in reaction area and concentration of the extravasated Evans blue dye. Given at 50 and 100 mg/kg, stigmasterol significantly inhibited C48/80-induced scratching behaviour when compared to saline-treated C48/80-injected control. Skin histopathology of injected sites confirmed that stigmasterol reduced mast cell trafficking and degranulation associated with C48/80-induced pruritus. Stigmasterol controlled inflammatory features such as ear skin oedema and neutrophilia and also reduced serum levels of TNFα induced by topical application of TPA. Epidermal layer thickening and inflammatory cell infiltration of ear skin tissue were significantly reduced by stigmasterol. Taken together, stigmasterol demonstrates significant potential as a molecule of interest in allergic skin disease therapy.
Collapse
|
242
|
Tsvilovskyy V, Solis-Lopez A, Öhlenschläger K, Freichel M. Isolation of Peritoneum-derived Mast Cells and Their Functional Characterization with Ca2+-imaging and Degranulation Assays. J Vis Exp 2018. [PMID: 30035759 DOI: 10.3791/57222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mast cells (MCs), as a part of the immune system, play a key role in defending the host against several pathogens and in the initiation of the allergic immune response. The activation of MCs via the cross-linking of surface IgE bound to high affinity IgE receptor (FcεRI), as well as through the stimulation of several other receptors, initiates the rise of the free intracellular Ca2+ level ([Ca2+]i) that promotes the release of inflammatory and allergic mediators. The identification of molecular constituents involved in these signaling pathways is crucial for understanding the regulation of MC function. In this article, we describe a protocol for the isolation of murine connective tissue type MCs by peritoneal lavage and cultivation of peritoneal MCs (PMCs). Cultures of MCs from various knockout mouse models by this methodology represent a useful approach to the identification of proteins involved in MC signaling pathways. In addition, we also describe a protocol for single cell Fura-2 imaging as an important technique for the quantification of Ca2+ signaling in MCs. Fluorescence-based monitoring of [Ca2+]i is a reliable and commonly used approach to study Ca2+ signaling events, including store-operated calcium entry, which is of utmost importance for MC activation. For the analysis of MC degranulation, we describe a β-hexosaminidase release assay. The amount of β-hexosaminidase released into the culture medium is considered as a degranulation marker for all three different secretory subsets described in MCs. β-hexosaminidase can easily be quantified by its reaction with a colorigenic substrate in a microtiter plate colorimetric assay. This highly reproducible technique is cost-effective and requires no specialized equipment. Overall, the provided protocol demonstrates a high yield of MCs expressing typical MC surface markers, displaying typical morphological and phenotypic features of MCs, and demonstrating highly reproducible responses to secretagogues in Ca2+-imaging and degranulation assays.
Collapse
Affiliation(s)
| | | | | | - Marc Freichel
- Institute of Pharmacology, Ruprecht-Karls Heidelberg University
| |
Collapse
|
243
|
In Vitro Diagnosis of Immediate Drug Hypersensitivity During Anesthesia: A Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1176-1184. [DOI: 10.1016/j.jaip.2018.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
|
244
|
Huang H, Li Y, Liang J, Finkelman FD. Molecular Regulation of Histamine Synthesis. Front Immunol 2018; 9:1392. [PMID: 29973935 PMCID: PMC6019440 DOI: 10.3389/fimmu.2018.01392] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC), which removes carboxyl group from histidine. Despite the importance of histamine, transcriptional regulation of HDC gene expression in mammals is still poorly understood. In this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.
Collapse
Affiliation(s)
- Hua Huang
- The Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,The Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, IL, United States
| | - Yapeng Li
- The Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Jinyi Liang
- The Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fred D Finkelman
- The Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,The Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
245
|
Klein O, Roded A, Hirschberg K, Fukuda M, Galli SJ, Sagi-Eisenberg R. Imaging FITC-dextran as a Reporter for Regulated Exocytosis. J Vis Exp 2018. [PMID: 29985342 DOI: 10.3791/57936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulated exocytosis is a process by which cargo, which is stored in secretory granules (SGs), is released in response to a secretory trigger. Regulated exocytosis is fundamental for intercellular communication and is a key mechanism for the secretion of neurotransmitters, hormones, inflammatory mediators, and other compounds, by a variety of cells. At least three distinct mechanisms are known for regulated exocytosis: full exocytosis, where a single SG fully fuses with the plasma membrane, kiss-and-run exocytosis, where a single SG transiently fuses with the plasma membrane, and compound exocytosis, where several SGs fuse with each other, prior to or after SG fusion with the plasma membrane. The type of regulated exocytosis undertaken by a cell is often dictated by the type of secretory trigger. However, in many cells, a single secretory trigger can activate multiple modes of regulated exocytosis simultaneously. Despite their abundance and importance across cell types and species, the mechanisms that determine the different modes of secretion are largely unresolved. One of the main challenges in investigating the different modes of regulated exocytosis, is the difficulty in distinguishing between them as well as exploring them separately. Here we describe the use of fluorescein isothiocyanate (FITC)-dextran as an exocytosis reporter, and live cell imaging, to differentiate between the different pathways of regulated exocytosis, focusing on compound exocytosis, based on the robustness and duration of the exocytic events.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Amit Roded
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, School of Medicine, Stanford University
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
246
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
247
|
Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, Maurer M. Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Front Immunol 2018; 9:1067. [PMID: 29910798 PMCID: PMC5992428 DOI: 10.3389/fimmu.2018.01067] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Many mast cell-associated diseases, including allergies and asthma, have seen a strong increase in prevalence during the past decades, especially in Western(ized) countries. It has been suggested that a Western diet may contribute to the prevalence and manifestation of allergies and asthma through reduced intake of dietary fiber and the subsequent production of their metabolites. Indeed, dietary fiber and its metabolites have been shown to positively influence the development of immune disorders via changes in microbiota composition and the regulation of B- and T-cell activation. However, the effects of these dietary components on the activation of mast cells, key effector cells of the inflammatory response in allergies and asthma, remain poorly characterized. Due to their location in the gut and vascularized tissues, mast cells are exposed to high concentrations of dietary fiber and/or its metabolites. Here, we provide a focused overview of current findings regarding the direct effects of dietary fiber and its various metabolites on the regulation of mast cell activity and the pathophysiology of mast cell-associated diseases.
Collapse
Affiliation(s)
- Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
248
|
Alkanfari I, Gupta K, Jahan T, Ali H. Naturally Occurring Missense MRGPRX2 Variants Display Loss of Function Phenotype for Mast Cell Degranulation in Response to Substance P, Hemokinin-1, Human β-Defensin-3, and Icatibant. THE JOURNAL OF IMMUNOLOGY 2018; 201:343-349. [PMID: 29794017 DOI: 10.4049/jimmunol.1701793] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Human mast cells (MCs) express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR X2 (MRGPRX2). Activation of this receptor by a diverse group of cationic ligands such as neuropeptides, host defense peptides, and Food and Drug Administration-approved drugs contributes to chronic inflammatory diseases and pseudoallergic drug reactions. For most GPCRs, the extracellular (ECL) domains and their associated transmembrane (TM) domains display the greatest structural diversity and are responsible for binding different ligands. The goal of the current study was to determine if naturally occurring missense variants within MRGPRX2's ECL/TM domains contribute to gain or loss of function phenotype for MC degranulation in response to neuropeptides (substance P and hemokinin-1), a host defense peptide (human β-defensin-3) and a Food and Drug Administration-approved cationic drug (bradykinin B2 receptor antagonist, icatibant). We have identified eight missense variants within MRGPRX2's ECL/TM domains from publicly available exome-sequencing databases. We investigated the ability of MRGPRX2 ligands to induce degranulation in rat basophilic leukemia-2H3 cells individually expressing these naturally occurring MRGPRX2 missense variants. Using stable and transient transfections, we found that all variants express in rat basophilic leukemia cells. However, four natural MRGPRX2 variants, G165E (rs141744602), D184H (rs372988289), W243R (rs150365137), and H259Y (rs140862085) failed to respond to any of the ligands tested. Thus, diverse MRGPRX2 ligands use common sites on the receptor to induce MC degranulation. These findings have important clinical implications for MRGPRX2 and MC-mediated pseudoallergy and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Alkanfari
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kshitij Gupta
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tahsin Jahan
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
249
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
250
|
Oetjen LK, Kim BS. Interactions of the immune and sensory nervous systems in atopy. FEBS J 2018; 285:3138-3151. [PMID: 29637705 DOI: 10.1111/febs.14465] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
A striking feature underlying all atopic disorders, such as asthma, atopic dermatitis, and food allergy, is the presence of pathologic sensory responses, reflexes, and behaviors. These symptoms, exemplified by chronic airway irritation and cough, chronic itch and scratching, as well as gastrointestinal discomfort and dysfunction, are often cited as the most debilitating aspects of atopic disorders. Emerging studies have highlighted how the immune system shapes the scope and intensity of sensory responses by directly modulating the sensory nervous system. Additionally, factors produced by neurons have demonstrated novel functions in propagating atopic inflammation at barrier surfaces. In this review, we highlight new studies that have changed our understanding of atopy through advances in characterizing the reciprocal interactions between the immune and sensory nervous systems.
Collapse
Affiliation(s)
- Landon K Oetjen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|