201
|
Qosa H, Volpe DA. The development of biological therapies for neurological diseases: moving on from previous failures. Expert Opin Drug Discov 2018; 13:283-293. [PMID: 29394876 DOI: 10.1080/17460441.2018.1437142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although years of research have expanded the use of biologics for several clinical conditions, such development has not yet occurred in the treatment of neurological diseases. With the advancement of biologic technologies, there is promise for these therapeutics as novel therapeutic approaches for neurological diseases. Areas covered: In this article, the authors review the therapeutic potential of different types of biologics for the treatment of neurological diseases. Preclinical and clinical studies that investigate the efficacy and safety of biologics in the treatment of neurological diseases, namely Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, and stroke, were reviewed. Moreover, the authors describe the key challenges in the development of therapeutically safe and effective biologics for the treatment of neurological diseases. Expert opinion: Several biologics have shown promise in the treatment of neurological diseases. However, the complexity of the CNS, as well as a limited understanding of disease progression, and restricted access of biologics to the CNS has limited successful development. Therefore, more research needs to be conducted to overcome these hurdles before developing effective and safe biologics for neurological diseases. The emergence of new technologies for the design, production and delivery of biologics will accelerate translating biologics to the clinic.
Collapse
Affiliation(s)
- Hisham Qosa
- a Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences , Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Donna A Volpe
- a Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences , Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
202
|
Modarres HP, Janmaleki M, Novin M, Saliba J, El-Hajj F, RezayatiCharan M, Seyfoori A, Sadabadi H, Vandal M, Nguyen MD, Hasan A, Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 2018; 273:108-130. [PMID: 29378233 DOI: 10.1016/j.jconrel.2018.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mana Novin
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - John Saliba
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mahdi RezayatiCharan
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Seyfoori
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Anwarul Hasan
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
203
|
Mold M, Kumar M, Mirza A, Shardlow E, Exley C. Intracellular tracing of amyloid vaccines through direct fluorescent labelling. Sci Rep 2018; 8:2437. [PMID: 29402930 PMCID: PMC5799327 DOI: 10.1038/s41598-018-20845-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Alzheimer’s disease is a debilitating neurodegenerative condition that progressively causes synaptic loss and major neuronal damage. Immunotherapy utilising Aβ as an active immunogen or via passive treatment utilising antibodies raised to amyloid have shown therapeutic promise. The migratory properties of peripheral blood-borne monocytes and their ability to enter the central nervous system, suggests a beneficial role in mediating tissue damage and neuroinflammation. However, the intrinsic phagocytic properties of such cells have pre-disposed them to internalise misfolded amyloidogenic peptides that could act as seeds capable of nucleating amyloid formation in the brain. Mechanisms governing the cellular fate of amyloid therefore, may prove to be key in the development of future vaccination regimes. Herein, we have developed unequivocal and direct conformation-sensitive fluorescent molecular probes that reveal the intracytoplasmic and intranuclear persistence of amyloid in a monocytic T helper 1 (THP-1) cell line. Use of the pathogenic Aβ42 species as a model antigen in simulated vaccine formulations suggested differing mechanisms of cellular internalisation, in which fibrillar amyloid evaded lysosomal capture, even when co-deposited on particulate adjuvant materials. Taken collectively, direct fluorescent labelling of antigen-adjuvant complexes may serve as critical tools in understanding subsequent immunopotentiation in vaccines directed against amyloidosis and wider dementia.
Collapse
Affiliation(s)
- Matthew Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Manpreet Kumar
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ambreen Mirza
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
204
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
205
|
Lovell MA, Lynn BC, Fister S, Bradley-Whitman M, Murphy MP, Beckett TL, Norris CM. A Novel Small Molecule Modulator of Amyloid Pathology. J Alzheimers Dis 2018; 53:273-87. [PMID: 27163808 DOI: 10.3233/jad-151160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Universisty of Kentucky Mass Spectrometry Center, Lexington, KY, USA
| | - Shuling Fister
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
206
|
Lacosta AM, Pascual-Lucas M, Pesini P, Casabona D, Pérez-Grijalba V, Marcos-Campos I, Sarasa L, Canudas J, Badi H, Monleón I, San-José I, Munuera J, Rodríguez-Gómez O, Abdelnour C, Lafuente A, Buendía M, Boada M, Tárraga L, Ruiz A, Sarasa M. Safety, tolerability and immunogenicity of an active anti-Aβ 40 vaccine (ABvac40) in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase I trial. ALZHEIMERS RESEARCH & THERAPY 2018; 10:12. [PMID: 29378651 PMCID: PMC5789644 DOI: 10.1186/s13195-018-0340-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Background Immunotherapy targeting the amyloid-β (Aβ) peptide is a promising strategy for the treatment of Alzheimer’s disease (AD); however, none of the active or passive vaccines tested have been demonstrated to be effective to date. We have developed the first active vaccine against the C-terminal end of Aβ40, ABvac40, and assessed its safety and tolerability in a phase I clinical trial. Methods A randomised, double-blind, placebo-controlled, parallel-group, phase I study of ABvac40 was conducted with patients aged 50–85 years with mild to moderate AD. Participants were entered into three separate groups according to time of study entry and were randomly allocated to receive ABvac40 or placebo (overall ratio 2:1). The first group received two half-doses of ABvac40 or placebo, whereas the second and third groups received two and three full doses, respectively. All treatments were administered subcutaneously at 4-week intervals. Patients, carers and investigators were blind to treatment allocation throughout the study. The primary objective was to assess the safety and tolerability of ABvac40 by registering all adverse events (AEs). All patients who received at least one dose of treatment were included in the safety analysis. The secondary objective was to evaluate the immunogenicity of ABvac40 by titration of specific anti-Aβ40 antibodies in plasma. Results Twenty-four patients were randomly allocated: 16 patients to the ABvac40 group and 8 patients to the placebo group. All randomised patients completed the study, therefore the intention-to-treat and safety populations were identical. Overall, 71 AEs affecting 18 patients were recorded: 11 (69%) in the ABvac40 group and 7 (88%) in the placebo group (p = 0.6214). Neither incident vasogenic oedema nor sulcal effusion (amyloid-related imaging abnormalities corresponding to vasogenic oedema and sulcal effusions) nor microhaemorrhages (amyloid-related imaging abnormalities corresponding to microhaemorrhages and hemosiderin deposits) were detected throughout the study period in the ABvac40-treated patients. Eleven of 12 (~92%) individuals receiving three injections of ABvac40 developed specific anti-Aβ40 antibodies. Conclusions ABvac40 showed a favourable safety and tolerability profile while eliciting a consistent and specific immune response. An ongoing phase II clinical trial is needed to confirm these results and to explore the clinical efficacy of ABvac40. Trial registration ClinicalTrials.gov, NCT03113812. Retrospectively registered on 14 April 2017. Electronic supplementary material The online version of this article (10.1186/s13195-018-0340-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Pedro Pesini
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain.
| | - Diego Casabona
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | | | | | - Leticia Sarasa
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | - Jesus Canudas
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | - Hassnae Badi
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | | | | | - Josep Munuera
- Institut de Diagnòstic per la Imatge, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Octavio Rodríguez-Gómez
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Carla Abdelnour
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Asunción Lafuente
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mar Buendía
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mercè Boada
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Lluis Tárraga
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Agustín Ruiz
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Manuel Sarasa
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| |
Collapse
|
207
|
Taipa R, Sousa AL, Melo Pires M, Sousa N. Does the Interplay Between Aging and Neuroinflammation Modulate Alzheimer's Disease Clinical Phenotypes? A Clinico-Pathological Perspective. J Alzheimers Dis 2018; 53:403-17. [PMID: 27176075 DOI: 10.3233/jad-160121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and is the most common cause of dementia worldwide. Cumulative data suggests that neuroinflammation plays a prominent and early role in AD, and there is compelling data from different research groups of age-associated dysregulation of the neuroimmune system. From the clinical point of view, despite clinical resemblance and neuropathological findings, there are important differences between the group of patients with sporadic early-onset (<65 years old) and late-onset AD (>65 years old). Thus, it seems important to understand the age-dependent relationship between neuroinflammation and the underlying biology of AD in order to identify potential explanations for clinical heterogeneity, interpret biomarkers, and promote the best treatment to different clinical AD phenotypes. The study of the delicate balance between pro-inflammatory or anti-inflammatory sides of immune players in the different ages of onset of AD would be important to understand treatment efficacy in clinical trials and eventually, not only direct treatment to early disease stages, but also the possibility of establishing different treatment approaches depending on the age of the patient. In this review, we would like to summarize what is currently known about the interplay between "normal" age associated inflammatory changes and AD pathological mechanisms, and also the potential differences between early-onset and late-onset AD taking into account the age-related neuroimmune background at disease onset.
Collapse
Affiliation(s)
- Ricardo Taipa
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Ana Luísa Sousa
- Department of Neurology, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo Pires
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
208
|
|
209
|
Kuppili PP, Manohar H, Menon V. Current status of vaccines in psychiatry-A narrative review. Asian J Psychiatr 2018; 31:112-120. [PMID: 29476951 DOI: 10.1016/j.ajp.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 01/22/2018] [Accepted: 02/03/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Vaccines are one of the newer therapeutic modalities being researched in psychiatric illnesses with limited role of pharmacological interventions. Preclinical studies on vaccines have shown favorable results in conditions like Substance use Disorders and Alzheimer's Dementia. However, the utility of Mumps Measles Rubella vaccine has been overshadowed by controversy linked to causation of Autism. With this background, the current narrative review aimed to comprehensively and critically evaluate the current status of vaccines in Psychiatric illnesses. METHODS Preliminary literature search using the electronic databases of MEDLINE and Google Scholar between May 1967 and May 2017 using the search terms "Vaccines" and "Psychiatry" was carried out and articles were found in the following areas of research: Substance use, Alzheimer Dementia, Autism, Human Immunodeficiency Virus and Human Papilloma Virus Further, the refined search was done using combinations of search terms "Vaccine", "Nicotine", "Cocaine", "Opioid", "Alzheimer Dementia", "Autism", and "Pervasive Developmental Disorders" and peer - reviewed original articles published in English conducted among human subjects and published in English language were included for review. RESULTS A total of 31 articles found eligible were organized into appropriate sections synthesizing the literature on role of vaccines in specific disorders such as Substance Use Disorders, Alzheimer Dementia and Pervasive Developmental Disorders. DISCUSSION The therapeutic potential of vaccines in Substance Use Disorders and Alzheimer Dementia was found to be limited in comparison to the results from animal studies. Safety profile of the immunogens and the adjuvants in humans is possibly the most important limitation. No causal association between Measles Mumps Rubella vaccine and Autism was found.
Collapse
Affiliation(s)
- Pooja Patnaik Kuppili
- Department of Psychiatry, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Puducherry, 605006, India.
| | - Harshini Manohar
- Department of Psychiatry, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Puducherry, 605006, India.
| | - Vikas Menon
- Department of Psychiatry, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Puducherry, 605006, India.
| |
Collapse
|
210
|
Abstract
The production of soluble amyloid-β oligomers (AβOs) and the activation of inflammation are two important early steps in the pathogenesis of Alzheimer's disease (AD). The central role of oligomers as responsible for the neuronal dysfunction associated with the clinical features has been extended to the other protein misfolding disorders definable, on this basis, as oligomeropathies. In AD, recent evidence indicates that the mechanism of inflammation as a consequence of neurodegeneration must be assessed in favor of a more direct role of glial activation in the alteration of synaptic function. Our own experimental models demonstrate the efficacy of anti-inflammatory treatments in preventing the cognitive deficits induced acutely by AβOs applied directly in the brain. Moreover, some promising clinical tools are based on immunological activation reducing the presence of cerebral Aβ deposits. However, the strategies based on the control of inflammatory factors as well as the amyloid aggregation show poor or non-therapeutic efficacy. Numerous studies have examined inflammatory factors in biological fluids as possible markers of the neuroinflammation in AD. In some cases, altered levels of cytokines or other inflammatory markers in cerebrospinal fluid correlate with the severity of the disease. Here we propose, according to the precision medicine principles, innovative therapeutic approaches to AD based on the patient's inflammatory profile/state. The earlier intervention and a multifactor approach are two other elements considered essential to improve the chances of effective therapy in AD.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| | - Claudia Balducci
- Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| |
Collapse
|
211
|
Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer's Disease in Animal Models: A Systematic Review from Literature. J Alzheimers Dis Rep 2017; 1:195-217. [PMID: 30480238 PMCID: PMC6159633 DOI: 10.3233/adr-170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that does not have a proven cure; however, one of the most promising strategies for its treatment has been DNA vaccines. OBJECTIVE The present review is aimed to report the new developments of the efficacy and safety of DNA vaccines for AD in animal models. METHOD The method PRISMA was used for this review. The article search was made in the electronic databases PubMed, LILACS, and Scopus using the descriptors ''Alzheimer disease" and ''Vaccine, DNA". Articles published between January 2001 and September 2017 in English, Portuguese, and Spanish were included. RESULTS Upon the consensus, the researchers identified 28 original articles. The studies showed satisfying results as for the decrease of amyloid plaques in mouse, rabbits, and monkeys brains using mostly the DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11, mainly with a gene gun. In addition to a reduction in tau by the first DNA vaccine (AV-1980D) targeting this protein. The use of adjuvants and boosters also had positive results as they increased the destruction of the amyloid plaques and induced an anti-inflammatory response profile without side effects. CONCLUSION The results of DNA vaccines targeting the amyloid-β and the tau protein with or without adjuvants and boosters were promising in reducing amyloid plaques and tau protein without side effects in animals. Although there are many vaccines being tested in animals, few reach clinical trials. Thus, as a future perspective, we suggest that clinical studies should be conducted with vaccines that have been promising in animal models (e.g., DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11).
Collapse
|
212
|
Shahpasand K, Sepehri Shamloo A, Nabavi SM, Ping Lu K, Zhen Zhou X. "Tau immunotherapy: Hopes and hindrances". Hum Vaccin Immunother 2017; 14:277-284. [PMID: 29049003 DOI: 10.1080/21645515.2017.1393594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder having two major pathological hallmarks: the extracellular senile plaques and intracellular neurofibrillary tangles composed of amyloid beta protein and hyperphosphorylated tau respectively. Removal of protein deposits from AD brains are the newer attempts for treating AD. The major developments in this direction have been the amyloid and tau based therapeutics. While senile plaque removal employing monoclonal antibodies (mAbs) restore brain function in mouse models of AD, tau has been recently introduced as the major neurodegenerative factor mediating neural cell death. So, several research groups have focused on tau therapy. So far, the outcome of tau immunotherapy has been promising and clearance of hyperphosphorylated tau has been shown to restore the brain function in animal models. But the point is which phosphorylated tau is the most critical form to be removed from the brain, especially because removal of physiologic tau can cause neurodegenerative consequence. Recently, we have shown that phosphorylated tau at Thr231 in the cis conformation is a very early driver of neurodegeneration and cis mAb treatment efficiently restores brain structure and function in TBI models. Because of efficient therapeutic effects in mice model of TBI and considering cis pT231-tau accumulation in AD brains, it could be a very good candidate for tau immunotherapy upon several tauopathy disorders including AD.
Collapse
Affiliation(s)
- Koorosh Shahpasand
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Alireza Sepehri Shamloo
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Seyed Massood Nabavi
- a Department of Brain and Cognitive Sciences , Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Kun Ping Lu
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Xiao Zhen Zhou
- b Division of Translational Therapeutics, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA.,c Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
213
|
Mo J, Li J, Yang Z, Liu Z, Feng J. Efficacy and safety of anti-amyloid- β immunotherapy for Alzheimer's disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 2017; 4:931-942. [PMID: 29296624 PMCID: PMC5740249 DOI: 10.1002/acn3.469] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
To review the optimality and safety of different anti-Amyloid-β(Aβ) immunotherapies for Alzheimer's disease (AD). Published randomized controlled trials were comprehensively reviewed from electronic databases (Cochrane library, Embase, Pubmed, and Google scholar). Pooled outcomes as mean difference or odds ratio values with 95% confidence interval were reported. The network estimates with confidence and predictive intervals for all pairwise relative effects was evaluated. Optimal intervention was ranked by benefit-risk ratio based on the surface under the cumulative ranking curve. Eleven eligible RCTs from 9 literatures, including 5141 patients and 5 interventions were included. The quality of evidence was rated low in comparisons. For efficacy, in terms of Mini-Mental State Examination, aducanumab and solanezumab are significantly effective than placebo. For safety, in terms of Amyloid-Related Imaging Abnormalities (ARIA), bapineuzumab and aducanumab are significantly worse than placebo. There were no significant differences in outcomes of Alzheimer's disease Assessment Scale-Cognitive subscale, Disability Assessment for Dementia, Adverse Events, and mortality. Given the clinical therapeutic effects of anti-Aβ immunotherapies for AD, aducanumab and solanezumab improve the cognitive function, while aducanumab and bapineuzumab may increase the risks of ARIA.
Collapse
Affiliation(s)
- Jia‐Jie Mo
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100061China
| | - Jin‐yu Li
- Department of General Surgerythe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zheng Yang
- Department of PsychologyGuangdong Medical UniversityZhanjiang524023China
| | - Zhou Liu
- Department of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiang524023China
| | - Jin‐Shan Feng
- Scientific Research Center (Campus Zhanjiang)Guangdong Medical UniversityZhanjiang524023China
| |
Collapse
|
214
|
Amyloid β oligomers (AβOs) in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:177-191. [PMID: 29196815 DOI: 10.1007/s00702-017-1820-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
The causative role of amyloid β 1-42 (Aβ42) aggregation in the pathogenesis of Alzheimer's disease (AD) has been under debate for over 25 years. Primarily, scientific efforts have focused on the dyshomeostasis between production and clearance of Aβ42. This imbalance may result from mutations either in genes for the substrate, i.e., amyloid precursor protein or in genes encoding presenilin, the enzyme of the reaction that generates Aβ42. Currently, it is supposed that soluble oligomers of amyloid beta (AβOs) and not fibrillar Aβ42 within neuritic plaques may be the toxic factors acting on a very early stage of AD, perhaps even initiating pathological cascade. For example, soluble AβOs isolated from AD patients' brains reduced number of synapses, inhibited long-term potentiation, and enhanced long-term synaptic depression in brain regions responsible for memory in animal models of AD. Concentrations of AβOs in the cerebrospinal fluid (CSF) of AD patients are often reported higher than in non-demented controls, and show a negative correlation with mini-mental state examination scores. Furthermore, increased Aβ42/oligomer ratio in the CSF of AD/MCI patients indicated that the presence of soluble AβOs in CSF may be linked to lowering of natively measured monomeric Aβ42 by epitopes masking, and hence, concentrations of AβOs in the CSF are postulated to as useful AD biomarkers.
Collapse
|
215
|
Zhang PL, Chen Y, Zhang CH, Wang YX, Fernandez-Funez P. Genetics of Parkinson's disease and related disorders. J Med Genet 2017; 55:73-80. [PMID: 29151060 DOI: 10.1136/jmedgenet-2017-105047] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex and heterogeneous neurological condition characterised mainly by bradykinesia, resting tremor, rigidity and postural instability, symptoms that together comprise the parkinsonian syndrome. Non-motor symptoms preceding and following clinical onset are also helpful diagnostic markers revealing a widespread and progressive pathology. Many other neurological conditions also include parkinsonism as primary or secondary symptom, confounding their diagnosis and treatment. Although overall disease course and end-stage pathological examination single out these conditions, the significant overlaps suggest that they are part of a continuous disease spectrum. Recent genetic discoveries support this idea because mutations in a few genes (α-synuclein, LRRK2, tau) can cause partially overlapping pathologies. Additionally, mutations in causative genes and environmental toxins identify protein homeostasis and the mitochondria as key mediators of degeneration of dopaminergic circuits in the basal ganglia. The evolving mechanistic insight into the pathophysiology of PD and related conditions will contribute to the development of targeted and effective symptomatic treatments into disease-modifying therapies that will reduce the burden of these dreadful conditions.
Collapse
Affiliation(s)
- Pei-Lan Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Chen-Hao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yu-Xin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School-Duluth Campus, Duluth, Minnesota, USA
| |
Collapse
|
216
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
217
|
Gallardo G, Holtzman DM. Antibody Therapeutics Targeting Aβ and Tau. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024331. [PMID: 28062555 DOI: 10.1101/cshperspect.a024331] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The astonishing findings that active and passive immunization against amyloid-β (Aβ) in mouse models of Alzheimer's disease (AD) dramatically decreased amyloid burden led to a rapid initiation of human clinical trials with much enthusiasm. However, methodological issues and adverse effects relating to these clinical trials arose, challenging the effectiveness and safety of these reagents. Efforts are now underway to develop safer immunotherapeutic approaches toward Aβ and the treatment of individuals at risk for AD before or in the earliest stages of cognitive decline with new hopes. Furthermore, several studies have shown tau as a potential immunotherapeutic target for the treatment of tauopathy-related diseases including frontotemporal lobar dementia (FTLD). Both active and passive immunization targeting tau in mouse models of tauopathy effectively decreased tau pathology while improving cognitive performance. These preclinical studies have highlighted tau as an alternative target with much anticipation of clinical trials to be undertaken.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
218
|
Animal models of cerebral amyloid angiopathy. Clin Sci (Lond) 2017; 131:2469-2488. [PMID: 28963121 DOI: 10.1042/cs20170033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023]
Abstract
Cerebral amyloid angiopathy (CAA), due to vascular amyloid β (Aβ) deposition, is a risk factor for intracerebral haemorrhage and dementia. CAA can occur in sporadic or rare hereditary forms, and is almost invariably associated with Alzheimer's disease (AD). Experimental (animal) models are of great interest in studying mechanisms and potential treatments for CAA. Naturally occurring animal models of CAA exist, including cats, dogs and non-human primates, which can be used for longitudinal studies. However, due to ethical considerations and low throughput of these models, other animal models are more favourable for research. In the past two decades, a variety of transgenic mouse models expressing the human Aβ precursor protein (APP) has been developed. Many of these mouse models develop CAA in addition to senile plaques, whereas some of these models were generated specifically to study CAA. In addition, other animal models make use of a second stimulus, such as hypoperfusion or hyperhomocysteinemia (HHcy), to accelerate CAA. In this manuscript, we provide a comprehensive review of existing animal models for CAA, which can aid in understanding the pathophysiology of CAA and explore the response to potential therapies.
Collapse
|
219
|
Abstract
There is an increasing recognition that inflammation plays a critical role in neurodegenerative diseases of the CNS, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and the prototypic neuroinflammatory disease multiple sclerosis (MS). Differential immune responses involving the adaptive versus the innate immune system are observed at various stages of neurodegenerative diseases, and may not only drive disease processes but could serve as therapeutic targets. Ongoing investigations into the specific inflammatory mechanisms that play roles in disease causation and progression have revealed lessons about inflammation-driven neurodegeneration that can be applied to other neurodegenerative diseases. An increasing number of immunotherapeutic strategies that have been successful in MS are now being applied to other neurodegenerative diseases. Some approaches suppress CNS immune mechanisms, while others harness the immune system to clear deleterious products and cells. This Review focuses on the mechanisms by which inflammation, mediated either by the peripheral immune response or by endogenous CNS immune mechanisms, can affect CNS neurodegeneration.
Collapse
|
220
|
Production of Monoclonal Antibodies to Pathologic β-sheet Oligomeric Conformers in Neurodegenerative Diseases. Sci Rep 2017; 7:9881. [PMID: 28852189 PMCID: PMC5575137 DOI: 10.1038/s41598-017-10393-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
We describe a novel approach to produce conformational monoclonal antibodies selected to specifically react with the β-sheet secondary structure of pathological oligomeric conformers, characteristic of many neurodegenerative diseases. Contrary to past and current efforts, we utilize a mammalian non-self-antigen as an immunogen. The small, non-self peptide selected was covalently polymerized with glutaraldehyde until it reached a high β-sheet secondary structure content, and species between 10–100kDa that are immunogenic, stable and soluble (p13Bri). Inoculation of p13Bri in mice elicited antibodies to the peptide and the β-sheet secondary structure conformation. Hybridomas were produced and clones selected for their reactivity with at least two different oligomeric conformers from Alzheimer’s, Parkinson and/or Prion diseases. The resulting conformational monoclonals are able to detect pathological oligomeric forms in different human neurodegenerative diseases by ELISA, immunohistochemistry and immunoblots. This technological approach may be useful to develop tools for detection, monitoring and treatment of multiple misfolding disorders.
Collapse
|
221
|
Doucet M, El-Turabi A, Zabel F, Hunn BH, Bengoa-Vergniory N, Cioroch M, Ramm M, Smith AM, Gomes AC, Cabral de Miranda G, Wade-Martins R, Bachmann MF. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS One 2017; 12:e0181844. [PMID: 28797124 PMCID: PMC5552317 DOI: 10.1371/journal.pone.0181844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model.
Collapse
Affiliation(s)
- Marika Doucet
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Aadil El-Turabi
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | | | - Benjamin H.M. Hunn
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Milena Cioroch
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Mauricio Ramm
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Amy M. Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Ariane Cruz Gomes
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Gustavo Cabral de Miranda
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (RWM); (MFB)
| | - Martin F. Bachmann
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
- Immunology, Rheumatology, Immunology and Allergy (RIA), Inselspital, University of Bern, Switzerland
- * E-mail: (RWM); (MFB)
| |
Collapse
|
222
|
Wang Y, Yan T, Lu H, Yin W, Lin B, Fan W, Zhang X, Fernandez-Funez P. Lessons from Anti-Amyloid-β Immunotherapies in Alzheimer Disease: Aiming at a Moving Target. NEURODEGENER DIS 2017; 17:242-250. [DOI: 10.1159/000478741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
|
223
|
Montoliu-Gaya L, Esquerda-Canals G, Bronsoms S, Villegas S. Production of an anti-Aβ antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect. PLoS One 2017; 12:e0181480. [PMID: 28771492 PMCID: PMC5542431 DOI: 10.1371/journal.pone.0181480] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Abstract
ScFv-h3D6 has been shown as an efficient therapy in the 3xTg-AD mouse model of Alzheimer's Disease. Because one of the major bottlenecks for the therapeutic uses of proteins produced in Escherichia coli is their potential contamination with endotoxins, LPS were extensively removed by a rather low-efficient, expensive, and time-consuming purification step. In addition, disulfide scrambling is favored in the reducing bacterial cytoplasm albeit the use of reductase deficient strains. To overcome these hurdles, as well as to improve the yield, the yeast Pichia pastoris, an endotoxin-free host system for recombinant protein production, has been used to produce scFv-h3D6, both in flask and in a fed-batch bioreactor. Comparison of the thermal stability of the obtained protein with that from E. coli showed no differences. Opposite to the case of the protein obtained from E. coli, no disulfide scrambled conformations or LPS traces were detected in that produced in P. pastoris. Cytotoxicity assays in SH-SY5Y neuroblastoma cell-cultures demonstrated that proteins from both expression systems were similarly efficient in precluding Aβ-induced toxicity. Finally, the 3xTg-AD mouse model was used to test the therapeutic effect of both proteins. Quantification of Aβ levels from cortex and hippocampus protein extracts by ELISA, and Aβ-immunohistochemistry, showed that both proteins reduced Aβ burden. This work demonstrates that scFv-h3D6 obtained from P. pastoris shows the same benefits as those already known for that obtained from E. coli, with multiple advantages in terms of recombinant production and safety.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gisela Esquerda-Canals
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia, Unitat de Citologia i d’Histologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Silvia Bronsoms
- Servei de Proteòmica i Biologia Estructural, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
224
|
Abstract
Alzheimer's disease (AD) is a major form of senile dementia, characterized by progressive memory and neuronal loss combined with cognitive impairment. AD is the most common neurodegenerative disease worldwide, affecting one-fifth of those aged over 85 years. Recent therapeutic approaches have been strongly influenced by five neuropathological hallmarks of AD: acetylcholine deficiency, glutamate excitotoxicity, extracellular deposition of amyloid-β (Aβ plague), formation of intraneuronal neurofibrillary tangles (NTFs), and neuroinflammation. The lowered concentrations of acetylcholine (ACh) in AD result in a progressive and significant loss of cognitive and behavioral function. Current AD medications, memantine and acetylcholinesterase inhibitors (AChEIs) alleviate some of these symptoms by enhancing cholinergic signaling, but they are not curative. Since 2003, no new drugs have been approved for the treatment of AD. This article focuses on the current research in clinical trials targeting the neuropathological findings of AD including acetylcholine response, glutamate transmission, Aβ clearance, tau protein deposits, and neuroinflammation. These investigations include acetylcholinesterase inhibitors, agonists and antagonists of neurotransmitter receptors, β-secretase (BACE) or γ-secretase inhibitors, vaccines or antibodies targeting Aβ clearance or tau protein, as well as anti-inflammation compounds. Ongoing Phase III clinical trials via passive immunotherapy against Aβ peptides (crenezumab, gantenerumab, and aducanumab) seem to be promising. Using small molecules blocking 5-HT6 serotonin receptor (intepirdine), inhibiting BACE activity (E2609, AZD3293, and verubecestat), or reducing tau aggregation (TRx0237) are also currently in Phase III clinical trials. We here systemically review the findings from recent clinical trials to provide a comprehensive review of novel therapeutic compounds in the treatment and prevention of AD.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan
- Division of Colorectal Surgery, China Medical University Hospital, Taichung, 40447 Taiwan
| | - Wen-Mei Fu
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051 Taiwan
| |
Collapse
|
225
|
Rakesh G, Szabo ST, Alexopoulos GS, Zannas AS. Strategies for dementia prevention: latest evidence and implications. Ther Adv Chronic Dis 2017; 8:121-136. [PMID: 28815009 DOI: 10.1177/2040622317712442] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Dementia is a common and debilitating syndrome with enormous impact on individuals and societies. Preventing disease onset or progression would translate to public health and societal benefits. In this review, we discuss the latest evidence on interventions that may show promise for the prevention of cognitive decline. We appraise existing evidence primarily drawn from randomized controlled trials, systematic reviews, and meta-analyses, but also highlight observational studies in humans and relevant work in model organisms. Overall, there is currently limited evidence to support a cause-effect relationship between any preventive strategy and the development or progression of dementia. However, studies to date suggest that a multifactorial intervention comprising regular exercise and healthy diet, along with the amelioration of vascular risk factors, psychosocial stress, and major depressive episodes may be most promising for the prevention of cognitive decline. We discuss the challenges, future directions, and implications of this line of research.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Steven T Szabo
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medical College, White Plains, NY, USA
| | - Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| |
Collapse
|
226
|
Caselli RJ, Beach TG, Knopman DS, Graff-Radford NR. Alzheimer Disease: Scientific Breakthroughs and Translational Challenges. Mayo Clin Proc 2017; 92:978-994. [PMID: 28578785 PMCID: PMC5536337 DOI: 10.1016/j.mayocp.2017.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/17/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Alzheimer disease (AD) was originally conceived as a rare disease that caused presenile dementia but has come to be understood as the most prevalent cause of dementia at any age worldwide. It has an extended preclinical phase characterized by sequential changes in imaging and cerebrospinal fluid biomarkers with subtle memory decline beginning more than a decade before the emergence of symptomatic memory loss heralding the beginning of the mild cognitive impairment stage. The apolipoprotein E ε4 allele is a prevalent and potent risk factor for AD that has facilitated research into its preclinical phase. Cerebral Aβ levels build from preclinical through early dementia stages followed by hyperphosphorylated tau-related pathology, the latter driving cognitive deficits and dementia severity. Structural and molecular imaging can now recapitulate the neuropathology of AD antemortem. Autosomal dominant forms of early-onset familial AD gave rise to the amyloid hypothesis of AD, which, in turn, has led to therapeutic trials of immunotherapy designed to clear cerebral amyloid, but to date results have been disappointing. Genome-wide association studies have identified multiple additional risk factors, but to date none have yielded an effective alternate therapeutic target. Current and future trials aimed at presymptomatic individuals either harboring cerebral amyloid or at genetically high risk offer the hope that earlier intervention might yet succeed where trials in patients with established dementia have failed. A major looming challenge will be that of expensive, incompletely effective disease-modifying therapy: who and when to treat, and how to pay for it.
Collapse
Affiliation(s)
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | | | | |
Collapse
|
227
|
Abstract
IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E ε4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas2Editor, JAMA Neurology
| | | | - Gang Yu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas
| | - Weiming Xia
- Geriatric Research, Education and Clinical Center, Bedford Veterans Hospital, Bedford, Massachusetts5Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
228
|
Khan A, Corbett A, Ballard C. Emerging amyloid and tau targeting treatments for Alzheimer’s disease. Expert Rev Neurother 2017; 17:697-711. [DOI: 10.1080/14737175.2017.1326819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ayesha Khan
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anne Corbett
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - Clive Ballard
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| |
Collapse
|
229
|
Webster L, Groskreutz D, Grinbergs-Saull A, Howard R, O'Brien JT, Mountain G, Banerjee S, Woods B, Perneczky R, Lafortune L, Roberts C, McCleery J, Pickett J, Bunn F, Challis D, Charlesworth G, Featherstone K, Fox C, Goodman C, Jones R, Lamb S, Moniz-Cook E, Schneider J, Shepperd S, Surr C, Thompson-Coon J, Ballard C, Brayne C, Burke O, Burns A, Clare L, Garrard P, Kehoe P, Passmore P, Holmes C, Maidment I, Murtagh F, Robinson L, Livingston G. Development of a core outcome set for disease modification trials in mild to moderate dementia: a systematic review, patient and public consultation and consensus recommendations. Health Technol Assess 2017; 21:1-192. [PMID: 28625273 PMCID: PMC5494514 DOI: 10.3310/hta21260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is currently no disease-modifying treatment available to halt or delay the progression of the disease pathology in dementia. An agreed core set of the best-available and most appropriate outcomes for disease modification would facilitate the design of trials and ensure consistency across disease modification trials, as well as making results comparable and meta-analysable in future trials. OBJECTIVES To agree a set of core outcomes for disease modification trials for mild to moderate dementia with the UK dementia research community and patient and public involvement (PPI). DATA SOURCES We included disease modification trials with quantitative outcomes of efficacy from (1) references from related systematic reviews in workstream 1; (2) searches of the Cochrane Dementia and Cognitive Improvement Group study register, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, EMBASE, Latin American and Caribbean Health Sciences Literature and PsycINFO on 11 December 2015, and clinical trial registries [International Standard Randomised Controlled Trial Number (ISRCTN) and clinicaltrials.gov] on 22 and 29 January 2016; and (3) hand-searches of reference lists of relevant systematic reviews from database searches. REVIEW METHODS The project consisted of four workstreams. (1) We obtained related core outcome sets and work from co-applicants. (2) We systematically reviewed published and ongoing disease modification trials to identify the outcomes used in different domains. We extracted outcomes used in each trial, recording how many used each outcome and with how many participants. We divided outcomes into the domains measured and searched for validation data. (3) We consulted with PPI participants about recommended outcomes. (4) We presented all the synthesised information at a conference attended by the wider body of National Institute for Health Research (NIHR) dementia researchers to reach consensus on a core set of outcomes. RESULTS We included 149 papers from the 22,918 papers screened, referring to 125 individual trials. Eighty-one outcomes were used across trials, including 72 scales [31 cognitive, 12 activities of daily living (ADLs), 10 global, 16 neuropsychiatric and three quality of life] and nine biological techniques. We consulted with 18 people for PPI. The conference decided that only cognition and biological markers are core measures of disease modification. Cognition should be measured by the Mini Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog), and brain changes through structural magnetic resonance imaging (MRI) in a subset of participants. All other domains are important but not core. We recommend using the Neuropsychiatric Inventory for neuropsychiatric symptoms: the Disability Assessment for Dementia for ADLs, the Dementia Quality of Life Measure for quality of life and the Clinical Dementia Rating scale to measure dementia globally. LIMITATIONS Most of the trials included participants with Alzheimer's disease, so recommendations may not apply to other types of dementia. We did not conduct economic analyses. The PPI consultation was limited to members of the Alzheimer's Society Research Network. CONCLUSIONS Cognitive outcomes and biological markers form the core outcome set for future disease modification trials, measured by the MMSE or ADAS-Cog, and structural MRI in a subset of participants. FUTURE WORK We envisage that the core set may be superseded in the future, particularly for other types of dementia. There is a need to develop an algorithm to compare scores on the MMSE and ADAS-Cog. STUDY REGISTRATION The project was registered with Core Outcome Measures in Effectiveness Trials [ www.comet-initiative.org/studies/details/819?result=true (accessed 7 April 2016)]. The systematic review protocol is registered as PROSPERO CRD42015027346. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Lucy Webster
- Division of Psychiatry, University College London, London, UK
| | - Derek Groskreutz
- Division of Psychology and Language Sciences, University College London, London, UK
| | | | - Rob Howard
- Division of Psychiatry, University College London, London, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gail Mountain
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sube Banerjee
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Bob Woods
- Dementia Services Development Centre Wales, Bangor University, Bangor, UK
| | - Robert Perneczky
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Louise Lafortune
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Charlotte Roberts
- International Consortium for Health Outcomes Measurement, London, UK
| | | | | | - Frances Bunn
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - David Challis
- Personal Social Services Research Unit, University of Manchester, Manchester, UK
| | - Georgina Charlesworth
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK
| | | | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Claire Goodman
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - Roy Jones
- Research Institute for the Care of Older People, University of Bath, Bath, UK
| | - Sallie Lamb
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | - Esme Moniz-Cook
- Faculty of Health and Social Care, University of Hull, Hull, UK
| | - Justine Schneider
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Sasha Shepperd
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Surr
- School of Health & Community Studies, Leeds Beckett University, Leeds, UK
| | - Jo Thompson-Coon
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Orlaith Burke
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alistair Burns
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Linda Clare
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
- School of Psychology, University of Exeter, Exeter, UK
- Centre for Research in Ageing and Cognitive Health, University of Exeter Medical School, Exeter, UK
| | - Peter Garrard
- Neuroscience Research Centre, St George's, University of London, UK
| | - Patrick Kehoe
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Clive Holmes
- School of Medicine, University of Southampton, Southampton, UK
| | - Ian Maidment
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Fliss Murtagh
- Cicely Saunders Institute, King's College London, London, UK
| | - Louise Robinson
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Gill Livingston
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
- North Thames Collaboration for Leadership in Applied Health Research and Care, London, UK
| |
Collapse
|
230
|
Lambracht-Washington D, Fu M, Frost P, Rosenberg RN. Evaluation of a DNA Aβ42 vaccine in adult rhesus monkeys (Macaca mulatta): antibody kinetics and immune profile after intradermal immunization with full-length DNA Aβ42 trimer. ALZHEIMERS RESEARCH & THERAPY 2017; 9:30. [PMID: 28441965 PMCID: PMC5405538 DOI: 10.1186/s13195-017-0257-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/24/2017] [Indexed: 01/18/2023]
Abstract
Background Aggregated amyloid-β peptide 1–42 (Aβ42), derived from the cellular amyloid precursor protein, is one of the pathological hallmarks of Alzheimer’s disease (AD). Although active immunization against Aβ42 peptide was successful in AD mouse models and led to removal of plaques and improved memory, a similar clinical trial in humans (Aβ42 peptide immunization with QS-21 adjuvant) was stopped in phase II, when 6% of the treated patients developed encephalitis. Currently ongoing passive immunizations with the injection of preformed monoclonal antibodies against different epitopes within the Aβ1–42 peptide, which do not lead to activation of the immune system, have shown some effects in slowing AD pathology. Active DNA Aβ42 immunizations administered with the gene gun into the skin are noninflammatory because they activate a different T-cell population (Th2) with different cytokine responses eliciting a different humoral immune response. We present our findings in rhesus macaques that underwent the DNA Aβ42 immunization via gene gun delivery into the skin. Methods Six rhesus monkeys received two different doses of a DNA Aβ42 trimer vaccine. The humoral immune response was analyzed from blood throughout the study, and cellular immune responses were determined in peripheral blood mononuclear cells (PBMCs) after three and six immunizations. Results DNA Aβ42 trimer immunization led to high titer antibody responses in the nonhuman primate (NHP) model. Antibodies generated in the rhesus monkeys following DNA Aβ42 immunization detected amyloid plaques consisting of human Aβ42 peptide in the brain of the triple-transgenic AD mouse model. T-cell responses showed no interferon (IFN)-γ- and interleukin (IL)-17-producing cells from PBMCs in Enzyme-Linked ImmunoSpot assays after three immunization time points. At six immunization time points, IFN-γ- and IL-17-producing cells were found in immunized animals as well as in control animals and were thus considered nonspecific and not due to the immunization regimen. IFN-γ and IL-17 secretion in response to Aβ42 peptide restimulation became undetectable after a 3-month rest period. Conclusions Intradermal DNA Aβ42 immunization delivered with the gene gun produces a high antibody response in NHPs and is highly likely to be effective and safe in a clinical AD prevention trial in patients.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA.
| | - Min Fu
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Pat Frost
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA.,Alzheimer's Disease Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
231
|
Ising C, Gallardo G, Leyns CEG, Wong CH, Jiang H, Stewart F, Koscal LJ, Roh J, Robinson GO, Remolina Serrano J, Holtzman DM. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med 2017; 214:1227-1238. [PMID: 28416651 PMCID: PMC5413341 DOI: 10.1084/jem.20162125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Ising et al. report expression of anti-tau scFvs in the brain of a mouse model of tauopathy by AAV-mediated gene transfer. Treated mice show markedly decreased tau hyperphosphorylation and detergent-soluble tau species. Therefore, the Fc domain is not required to mediate effects in tauopathy. Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the Fc domain of HJ8.5 is required for the therapeutic effect, we engineered single-chain variable fragments (scFvs) derived from HJ8.5 with variable linker lengths, all specific to human tau. Based on different binding properties, we selected two anti-tau scFvs and tested their efficacy in vivo by adeno-associated virus–mediated gene transfer to the brain of P301S-tg mice. The scFvs significantly reduced levels of hyperphosphorylated, aggregated tau in brain tissue of P301S-tg mice, associated with a decrease in detergent-soluble tau species. Interestingly, these mice showed substantial levels of scFvs in the cerebrospinal fluid without significant effects on total extracellular tau levels. Therefore, our study provides a novel strategy for anti-tau immunotherapeutics that potentially limits a detrimental proinflammatory response.
Collapse
Affiliation(s)
- Christina Ising
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Cheryl E G Leyns
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Connie H Wong
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | | | - Floy Stewart
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Lauren J Koscal
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Joseph Roh
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Grace O Robinson
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| |
Collapse
|
232
|
UB-311, a novel UBITh ® amyloid β peptide vaccine for mild Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:262-272. [PMID: 29067332 PMCID: PMC5651432 DOI: 10.1016/j.trci.2017.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction A novel amyloid β (Aβ) synthetic peptide vaccine (UB-311) has been evaluated in a first-in-human trial with patients of mild-to-moderate Alzheimer's disease. We describe translational research covering vaccine design, preclinical characterization, and phase-I clinical trial with supportive outcome that advances UB-311 into an ongoing phase-II trial. Methods UB-311 is constructed with two synthetic Aβ1–14–targeting peptides (B-cell epitope), each linked to different helper T-cell peptide epitopes (UBITh®) and formulated in a Th2-biased delivery system. The hAPP751 transgenic mouse model was used to perform the proof-of-concept study. Baboons and macaques were used for preclinical safety, tolerability, and immunogenicity evaluation. Patients with mild-to-moderate Alzheimer's disease (AD) were immunized by intramuscular route with 3 doses of UB-311 at weeks 0, 4, and 12, and monitored until week 48. Safety and immunogenicity were assessed per protocol, and preliminary efficacy was analyzed by Alzheimer's Disease Assessment Scale–Cognitive Subscale (ADAS-Cog), Mini–Mental State Examination (MMSE), and Alzheimer's Disease Cooperative Study–Clinician's Global Impression of Change (ADCS-CGIC). Results UB-311 covers a diverse genetic background and facilitates strong immune response with high responder rate. UB-311 reduced the levels of Aβ1–42 oligomers, protofibrils, and plaque load in hAPP751 transgenic mice. Safe and well-tolerated UB-311 generated considerable site-specific (Aβ1–10) antibodies across all animal species examined. In AD patients, UB-311 induced a 100% responder rate; injection site swelling and agitation were the most common adverse events (4/19 each). A slower rate of increase in ADAS-Cog from baseline to week 48 was observed in the subgroup of mild AD patients (MMSE ≥ 20) compared with the moderate AD subgroup, suggesting that UB-311 may have a potential of cognition improvement in patients with early stage of Alzheimer's dementia. Discussion The UBITh® platform can generate a high-precision molecular vaccine with high responder rate, strong on-target immunogenicity, and a potential of cognition improvement, which support UB-311 for active immunotherapy in early-to-mild AD patients currently enrolled in a phase-II trial (NCT02551809).
Collapse
|
233
|
Nakagami H. Design of therapeutic vaccines as a novel antibody therapy for cardiovascular diseases. J Cardiol 2017; 70:201-205. [PMID: 28400080 DOI: 10.1016/j.jjcc.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
Vaccines are primarily used worldwide as a preventive medicine for infectious diseases and have recently been applied to cancer. We and others have developed therapeutic vaccines designed for cardiovascular diseases that are notably different from previous vaccines. In the case of cancer vaccines, a specific protein in cancer cells is a target antigen, and the activation of cytotoxic T cells (CTL) is required to kill and remove the antigen-presenting cancer cells. Our therapeutic vaccines work against hypertension by targeting angiotensin II (Ang II) as the antigen, which is an endogenous hormone. Therapeutic vaccines must avoid CTL activation and induce the blocking antibodies for Ang II. The goal of our therapeutic vaccine for cardiovascular diseases is to induce the specific antibody response toward the target protein without inducing T-cell or antibody-mediated inflammation through the careful selection of the target antigen, carrier protein and adjuvants. The goal of our therapeutic vaccine is similar to that of antibody therapy. Recently, multiple antibody-based drugs have been developed for cancer, immune-related diseases, and dyslipidemia, which are efficient but expensive. If the effect of a therapeutic vaccine is nearly equivalent to antibody therapy as an alternative approach, the lower medical cost and improvement in drug adherence can be advantages of therapeutic vaccines. In this review, we will describe our concept of therapeutic vaccines for cardiovascular diseases and the future directions of therapeutic vaccines as novel antibody therapies.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
234
|
Castro P, Zaman S, Holland A. Alzheimer's disease in people with Down's syndrome: the prospects for and the challenges of developing preventative treatments. J Neurol 2017; 264:804-813. [PMID: 27778163 PMCID: PMC5374178 DOI: 10.1007/s00415-016-8308-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
People with Down's syndrome (DS) are at high risk for developing Alzheimer's disease (AD) at a relatively young age. This increased risk is not observed in people with intellectual disabilities for reasons other than DS and for this reason it is unlikely to be due to non-specific effects of having a neurodevelopmental disorder but, instead, a direct consequence of the genetics of DS (trisomy 21). Given the location of the amyloid precursor protein (APP) gene on chromosome 21, the amyloid cascade hypothesis is the dominant theory accounting for this risk, with other genetic and environmental factors modifying the age of onset and the course of the disease. Several potential therapies targeting the amyloid pathway and aiming to modify the course of AD are currently being investigated, which may also be useful for treating AD in DS. However, given that the neuropathology associated with AD starts many years before dementia manifests, any preventative treatment must start well before the onset of symptoms. To enable trials of such interventions, plasma, CSF, brain, and retinal biomarkers are being studied as proxy early diagnostic and outcome measures for AD. In this systematic review, we consider the prospects for the development of potential preventative treatments of AD in the DS population and their evaluation.
Collapse
Affiliation(s)
- Paula Castro
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Anthony Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.
| |
Collapse
|
235
|
MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine 2017; 35:2015-2024. [PMID: 28320590 DOI: 10.1016/j.vaccine.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND By the time clinical symptoms of Alzheimer's disease (AD) manifest in patients there is already substantial tau pathology in the brain. Recent evidence also suggests that tau pathology can become self-propagating, further accelerating disease progression. Over the last decade several groups have tested the efficacy of protein-based anti-tau immunotherapeutics in various animal models of tauopathy. Here we report on the immunological and therapeutic potency of the first anti-tau DNA vaccine based on the MultiTEP platform, AV-1980D, in THY-Tau22 transgenic mice. METHODS Starting at 3months of age, mice were immunized intramuscularly with AV-1980D vaccine targeting a tau B cell epitope spanning aa2-18 followed by electroporation (EP). Humoral and cellular immune responses in vaccinated animals were analyzed by ELISA and ELISpot, respectively. Neuropathological changes in the brains of experimental and control mice were then analyzed by biochemical (WB and ELISA) and immunohistochemical (IHC) methods at 9months of age. RESULTS EP-mediated AV-1980D vaccinations of THY-Tau22 mice induced activation of Th cells specific to the MultiTEP vaccine platform and triggered robust humoral immunity response specific to tau. Importantly, no activation of potentially harmful autoreactive Th cell responses specific to endogenous tau species was detected. The maximum titers of anti-tau antibodies were reached after two immunizations and remained slightly lower, but steady during five subsequent monthly immunizations. Vaccinations with AV-1980D followed by EP significantly reduced total tau and pS199 and AT180 phosphorylated tau levels in the brains extracts of vaccinated mice, but produced on subtle non-significant effects on other phosphorylated tau species. CONCLUSIONS These data demonstrate that MultiTEP-based DNA epitope vaccination targeting the N-terminus of tau is highly immunogenic and therapeutically potent in the THY-Tau22 mouse model of tauopathy and indicate that EP-mediated DNA immunization is an attractive alternative to protein-based adjuvanted vaccines for inducing high concentrations of anti-tau antibodies.
Collapse
|
236
|
Penninkilampi R, Brothers HM, Eslick GD. Safety and Efficacy of Anti-Amyloid-β Immunotherapy in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Neuroimmune Pharmacol 2017; 12:194-203. [PMID: 28025724 DOI: 10.1007/s11481-016-9722-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Immunotherapeutics targeting amyloid-β (Aβ) have had mixed results in clinical trials. The present study aims to evaluate the safety and clinical efficacy of immunotherapeutic agents targeting Aβ in Alzheimer's disease. Randomised controlled trials of at least two weeks duration were included in the review. Fourteen randomised controlled trials (n = 5554) were identified in a systematic search of eight electronic databases. Upon pooling of data, there was no increased risk of any adverse event, serious adverse events, or death with the exception of a near fivefold increase in amyloid-related imaging abnormalities (ARIA; OR 4.79, 95% CI 1.24-18.55; p = 0.02). Of the cognitive indicators, the Mini-Mental State Examination (MMSE) showed a small statistically significant improvement (diff in means =0.44; p = 0.02), while the others (ADAS-cog, ADCS-ADL, and CDR-sb) showed no change. Therefore, immunotherapeutic agents have been relatively well tolerated, with some promise for cognitive improvements if the occurrence of ARIA can be mitigated.
Collapse
Affiliation(s)
- Ross Penninkilampi
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, P.O. Box 63, Nepean Hospital, Penrith, NSW, Australia
| | - Holly M Brothers
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Guy D Eslick
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, P.O. Box 63, Nepean Hospital, Penrith, NSW, Australia.
| |
Collapse
|
237
|
Stopschinski BE, Diamond MI. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol 2017; 16:323-332. [PMID: 28238712 DOI: 10.1016/s1474-4422(17)30037-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The neuropathology of different neurodegenerative diseases begins in different brain regions, and involves distinct brain networks. Evidence indicates that transcellular propagation of protein aggregation, which is the basis of prion disease, might underlie the progression of pathology in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The prion model predicts specific patterns of neuronal vulnerability and network involvement on the basis of the conformation of pathological proteins. Indeed, evidence indicates that self-propagating aggregate conformers, or so-called strains, are associated with distinct neuropathological syndromes. The extension of this hypothesis to our understanding of common neurodegenerative disorders can suggest new therapeutic approaches, such as immunotherapy and small molecules, to block transcellular propagation, and new diagnostic tools to detect early evidence of disease.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr Brain Institute, University of Texas, Southwestern Medical Center, Dallas, TX 75225, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr Brain Institute, University of Texas, Southwestern Medical Center, Dallas, TX 75225, USA.
| |
Collapse
|
238
|
Immune Regulation of Antibody Access to Neuronal Tissues. Trends Mol Med 2017; 23:227-245. [PMID: 28185790 DOI: 10.1016/j.molmed.2017.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
This review highlights recent advances in how the innate and adaptive immune systems control the blood-brain barrier (BBB) and the blood-nerve barrier (BNB). Interferons and TAM receptors play key roles in innate immune control of the BBB. Cells of the adaptive immune system, particularly CD4+ T cells, take distinct routes to enter neural tissues and mediate immune surveillance. Furthermore, T cell-mediated opening of the BBB and the BNB is crucial to allow antibody access and thereby block the replication of neurotropic viruses. Such novel insights gained from basic research provide key foundations for future design of therapeutic strategies - enabling antibody access to the brain may be key to cancer immunotherapy and to the use of vaccines against neurodegenerative conditions such as Alzheimer's disease.
Collapse
|
239
|
Fu L, Li Y, Hu Y, Zheng Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle-based active Aβ immunotherapy elicits sufficient immunogenicity and improves cognitive capacity in a mouse model of Alzheimer's disease. Sci Rep 2017; 7:41041. [PMID: 28106117 PMCID: PMC5247735 DOI: 10.1038/srep41041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022] Open
Abstract
Disease-modifying immunotherapies focusing on reducing amyloid-beta (Aβ) deposition are the main treatment for Alzheimer’s disease (AD). However, none of the Aβ immunotherapies has produced clinically meaningful results to date. The main reason for this lack of efficacy is that the vaccine induces insufficiently high antibody titers, as it contains small B-cell epitope of Aβ to avoid Aβ42-specific T-cell activation. With the aim of generating a potent AD vaccine, we designed the protein PP-3copy-Aβ1-6-loop123, comprising three copies of Aβ1-6 inserted into three loops of a novel vaccine platform, the norovirus P particle, which could present Aβ at its surface and remarkably enhance the immunogenicity of the vaccine. We demonstrated that PP-3copy-Aβ1-6-loop123 was able to elicit high antibody titers against Aβ42, without causing T-cell activation, in AD mice regardless of their age. Importantly, PP-3copy-Aβ1-6-loop123 treatment successfully reduced amyloid deposition, rescued memory loss, and repaired hippocampus damage in AD mice. The Aβ antibodies induced by this active immunotherapy reacted with and disrupted aggregated Aβ, reducing its cellular toxicity. In addition, our results suggested PP-3copy-Aβ1-6-loop123 immunization could restore Aβ42 homeostasis in both the serum and brain. Thus, the P particle-based Aβ epitope vaccine is a sufficiently immunogenic and safe immunotherapeutic intervention for Alzheimer’s disease.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingnan Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yayuan Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
240
|
Bansal S, Maurya IK, Shenmar K, Yadav N, Thota CK, Kumar V, Tikoo K, Chauhan VS, Jain R. Aβ1–42 C-terminus fragment derived peptides prevent the self-assembly of the parent peptide. RSC Adv 2017. [DOI: 10.1039/c6ra26295c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of peptides derived from the C-terminus fragment (Aβ38–42) of Aβ showed significant to complete reduction in Aβ-induced toxicity.
Collapse
Affiliation(s)
- Sunil Bansal
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | | | - Kitika Shenmar
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Nitin Yadav
- International Center for Genetic Engineering and Biotechnology
- New Delhi
- India
| | | | - Vinod Kumar
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research
- S. A. S Nagar
- India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research
- S. A. S Nagar
- India
| | | | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| |
Collapse
|
241
|
Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent Progress in Alzheimer's Disease Research, Part 3: Diagnosis and Treatment. J Alzheimers Dis 2017; 57:645-665. [PMID: 28269772 PMCID: PMC5389048 DOI: 10.3233/jad-160907] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
The field of Alzheimer's disease (AD) research has grown exponentially over the past few decades, especially since the isolation and identification of amyloid-β from postmortem examination of the brains of AD patients. Recently, the Journal of Alzheimer's Disease (JAD) put forth approximately 300 research reports which were deemed to be the most influential research reports in the field of AD since 2010. JAD readers were asked to vote on these most influential reports. In this 3-part review, we review the results of the 300 most influential AD research reports to provide JAD readers with a readily accessible, yet comprehensive review of the state of contemporary research. Notably, this multi-part review identifies the "hottest" fields of AD research providing guidance for both senior investigators as well as investigators new to the field on what is the most pressing fields within AD research. Part 1 of this review covers pathogenesis, both on a molecular and macro scale. Part 2 review genetics and epidemiology, and part 3 covers diagnosis and treatment. This part of the review, diagnosis and treatment, reviews the latest diagnostic criteria, biomarkers, imaging, and treatments in AD.
Collapse
Affiliation(s)
- Francis T. Hane
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Morgan Robinson
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Brenda Y. Lee
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Owen Bai
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Mitchell S. Albert
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| |
Collapse
|
242
|
Bateman RJ, Benzinger TL, Berry S, Clifford DB, Duggan C, Fagan AM, Fanning K, Farlow MR, Hassenstab J, McDade EM, Mills S, Paumier K, Quintana M, Salloway SP, Santacruz A, Schneider LS, Wang G, Xiong C. The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model. Alzheimers Dement 2017; 13:8-19. [PMID: 27583651 PMCID: PMC5218895 DOI: 10.1016/j.jalz.2016.07.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer's disease in autosomal dominant Alzheimer's disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation (NexGen) prevention trial. METHODS In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the National Institutes of Health, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen prevention trial. RESULTS Our expanded trial toolbox consists of a disease progression model for ADAD, primary end point DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. CONCLUSION These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| | - Tammie L Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | | | - David B Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Cynthia Duggan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Kathleen Fanning
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University, Indianapolis, IN, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric M McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Susan Mills
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Katrina Paumier
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Stephen P Salloway
- Memory and Aging Program, Butler Hospital, Brown Medical School, Providence, RI, USA
| | - Anna Santacruz
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
243
|
Pasquier F, Sadowsky C, Holstein A, Leterme GLP, Peng Y, Jackson N, Fox NC, Ketter N, Liu E, Ryan JM. Two Phase 2 Multiple Ascending-Dose Studies of Vanutide Cridificar (ACC-001) and QS-21 Adjuvant in Mild-to-Moderate Alzheimer's Disease. J Alzheimers Dis 2016; 51:1131-43. [PMID: 26967206 DOI: 10.3233/jad-150376] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vanutide cridificar (ACC-001), an immunotherapeutic vaccine, is a potentially disease-modifying therapy that aims to reduce brain amyloid-β (Aβ) plaques in patients with Alzheimer's disease (AD). ACC-001 was evaluated in two phase 2a, multicenter, randomized, third party-unblinded, placebo-controlled, multiple ascending-dose studies of ACC-001 (3μg, 10μg, 30μg) with and without QS-21 adjuvant that enrolled patients with mild-to-moderate AD (n = 245). Patients were treated with up to five doses of study vaccine or placebo and followed for safety and tolerability (primary objective) and anti-Aβ IgG immunogenicity (secondary objective) up to 12 months after the last vaccination. Exploratory assessments included cognitive/functional measures, brain magnetic resonance imaging (MRI) volumetry, and pharmacodynamic markers in plasma and cerebrospinal fluid (CSF). The most frequent treatment-emergent adverse events (≥10%) were local injection reactions and headache. Amyloid-related imaging abnormalities with vasogenic edema occurred in two (0.8%) patients (ACC-001 30μg + QS-21; ACC-001 10μg). ACC-001 + QS-21 elicited consistently higher peak and sustained anti-Aβ IgG titers compared with ACC-001 alone. Plasma Aβx-40 was significantly higher in all ACC-001 + QS-21 groups versus placebo (weeks 16-56), with no evidence of dose response. Exploratory cognitive evaluations, volumetric brain MRI, and CSF biomarkers did not show differences or trends between treatment groups and placebo. ACC-001 with or without QS-21 adjuvant has an acceptable safety profile in patients with mild-to-moderate AD.
Collapse
Affiliation(s)
- Florence Pasquier
- Inserm U1171, Memory clinic of CHU and University of Lille, Lille, France
| | - Carl Sadowsky
- Premiere Research Institute, Palm Beach Neurology, Nova SE University, West Palm Beach, FL, USA
| | | | | | | | | | - Nick C Fox
- Dementia Research Centre, Department of Neurodegeneration, UCL Institute of Neurology, London, UK
| | - Nzeera Ketter
- Janssen Research and Development, San Diego, CA, USA
| | - Enchi Liu
- Janssen Research and Development, San Diego, CA, USA
| | | | | |
Collapse
|
244
|
Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 2016; 12:187-200. [DOI: 10.1080/17460441.2017.1271320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
245
|
Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlow M, Marotta G, Sanchez-Valle R, Scheltens P, Ryan JM, Graf A. Active Aβ immunotherapy CAD106 in Alzheimer's disease: A phase 2b study. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:10-22. [PMID: 29067316 PMCID: PMC5651373 DOI: 10.1016/j.trci.2016.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction This randomized, double-blind, placebo-controlled, 90-week study assessed safety, tolerability, and immunogenicity of CAD106 with/without adjuvant in patients with mild Alzheimer's disease. Methods One hundred twenty-one patients received up to seven intramuscular injections of CAD106 (150 μg or 450 μg) or placebo ± adjuvant over 60 weeks. An amyloid positron emission tomography (PET) substudy was also conducted. Results CAD106 induced strong serological responses (amyloid-beta [Aβ]–Immunoglobuline G[IgG]) in 55.1% (150 μg) and 81.1% (450 μg) of patients (strong serological responders [SSRs]). Serious adverse events (SAEs) were reported in 24.5% (95% confidence interval [CI] 16.7–33.8) of the patients in the active treatment group and in 6.7% (95% CI 0.2–31.9) in the placebo group. Three of the SAEs were classified as possibly related to study drug by the investigators. No evidence of central nervous system inflammation was found. Amyloid-related imaging abnormalities (ARIAs) occurred in six cases, all of them were strong serological responders. None of the ARIAs were symptomatic. Serum Aβ-IgG titer area under the curves correlated negatively with amyloid PET standardized uptake value ratio percentage change from baseline to week 78 within the CAD106-treated patients (r = −0.84, P = .0004). Decrease in cortical gray-matter volume from baseline to week 78 was larger in SSRs than in controls (P = .0077). Discussion Repeated CAD106 administration was generally well tolerated. CAD106 450 μg with alum adjuvant demonstrated the best balance between antibody response and tolerability.
Collapse
Affiliation(s)
- Rik Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Belgium
| | | | | | - Judit Sovago
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - R Paul Maguire
- Biomarker Development, Clinical Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, IN, USA
| | - Giovanni Marotta
- Division of Geriatric Medicine, University of Toronto, Toronto, Canada
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic, Barcelona, Spain
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - J Michael Ryan
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Ana Graf
- Neuroscience, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
246
|
Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 2016; 539:187-196. [PMID: 27830780 DOI: 10.1038/nature20412] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.
Collapse
Affiliation(s)
- Rebecca G Canter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jay Penney
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
247
|
Choi SH, Kim YH, Quinti L, Tanzi RE, Kim DY. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish". Mol Neurodegener 2016; 11:75. [PMID: 27938410 PMCID: PMC5148918 DOI: 10.1186/s13024-016-0139-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) transgenic mice have been used as a standard AD model for basic mechanistic studies and drug discovery. These mouse models showed symbolic AD pathologies including β-amyloid (Aβ) plaques, gliosis and memory deficits but failed to fully recapitulate AD pathogenic cascades including robust phospho tau (p-tau) accumulation, clear neurofibrillary tangles (NFTs) and neurodegeneration, solely driven by familial AD (FAD) mutation(s). Recent advances in human stem cell and three-dimensional (3D) culture technologies made it possible to generate novel 3D neural cell culture models that recapitulate AD pathologies including robust Aβ deposition and Aβ-driven NFT-like tau pathology. These new 3D human cell culture models of AD hold a promise for a novel platform that can be used for mechanism studies in human brain-like environment and high-throughput drug screening (HTS). In this review, we will summarize the current progress in recapitulating AD pathogenic cascades in human neural cell culture models using AD patient-derived induced pluripotent stem cells (iPSCs) or genetically modified human stem cell lines. We will also explain how new 3D culture technologies were applied to accelerate Aβ and p-tau pathologies in human neural cell cultures, as compared the standard two-dimensional (2D) culture conditions. Finally, we will discuss a potential impact of the human 3D human neural cell culture models on the AD drug-development process. These revolutionary 3D culture models of AD will contribute to accelerate the discovery of novel AD drugs.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk, 363-883, Republic of Korea
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA.
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA.
| |
Collapse
|
248
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
249
|
Engelender S, Isacson O. The Threshold Theory for Parkinson's Disease. Trends Neurosci 2016; 40:4-14. [PMID: 27894611 DOI: 10.1016/j.tins.2016.10.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023]
Abstract
Parkinson's disease (PD) is recognized by the accumulation of α-synuclein within neurons. In contrast to the current ascending theory where α-synuclein would propagate from neuron to neuron, we now propose the threshold theory for PD based on evidence of parallel degeneration of both central nervous system (CNS) and peripheral nervous system (PNS) in PD. The functional threshold is lower for the emergence of early symptoms before the classical motor symptoms of PD. This is due to the larger functional reserve of the midbrain dopamine and integrated basal ganglia motor systems to control movement. This threshold theory better accounts for the current neurobiology of PD symptom progression compared to the hypothesis that the disease ascends from the PNS to the CNS as proposed by Braak's hypothesis.
Collapse
Affiliation(s)
- Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Belmont, MA 02478, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
250
|
Tatarnikova OG, Orlov MA, Bobkova NV. Beta-Amyloid and Tau-Protein: Structure, Interaction, and Prion-Like Properties. BIOCHEMISTRY (MOSCOW) 2016; 80:1800-19. [PMID: 26878581 DOI: 10.1134/s000629791513012x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During the last twenty years, molecular genetic investigations of Alzheimer's disease (AD) have significantly broadened our knowledge of basic mechanisms of this disorder. However, still no unambiguous concept on the molecular bases of AD pathogenesis has been elaborated, which significantly impedes the development of AD therapy. In this review, we analyze issues concerning processes of generation of two proteins (β-amyloid peptide and Tau-protein) in the cell, which are believed to play the key role in AD genesis. Until recently, these agents were considered independently of each other, but in light of the latest studies, it becomes clear that it is necessary to study their interaction and combined effects. Studies of mechanisms of toxic action of these endogenous compounds, beginning from their interaction with known receptors of main neurotransmitters to specific peculiarities of functioning of signal intracellular pathways upon development of this pathology, open the way to development of new pharmaceutical substances directed concurrently on key mechanisms of interaction of toxic proteins inside the cell and on the pathways of their propagation in the extracellular space.
Collapse
Affiliation(s)
- O G Tatarnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|