201
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:354517. [PMID: 26221589 PMCID: PMC4499635 DOI: 10.1155/2015/354517] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
Abstract
A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC "contractile" phenotype to the "synthetic" phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles.
Collapse
Affiliation(s)
- Dmitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow 117997, Russia
- The Mount Sinai Community Clinical Oncology Program, Mount Sinai Comprehensive Cancer Center, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Moscow 121552, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| |
Collapse
|
202
|
Meadows SM, Cleaver O. Vascular patterning: coordinated signals keep blood vessels on track. Curr Opin Genet Dev 2015; 32:86-91. [DOI: 10.1016/j.gde.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 11/24/2022]
|
203
|
Abstract
Blood vascular networks in vertebrates are essential to tissue survival. Establishment of a fully functional vasculature is complex and requires a number of steps including vasculogenesis and angiogenesis that are followed by differentiation into specialized vascular tissues (i.e., arteries, veins, and lymphatics) and organ-specific differentiation. However, an equally essential step in this process is the pruning of excessive blood vessels. Recent studies have shown that pruning is critical for the effective perfusion of blood into tissues. Despite its significance, vessel pruning is the least understood process in vascular differentiation and development. Two recently published PLOS Biology papers provide important new information about cellular dynamics of vascular regression.
Collapse
Affiliation(s)
- Nicolas Ricard
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
204
|
Quttainah M, Al-Hejailan R, Saleh S, Parhar R, Conca W, Bulwer B, Moorjani N, Catarino P, Elsayed R, Shoukri M, AlJufan M, AlShahid M, Ouban A, Al-Halees Z, Westaby S, Collison K, Al-Mohanna F. Progression of matrixin and cardiokine expression patterns in an ovine model of heart failure and recovery. Int J Cardiol 2015; 186:77-89. [DOI: 10.1016/j.ijcard.2015.03.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 01/31/2023]
|
205
|
Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: Will technology bring us flow? Dev Dyn 2015; 244:629-40. [PMID: 25613150 DOI: 10.1002/dvdy.24254] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. RESULTS 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. CONCLUSIONS As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases.
Collapse
Affiliation(s)
- S J Paulsen
- Department of Bioengineering, Rice University, Houston, Texas
| | | |
Collapse
|
206
|
Lenard A, Daetwyler S, Betz C, Ellertsdottir E, Belting HG, Huisken J, Affolter M. Endothelial cell self-fusion during vascular pruning. PLoS Biol 2015; 13:e1002126. [PMID: 25884426 PMCID: PMC4401649 DOI: 10.1371/journal.pbio.1002126] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/10/2015] [Indexed: 12/30/2022] Open
Abstract
During embryonic development, vascular networks remodel to meet the increasing demand of growing tissues for oxygen and nutrients. This is achieved by the pruning of redundant blood vessel segments, which then allows more efficient blood flow patterns. Because of the lack of an in vivo system suitable for high-resolution live imaging, the dynamics of the pruning process have not been described in detail. Here, we present the subintestinal vein (SIV) plexus of the zebrafish embryo as a novel model to study pruning at the cellular level. We show that blood vessel regression is a coordinated process of cell rearrangements involving lumen collapse and cell-cell contact resolution. Interestingly, the cellular rearrangements during pruning resemble endothelial cell behavior during vessel fusion in a reversed order. In pruning segments, endothelial cells first migrate toward opposing sides where they join the parental vascular branches, thus remodeling the multicellular segment into a unicellular connection. Often, the lumen is maintained throughout this process, and transient unicellular tubes form through cell self-fusion. In a second step, the unicellular connection is resolved unilaterally, and the pruning cell rejoins the opposing branch. Thus, we show for the first time that various cellular activities are coordinated to achieve blood vessel pruning and define two different morphogenetic pathways, which are selected by the flow environment.
Collapse
Affiliation(s)
- Anna Lenard
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Charles Betz
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
207
|
Jahnsen ED, Trindade A, Zaun HC, Lehoux S, Duarte A, Jones EAV. Notch1 is pan-endothelial at the onset of flow and regulated by flow. PLoS One 2015; 10:e0122622. [PMID: 25830332 PMCID: PMC4382190 DOI: 10.1371/journal.pone.0122622] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
Arteriovenous differentiation is a key event during vascular development and hemodynamic forces play an important role. Arteriovenous gene expression is present before the onset of flow, however it remains plastic and flow can alter arteriovenous identity. Notch signaling is especially important in the genetic determination of arteriovenous identity. Nevertheless, the effect of the onset of circulation on Notch expression and signaling has not been studied. The aim of this study is therefore to investigate the interaction of Notch1 signaling and hemodynamic forces during early vascular development. We find that the onset of Notch1 expression coincides with the onset of flow, and that expression is pan-endothelial at the onset of circulation in mouse embryos and only becomes arterial-specific after remodeling has occurred. When we ablate flow in the early embryo, endothelial cells fail to express Notch1. We show that low and disturbed flow patterns upregulate Notch1 expression in endothelial cells in vitro, but that higher shear stress levels do not (≥10 dynes/cm2). Using siRNA, we knocked down Notch1 to investigate the role of Notch1 in mechanotransduction. When we applied shear stress levels similar to those found in embryonic arteries, we found an upregulation of Klf2, Dll1, Dll4, Jag1, Hey1, Nrp1 and CoupTFII but that only Dll4, Hey1, Nrp1 and EphB4 required Notch1 for flow-induced expression. Our results therefore indicate that Notch1 can modulate mechanotransduction but is not a critical mediator of the process since many genes mechanotransduce normally in the absence of Notch1, including genes involved in arteriovenous differentiation.
Collapse
Affiliation(s)
- Espen D. Jahnsen
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Biomedical Engineering, McGill University, 3775 University St, Montreal, QC, H3A 2B4, Canada
| | - Alexandre Trindade
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, University of Lisbon, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hans C. Zaun
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
| | - Stéphanie Lehoux
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
| | - António Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, University of Lisbon, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Elizabeth A. V. Jones
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Biomedical Engineering, McGill University, 3775 University St, Montreal, QC, H3A 2B4, Canada
- Department of Cardiovascular Science, KU Leuven, UZ Herestraat 49—box 911, 3000, Leuven, Belgium
- * E-mail:
| |
Collapse
|
208
|
Coon BG, Baeyens N, Han J, Budatha M, Ross TD, Fang JS, Yun S, Thomas JL, Schwartz MA. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. ACTA ACUST UNITED AC 2015; 208:975-86. [PMID: 25800053 PMCID: PMC4384728 DOI: 10.1083/jcb.201408103] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VE-cadherin plays a critical role in endothelial shear stress mechanotransduction by interacting with VEGFRs through their transmembrane domains. Endothelial responses to fluid shear stress are essential for vascular development and physiology, and determine the formation of atherosclerotic plaques at regions of disturbed flow. Previous work identified VE-cadherin as an essential component, along with PECAM-1 and VEGFR2, of a complex that mediates flow signaling. However, VE-cadherin’s precise role is poorly understood. We now show that the transmembrane domain of VE-cadherin mediates an essential adapter function by binding directly to the transmembrane domain of VEGFR2, as well as VEGFR3, which we now identify as another component of the junctional mechanosensory complex. VEGFR2 and VEGFR3 signal redundantly downstream of VE-cadherin. Furthermore, VEGFR3 expression is observed in the aortic endothelium, where it contributes to flow responses in vivo. In summary, this study identifies a novel adapter function for VE-cadherin mediated by transmembrane domain association with VEGFRs.
Collapse
Affiliation(s)
- Brian G Coon
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Nicolas Baeyens
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jinah Han
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Madhusudhan Budatha
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Tyler D Ross
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jennifer S Fang
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Sanguk Yun
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jeon-Leon Thomas
- Université Pierre and Marie Curie-Paris 6, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique U-1127/UMR-7225, 75654 Paris, France Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520 Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520
| |
Collapse
|
209
|
Charpentier MS, Tandon P, Trincot CE, Koutleva EK, Conlon FL. A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7. PLoS One 2015; 10:e0116086. [PMID: 25705891 PMCID: PMC4338030 DOI: 10.1371/journal.pone.0116086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/04/2014] [Indexed: 01/03/2023] Open
Abstract
During vertebrate blood vessel development, lumen formation is the critical process by which cords of endothelial cells transition into functional tubular vessels. Here, we use Xenopus embryos to explore the cellular and molecular mechanisms underlying lumen formation of the dorsal aorta and the posterior cardinal veins, the primary major vessels that arise via vasculogenesis within the first 48 hours of life. We demonstrate that endothelial cells are initially found in close association with one another through the formation of tight junctions expressing ZO-1. The emergence of vascular lumens is characterized by elongation of endothelial cell shape, reorganization of junctions away from the cord center to the periphery of the vessel, and onset of Claudin-5 expression within tight junctions. Furthermore, unlike most vertebrate vessels that exhibit specialized apical and basal domains, we show that early Xenopus vessels are not polarized. Moreover, we demonstrate that in embryos depleted of the extracellular matrix factor Epidermal Growth Factor-Like Domain 7 (EGFL7), an evolutionarily conserved factor associated with vertebrate vessel development, vascular lumens fail to form. While Claudin-5 localizes to endothelial tight junctions of EGFL7-depleted embryos in a timely manner, endothelial cells of the aorta and veins fail to undergo appropriate cell shape changes or clear junctions from the cell-cell contact. Taken together, we demonstrate for the first time the mechanisms by which lumens are generated within the major vessels in Xenopus and implicate EGFL7 in modulating cell shape and cell-cell junctions to drive proper lumen morphogenesis.
Collapse
Affiliation(s)
- Marta S. Charpentier
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Panna Tandon
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Claire E. Trincot
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Elitza K. Koutleva
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Frank L. Conlon
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, UNC-CH, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
210
|
Requisite role for Nck adaptors in cardiovascular development, endothelial-to-mesenchymal transition, and directed cell migration. Mol Cell Biol 2015; 35:1573-87. [PMID: 25691664 DOI: 10.1128/mcb.00072-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023] Open
Abstract
Development of the cardiovascular system is critically dependent on the ability of endothelial cells (ECs) to reorganize their intracellular actin architecture to facilitate migration, adhesion, and morphogenesis. Nck family cytoskeletal adaptors function as key mediators of actin dynamics in numerous cell types, though their role in EC biology remains largely unexplored. Here, we demonstrate an essential requirement for Nck within ECs. Mouse embryos lacking endothelial Nck1/2 expression develop extensive angiogenic defects that result in lethality at about embryonic day 10. Mutant embryos show immature vascular networks, with decreased vessel branching, aberrant perivascular cell recruitment, and reduced cardiac trabeculation. Strikingly, embryos deficient in endothelial Nck also fail to undergo the endothelial-to-mesenchymal transition (EnMT) required for cardiac valve morphogenesis, with loss of Nck disrupting expression of major EnMT markers, as well as suppressing mesenchymal outgrowth. Furthermore, we show that Nck-null ECs are unable to migrate downstream of vascular endothelial growth factor and angiopoietin-1, and they exhibit profound perturbations in cytoskeletal patterning, with disorganized cellular projections, impaired focal adhesion turnover, and disrupted actin-based signaling. Our collective findings thereby reveal a crucial role for Nck as a master regulator within the endothelium to control actin cytoskeleton organization, vascular network remodeling, and EnMT during cardiovascular development.
Collapse
|
211
|
Kulkarni PM, Rey-Villamizar N, Merouane A, Sudheendran N, Wang S, Garcia M, Larina IV, Roysam B, Larin KV. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data. Quant Imaging Med Surg 2015; 5:125-35. [PMID: 25694962 PMCID: PMC4312302 DOI: 10.3978/j.issn.2223-4292.2014.11.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). METHODS In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. RESULTS Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. CONCLUSIONS Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT.
Collapse
|
212
|
Chen CM, Miranda AMA, Bub G, Srinivas S. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities. Front Physiol 2015; 5:508. [PMID: 25610399 PMCID: PMC4285868 DOI: 10.3389/fphys.2014.00508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023] Open
Abstract
The heart is one of the first organs to develop during mammalian embryogenesis. In the mouse, it starts to form shortly after gastrulation, and is derived primarily from embryonic mesoderm. The embryonic heart is unique in having to perform a mechanical contractile function while undergoing complex morphogenetic remodeling. Approaches to imaging the morphogenesis and contractile activity of the developing heart are important in understanding not only how this remodeling is controlled but also the origin of congenital heart defects (CHDs). Here, we describe approaches for visualizing contractile activity in the developing mouse embryo, using brightfield time lapse microscopy and confocal microscopy of calcium transients. We describe an algorithm for enhancing this image data and quantifying contractile activity from it. Finally we describe how atomic force microscopy can be used to record contractile activity prior to it being microscopically visible.
Collapse
Affiliation(s)
- Chiann-Mun Chen
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford, UK ; Wellcome Trust London, UK
| | - António M A Miranda
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford, UK
| | - Gil Bub
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford, UK
| | - Shankar Srinivas
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
213
|
Lopez AL, Garcia MD, Dickinson ME, Larina IV. Live confocal microscopy of the developing mouse embryonic yolk sac vasculature. Methods Mol Biol 2015; 1214:163-172. [PMID: 25468603 DOI: 10.1007/978-1-4939-1462-3_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding of mouse embryonic development is an invaluable resource for our interpretation of human embryology. Traditional imaging approaches such as immunofluorescence and in situ hybridization are excellent methods for characterizing gene expression and morphology but lack the ability to reveal the dynamic morphogenesis. Furthermore, mammalian embryonic development occurs in utero, which bars our ability to visualize development in dynamics. With the use of live confocal microscopy, vital fluorescent reporters, and embryo culture methods, we can observe cell migration, proliferation, differentiation, and cell-cell interaction in live developing wild-type and mutant embryos. In this chapter, we will discuss how confocal microscopy can be used to visualize the developing vasculature and hemodynamics of the mouse embryonic yolk sac. We will describe fluorescent protein reporter mouse models allowing to image yolk sac vessel development and blood flow, live embryo culture approaches, and confocal time-lapse imaging methods to study vascular morphology and hemodynamics in early embryos.
Collapse
Affiliation(s)
- Andrew L Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
214
|
Ghaffari S, Leask RL, Jones EA. Simultaneous imaging of blood flow dynamics and vascular remodelling during development. Development 2015; 142:4158-67. [DOI: 10.1242/dev.127019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Abstract
Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionized our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound Biomicroscopy and Optical Coherence Tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualize vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (μPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 hours. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGF-β stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model.
Collapse
Affiliation(s)
- Siavash Ghaffari
- Lady Davis Institute for Medical Research, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC, H3A 0C5, Canada
| | - Richard L. Leask
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC, H3A 0C5, Canada
| | - Elizabeth A.V. Jones
- Lady Davis Institute for Medical Research, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC, H3A 0C5, Canada
- Department of Cardiovascular Science, KU Leuven, UZ Herestraat 49 - box 911, 3000 Leuven, Belgium
| |
Collapse
|
215
|
Abstract
The standard viewpoint that cancer is a genetic disease is often stated as a fact rather than a theory. By not acknowledging that it is a theory, namely the Somatic Mutation Theory (SMT), researchers are limiting their progress. An attractive alternative to SMT is the tissue organization field theory (TOFT), which is summarized as "development gone awry." To initiate a kerfuffle, I discuss the interpretation of various results under both TOFT and SMT, including recurrent mutations, hereditary cancers, induction of tumors in transgenic experiments, remission of tumors following the inhibition of enzymes activated by mutated genes, nongenotoxic carcinogens, denervation experiments, foreign-body carcinogenesis, transplantation experiments, and tumors with zero mutations. Thinking in terms of TOFT can spur new lines of research; examples are given related to the early detection of cancer.
Collapse
|
216
|
Letourneur A, Chen V, Waterman G, Drew PJ. A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice. Physiol Rep 2014; 2:2/12/e12238. [PMID: 25524276 PMCID: PMC4332216 DOI: 10.14814/phy2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In the weeks following birth, both the brain and the vascular network that supplies it undergo dramatic alteration. While studies of the postnatal evolution of the pial vasculature and blood flow through its vessels have been previously done histologically or acutely, here we describe a neonatal reinforced thin‐skull preparation for longitudinally imaging the development of the pial vasculature in mice using two‐photon laser scanning microscopy. Starting with mice as young as postnatal day 2 (P2), we are able to chronically image cortical areas >1 mm2, repeatedly for several consecutive days, allowing us to observe the remodeling of the pial arterial and venous networks. We used this method to measure blood velocity in individual vessels over multiple days, and show that blood flow through individual pial venules was correlated with subsequent diameter changes. This preparation allows the longitudinal imaging of the developing mammalian cerebral vascular network and its physiology. We developed a technique to longitudinally image blood vessels in the neonatal mouse cortex transcranially using two‐photon microscopy. The blood vessels on the surface of the brain undergo substantial pruning after birth. Blood flow through a vessel was correlated with the subsequent diameter change of the vessel.
Collapse
Affiliation(s)
- Annelise Letourneur
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania CNRS, CEA, Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy. GIP CYCERON, Caen, France
| | - Victoria Chen
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Gar Waterman
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
217
|
Roman BL, Finegold DN. Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
218
|
Zeng Y, Lu JQ. Optothermally responsive nanocomposite generating mechanical forces for cells enabled by few-walled carbon nanotubes. ACS NANO 2014; 8:11695-11706. [PMID: 25327464 DOI: 10.1021/nn505042b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have designed and fabricated a nanocomposite substrate that can deliver spatially and temporally defined mechanical forces onto cells. This nanocomposite substrate comprises a 1.5-mm-thick near-infrared (NIR) mechanoresponsive bottom layer of few-walled carbon nanotubes (FWCNTs) that are uniformly distributed and covalently connected to thermally responsive poly(N-isopropylacrylamide) and an approximately 0.15-mm-thick cell-seeding top layer of collagen-functionalized poly(acrylic acid)-co-poly(N-isopropylacrylamide) that interpenetrates into the bottom layer. Covalent coupling of all the components and uniform distribution of FWCNTs lead to a large local mechanoresponse. As an example, 50% change in strain at the point of irradiation on the order of 0.05 Hz can be produced reversibly under NIR stimulation with 0.02 wt % FWCNTs. We have further demonstrated that the mechanical strain imposed by NIR stimulation can be transmitted onto cells. Human fetal hepatocytes change shape with no sign of detrimental effect on cell viability. To the best of our knowledge, this is the first demonstration of a nanocomposite platform that can generate fast and controlled mechanical force to actuate cells. Since the amplitude, location, and timing of force can be controlled remotely with NIR, the nanocomposite substrate offers the potential to provide accurately designed force sequences for tissue engineering.
Collapse
Affiliation(s)
- Yuze Zeng
- School of Engineering, University of California-Merced , Merced, California 95343, United States
| | | |
Collapse
|
219
|
Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DAL, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad RK, Evans PC, Ainscough JFX, Beech DJ. Piezo1 integration of vascular architecture with physiological force. Nature 2014; 515:279-282. [PMID: 25119035 PMCID: PMC4230887 DOI: 10.1038/nature13701] [Citation(s) in RCA: 801] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Abstract
The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.
Collapse
Affiliation(s)
- Jing Li
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Bing Hou
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarka Tumova
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Katsuhiko Muraki
- School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Alexander Bruns
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Melanie J Ludlow
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Alicia Sedo
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam J Hyman
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard S Young
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St. James’s University Hospital, Leeds, UK
| | - Nadira Y Yuldasheva
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasser Majeed
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Lesley A Wilson
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Baptiste Rode
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Marc A Bailey
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Hyejeong R Kim
- Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK
| | - Zhaojun Fu
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Deborah AL Carter
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Jan Bilton
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Helen Imrie
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Ajuh
- Dundee Cell Products Ltd, James Lindsay Place, Dundee, DD1 5JJ, UK
| | - T Neil Dear
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard M Cubbon
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark T Kearney
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Raj K Prasad
- Department of Hepatobiliary and Transplant Surgery, St. James’s University Hospital, Leeds, UK
| | - Paul C Evans
- Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK
| | - Justin FX Ainscough
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- School of Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
220
|
Linask KK, Han M, Bravo-Valenzuela NJM. Changes in vitelline and utero-placental hemodynamics: implications for cardiovascular development. Front Physiol 2014; 5:390. [PMID: 25426076 PMCID: PMC4227466 DOI: 10.3389/fphys.2014.00390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022] Open
Abstract
Analyses of cardiovascular development have shown an important interplay between heart function, blood flow, and morphogenesis of heart structure during the formation of a four-chambered heart. It is known that changes in vitelline and placental blood flow seemingly contribute substantially to early cardiac hemodynamics. This suggests that in order to understand mammalian cardiac structure-hemodynamic functional relationships, blood flow from the extra-embryonic circulation needs to be taken into account and its possible impact on cardiogenesis defined. Previously published Doppler ultrasound analyses and data of utero-placental blood flow from human studies and those using the mouse model are compared to changes observed with environmental exposures that lead to cardiovascular anomalies. Use of current concepts and models related to mechanotransduction of blood flow and fluid forces may help in the future to better define the characteristics of normal and abnormal utero-placental blood flow and the changes in the biophysical parameters that may contribute to congenital heart defects. Evidence from multiple studies is discussed to provide a framework for future modeling of the impact of experimental changes in blood flow on the mouse heart during normal and abnormal cardiogenesis.
Collapse
Affiliation(s)
- Kersti K Linask
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida Health St. Petersburg, FL, USA
| | - Mingda Han
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida Health St. Petersburg, FL, USA
| | | |
Collapse
|
221
|
Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK, Dickinson ME. Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development 2014; 141:4406-14. [PMID: 25344073 DOI: 10.1242/dev.111021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Single/selective-plane illumination, or light-sheet, systems offer several advantages over other fluorescence microscopy methods for live, 3D microscopy. These systems are valuable for studying embryonic development in several animal systems, such as Drosophila, C. elegans and zebrafish. The geometry of the light path in this form of microscopy requires the sample to be accessible from multiple sides and fixed in place so that it can be rotated around a single axis. Popular methods for mounting include hanging the specimen from a pin or embedding it in 1-2% agarose. These methods can be particularly problematic for certain samples, such as post-implantation mouse embryos, that expand significantly in size and are very delicate and sensitive to mounting. To overcome the current limitations and to establish a robust strategy for long-term (24 h) time-lapse imaging of E6.5-8.5 mouse embryos with light-sheet microscopy, we developed and tested a method using hollow agarose cylinders designed to accommodate for embryonic growth, yet provide boundaries to minimize tissue drift and enable imaging in multiple orientations. Here, we report the first 24-h time-lapse sequences of post-implantation mouse embryo development with light-sheet microscopy. We demonstrate that light-sheet imaging can provide both quantitative data for tracking changes in morphogenesis and reveal new insights into mouse embryogenesis. Although we have used this approach for imaging mouse embryos, it can be extended to imaging other types of embryos as well as tissue explants.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Victor G Piazza
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
222
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
223
|
Lancerotto L, Orgill DP. Mechanoregulation of Angiogenesis in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:626-634. [PMID: 25302137 DOI: 10.1089/wound.2013.0491] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Significance: Mechanical forces are important regulators of cell and tissue function. Endothelial cells proliferate in response to tissue stretch and the mechanical properties of the environment direct capillary sprouting and growth. As the vascular network is a key factor in physiology and disease, control of the vascularity by means of mechanical forces could lead to the development of innovative therapeutic strategies. Recent Advances: Increased understanding of mechanobiology has stimulated translational research and allowed the development and optimization of clinical devices that exploit mechanical forces for the treatment of diseases, in particular in the field of wound healing. Stretching in distraction osteogenesis and tissue expansion induces neogenesis of well-vascularized tissues. In micro-deformational wound therapy, micro-mechanical distortions of the wound bed stimulate cell proliferation and angiogenesis by stretching resident cells to improve healing of difficult wounds. Relief from tension antagonizes proliferation and angiogenesis in primarily closed wounds allowing for better scar quality. Critical Issues: The integration of mechanobiology into traditional cell biology and pathophysiology in general is not yet complete and further research is needed to fill existing gaps, in particular in the complexity of in vivo conditions. Future Directions: Still largely unexplored approaches based on mechanical perturbation of the micro-/macro-environment can be devised to overcome the limits of current strategies in a broad spectrum of clinical conditions.
Collapse
Affiliation(s)
- Luca Lancerotto
- Clinic of Plastic Surgery, University of Padova , Italy . ; Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
224
|
Freund JB, Vermot J. The wall-stress footprint of blood cells flowing in microvessels. Biophys J 2014; 106:752-62. [PMID: 24507616 DOI: 10.1016/j.bpj.2013.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/03/2013] [Accepted: 12/11/2013] [Indexed: 02/09/2023] Open
Abstract
It is well known that mechanotransduction of hemodynamic forces mediates cellular processes, particularly those that lead to vascular development and maintenance. Both the strength and space-time character of these forces have been shown to affect remodeling and morphogenesis. However, the role of blood cells in the process remains unclear. We investigate the possibility that in the smallest vessels blood's cellular character of itself will lead to forces fundamentally different than the time-averaged forces usually considered, with fluctuations that may significantly exceed their mean values. This is quantitated through the use of a detailed simulation model of microvessel flow in two principal configurations: a diameter D=6.5 μm tube-a model for small capillaries through which red blood cells flow in single-file-and a D=12 μm tube-a model for a nascent vein or artery through which the cells flow in a confined yet chaotic fashion. Results in both cases show strong sensitivity to the mean flow speed U. Peak stresses exceed their means by greater than a factor of 10 when U/D≲10 s(-1), which corresponds to the inverse relaxation time of a healthy red blood cell. This effect is more significant for smaller D cases. At faster flow rates, including those more commonly observed under normal, nominally static physiological conditions, the peak fluctuations are more comparable with the mean shear stress. Implications for mechanotransduction of hemodynamic forces are discussed.
Collapse
Affiliation(s)
- Jonathan B Freund
- Mechanical Science & Engineering and Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| | - Julien Vermot
- IGBMC, CNRS/INSERM/UdS, BP.10142, F-67404 Illkirch, France
| |
Collapse
|
225
|
Caolo V, Swennen G, Chalaris A, Wagenaar A, Verbruggen S, Rose-John S, Molin DGM, Vooijs M, Post MJ. ADAM10 and ADAM17 have opposite roles during sprouting angiogenesis. Angiogenesis 2014; 18:13-22. [PMID: 25218057 DOI: 10.1007/s10456-014-9443-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
During angiogenesis, endothelial tip cells start sprouting and express delta-like 4 (DLL4) downstream of vascular endothelial growth factor (VEGF). DLL4 subsequently activates Notch in the adjacent stalk cells suppressing sprouting. VEGF also activates A disintegrin and metalloproteases (ADAMs) that induce Notch ectodomain shedding. Although two major ADAMs, i.e. ADAM10 and ADAM17, have been implicated in Notch-signalling activation, their apparent different roles in angiogenesis have not been fully understood yet. The objective of this study was to determine the roles of ADAM10 and ADAM17 activity in angiogenesis. In mouse retinas, ADAM10 or γ-secretase inhibition induced vascular sprouting and density in vivo, whereas attenuation of both ADAM10 and ADAM17 activity produced the opposite phenotype. Retinal blood vessel analysis in ADAM17 hypomorphic mice confirmed the requirement for ADAM17 activity in angiogenesis. However, ADAM17 inhibition did not phenocopy blood vessel increase by Notch blockage. These observations suggest that ADAM17 regulates other fundamental players during angiogenesis besides Notch, which were not affected by ADAM10. By means of an angiogenesis proteome assay, we found that ADAM17 inhibition induced the expression of a naturally occurring inhibitor of angiogenesis Thrombospondin 1 (TSP1), whereas ADAM10 inhibition did not. Accordingly, ADAM17 overexpression downregulated TSP1 expression, and the TSP1 inhibitor LSKL rescued angiogenesis in the tube formation assay downstream of VEGF in the presence of ADAM17 inhibition. Finally, genetic and pharmacological ADAM17 blockade resulted in increased TSP1 expression in mouse retina. Altogether, our results show that ADAM10 and ADAM17 have opposite effects on sprouting angiogenesis that may be unrelated to Notch signalling and involves differentially expressed anti-angiogenic proteins such as TSP1.
Collapse
Affiliation(s)
- V Caolo
- Department of Physiology, CARIM, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
227
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
228
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
229
|
Garcia MD, Larina IV. Vascular development and hemodynamic force in the mouse yolk sac. Front Physiol 2014; 5:308. [PMID: 25191274 PMCID: PMC4138559 DOI: 10.3389/fphys.2014.00308] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/29/2014] [Indexed: 11/13/2022] Open
Abstract
Vascular remodeling of the mouse embryonic yolk sac is a highly dynamic process dependent on multiple genetic signaling pathways as well as biomechanical factors regulating proliferation, differentiation, migration, cell-cell, and cell-matrix interactions. During this early developmental window, the initial primitive vascular network of the yolk sac undergoes a dynamic remodeling process concurrent with the onset of blood flow, in which endothelial cells establish a branched, hierarchical structure of large vessels and smaller capillary beds. In this review, we will describe the molecular and biomechanical regulators which guide vascular remodeling in the mouse embryonic yolk sac, as well as live imaging methods for characterizing endothelial cell and hemodynamic function in cultured embryos.
Collapse
Affiliation(s)
- Monica D Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
230
|
Wallingford MC, Giachelli CM. Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev 2014; 133:189-202. [PMID: 25138534 DOI: 10.1016/j.mod.2014.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE.
Collapse
Affiliation(s)
- Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 91895, USA.
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
231
|
Kalogirou S, Malissovas N, Moro E, Argenton F, Stainier DYR, Beis D. Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovasc Res 2014; 104:49-60. [PMID: 25100766 DOI: 10.1093/cvr/cvu186] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Valvular heart disease is responsible for considerable morbidity and mortality. Cardiac valves develop as the heart contracts, and they function throughout the lifetime of the organism to prevent retrograde blood flow. Their precise morphogenesis is crucial for cardiac function. Zebrafish is an ideal model to investigate cardiac valve development as it allows these studies to be carried out in vivo through non-invasive imaging. Accumulating evidence suggests a role for contractility and intracardiac flow dynamics in cardiac valve development. However, these two factors have proved difficult to uncouple, especially since altering myocardial function affects the intracardiac flow pattern. METHODS AND RESULTS Here, we describe novel zebrafish models of developmental valve defects. We identified two mutant alleles of myosin heavy chain 6 that can be raised to adulthood despite having only one functional chamber-the ventricle. The adult mutant ventricle undergoes remodelling, and the atrioventricular (AV) valves fail to form four cuspids. In parallel, we characterized a novel mutant allele of southpaw, a nodal-related gene involved in the establishment of left-right asymmetry, which exhibits randomized heart and endoderm positioning. We first observed that in southpaw mutants the relative position of the two cardiac chambers is altered, affecting the geometry of the heart, while myocardial function appears unaffected. Mutant hearts that loop properly or exhibit situs inversus develop normally, whereas midline, unlooped hearts exhibit defects in their transvalvular flow pattern during AV valve development as well as defects in valve morphogenesis. CONCLUSION Our data indicate that intracardiac flow dynamics regulate valve morphogenesis independently of myocardial contractility.
Collapse
Affiliation(s)
- Stamatia Kalogirou
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece
| | - Nikos Malissovas
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Didier Y R Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology and Cardiovascular Research Institute, University of San Francisco, Sans Francisco, CA, USA Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece
| |
Collapse
|
232
|
Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, Li YSJ, Chien S, Patapoutian A. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 2014; 111:10347-52. [PMID: 24958852 PMCID: PMC4104881 DOI: 10.1073/pnas.1409233111] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Zhaozhu Qiu
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Sung Sik Hur
- Department of Bioengineering andInstitute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92032
| | - Swetha E Murthy
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Stuart M Cahalan
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Jie Xu
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Jayanti Mathur
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Michael Bandell
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - Bertrand Coste
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Yi-Shuan J Li
- Department of Bioengineering andInstitute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92032
| | - Shu Chien
- Department of Bioengineering andInstitute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92032
| | - Ardem Patapoutian
- Howard Hughes Medical Institute andDepartment of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
233
|
Potter CMF, Lao KH, Zeng L, Xu Q. Role of biomechanical forces in stem cell vascular lineage differentiation. Arterioscler Thromb Vasc Biol 2014; 34:2184-90. [PMID: 25012135 DOI: 10.1161/atvbaha.114.303423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanical forces have long been known to play a role in the maintenance of vascular homeostasis in the mature animal and in developmental regulation in the fetus. More recently, it has been shown that stem cells play a role in vascular repair and remodeling in response to biomechanical stress. Laminar shear stress can directly activate growth factor receptors on stem/progenitor cells, initiating signaling pathways leading toward endothelial cell differentiation. Cyclic strain can stimulate stem cell differentiation toward smooth muscle lineages through different mechanisms. In vivo, blood flow in the coronary artery is significantly altered after stenting, leading to changes in biomechanical forces on the vessel wall. This disruption may activate stem cell differentiation into a variety of cells and cause delayed re-endothelialization. Based on progress in the research field, the present review aims to explore the role of mechanical forces in stem cell differentiation both in vivo and in vitro and to examine what this means for the application of stem cells in the clinic, in tissue engineering, and for the management of aberrant stem cell contribution to disease.
Collapse
Affiliation(s)
- Claire M F Potter
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Ka Hou Lao
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Lingfang Zeng
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London, London, United Kingdom.
| |
Collapse
|
234
|
|
235
|
Wu ZQ, Rowe RG, Lim KC, Lin Y, Willis A, Tang Y, Li XY, Nor JE, Maillard I, Weiss SJ. A Snail1/Notch1 signalling axis controls embryonic vascular development. Nat Commun 2014; 5:3998. [PMID: 24894949 PMCID: PMC4052376 DOI: 10.1038/ncomms4998] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/29/2014] [Indexed: 12/24/2022] Open
Abstract
Notch1-Delta-like 4 (Dll4) signaling controls vascular development by regulating endothelial cell (EC) targets that modulate vessel wall remodeling and arterial-venous specification. The molecular effectors that modulate Notch signaling during vascular development remain largely undefined. Here we demonstrate that the transcriptional repressor, Snail1, acts as a VEGF-induced regulator of Notch1 signaling and Dll4 expression. EC-specific Snail1 loss-of-function conditional knockout mice die in utero with defects in vessel wall remodeling in association with losses in mural cell investment and disruptions in arterial-venous specification. Snail1 loss-of-function conditional knockout embryos further display up-regulated Notch1 signaling and Dll4 expression that is partially reversed by inhibiting Ɣ-secretase activity in vivo with Dll4 identified as a direct target of Snail1-mediated transcriptional repression. These results document a Snail1-Dll4/Notch1 axis that controls embryonic vascular development.
Collapse
Affiliation(s)
- Zhao-Qiu Wu
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - R Grant Rowe
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [3]
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA
| | - Yongshun Lin
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [3]
| | - Amanda Willis
- Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Yi Tang
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Xiao-Yan Li
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Jacques E Nor
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ivan Maillard
- 1] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [2] Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA [3] Division of Hematology-Oncology, Department of Medicine, Ann Arbor, Michigan 48109, USA
| | - Stephen J Weiss
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
236
|
Huang AH, Niklason LE. Engineering of arteries in vitro. Cell Mol Life Sci 2014; 71:2103-18. [PMID: 24399290 PMCID: PMC4024341 DOI: 10.1007/s00018-013-1546-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
This review will focus on two elements that are essential for functional arterial regeneration in vitro: the mechanical environment and the bioreactors used for tissue growth. The importance of the mechanical environment to embryological development, vascular functionality, and vascular graft regeneration will be discussed. Bioreactors generate mechanical stimuli to simulate biomechanical environment of arterial system. This system has been used to reconstruct arterial grafts with appropriate mechanical strength for implantation by controlling the chemical and mechanical environments in which the grafts are grown. Bioreactors are powerful tools to study the effect of mechanical stimuli on extracellular matrix architecture and mechanical properties of engineered vessels. Hence, biomimetic systems enable us to optimize chemo-biomechanical culture conditions to regenerate engineered vessels with physiological properties similar to those of native arteries. In addition, this article reviews various bioreactors designed especially to apply axial loading to engineered arteries. This review will also introduce and examine different approaches and techniques that have been used to engineer biologically based vascular grafts, including collagen-based grafts, fibrin-gel grafts, cell sheet engineering, biodegradable polymers, and decellularization of native vessels.
Collapse
Affiliation(s)
- Angela H Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA,
| | | |
Collapse
|
237
|
Quantification of blood flow and topology in developing vascular networks. PLoS One 2014; 9:e96856. [PMID: 24823933 PMCID: PMC4019654 DOI: 10.1371/journal.pone.0096856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25–500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules.
Collapse
|
238
|
Baron MH. Concise Review: early embryonic erythropoiesis: not so primitive after all. Stem Cells 2014; 31:849-56. [PMID: 23361843 DOI: 10.1002/stem.1342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/27/2012] [Indexed: 12/28/2022]
Abstract
In the developing embryo, hematopoiesis begins with the formation of primitive erythroid cells (EryP), a distinct and transient red blood cell lineage. EryP play a vital role in oxygen delivery and in generating shear forces necessary for normal vascular development. Progenitors for EryP arise as a cohort within the blood islands of the mammalian yolk sac at the end of gastrulation. As a strong heartbeat is established, nucleated erythroblasts begin to circulate and to mature in a stepwise, nearly synchronous manner. Until relatively recently, these cells were thought to be "primitive" in that they seemed to more closely resemble the nucleated erythroid cells of lower vertebrates than the enucleated erythrocytes of mammals. It is now known that mammalian EryP do enucleate, but not until several days after entering the bloodstream. I will summarize the common and distinguishing characteristics of primitive versus definitive (adult-type) erythroid cells, review the development of EryP from the emergence of their progenitors through maturation and enucleation, and discuss pluripotent stem cells as models for erythropoiesis. Erythroid differentiation of both mouse and human pluripotent stem cells in vitro has thus far reproduced early but not late red blood cell ontogeny. Therefore, a deeper understanding of cellular and molecular mechanisms underlying the differences and similarities between the embryonic and adult erythroid lineages will be critical to improving methods for production of red blood cells for use in the clinic.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
239
|
McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 2014; 243:800-17. [PMID: 24500875 DOI: 10.1002/dvdy.24115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.
Collapse
Affiliation(s)
- Caroline R McKeown
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
240
|
Marcelo KL, Sills TM, Coskun S, Vasavada H, Sanglikar S, Goldie LC, Hirschi KK. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev Cell 2014; 27:504-15. [PMID: 24331925 DOI: 10.1016/j.devcel.2013.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 09/01/2013] [Accepted: 11/04/2013] [Indexed: 02/05/2023]
Abstract
Delineating the mechanism or mechanisms that regulate the specification of hemogenic endothelial cells from primordial endothelium is critical for optimizing their derivation from human stem cells for clinical therapies. We previously determined that retinoic acid (RA) is required for hemogenic specification, as well as cell-cycle control, of endothelium during embryogenesis. Herein, we define the molecular signals downstream of RA that regulate hemogenic endothelial cell development and demonstrate that cell-cycle control is required for this process. We found that re-expression of c-Kit in RA-deficient (Raldh2(-/-)) primordial endothelium induced Notch signaling and p27 expression, which restored cell-cycle control and rescued hemogenic endothelial cell specification and function. Re-expression of p27 in RA-deficient and Notch-inactivated primordial endothelial cells was sufficient to correct their defects in cell-cycle regulation and hemogenic endothelial cell development. Thus, RA regulation of hemogenic endothelial cell specification requires c-Kit, notch signaling, and p27-mediated cell-cycle control.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany M Sills
- Interdisciplinary Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Suleyman Coskun
- Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Hema Vasavada
- Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Supriya Sanglikar
- Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Lauren C Goldie
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Karen K Hirschi
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Interdisciplinary Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
241
|
Hernandez-Andrade E, Ahn H, Szalai G, Korzeniewski SJ, Wang B, King M, Chaiworapongsa T, Than NG, Romero R. Evaluation of utero-placental and fetal hemodynamic parameters throughout gestation in pregnant mice using high-frequency ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:351-360. [PMID: 24342911 PMCID: PMC4179107 DOI: 10.1016/j.ultrasmedbio.2013.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 08/09/2013] [Accepted: 09/22/2013] [Indexed: 06/03/2023]
Abstract
Throughout gestation, changes in maternal and fetal Doppler parameters in pregnant mice, similar to those obtained in human fetuses, were detected using high-frequency ultrasound with a 55-MHz linear probe. In the uterine arteries (UtA), fetal umbilical artery (UA) and fetal ductus venosus (DV) peak systolic velocity increased (UtA, p = 0.04; UA, p = 0.0004; DV, p = 0.02), end-diastolic velocity increased (UtA, p < 0.001; UA, p < 0.0001; DV, p = 0.01) and resistance index decreased (UtA, p = 0.0004; UA, p = 0.0001; DV, p = 0.04) toward the end of pregnancy. In the middle cerebral and carotid arteries, end diastolic velocity increased (p = 0.02 and p < 0.0001) and resistance index decreased (both vessels, p < 0.0001). There was a reduction in the pulsatile pattern in the umbilical vein (p < 0.05). The increased velocities and reduced resistance index suggest a progressive increment in blood flow to the fetal mouse toward the end of pregnancy. Fetal and utero-placental vascular parameters in CD-1 mice can be reliably evaluated using high-frequency ultrasound.
Collapse
Affiliation(s)
- Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Hyunyoung Ahn
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Gabor Szalai
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Steven J Korzeniewski
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bing Wang
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Mary King
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| |
Collapse
|
242
|
Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract 2014; 2014:52-77. [PMID: 25054122 PMCID: PMC4104380 DOI: 10.5339/gcsp.2014.11] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.
Collapse
|
243
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
244
|
Noel J, Wang H, Hong N, Tao JQ, Yu K, Sorokina EM, Debolt K, Heayn M, Rizzo V, Delisser H, Fisher AB, Chatterjee S. PECAM-1 and caveolae form the mechanosensing complex necessary for NOX2 activation and angiogenic signaling with stopped flow in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 305:L805-18. [PMID: 24077950 PMCID: PMC3882530 DOI: 10.1152/ajplung.00123.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
We showed that stop of flow triggers a mechanosignaling cascade that leads to the generation of reactive oxygen species (ROS); however, a mechanosensor coupled to the cytoskeleton that could potentially transduce flow stimulus has not been identified. We showed a role for KATP channel, caveolae (caveolin-1), and NADPH oxidase 2 (NOX2) in ROS production with stop of flow. Based on reports of a mechanosensory complex that includes platelet endothelial cell adhesion molecule-1 (PECAM-1) and initiates signaling with mechanical force, we hypothesized that PECAM-1 could serve as a mechanosensor in sensing disruption of flow. Using lungs in situ, we observed that ROS production with stop of flow was significantly reduced in PECAM-1(-/-) lungs compared with lungs from wild-type (WT) mice. Lack of PECAM-1 did not affect NOX2 activation machinery or the caveolin-1 expression or caveolae number in the pulmonary endothelium. Stop of flow in vitro triggered an increase in angiogenic potential of WT pulmonary microvascular endothelial cells (PMVEC) but not of PECAM-1(-/-) PMVEC. Obstruction of flow in lungs in vivo showed that the neutrophil infiltration as observed in WT mice was significantly lowered in PECAM-1(-/-) mice. With stop of flow, WT lungs showed higher expression of the angiogenic marker VEGF compared with untreated (sham) and PECAM-1(-/-) lungs. Thus PECAM-1 (and caveolae) are parts of the mechanosensing machinery that generates superoxide with loss of shear; the resultant ROS potentially drives neutrophil influx and acts as an angiogenic signal.
Collapse
Affiliation(s)
- John Noel
- Institute for Environmental Medicine, Univ. of Pennsylvania School of Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Frame JM, McGrath KE, Palis J. Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol Dis 2013; 51:220-5. [PMID: 24095199 DOI: 10.1016/j.bcmd.2013.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022]
Abstract
Erythro-myeloid progenitors (EMP) serve as a major source of hematopoiesis in the developing conceptus prior to the formation of a permanent blood system. In this review, we summarize the current knowledge regarding the emergence, fate, and potential of this hematopoietic stem cell (HSC)-independent wave of hematopoietic progenitors, focusing on the murine embryo as a model system. A better understanding of the temporal and spatial control of hematopoietic emergence in the embryo will ultimately improve our ability to derive hematopoietic stem and progenitor cells from embryonic stem cells and induced pluripotent stem cells to serve therapeutic purposes.
Collapse
Affiliation(s)
- Jenna M Frame
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
246
|
Abstract
Calcific aortic valve disease (CAVD) increasingly afflicts our aging population. One third of our elderly have echocardiographic or radiological evidence of calcific aortic valve sclerosis, an early and subclinical form of CAVD. Age, sex, tobacco use, hypercholesterolemia, hypertension, and type II diabetes mellitus all contribute to the risk of disease that has worldwide distribution. On progression to its most severe form, calcific aortic stenosis, CAVD becomes debilitating and devastating, and 2% of individuals >60 years are affected by calcific aortic stenosis to the extent that surgical intervention is required. No effective pharmacotherapies exist for treating those at risk for clinical progression. It is becoming increasingly apparent that a diverse spectrum of cellular and molecular mechanisms converge to regulate valvular calcium load; this is evidenced not only in histopathologic heterogeneity of CAVD, but also from the multiplicity of cell types that can participate in valve biomineralization. In this review, we highlight our current understanding of CAVD disease biology, emphasizing molecular and cellular aspects of its regulation. We end by pointing to important biological and clinical questions that must be answered to enable sophisticated disease staging and the development of new strategies to treat CAVD medically.
Collapse
Affiliation(s)
- Dwight A Towler
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL 32827, USA.
| |
Collapse
|
247
|
Geuss LR, Suggs LJ. Making cardiomyocytes: How mechanical stimulation can influence differentiation of pluripotent stem cells. Biotechnol Prog 2013; 29:1089-96. [DOI: 10.1002/btpr.1794] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Laura R. Geuss
- Dept. of Biomedical Engineering; The University of Texas at Austin; Austin TX 78712
| | - Laura J. Suggs
- Dept. of Biomedical Engineering; The University of Texas at Austin; Austin TX 78712
| |
Collapse
|
248
|
Wu SP, Dong XR, Regan JN, Su C, Majesky MW. Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol 2013; 383:307-20. [PMID: 24016759 DOI: 10.1016/j.ydbio.2013.08.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 11/16/2022]
Abstract
The epicardium and coronary vessels originate from progenitor cells in the proepicardium. Here we show that Tbx18, a T-box family member highly expressed in the proepicardium, controls critical early steps in coronary development. In Tbx18(-/-) mouse embryos, both the epicardium and coronary vessels exhibit structural and functional defects. At E12.5, the Tbx18-deficient epicardium contains protrusions and cyst-like structures overlying a disorganized coronary vascular plexus that contains ectopic structures resembling blood islands. At E13.5, the left and right coronary stems form correctly in mutant hearts. However, analysis of PECAM-1 whole mount immunostaining, distribution of SM22α(lacZ/+) activity, and analysis of coronary vascular casts suggest that defective vascular plexus remodeling produces a compromised arterial network at birth consisting of fewer distributing conduit arteries with smaller lumens and a reduced capacity to conduct blood flow. Gene expression profiles of Tbx18(-/-) hearts at E12.5 reveal altered expression of 79 genes that are associated with development of the vascular system including sonic hedgehog signaling components patched and smoothened, VEGF-A, angiopoietin-1, endoglin, and Wnt factors compared to wild type hearts. Thus, formation of coronary vasculature is responsive to Tbx18-dependent gene targets in the epicardium, and a poorly structured network of coronary conduit vessels is formed in Tbx18 null hearts due to defects in epicardial cell signaling and fate during heart development. Lastly, we demonstrate that Tbx18 possesses a SRF/CArG box dependent repressor activity capable of inhibiting progenitor cell differentiation into smooth muscle cells, suggesting a potential function of Tbx18 in maintaining the progenitor status of epicardial-derived cells.
Collapse
Affiliation(s)
- San-Pin Wu
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| | | | | | | | | |
Collapse
|
249
|
Udan RS, Vadakkan TJ, Dickinson ME. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 2013; 140:4041-50. [PMID: 24004946 DOI: 10.1242/dev.096255] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive work showing the importance of blood flow in angiogenesis and vessel remodeling, very little is known about how changes in vessel diameter are orchestrated at the cellular level in response to mechanical forces. To define the cellular changes necessary for remodeling, we performed live confocal imaging of cultured mouse embryos during vessel remodeling. Our data revealed that vessel diameter increase occurs via two distinct processes that are dependent on normal blood flow: vessel fusions and directed endothelial cell migrations. Vessel fusions resulted in a rapid change in vessel diameter and were restricted to regions that experience the highest flow near the vitelline artery and vein. Directed cell migrations induced by blood flow resulted in the recruitment of endothelial cells to larger vessels from smaller capillaries and were observed in larger artery segments as they expanded. The dynamic and specific endothelial cell behaviors captured in this study reveal how sensitive endothelial cells are to changes in blood flow and how such responses drive vascular remodeling.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
250
|
Vacaru AM, Isern J, Fraser ST, Baron MH. Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice. Genesis 2013; 51:751-62. [PMID: 23913596 DOI: 10.1002/dvg.22420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
Primitive erythropoiesis is a vital process for mammalian embryonic development. Here we report the generation and characterization of a new transgenic mouse line that expresses a histone H2B-CFP fusion protein in the nuclei of primitive erythroid cells. We demonstrate the potential of this ε-globin-histone H2B-CFP line for multicolor imaging and flow cytometry analysis. The ε-globin-H2B-CFP line was used to analyze the cell cycle distribution and proliferation of CFP-expressing primitive erythroblasts from E8.5-E13.5. We also evaluated phagocytosis of extruded CFP-positive nuclei by macrophages in fetal liver and placenta. The ε-globin-H2B-CFP transgenic mouse line adds to the available tools for studying the development of the primitive erythroid lineage.
Collapse
Affiliation(s)
- Andrei M Vacaru
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York; The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|