201
|
Kok K, Arnosti DN. Dynamic reprogramming of chromatin: paradigmatic palimpsests and HES factors. Front Genet 2015; 6:29. [PMID: 25713582 PMCID: PMC4322839 DOI: 10.3389/fgene.2015.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 12/02/2022] Open
Abstract
Temporal and spatial control of transcription in development is dictated to a great extent by transcriptional repressors. Some repressor complexes, such as Polycomp-group proteins, induce relatively long-term non-permissive states, whereas others such as hairy/enhancer of split (HES) family repressors are linked to dynamically modulated chromatin states associated with cycling expression of target genes. The mode of action and specificity of repressors involved in mediating this latter form of epigenetic control are unknown. Oscillating expression of HES repressors controlled by signaling pathways such as Notch suggests that the entire ensemble of HES–associated co-repressors and histone modifying complexes readily cycle on and off genes. Dynamic interactions between these factors and chromatin seem to be crucial in maintaining multipotency of progenitor cells, but the significance of such interactions in more differentiated cells is less well understood. We discuss here how genome-wide analyses and real-time gene expression measurements of HES regulated genes can help decipher the detailed mechanisms and biological importance of highly dynamic transcriptional switching mediated by epigenetic changes.
Collapse
Affiliation(s)
- Kurtulus Kok
- Genetics Program, Michigan State University , East Lansing, MI, USA
| | - David N Arnosti
- Genetics Program, Michigan State University , East Lansing, MI, USA ; Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
202
|
Xu B, Ji X, Chen X, Yao M, Han X, Chen M, Tang W, Xia Y. Effect of perfluorooctane sulfonate on pluripotency and differentiation factors in mouse embryoid bodies. Toxicology 2015; 328:160-167. [PMID: 25510869 DOI: 10.1016/j.tox.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022]
Abstract
Perfluorooctane sulfonate (PFOS) poses potential risks to early development, but the molecular mechanisms how PFOS affects embryonic development are still unclear. Mouse embryoid bodies (mEBs) provide ideal models for testing safety or toxicity of chemicals in vitro. In this study, mEBs were exposed to PFOS up to 6 days and then their pluripotency and differentiation markers were evaluated. Our data showed that the mRNA and protein levels of pluripotency markers (Oct4, Sox2, Nanog) in mEBs were significantly increased following exposure to PFOS. Meanwhile, the expressions of miR-134, miR-145, miR-490-3p were decreased accordingly. PFOS reduced the mRNA levels of endodermal markers (Sox17, FOXA2), mesodermal markers (SMA, Brachyury) and ectodermal markers (Nestin, Fgf5) in mEBs. Meanwhile, PFOS increased the mRNA and protein levels of polycomb group (PcG) family members (Cbx4, Cbx7, Ezh2). Overall, our results showed that PFOS could increase the expression levels of pluripotency factors and decrease the differentiation markers.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Endocrinology, The Affiliated Jiangyin People's Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Xiaoli Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengmeng Yao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
203
|
Xiao J, Wagner D. Polycomb repression in the regulation of growth and development in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:15-24. [PMID: 25449722 DOI: 10.1016/j.pbi.2014.10.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Chromatin state is critical for cell identity and development in multicellular eukaryotes. Among the regulators of chromatin state, Polycomb group (PcG) proteins stand out because of their role in both establishment and maintenance of cell identity. PcG proteins act in two major complexes in metazoans and plants. These complexes function to epigenetically-in a mitotically heritable manner-prevent expression of important developmental regulators at the wrong stage of development or in the wrong tissue. In Arabidopsis, PcG function is required throughout the life cycle from seed germination to embryo formation. Recent studies have expanded our knowledge regarding the biological roles and the regulation of the activity of PcG complexes. In this review, we discuss novel functions of Polycomb repression in plant development as well as advances in understanding PcG complex recruitment, activity regulation and removal in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
204
|
Ma RG, Zhang Y, Sun TT, Cheng B. Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins. J Zhejiang Univ Sci B 2015; 15:412-28. [PMID: 24793759 DOI: 10.1631/jzus.b1400077] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polycomb group (PcG) complexes are epigenetic regulatory complexes that conduct transcriptional repression of target genes via modifying the chromatin. The two best characterized forms of PcG complexes, polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are required for maintaining the stemness of embryonic stem cells and many types of adult stem cells. The spectra of target genes for PRCs are dynamically changing with cell differentiation, which is essential for proper decisions on cell fate during developmental processes. Chromobox (CBX) family proteins are canonical components in PRC1, responsible for targeting PRC1 to the chromatin. Recent studies highlight the function specifications among CBX family members in undifferentiated and differentiated stem cells, which reveal the interplay between compositional diversity and functional specificity of PRC1. In this review, we summarize the current knowledge about targeting and functional mechanisms of PRCs, emphasizing the recent breakthroughs related to CBX proteins under a number of physiological and pathological conditions.
Collapse
Affiliation(s)
- Rong-gang Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | |
Collapse
|
205
|
Abstract
Correct expression of specific sets of genes in time and space ensures the establishment and maintenance of cell identity, which is required for proper development of multicellular organisms. Polycomb and Trithorax group proteins form multisubunit complexes that antagonistically act in epigenetic gene repression and activation, respectively. The traditional view of Polycomb repressive complexes (PRCs) as executors of long-lasting and stable gene repression is being extended by evidence of flexible repression in response to developmental and environmental cues, increasing the complexity of mechanisms that ensure selective and properly timed PRC targeting and release of Polycomb repression. Here, we review advances in understanding of the composition, mechanisms of targeting, and function of plant PRCs and discuss the parallels and differences between plant and animal models.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; ,
| | | |
Collapse
|
206
|
Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 2014; 160:204-18. [PMID: 25533783 DOI: 10.1016/j.cell.2014.11.039] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 11/22/2022]
Abstract
We characterize the Polycomb system that assembles repressive subtelomeric domains of H3K27 methylation (H3K27me) in the yeast Cryptococcus neoformans. Purification of this PRC2-like protein complex reveals orthologs of animal PRC2 components as well as a chromodomain-containing subunit, Ccc1, which recognizes H3K27me. Whereas removal of either the EZH or EED ortholog eliminates H3K27me, disruption of mark recognition by Ccc1 causes H3K27me to redistribute. Strikingly, the resulting pattern of H3K27me coincides with domains of heterochromatin marked by H3K9me. Indeed, additional removal of the C. neoformans H3K9 methyltransferase Clr4 results in loss of both H3K9me and the redistributed H3K27me marks. These findings indicate that the anchoring of a chromatin-modifying complex to its product suppresses its attraction to a different chromatin type, explaining how enzymes that act on histones, which often harbor product recognition modules, may deposit distinct chromatin domains despite sharing a highly abundant and largely identical substrate-the nucleosome.
Collapse
|
207
|
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014; 24:1918-31. [PMID: 25224068 PMCID: PMC4248310 DOI: 10.1101/gr.171645.113] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.
Collapse
Affiliation(s)
- Stephen N Sansom
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom;
| | - Noriko Shikama-Dorn
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Saule Zhanybekova
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Gretel Nusspaumer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Mary E Deadman
- Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Andreas Heger
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Chris P Ponting
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Georg A Holländer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland; Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
208
|
Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics 2014; 9:1485-95. [PMID: 25482055 PMCID: PMC4622878 DOI: 10.4161/15592294.2014.971580] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.
Collapse
Key Words
- ATP, adenosine triphosphate
- BAP, brahma associated protein
- BHC80, BRAF-histone deacetylase complex 80
- BRG1, brahma Related Gene 1
- CHD, chromo domain helicase DNA binding
- CoREST
- CoREST REST, corepressor
- DNA, deoxyribonucleic acid
- DNMT, DNA methyltransferase
- DP-1, dimerization partner 1
- E2F, E2 transcription Factor
- ELM2, EGL-27 and MTA1 homology 2
- ES cell, embryonic stem cells
- H, histone
- HDAC, histone deacetylas
- HMTase, histone methylase
- HP1, heterochromatin protein 1
- K, lysine
- L3MBTL, lethal 3 malignant brain tumor-like
- LINT, l(3)mbt interacting
- LSD1, lysine-specific demethylase 1
- Lint-1, l(3)mbt interacting 1
- MBT protein
- MBT, malignant brain tumor
- MBTS, malignant brain tumor signature
- NPA1, nucleosome assembly protein
- NRSF, neural-restrictive silencing factor
- NuRD, nucleosome remodeling and deacetylase
- PBAP, polybromo-associated BAP
- PHD, plant homeo domain
- PRC1, polycomb repressive complex 1
- PRE, polycomb responsive element
- Pc, polycomb
- PcG, polycomb group
- Ph, polyhomeotic
- Pho, pleiohomeotic
- PhoRC, Pho repressive complex
- Psc, posterior sex combs
- RB, retinoblastoma
- REST, repressor element 1 silencing transcription factor
- RNA, ribonucleic acid
- Rpd3, reduced potassium dependency 3
- SANT, SWI/ADA2/N-CoR/TFIIIB
- SCML, sex combs on midleg-like
- SLC, SFMBT1, LSD1, CoREST
- SWH, Salvador-Warts-Hippo
- SWI/SNF, switching defective/sucrose non-fermenting
- Sce, sex combs extra
- Scm, sex combs on midleg
- Sfmbt, Scm-related gene containing 4 mbt domains
- TSS, transcription start site
- YY1, ying-yang 1
- ZNF, zinc finger
- complex family
- dL(3)mbt, Drosophila Lethal 3 malignant brain tumor
- hBRM, human Brahma
- l(3)mbt, lethal 3 malignant brain tumor
- protein complex
- transcriptional regulation
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México City, México
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
| |
Collapse
|
209
|
Aloia L, Gutierrez A, Caballero JM, Di Croce L. Direct interaction between Id1 and Zrf1 controls neural differentiation of embryonic stem cells. EMBO Rep 2014; 16:63-70. [PMID: 25361733 DOI: 10.15252/embr.201439560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Id proteins are dominant-negative regulators within the HLH family of proteins. In embryonic stem cells (ESCs), Id1 and Id3 maintain the pluripotent state by preventing neural differentiation. The Id1-interacting protein Zrf1 plays a crucial role as a chromatin-bound factor in specification of the neural fate from ESCs. Here, we show that Id1 blocks Zrf1 recruitment to chromatin, thus preventing the activation of neural genes in ESCs. Upon differentiation, Id1 expression decreases thus inducing Zrf1 binding to neural genes. Importantly, depletion of Zrf1 rescues the expression of Polycomb targets involved in neural specification which are up-regulated in Id1 knock-out ESCs. We therefore identified Zrf1 as transcriptional regulator of neural fate downstream of Id1 in ESCs.
Collapse
Affiliation(s)
- Luigi Aloia
- Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Arantxa Gutierrez
- Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
210
|
Kim HY, Park JH, Won HY, Lee JY, Kong G. CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway. FASEB J 2014; 29:300-13. [PMID: 25351982 DOI: 10.1096/fj.14-253997] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polycomb protein chromobox homolog 7 (CBX7) is involved in several biologic processes including stem cell regulation and cancer development, but its roles in breast cancer remain unknown. Here, we demonstrate that CBX7 negatively regulates breast tumor initiation. CD44(+)/CD24(-)/ESA(+) breast stem-like cells showed diminished CBX7 expression. Furthermore, small hairpin RNA-mediated CBX7 knockdown in breast epithelial and cancer cells increased the CD44(+)/CD24(-)/ESA(+) cell population and reinforced in vitro self-renewal and in vivo tumor-initiating ability. Similarly, CBX7 overexpression repressed these effects. We also found that CBX7 inhibits the Wnt/β-catenin/T cell factor pathway by enhancing the expression of Dickkopf-1 (DKK-1), a Wnt antagonist. In particular, CBX7 increased DKK-1 transcription by cooperating with p300 acetyltransferase and subsequently enhancing the histone acetylation of the DKK-1 promoter. Furthermore, pharmacologic inhibition of DKK-1 in CBX7-overexpressing cells showed recovery of Wnt signaling and consequent rescue of the CD44(+)/CD24(-)/ESA(+) cell population. Taken together, these findings indicate that CBX7-mediated epigenetic induction of DKK-1 is crucial for the inhibition of breast tumorigenicity, suggesting that CBX7 could be a potential tumor suppressor in human breast cancer.
Collapse
Affiliation(s)
- Hey-Yon Kim
- Department of Pathology, College of Medicine, and
| | - Ji-Hye Park
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Korea
| | | | - Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, and Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Korea
| |
Collapse
|
211
|
Krüger AV, Jelier R, Dzyubachyk O, Zimmerman T, Meijering E, Lehner B. Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis. Dev Biol 2014; 398:153-62. [PMID: 25446273 DOI: 10.1016/j.ydbio.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022]
Abstract
Chromatin regulators are widely expressed proteins with diverse roles in gene expression, nuclear organization, cell cycle regulation, pluripotency, physiology and development, and are frequently mutated in human diseases such as cancer. Their inhibition often results in pleiotropic effects that are difficult to study using conventional approaches. We have developed a semi-automated nuclear tracking algorithm to quantify the divisions, movements and positions of all nuclei during the early development of Caenorhabditis elegans and have used it to systematically study the effects of inhibiting chromatin regulators. The resulting high dimensional datasets revealed that inhibition of multiple regulators, including F55A3.3 (encoding FACT subunit SUPT16H), lin-53 (RBBP4/7), rba-1 (RBBP4/7), set-16 (MLL2/3), hda-1 (HDAC1/2), swsn-7 (ARID2), and let-526 (ARID1A/1B) affected cell cycle progression and caused chromosome segregation defects. In contrast, inhibition of cir-1 (CIR1) accelerated cell division timing in specific cells of the AB lineage. The inhibition of RNA polymerase II also accelerated these division timings, suggesting that normal gene expression is required to delay cell cycle progression in multiple lineages in the early embryo. Quantitative analyses of the dataset suggested the existence of at least two functionally distinct SWI/SNF chromatin remodeling complex activities in the early embryo, and identified a redundant requirement for the egl-27 and lin-40 MTA orthologs in the development of endoderm and mesoderm lineages. Moreover, our dataset also revealed a characteristic rearrangement of chromatin to the nuclear periphery upon the inhibition of multiple general regulators of gene expression. Our systematic, comprehensive and quantitative datasets illustrate the power of single cell-resolution quantitative tracking and high dimensional phenotyping to investigate gene function. Furthermore, the results provide an overview of the functions of essential chromatin regulators during the early development of an animal.
Collapse
Affiliation(s)
- Angela V Krüger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Rob Jelier
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Oleh Dzyubachyk
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Timo Zimmerman
- Advanced Light Microscopy Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Erik Meijering
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
212
|
Vizán P, Beringer M, Ballaré C, Di Croce L. Role of PRC2-associated factors in stem cells and disease. FEBS J 2014; 282:1723-35. [PMID: 25271128 DOI: 10.1111/febs.13083] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
Abstract
The Polycomb group (PcG) of proteins form chromatin-binding complexes with histone-modifying activity. The two main PcG repressive complexes studied (PRC1 and PRC2) are generally associated with chromatin in its repressed state. PRC2 is responsible for methylation of histone H3 at lysine 27 (H3K27me3), an epigenetic mark that is linked with numerous biological processes, including development, adult homeostasis and cancer. The core canonical complex PRC2, which contains the EZH1/2, SUZ12 and EED proteins, may be extended and functionally manipulated through interactions with several other proteins. In this review, we focus on these PRC2-associated proteins. As PRC2 functions are diverse, the variability conferred by these sub-stoichiometrically associated members may help to understand specific changes in PRC2 activity, chromatin recruitment and distribution required for gene repression.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
213
|
Benard A, Goossens-Beumer IJ, van Hoesel AQ, Horati H, Putter H, Zeestraten ECM, van de Velde CJH, Kuppen PJK. Prognostic value of polycomb proteins EZH2, BMI1 and SUZ12 and histone modification H3K27me3 in colorectal cancer. PLoS One 2014; 9:e108265. [PMID: 25243792 PMCID: PMC4171510 DOI: 10.1371/journal.pone.0108265] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023] Open
Abstract
Numerous changes in epigenetic mechanisms have been described in various types of tumors. In search for new biomarkers, we investigated the expression of Polycomb-group (PcG) proteins EZH2, BMI1 and SUZ12 and associated histone modification H3K27me3 in colorectal cancer. Nuclear expression of PcG proteins and histone modification H3K27me3 were immunohistochemically (IHC) stained on a tissue microarray (TMA), including 247 tumor tissues and 47 normal tissues, and scored using the semi-automated Ariol system. Tumor tissues showed higher expression of EZH2 (p = 0.05) and H3K27me3 (p<0.001) as compared to their normal counterparts. Combined marker trend analyses indicated that an increase in the number of markers showing high expression was associated with better prognosis. High expression of all four markers in the combined marker analyses was correlated with the best patient survival and the longest recurrence-free survival, with overall survival (p = 0.01, HR 0.42(0.21-0.84)), disease-free survival (p = 0.007, HR 0.23(0.08-0.67) and local recurrence-free survival (p = 0.02, HR 0.30(0.11-0.84)). In conclusion, we found that expression of PcG proteins and H3K27me3 showed prognostic value in our study cohort. Better stratification of patients was obtained by combining the expression data of the investigated biomarkers as compared to the individual markers, underlining the importance of investigating multiple markers simultaneously.
Collapse
Affiliation(s)
- Anne Benard
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | | | - Anneke Q. van Hoesel
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hamed Horati
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hein Putter
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
214
|
Abstract
The precise, temporal order of gene expression during development is critical to ensure proper lineage commitment, cell fate determination, and ultimately, organogenesis. Epigenetic regulation of chromatin structure is fundamental to the activation or repression of genes during embryonic development. In recent years, there has been an explosion of research relating to various modes of epigenetic regulation, such as DNA methylation, post-translational histone tail modifications, noncoding RNA control of chromatin structure, and nucleosome remodeling. Technological advances in genome-wide epigenetic profiling and pluripotent stem cell differentiation have been primary drivers for elucidating the epigenetic control of cellular identity during development and nuclear reprogramming. Not only do epigenetic mechanisms regulate transcriptional states in a cell-type-specific manner but also they establish higher order genomic topology and nuclear architecture. Here, we review the epigenetic control of pluripotency and changes associated with pluripotent stem cell differentiation. We focus on DNA methylation, DNA demethylation, and common histone tail modifications. Finally, we briefly discuss epigenetic heterogeneity among pluripotent stem cell lines and the influence of epigenetic patterns on genome topology.
Collapse
Affiliation(s)
- Michael J Boland
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kristopher L Nazor
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeanne F Loring
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037.
| |
Collapse
|
215
|
Soldi M, Cuomo A, Bonaldi T. Improved bottom-up strategy to efficiently separate hypermodified histone peptides through ultra-HPLC separation on a bench top Orbitrap instrument. Proteomics 2014; 14:2212-25. [DOI: 10.1002/pmic.201400075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/06/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology; European Institute of Oncology; Milano Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology; European Institute of Oncology; Milano Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology; European Institute of Oncology; Milano Italy
| |
Collapse
|
216
|
Hox gene regulation and timing in embryogenesis. Semin Cell Dev Biol 2014; 34:76-84. [PMID: 24930771 DOI: 10.1016/j.semcdb.2014.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 11/22/2022]
Abstract
Hox genes are critical regulators of embryonic development in bilaterian animals. They exhibit a unique mode of transcriptional regulation where the position of the genes along the chromosome corresponds to the time and place of their expression during development. The sequential temporal activation of these genes in the primitive streak helps determining their subsequent pattern of expression along the anterior-posterior axis of the embryo, yet the precise correspondence between these two collinear processes is not fully understood. In addition, vertebrate Hox genes evolved similar modes of regulation along secondary body axes, such as the developing limbs. We review the current understanding of the mechanisms operating during activation, maintenance and silencing of Hox gene expression in these various contexts, and discuss the evolutionary significance of their genomic organization.
Collapse
|
217
|
Dorsett D, Kassis JA. Checks and balances between cohesin and polycomb in gene silencing and transcription. Curr Biol 2014; 24:R535-9. [PMID: 24892918 PMCID: PMC4104651 DOI: 10.1016/j.cub.2014.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cohesin protein complex was discovered for its roles in sister chromatid cohesion and segregation, and the Polycomb group (PcG) proteins for their roles in epigenetic gene silencing during development. Cohesin also controls gene transcription via multiple mechanisms. Genetic and molecular evidence from Drosophila argue that cohesin and the PRC1 PcG complex interact to control transcription of many active genes that are critical for development, and that via these interactions cohesin also controls the availability of PRC1 for gene silencing.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | - Judith A Kassis
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
218
|
Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q, Delarue M, Bergounioux C, Benhamed M. Chromatin meets the cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2677-89. [PMID: 24497647 DOI: 10.1093/jxb/ert433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell cycle is one of the most comprehensively studied biological processes, due primarily to its significance in growth and development, and its deregulation in many human disorders. Studies using a diverse set of model organisms, including yeast, worms, flies, frogs, mammals, and plants, have greatly expanded our knowledge of the cell cycle and have contributed to the universally accepted view of how the basic cell cycle machinery is regulated. In addition to the oscillating activity of various cyclin-dependent kinase (CDK)-cyclin complexes, a plethora of proteins affecting various aspects of chromatin dynamics has been shown to be essential for cell proliferation during plant development. Furthermore, it was reported recently that core cell cycle regulators control gene expression by modifying histone patterns. This review focuses on the intimate relationship between the cell cycle and chromatin. It describes the dynamics and functions of chromatin structures throughout cell cycle progression and discusses the role of heterochromatin as a barrier against re-replication and endoreduplication. It also proposes that core plant cell cycle regulators control gene expression in a manner similar to that described in mammals. At present, our challenge in plants is to define the complete set of effectors and actors that coordinate cell cycle progression and chromatin structure and to understand better the functional interplay between these two processes.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Allison C Mallory
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Quentin Bruggeman
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| |
Collapse
|
219
|
Derkacheva M, Hennig L. Variations on a theme: Polycomb group proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2769-84. [PMID: 24336446 DOI: 10.1093/jxb/ert410] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polycomb group (PcG) proteins evolved early in evolution, probably in the common ancestor of animals and plants. In some unicellular organisms, such as Chlamydomonas and Tetrahymena, PcG proteins silence genes in heterochromatin, suggesting an ancestral function in genome defence. In angiosperms, the PcG system controls many developmental transitions. A PcG function in the vernalization response evolved especially in Brassicaceaea. Thus, the role of PcG proteins has changed during evolution to match novel needs. Recent studies identified many proteins associated with plant PcG protein complexes. Possible functions of these interactions are discussed here. We highlight recent findings about recruitment of PcG proteins in plants in comparison with animal system. Through the new data, a picture emerges in which PcG protein complexes do not function in sequential linear pathways but as dynamically interacting networks allowing stabilizing feedback loops. We discuss how the interplay between different PcG protein complexes can enable establishment, maintenance, and epigenetic inheritance of H3K27me3.
Collapse
Affiliation(s)
- Maria Derkacheva
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Lars Hennig
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland Science for Life Laboratory, SE-75007 Uppsala, Sweden
| |
Collapse
|
220
|
Hwang WW, Salinas RD, Siu JJ, Kelley KW, Delgado RN, Paredes MF, Alvarez-Buylla A, Oldham MC, Lim DA. Distinct and separable roles for EZH2 in neurogenic astroglia. eLife 2014; 3:e02439. [PMID: 24867641 PMCID: PMC4032491 DOI: 10.7554/elife.02439] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The epigenetic mechanisms that enable specialized astrocytes to retain neurogenic competence throughout adult life are still poorly understood. Here we show that astrocytes that serve as neural stem cells (NSCs) in the adult mouse subventricular zone (SVZ) express the histone methyltransferase EZH2. This Polycomb repressive factor is required for neurogenesis independent of its role in SVZ NSC proliferation, as Ink4a/Arf-deficiency in Ezh2-deleted SVZ NSCs rescues cell proliferation, but neurogenesis remains defective. Olig2 is a direct target of EZH2, and repression of this bHLH transcription factor is critical for neuronal differentiation. Furthermore, Ezh2 prevents the inappropriate activation of genes associated with non-SVZ neuronal subtypes. In the human brain, SVZ cells including local astroglia also express EZH2, correlating with postnatal neurogenesis. Thus, EZH2 is an epigenetic regulator that distinguishes neurogenic SVZ astrocytes, orchestrating distinct and separable aspects of adult stem cell biology, which has important implications for regenerative medicine and oncogenesis. DOI:http://dx.doi.org/10.7554/eLife.02439.001 In addition to the billions of nerve cells called neurons, the brain and spinal cord also contain star-shaped cells called astrocytes. At first it was thought that all astrocytes were the same, but it later became clear that there are several different types of astrocytes that perform different functions. Most neurons are formed in the embryo, but some astrocytes that are found deep within the brain can act as ‘neurogenic stem cells’ and continue to produce new neurons during adult life. However, it was not clear how these neurogenic astrocytes were different from other astrocytes. Now Hwang et al. have found that neurogenic astrocytes contain a protein called EZH2 that is not found in other types of astrocyte in the adult brain. Researchers already knew that this protein, which acts to help keep DNA tightly packed inside the nucleus and to keep genes switched off, was important for brain development. EZH2 was also known to prevent stem cells from prematurely turning into specialized cell types. But, surprisingly, Hwang et al. found that EZH2 has two distinct roles in neurogenic astrocytes: it allows them to multiply to make more astrocytes, and it also helps guide astrocytes into becoming neurons. Hwang et al. showed that different sets of genes were involved in these two roles. DOI:http://dx.doi.org/10.7554/eLife.02439.002
Collapse
Affiliation(s)
- William W Hwang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Ryan D Salinas
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Jason J Siu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ryan N Delgado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
221
|
Girard N, Bazille C, Lhuissier E, Benateau H, Llombart-Bosch A, Boumediene K, Bauge C. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells. PLoS One 2014; 9:e98176. [PMID: 24852755 PMCID: PMC4031152 DOI: 10.1371/journal.pone.0098176] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Growing evidences indicate that the histone methyltransferase EZH2 (enhancer of zeste homolog 2) may be an appropriate therapeutic target in some tumors. Indeed, a high expression of EZH2 is correlated with poor prognosis and metastasis in many cancers. In addition, 3-Deazaneplanocin A (DZNep), an S-adenosyl-L homocysteine hydrolase inhibitor which induces EZH2 protein depletion, leads to cell death in several cancers and tumors. The aim of this study was to determine whether an epigenetic therapy targeting EZH2 with DZNep may be also efficient to treat chondrosarcomas. METHODS EZH2 expression was determined by immunohistochemistry and western-blot. Chondrosarcoma cell line CH2879 was cultured in the presence of DZNep, and its growth and survival were evaluated by counting adherent cells periodically. Apoptosis was assayed by cell cycle analysis, Apo2.7 expression using flow cytometry, and by PARP cleavage using western-blot. Cell migration was assessed by wound healing assay. RESULTS Chondrosarcomas (at least with high grade) highly express EZH2, at contrary to enchondromas or chondrocytes. In vitro, DZNep inhibits EZH2 protein expression, and subsequently reduces the trimethylation of lysine 27 on histone H3 (H3K27me3). Interestingly, DZNep induces cell death of chondrosarcoma cell lines by apoptosis, while it slightly reduces growth of normal chondrocytes. In addition, DZNep reduces cell migration. CONCLUSION These results indicate that an epigenetic therapy that pharmacologically targets EZH2 via DZNep may constitute a novel approach to treat chondrosarcomas.
Collapse
Affiliation(s)
- Nicolas Girard
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| | - Céline Bazille
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
- Service d’Anatomie Pathologique, CHU, Caen, France
| | - Eva Lhuissier
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| | - Hervé Benateau
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
- Service de Chirurgie Maxillo-faciale, CHU, Caen, France
| | | | - Karim Boumediene
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| | - Catherine Bauge
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| |
Collapse
|
222
|
Hahn MA, Li AX, Wu X, Yang R, Drew DA, Rosenberg DW, Pfeifer GP. Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res 2014; 74:3617-3629. [PMID: 24786786 DOI: 10.1158/0008-5472.can-13-3147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In colon tumors, the transcription of many genes becomes deregulated by poorly defined epigenetic mechanisms that have been studied mainly in established cell lines. In this study, we used frozen human colon tissues to analyze patterns of histone modification and DNA cytosine methylation in cancer and matched normal mucosa specimens. DNA methylation is strongly targeted to bivalent H3K4me3- and H3K27me3-associated promoters, which lose both histone marks and acquire DNA methylation. However, we found that loss of the Polycomb mark H3K27me3 from bivalent promoters was accompanied often by activation of genes associated with cancer progression, including numerous stem cell regulators, oncogenes, and proliferation-associated genes. Indeed, we found many of these same genes were also activated in patients with ulcerative colitis where chronic inflammation predisposes them to colon cancer. Based on our findings, we propose that a loss of Polycomb repression at bivalent genes combined with an ensuing selection for tumor-driving events plays a major role in cancer progression.
Collapse
Affiliation(s)
- Maria A Hahn
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Arthur X Li
- Department of Information Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Xiwei Wu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA
| | - Richard Yang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA
| | - David A Drew
- Center for Molecular Medicine, Univ. of Connecticut Health Center, Farmington, CT
| | - Daniel W Rosenberg
- Center for Molecular Medicine, Univ. of Connecticut Health Center, Farmington, CT
| | - Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
223
|
Singh JP, Zhang K, Wu J, Yang X. O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 2014; 356:244-50. [PMID: 24769077 DOI: 10.1016/j.canlet.2014.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022]
Abstract
The covalent attachment of β-D-N-acetylglucosamine monosaccharides (O-GlcNAc) to serine/threonine residues of nuclear and cytoplasmic proteins is a major regulatory mechanism in cell physiology. Aberrant O-GlcNAc modification of signaling proteins, metabolic enzymes, and transcriptional and epigenetic regulators has been implicated in cancer. Relentless growth of cancer cells requires metabolic reprogramming that is intertwined with changes in the epigenetic landscape. This review highlights the emerging role of protein O-GlcNAcylation at the interface of cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA.
| |
Collapse
|
224
|
Abstract
Epigenetic interventions are required to induce reprogramming from one cell type to another. At present, various cellular reprogramming methods such as somatic cell nuclear transfer, cell fusion, and direct reprogramming using transcription factors have been reported. In particular, direct reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) has been achieved using defined factors that play important epigenetic roles. Although the mechanisms underlying cellular reprogramming and vertebrate regeneration, including appendage regeneration, remain unknown, dedifferentiation occurs at an early phase in both the events, and both events are contrasting with regard to cell death. We compared the current status of changes in cell fate of iPSCs with that of vertebrate regeneration and suggested that substantial insights into vertebrate regeneration should be helpful for safe applications of iPSCs to medicine.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| |
Collapse
|
225
|
Choukrallah MA, Matthias P. The Interplay between Chromatin and Transcription Factor Networks during B Cell Development: Who Pulls the Trigger First? Front Immunol 2014; 5:156. [PMID: 24782862 PMCID: PMC3990105 DOI: 10.3389/fimmu.2014.00156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 01/25/2023] Open
Abstract
All mature blood cells derive from hematopoietic stem cells through gradual restriction of their cell fate potential and acquisition of specialized functions. Lineage specification and cell commitment require the establishment of specific transcriptional programs involving the activation of lineage-specific genes and the repression of lineage-inappropriate genes. This process requires the concerted action of transcription factors (TFs) and epigenetic modifying enzymes. Within the hematopoietic system, B lymphopoiesis is one of the most-studied differentiation programs. Loss of function studies allowed the identification of many TFs and epigenetic modifiers required for B cell development. The usage of systematic analytical techniques such as transcriptome determination, genome-wide mapping of TF binding and epigenetic modifications, and mass spectrometry analyses, allowed to gain a systemic description of the intricate networks that guide B cell development. However, the precise mechanisms governing the interaction between TFs and chromatin are still unclear. Generally, chromatin structure can be remodeled by some TFs but in turn can also regulate (i.e., prevent or promote) the binding of other TFs. This conundrum leads to the crucial questions of who is on first, when, and how. We review here the current knowledge about TF networks and epigenetic regulation during hematopoiesis, with an emphasis on B cell development, and discuss in particular the current models about the interplay between chromatin and TFs.
Collapse
Affiliation(s)
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland ; Faculty of Sciences, University of Basel , Basel , Switzerland
| |
Collapse
|
226
|
Bezsonova I. Solution NMR structure of the DNA-binding domain from Scml2 (sex comb on midleg-like 2). J Biol Chem 2014; 289:15739-49. [PMID: 24727478 DOI: 10.1074/jbc.m113.524009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scml2 is a member of the Polycomb group of proteins involved in epigenetic gene silencing. Human Scml2 is a part of a multisubunit protein complex, PRC1 (Polycomb repressive complex 1), which is responsible for maintenance of gene repression, prevention of chromatin remodeling, preservation of the "stemness" of the cell, and cell differentiation. Although the majority of PRC1 subunits have been recently characterized, the structure of Scml2 and its role in PRC1-mediated gene silencing remain unknown. In this work a conserved protein domain within human Scml2 has been identified, and its structure was determined by solution NMR spectroscopy. This module was named Scm-like embedded domain, or SLED. Evolutionarily, the SLED domain emerges in the first multicellular organisms, consistent with the role of Scml2 in cell differentiation. Furthermore, it is exclusively found within the Scm-like family of proteins, often accompanied by malignant brain tumor domain (MBT) and sterile α motif (SAM) domains. The domain adopts a novel α/β fold with no structural analogues found in the Protein Data Bank (PDB). The ability of the SLED to bind double-stranded DNA was also examined, and the isolated domain was shown to interact with DNA in a sequence-specific manner. Because PRC1 complexes localize to the promoters of a specific subset of developmental genes in vivo, the SLED domain of Scml2 may provide an important link connecting the PRC1 complexes to their target genes.
Collapse
Affiliation(s)
- Irina Bezsonova
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, 06032-3305
| |
Collapse
|
227
|
O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:278-91. [PMID: 24259318 PMCID: PMC4020002 DOI: 10.1002/em.21830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 05/22/2023]
Abstract
Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.
Collapse
Affiliation(s)
- Heather M. O’Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
228
|
Belle JI, Nijnik A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 2014; 50:161-74. [PMID: 24647359 DOI: 10.1016/j.biocel.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022]
Abstract
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada.
| |
Collapse
|
229
|
Aloia L, Di Stefano B, Sessa A, Morey L, Santanach A, Gutierrez A, Cozzuto L, Benitah SA, Graf T, Broccoli V, Di Croce L. Zrf1 is required to establish and maintain neural progenitor identity. Genes Dev 2014; 28:182-97. [PMID: 24449271 PMCID: PMC3909791 DOI: 10.1101/gad.228510.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expression of NPC markers, including the key regulator Pax6. Moreover, Zrf1 is essential to establish and maintain Wnt ligand expression levels, which are necessary for NPC self-renewal. Reactivation of proper Wnt signaling in Zrf1-depleted NPCs restores Pax6 expression and the self-renewal capacity. ESC-derived NPCs in vitro resemble most of the characteristics of the self-renewing NPCs located in the developing embryonic cortex, which are termed radial glial cells (RGCs). Depletion of Zrf1 in vivo impairs the expression of key self-renewal regulators and Wnt ligand genes in RGCs. Thus, we demonstrate that Zrf1 plays an essential role in NPC generation and maintenance.
Collapse
Affiliation(s)
- Luigi Aloia
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
T, B, and NK lymphocytes are generated from pluripotent hematopoietic stem cells through a successive series of lineage restriction processes. Many regulatory components, such as transcription factors, cytokines/cytokine receptors, and signal transduction molecules orchestrate cell fate specification and determination. In particular, transcription factors play a key role in regulating lineage-associated gene programs. Recent findings suggest the involvement of epigenetic factors in the maintenance of cell fate. Here, we review the early developmental events during lymphocyte lineage determination, focusing on the transcriptional networks and epigenetic regulation. Finally, we also discuss the developmental relationship between acquired and innate lymphoid cells.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan,
| |
Collapse
|
231
|
Polycomb-Dependent H3K27me1 and H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Mol Cell 2014; 53:49-62. [DOI: 10.1016/j.molcel.2013.10.030] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/23/2013] [Accepted: 10/24/2013] [Indexed: 01/22/2023]
|
232
|
Londhe P, Davie JK. Interferon-γ resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis. Sci Signal 2013; 6:ra107. [PMID: 24327761 DOI: 10.1126/scisignal.2004633] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The inflammatory cytokine interferon-γ (IFN-γ) orchestrates a diverse array of fundamental physiological processes. IFN-γ and the class II transactivator (CIITA) play essential roles in inhibiting muscle development during the inflammatory response. We describe the mechanism through which IFN-γ and CIITA inhibit myogenesis by repressing gene expression in muscle cells subjected to inflammation. In mice, the presence of increased amounts of circulating IFN-γ resulted in the increased abundance of Polycomb repressive complex 2 (PRC2) in muscle fibers, a tissue in which PRC2 is not normally present in the adult. We showed that CIITA first interacted with the Jumonji family protein JARID2, a noncatalytic subunit of PRC2, which caused an RNA polymerase II (RNAPII), phosphorylated at serine-5, to pause at target promoters. Additional subunits of the PRC2 complex, including the catalytic subunit EZH2, were then recruited in a JARID2-dependent manner that was concurrent with the loss of RNAPII and the methylation of Lys(27) of histone H3 (H3K27), which is associated with gene repression. IFN-γ and CIITA act to both promote the abundance of PRC2 subunits, which are not normally present during muscle differentation, and recruit the PRC2 complex to block myogenesis. Together, these data indicate that increased amounts of IFN-γ reset myogenic cell fate through a multistep mechanism that culminates in the recruitment of PRC2 to silence muscle-specific genes.
Collapse
Affiliation(s)
- Priya Londhe
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | |
Collapse
|
233
|
Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20:1147-55. [PMID: 24096405 DOI: 10.1038/nsmb.2669] [Citation(s) in RCA: 674] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.
Collapse
|
234
|
Basu A, Wilkinson FH, Colavita K, Fennelly C, Atchison ML. YY1 DNA binding and interaction with YAF2 is essential for Polycomb recruitment. Nucleic Acids Res 2013; 42:2208-23. [PMID: 24285299 PMCID: PMC3936737 DOI: 10.1093/nar/gkt1187] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb Group (PcG) proteins are crucial for epigenetic inheritance of cell identity and are functionally conserved from Drosophila to humans. PcG proteins regulate expression of homeotic genes and are essential for axial body patterning during development. Earlier we showed that transcription factor YY1 functions as a PcG protein. YY1 also physically interacts with YAF2, a homolog of RYBP. Here we characterize the mechanism and physiologic relevance of this interaction. We found phenotypic and biochemical correction of dRYBP mutant flies by mouse YAF2 demonstrating functional conservation across species. Further biochemical analysis revealed that YAF2 bridges interaction between YY1 and the PRC1 complex. ChIP assays in HeLa cells showed that YAF2 is responsible for PcG recruitment to DNA, which is mediated by YY1 DNA binding. Knock-down of YY1 abrogated PcG recruitment, which was not compensated by exogenous YAF2 demonstrating that YY1 DNA binding is a priori necessary for Polycomb assembly on chromatin. Finally, we found that although YAF2 and RYBP regulate a similar number of Polycomb target genes, there are very few genes that are regulated by both implying functional distinction between the two proteins. We present a model of YAF2-dependent and independent PcG DNA recruitment by YY1.
Collapse
Affiliation(s)
- Arindam Basu
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA and College of Science Health and Liberal Arts, Philadelphia University, 4201 Henry Avenue, Philadelphia, PA 19144, USA
| | | | | | | | | |
Collapse
|
235
|
Simboeck E, Di Croce L. p16INK4a in cellular senescence. Aging (Albany NY) 2013; 5:590-591. [PMID: 23965734 PMCID: PMC3796211 DOI: 10.18632/aging.100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Elisabeth Simboeck
- Centre for Genomic Regulation (CRG) and UPF, Dr.Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|