201
|
Reinhold MI, Abe M, Kapadia RM, Liao Z, Naski MC. FGF18 represses noggin expression and is induced by calcineurin. J Biol Chem 2004; 279:38209-19. [PMID: 15252029 DOI: 10.1074/jbc.m404855200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factors (FGFs) and bone morphogenetic proteins strongly regulate chondrogenesis and chondrocyte gene expression. The interactions of the signaling pathways initiated by these factors are central to the control of chondrocyte differentiation. Here we show that calcium-dependent signals induce expression of FGF18, an essential regulator of bone and cartilage differentiation. The induction of FGF18 expression required the calcium-dependent phosphatase, calcineurin. The activated forms of calcineurin or the calcineurin-dependent transcription factor, NFAT4 (nuclear factor of activated T-cell 4), induced FGF18 expression. FGF18 or a constitutive active FGF receptor suppressed noggin gene induction and thereby increased chondrocyte gene expression and chondrogenesis by facilitating bone morphogenetic protein-dependent signals. These findings reinforce the interdependence of bone morphogenetic protein and FGF signaling and provide a rational explanation for abnormal bone development occurring in humans or mice with constitutively active FGF receptors.
Collapse
Affiliation(s)
- Martina I Reinhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
202
|
Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-Dependent Heparan Sulfate Regulates the Range of Ihh Signaling during Endochondral Ossification. Dev Cell 2004; 6:801-13. [PMID: 15177029 DOI: 10.1016/j.devcel.2004.05.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/17/2004] [Accepted: 05/17/2004] [Indexed: 11/17/2022]
Abstract
Exostosin1 (Ext1) belongs to a family of glycosyltransferases necessary for the synthesis of the heparan sulfate (HS) chains of proteoglycans, which regulate signaling of several growth factors. Loss of tout velu (ttv), the homolog of Ext1 in Drosophila, inhibits Hedgehog movement. In contrast, we show that reduced HS synthesis in mice carrying a hypomorphic mutation in Ext1 results in an elevated range of Indian hedgehog (Ihh) signaling during embryonic chondrocyte differentiation. Our data suggest a dual function for HS: First, HS is necessary to bind Hedgehog in the extracellular space. Second, HS negatively regulates the range of Hedgehog signaling in a concentration-dependent manner. Additionally, our data indicate that Ihh acts as a long-range morphogen, directly activating the expression of parathyroid hormone-like hormone. Finally, we propose that the development of exostoses in the human Hereditary Multiple Exostoses syndrome can be attributed to activation of Ihh signaling.
Collapse
Affiliation(s)
- Lydia Koziel
- Otto-Warburg-Laboratory, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
203
|
Horiki M, Imamura T, Okamoto M, Hayashi M, Murai J, Myoui A, Ochi T, Miyazono K, Yoshikawa H, Tsumaki N. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. ACTA ACUST UNITED AC 2004; 165:433-45. [PMID: 15123739 PMCID: PMC2172180 DOI: 10.1083/jcb.200311015] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo.
Collapse
Affiliation(s)
- Mitsuru Horiki
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, de Crombrugghe B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev 2004; 18:290-305. [PMID: 14871928 PMCID: PMC338282 DOI: 10.1101/gad.1179104] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1.
Collapse
Affiliation(s)
- Shunichi Murakami
- Department of Molecular Genetics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
205
|
Miao D, Liu H, Plut P, Niu M, Huo R, Goltzman D, Henderson JE. Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp Cell Res 2004; 294:210-22. [PMID: 14980515 DOI: 10.1016/j.yexcr.2003.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 08/08/2003] [Indexed: 01/08/2023]
Abstract
Mice homozygous for targeted disruption of the zinc finger domain of Gli2 (Gli2(zfd/zfd)) die at birth with developmental defects in several organ systems including the skeleton. The current studies were undertaken to define the role of Gli2 in endochondral bone development by characterizing the molecular defects in the limbs and vertebrae of Gli2(zfd/zfd) mice. The bones of mutant mice removed by cesarian section at E16.5 and E18.5 demonstrated delayed endochondral ossification. This was accompanied by an increase in the length of cartilaginous growth plates, reduced bone tissue in the femur and tibia and by failure to develop the primary ossification centre in vertebral bodies. The growth plates of tibiae and vertebrae exhibited increased numbers of proliferating and hypertrophic chondrocytes with no apparent alteration in matrix mineralisation. The changes in growth plate morphology were accompanied by an increase in expression of FGF2 in proliferating chondrocytes and decreased expression of Indian hedgehog (Ihh), patched (Ptc) and parathyroid-hormone-related protein (PTHrP) in prehypertrophic cells. Furthermore, there was a reduction in expression of angiogenic molecules in hypertrophic chondrocytes, which was accompanied by a decrease in chondroclasts at the cartilage bone interface, fewer osteoblasts lining trabecular surfaces and a reduced volume of metaphyseal bone. These results indicate that functional Gli2 is necessary for normal endochondral bone development and that its absence results in increased proliferation of immature chondrocytes and decreased resorption of mineralised cartilage and bone formation.
Collapse
Affiliation(s)
- Dengshun Miao
- Calcium Research Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
206
|
Affiliation(s)
- Ung-Il Chung
- Division of Tissue Engineering, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
207
|
Amizuka N, Davidson D, Liu H, Valverde-Franco G, Chai S, Maeda T, Ozawa H, Hammond V, Ornitz DM, Goltzman D, Henderson JE. Signalling by fibroblast growth factor receptor 3 and parathyroid hormone-related peptide coordinate cartilage and bone development. Bone 2004; 34:13-25. [PMID: 14751559 DOI: 10.1016/j.bone.2003.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bone development is regulated by conserved signalling pathways that are linked to multifunctional growth factors and their high affinity receptors. Parathyroid hormone-related peptide (PTHrP) and fibroblast growth factor receptor 3 (FGFR3) have been shown to play pivotal, and sometimes complementary, roles in the replication, maturation and death of chondrocytes during endochondral bone formation. To gain further insight into how these pathways coordinate cartilage and bone development, we generated mice lacking expression of both PTHrP and FGFR3. The phenotype of compound mutant mice resembled that of their PTHrP-deficient littermates with respect to neonatal lethality, facial dysmorphism and foreshortening of the limbs. The absence of PTHrP in the developing epiphyseal cartilage of PTHrP-/- and PTHrP-/-/FGFR3-/- mice resulted in a dominant hypo-proliferative phenotype. However, abnormalities such as the presence of nonhypertrophic cells among hypertrophic chondrocytes and excessive apoptosis seen in the hypertrophic zone of PTHrP-/- mice were absent in the PTHrP-/-/FGFR3-/- mice. Furthermore, the absence of FGFR3 in single and compound mutant mice led to decreased expression of vascular endothelial growth factor (VEGF) and an increase in depth of hypertrophic chondrocytes. These observations indicate that FGFR3 deficiency can rescue some of the defects seen in PTHrP-deficient mice and that it plays an important role in the regulation of chondrocyte differentiation and hypertrophy. These studies support a dominant role for PTHrP in regulating the pool of proliferating cells during limb development and suggest that signalling by FGFR3 plays a more prominent role in cartilage maturation and vascular invasion at the chondro-osseous junction.
Collapse
Affiliation(s)
- Norio Amizuka
- Department of Oral Biological Science, Graduate School for Medical and Dental Sciences, Niigata University Faculty of Dentistry, Niigata 951-8514, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone 2004; 34:26-36. [PMID: 14751560 DOI: 10.1016/j.bone.2003.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Achondroplasia (ACH) and thanatophoric dysplasia (TD) are human skeletal disorders of increasing severity accounted for by mutations in the fibroblast growth factor receptor 3 (FGFR3). Attempts to elucidate the molecular signaling pathways leading to these phenotypes through mouse model engineering have provided relevant information mostly in the postnatal period. The availability of a large series of human fetuses including 14 ACH and 26 TD enabled the consequences of FGFR3 mutations on endogenous receptor expression during the prenatal period to be assessed by analysis of primary cultured chondrocytes and cartilage growth plates. Overexpression and ligand-independent phosphorylation of the fully glycosylated isoform of FGFR3 were observed in ACH and TD cells. Immunohistochemical analysis of fetal growth plates showed a phenotype-related reduction of the collagen type X-positive hypertrophic zone. Abnormally high amounts of Stat1, Stat5 and p21Cip1 proteins were found in prehypertrophic-hypertrophic chondrocytes, the extent of overexpression being directly related to the severity of the disease. Double immunostaining procedures revealed an overlap of FGFR3 and Stat1 expression in the prehypertrophic-hypertrophic zone, suggesting that constitutive activation of the receptor accounts for Stat overexpression. By contrast, expression of Stat and p21Cip1 proteins in the proliferative zone differed only slightly from control cartilage and differences were restricted to the last arrays of proliferative cells. Our results indicate that FGFR3 mutations in the prenatal period upregulate FGFR3 and Stat-p21Cip1 expression, thus inducing premature exit of proliferative cells from the cell cycle and their differentiation into prehypertrophic chondrocytes. We conclude that defective differentiation of chondrocytes is the main cause of longitudinal bone growth retardation in FGFR3-related human chondrodysplasias.
Collapse
Affiliation(s)
- L Legeai-Mallet
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U 393, Institut Necker, 75743, Paris15, France
| | | | | | | |
Collapse
|
209
|
Reinhold MI, McEwen DG, Naski MC. Fibroblast Growth Factor Receptor 3 Gene: Regulation by Serum Response Factor. Mol Endocrinol 2004; 18:241-51. [PMID: 14563937 DOI: 10.1210/me.2003-0312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously identified a cis-acting sequence in the proximal promoter of the fibroblast growth factor receptor 3 (FGFR3) gene that strongly activates transcription in chondrocytic cells. Here we report that the transcriptional activity of this sequence (FRE3) requires serum response factor and its cognate recognition motif, serum response element. Although the FRE3 contains consensus sequence motifs for several transcription factors, the serum response element is paramount for the transcriptional activity of the FRE3. Additionally, the transcriptional activity of the proximal promoter of the FGFR3 gene is suppressed by mutation of the serum response element. Serum response factor binds to the FRE3 as evidenced by gel shift experiments and antibody supershift experiments and expression of a dominant negative form of serum response factor suppresses the activity of FRE3. Additionally, serum response factor binds to the FGFR3 gene in vivo, as demonstrated by chromatin immunoprecipitation. Serum response factor is an important regulator of cardiac, skeletal, and smooth muscle gene expression; these data suggest that serum response factor is also an important determinant of chondrocyte gene expression.
Collapse
Affiliation(s)
- Martina I Reinhold
- Department of Pathology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
210
|
Coumoul X, Deng CX. Roles of FGF receptors in mammalian development and congenital diseases. ACTA ACUST UNITED AC 2003; 69:286-304. [PMID: 14745970 DOI: 10.1002/bdrc.10025] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Four fibroblast growth factor receptors (FGFR1-4) constitute a family of transmembrane tyrosine kinases that serve as high affinity receptors for at least 22 FGF ligands. Gene targeting in mice has yielded valuable insights into the functions of this important gene family in multiple biological processes. These include mesoderm induction and patterning; cell growth, migration, and differentiation; organ formation and maintenance; neuronal differentiation and survival; wound healing; and malignant transformation. Furthermore, discoveries that mutations in three of the four receptors result in more than a dozen human congenital diseases highlight the importance of these genes in skeletal development. In this review, we will discuss recent progress on the roles of FGF receptors in mammalian development and congenital diseases, with an emphasis on signal transduction pathways.
Collapse
Affiliation(s)
- Xavier Coumoul
- Genetics of Development and Disease Branch, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
211
|
Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M, Tamura N, Ogawa Y, Nakao K. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 2003; 10:80-6. [PMID: 14702637 DOI: 10.1038/nm971] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/26/2003] [Indexed: 01/29/2023]
Abstract
Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.
Collapse
Affiliation(s)
- Akihiro Yasoda
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R, Seino Y. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res 2003; 18:2043-51. [PMID: 14606518 DOI: 10.1359/jbmr.2003.18.11.2043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED An activated mutation in the FGFR3 gene causes ACH. To examine the effects of IGF-1, which is an important mediator of GH, on apoptosis, we analyzed a chondrogenic cell line expressing the FGFR3 mutants. Our findings that IGF-1 prevented the apoptosis through PI3K and MAPK pathways may explain how GH treatment improves the disturbed bone growth in ACH. INTRODUCTION Achondroplasia (ACH), which is caused by a point mutation of the fibroblast growth factor receptor 3 (FGFR3) gene in the transmembrane domain (G380R), is one of the most common genetic forms of dwarfism. Recently, using a chondrogenic cell line, ATDC5, we have showed that the constitutively active FGFR3 mutants induced an apoptosis of chondrocytes. We have also reported that growth hormone (GH) treatment increased the growth rate in achondroplasia in parallel with the increment of serum levels of insulin-like growth factor (IGF)-1, suggesting an important role of IGF-1 in skeletal development. In this study, to clarify the mechanism by which GH treatment improved the phenotype of ACH patients, we examined the possible effects of IGF-1 on an apoptosis induced by FGFR3 mutant in ATDC5. MATERIALS AND METHODS Using adenovirus vector, wildtype or mutant FGFR3 (G380R) was introduced into ATDC5. Analysis of apoptosis was estimated by TUNEL assay. Expression levels of apoptosis-related genes and activation of signaling molecules were analyzed by immunoblot. RESULTS MTT assay showed that the cell number was reduced in ATDC5 cells expressing the mutant FGFR3 (G380R; ATDC5-mtR3 cells), suggesting that ATDC5-mtR3 cells might fall into apoptosis. IGF-1, which is an important mediator of GH, restored cell proliferation and reduced apoptosis in ATDC5-mtR3 cells. IGF-1 also decreased the ratio of Bax/Bcl-2 in the cells. To investigate which signaling cascade is responsible for antiapoptotic effects of IGF-1, we examined the role of phosphatidylinositol 3-kinase (PI3K) and MAPK in ATDC5-mtR3 cells. Specific inhibitors of PI3K or MAPK blocked the antiapoptotic effects of IGF-1 in ATDC5-mtR3 cells. CONCLUSIONS Our findings, showing IGF-1 prevents the apoptosis induced by FGFR3 mutation through the PI3K pathway and MAPK pathway, explain the mechanisms by which GH treatment improves the disturbed bone growth in ACH.
Collapse
Affiliation(s)
- Mio Koike
- Department of Pediatrics, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
213
|
Abstract
Manipulation of the mouse genome through mis-expressing, knocking out, and introducing mutations into genes of interest has provided important insights into the genetic pathways responsible for human skeletal development. These pathways contribute to the sequential phases of skeletal morphogenesis that include patterning, condensation, and overt organogenesis of the membranous and endochondral embryonic skeletons and to subsequent linear growth. Disturbances in these pathways account for many developmental syndromes and disorders of the human skeleton. Recurrent themes include establishment of interlocking regulatory circuits involving growth factors, receptors, signalling pathways, and transcription factors that control cellular programmes such as migration, adhesion, proliferation, differentiation, and apoptosis, and use of common molecules for different purposes. Technical advances suggest that genetic engineering in mice will continue to be highly instructive in the field of skeletal biology.
Collapse
Affiliation(s)
- William A Horton
- Shriners Hospital for Children, Oregon Health and Science University, 3101 Sam Jackson Park Road, Portland, OR 97239-3009, USA.
| |
Collapse
|
214
|
Chen L, Li D, Li C, Engel A, Deng CX. A Ser252Trp [corrected] substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 2003; 33:169-78. [PMID: 14499350 DOI: 10.1016/s8756-3282(03)00222-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apert syndrome (AS) is one of the most severe craniosynostoses and is characterized by premature fusion of craniofacial sutures. Mutations of either Ser252Trp or Pro253Arg in fibroblast growth factor receptor 2 (FGFR2) are responsible for nearly all known cases of AS. Here we show that mutant mice carrying the activation mutation, Ser252Trp [corrected] which corresponds to Ser252Trp in human FGFR2, have malformations mimicking the skull abnormalities found in AS patients. Mutant mice (Fgfr2(250/+)) are smaller in body size with brachycephaly and exhibit distorted skulls with widely spaced eyes. Unexpectedly, the premature closure of the coronal suture is accompanied by decreased, rather than increased, bone formation. We demonstrate that the Fgfr2-Ser252Trp [corrected] mutation does not cause obvious alterations in cell proliferation and differentiation; however, it results in increased Bax expression and apoptosis of osteogenic cells in mutant coronal suture. The accelerated cell death possibly reduces the space between osteogenic fronts of flat bones and results in the physical contact of these bones. Thus, our data reveal that dysregulated apoptosis plays an important role in the pathogenesis of AS related phenotypes.
Collapse
Affiliation(s)
- Lin Chen
- Genetics of Development and Disease Branch, NIDDK/NIH, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
215
|
Yamanaka Y, Tanaka H, Koike M, Nishimura R, Seino Y. PTHrP rescues ATDC5 cells from apoptosis induced by FGF receptor 3 mutation. J Bone Miner Res 2003; 18:1395-403. [PMID: 12929929 DOI: 10.1359/jbmr.2003.18.8.1395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED An activation mutation in the FGFR3 gene causes ACH. The effects of the FGFR3 mutants on apoptosis were analyzed in a chondrogenic cell line. ACH chondrocytes exhibited marked apoptotic with downregulation of PTHrP expression. Rescue of these cells by PTHrP replacement implies a potential therapy for this disorder. INTRODUCTION Achondroplasia (ACH), the most common form of short-limb dwarfism, and its related disorders are caused by constitutively activated point-mutated FGFR3. Recent studies have provided a large body of evidence on chondrocyte proliferation and differentiation in these disorders. However, little is known about the possible effects of the FGFR3 mutants on apoptosis of chondrocytes. METHODS The mutant FGFR3 genes causing ACH and thanatophoric dysplasia (TD), which is a more severe neonatal lethal form, were introduced into a chondrogenic cell line, ATDC5. Analysis of apoptosis was estimated by TUNEL assay, DNA laddering, and fluorescent measurement of mitochondrial membrane potential. Expression levels of parathyroid hormone-related peptide (PTHrP) and apoptosis-related genes were analyzed by Northern blot or immunoblot. RESULTS The introduction of these mutated FGFR3s into ATDC5 cells downregulated PTHrP expression and induced apoptosis with reduction of Bcl-2 expression. Importantly, replacement of PTHrP prevented the apoptotic changes and reduction of Bcl-2 expression in ATDC5 cells expressing the ACH mutant. In parallel with the severity of disease and the activity of FGFR3, ATDC5 cells expressing TD-mutant FGFR3 showed less expression of PTHrP and Bcl-2 and induced more remarkable apoptotic changes compared with ACH-mutant expressing cells. Furthermore, overexpression of Bcl-2 inhibited apoptotic changes, suggesting that the mutant FGFR3 caused apoptosis, at least in part, through reduction of Bcl-2 expression, which seems to be downstream of PTHrP. CONCLUSIONS Our data suggest that excessive activation of signaling cascades mediated by the FGFR3 mutants inhibits the expression of PTHrP and Bcl-2, resulting in apoptosis of chondrocytes, possibly leading to short-limb dwarfism. Rescue of these cells by PTHrP replacement implies a potential therapy for this disorder.
Collapse
Affiliation(s)
- Yoshitaka Yamanaka
- Department of Pediatrics, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | |
Collapse
|
216
|
Abstract
Mutations in genes encoding for fibroblast growth factor receptors (FGFRs) have been identified as causes of both chondrodysplasias and craniosynostoses, both of which cause abnormalities in the growth and development of the craniofacial region. FGFRs form mRNA splicing isoforms, each with distinct ligand binding specificity and tissue distribution. These confer specific biological functions on these isoforms. Although it is known that FGFRs are expressed at numerous locations during early mouse development, including the craniofacial area, relatively little is known about the expression of the splicing isoforms during craniofacial bone development. To address this, we have performed a detailed survey to detect these genes in the developing mouse craniofacial region. We have analyzed the developing mouse mandible, calvaria, and cranial base, in particular the spheno-occipital synchondrosis, a key centre of craniofacial growth. Fgfr1c was detected weakly in osteoblastic cells in both the developing calvarial and mandibular bones. Fgfr3b and Fgfr3c were found chiefly in proliferating chondrocytes of the cranial base synchondroses and the mandibular condyle. Fgfr2b transcripts were most notably detected in the perichondria of the mandibular condyle and the cranial base. Fgfr2c transcripts were detected with high intensity in differentiating osteoblasts at the sutural osteogenic fronts of the calvarial bones. In addition, Fgfr2c was also expressed in the perichondria of the mandibular condyle and the cranial base. These expression patterns suggest both differing and similar functions for -b and -c isoforms. The former is exemplified by Fgfr1 transcripts, which show distinct differences in their distribution, being mutually exclusive. Similar functions are suggested by the overlapping expression patterns of the -b and -c isoforms of both Fgfr2 and Fgfr3. Fgfr4 transcripts were found in developing muscles. These data help to explain the disturbances in craniofacial growth exhibited by both patients and the growing number of transgenic mice carrying mutations in genes encoding FGFRs/Fgfrs.
Collapse
Affiliation(s)
- D P C Rice
- Developmental Biology Programme, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
217
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
218
|
Abstract
Vertebrates do not look like jellyfish because the bones of their skeletons are levers that allow movement and protect vital organs. Bones come in an enormous variety of shapes and sizes to accomplish these goals, but, with few exceptions, use one process--endochondral bone formation--to generate the skeleton. The past few years have seen an enormous increase in understanding of the signalling pathways and the transcription factors that control endochondral bone development.
Collapse
Affiliation(s)
- Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114-2696, USA.
| |
Collapse
|
219
|
Holleville N, Quilhac A, Bontoux M, Monsoro-Burq AH. BMP signals regulate Dlx5 during early avian skull development. Dev Biol 2003; 257:177-89. [PMID: 12710966 DOI: 10.1016/s0012-1606(03)00059-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vertebrate skull vault forms almost entirely by the direct mineralisation of mesenchyme, without the formation of a cartilaginous template, a mechanism called membranous ossification. Dlx5 gene mutation leads to cranial dismorphogenesis which differs from the previously studied craniosynostosis syndromes [Development 126 (1999), 3795; Development 126 (1999), 3831]. In avians, little is known about the genetic regulation of cranial vault development. In this study, we analyze Dlx5 expression and regulation during skull formation in the chick embryo. We compare Dlx5 expression pattern with that of several genes involved in mouse cranial suture regulation. This provides an initial description of the expression in the developing skull of the genes encoding the secreted molecules BMP 2, BMP 4, BMP 7, the transmembrane FGF receptors FGFR 1, FGFR 2, FGFR 4, the transcription factors Msx1, Msx2, and Twist, as well as Goosecoid and the early membranous bone differentiation marker osteopontin. We show that Dlx5 is activated in proliferating osteoblast precursors, before osteoblast differentiation. High levels of Dlx5 transcripts are observed at the osteogenic fronts (OFs) and at the edges of the suture mesenchyme, but not in the suture itself. Dlx5 expression is initiated in areas where Bmp4 and Bmp7 genes become coexpressed. In a calvarial explant culture system, Dlx5 transcription is upregulated by BMPs and inhibited by the BMP-antagonist Noggin. In addition, FGF4 activates Bmp4 but not Bmp7 gene transcription and is not sufficient to induce ectopic Dlx5 expression in the immature calvarial mesenchyme. From these data, we propose a model for the regulatory network implicated in early steps of chick calvarial development.
Collapse
Affiliation(s)
- Nicolas Holleville
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS, UMR 7128, 49 bis, avenue de La Belle Gabrielle, 94736, Nogent-sur-Marne, France
| | | | | | | |
Collapse
|
220
|
Ballock RT, O'Keefe RJ. Physiology and pathophysiology of the growth plate. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:123-43. [PMID: 12955857 DOI: 10.1002/bdrc.10014] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Longitudinal growth of the skeleton is a result of endochondral ossification that occurs at the growth plate. Through a sequential process of cell proliferation, extracellular matrix synthesis, cellular hypertrophy, matrix mineralization, vascular invasion, and eventually apoptosis, the cartilage model is continually replaced by bone as length increases. The regulation of longitudinal growth at the growth plate occurs generally through the intimate interaction of circulating systemic hormones and locally produced peptide growth factors, the net result of which is to trigger changes in gene expression by growth plate chondrocytes. This review highlights recent advances in genetics and cell biology that are illuminating the important regulatory mechanisms governing the structure and biology of the growth plate, and provides selected examples of how studies of human mutations have yielded a wealth of new knowledge regarding the normal biology and pathophysiology of growth plate cartilage.
Collapse
Affiliation(s)
- R Tracy Ballock
- Orthopaedic Research Center, Departments of Orthopaedic Surgery and Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| | | |
Collapse
|
221
|
Morcuende JA, Weinstein SL. Developmental skeletal anomalies. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:197-207. [PMID: 12955861 DOI: 10.1002/bdrc.10011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A genetic and molecular revolution is taking place in medicine today. Led by the Human Genome Project, genetic information and concepts are changing the way diseases are defined, diagnoses are made, and treatment strategies are developed. The profound implications of actually understanding the molecular abnormalities of many clinical problems are affecting virtually all medical and surgical disciplines. The ability to apply knowledge gleaned from the laboratory is our best hope for developing strategies to modify the pathologic effects of genes (by drug therapy), repair genes (gene therapy), and restore lost or affected tissues (tissue engineering). Instead of an empiric trial-and-error approach to therapy, it may become feasible to tailor treatment to the specific molecular malfunction. In this review we have chosen to emphasize a few selected musculoskeletal disorders, including skeletal dysplasias, spinal deformities, developmental dislocation of the hip, and idiopathic clubfoot. The logical extension of our understanding of the molecular players in many of these disorders is to establish precisely what the products of the affected genes do during skeletal development, and how mutations disturb these functions to produce the characteristic phenotype. Despite the many hypotheses generated from the work in human genetics, and the knowledge that has been gained from animal models, there remains a relatively poor understanding of how these genes interfere with skeletal development. Unraveling these mysteries and defining them in molecular and cellular terms will be the challenges for the near future.
Collapse
Affiliation(s)
- Jose A Morcuende
- Department of Orthopaedic Surgery and Rehabilitation, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | |
Collapse
|
222
|
Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc Natl Acad Sci U S A 2003; 100:5217-22. [PMID: 12702769 PMCID: PMC154325 DOI: 10.1073/pnas.0730709100] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 02/05/2003] [Indexed: 01/13/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a significant cause of pediatric mortality in humans with a heterogeneous and poorly understood etiology. Here we show that mice lacking Slit3 developed a central (septum transversum) CDH. Slit3 encodes a member of the Slit family of guidance molecules and is expressed predominantly in the mesothelium of the diaphragm during embryonic development. In Slit3 null mice, the central tendon region of the diaphragm fails to separate from liver tissue because of abnormalities in morphogenesis. The CDH progresses through continuous growth of the liver into the thoracic cavity. This study establishes the first genetic model for CDH and identifies a previously unsuspected role for Slit3 in regulating the development of the diaphragm.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
223
|
|
224
|
Zak BM, Crawford BE, Esko JD. Hereditary multiple exostoses and heparan sulfate polymerization. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:346-55. [PMID: 12417417 DOI: 10.1016/s0304-4165(02)00402-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hereditary multiple exostoses (HME, OMIM 133700, 133701) results from mutations in EXT1 and EXT2, genes encoding the copolymerase responsible for heparan sulfate (HS) biosynthesis. Members of this multigene family share the ability to transfer N-acetylglucosamine to a variety of oligosaccharide acceptors. EXT1 and EXT2 encode the copolymerase, whereas the roles of the other EXT family members (EXTL1, L2, and L3) are less clearly defined. Here, we provide an overview of HME, the EXT family of proteins, and possible models for the relationship of altered HS biosynthesis to the ectopic bone growth characteristic of the disease.
Collapse
Affiliation(s)
- Beverly M Zak
- Glycobiology Research and Training Center, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0687, USA
| | | | | |
Collapse
|
225
|
Kirsch T, Koyama E, Liu M, Golub EE, Pacifici M. Syndecan-3 is a selective regulator of chondrocyte proliferation. J Biol Chem 2002; 277:42171-7. [PMID: 12194984 DOI: 10.1074/jbc.m207209200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondrocyte proliferation is important for skeletal development and growth, but the mechanisms regulating it are not completely clear. Previously, we showed that syndecan-3, a cell surface heparan sulfate proteoglycan, is expressed by proliferating chondrocytes in vivo and that proliferation of cultured chondrocytes in vitro is sensitive to heparitinase treatment. To further establish the link between syndecan-3 and chondrocyte proliferation, additional studies were carried out in vivo and in vitro. We found that the topographical location of proliferating chondrocytes in developing chick long bones changes with increasing embryonic age and that syndecan-3 gene expression changes in a comparable manner. For in vitro analysis, mitotically quiescent chondrocytes were exposed to increasing amounts of fibroblast growth factor-2 (FGF-2). Proliferation was stimulated by as much as 8-10-fold within 24 h; strikingly, this stimulation was significantly prevented when the cells were treated with both fibroblast growth factor-2 (FGF-2) and antibodies against syndecan-3 core protein. This neutralizing effect was dose-dependent and elicited a maximum of 50-60% inhibition. To establish specificity of neutralizing effect, cultured chondrocytes were exposed to FGF-2, insulin-like growth factor-1, or parathyroid hormone, all known mitogens for chondrocytes. The syndecan-3 antibodies interfered only with FGF-2 mitogenic action, but not that of insulin-like growth factor-1 or parathyroid hormone. Protein cross-linking experiments indicated that syndecan-3 is present in monomeric, dimeric, and oligomeric forms on the chondrocyte surface. In addition, molecular modeling indicated that contiguous syndecan-3 molecules might form stable complexes by parallel pairing of beta-sheet segments within the ectodomain of the core protein. In conclusion, the results suggest that syndecan-3 is a direct and selective regulator of the mitotic behavior of chondrocytes and its role may involve formation of dimeric/oligomeric structures on their cell surface.
Collapse
Affiliation(s)
- Thorsten Kirsch
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | |
Collapse
|
226
|
Rundle CH, Miyakoshi N, Ramirez E, Wergedal JE, Lau KHW, Baylink DJ. Expression of the fibroblast growth factor receptor genes in fracture repair. Clin Orthop Relat Res 2002:253-63. [PMID: 12360035 DOI: 10.1097/00003086-200210000-00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The spatial and temporal expression domains of the fibroblast growth factor receptor genes were examined in the healing rat femur fracture by in situ hybridization. Fibroblast growth factor receptor gene expression was detected in diverse fracture tissues throughout healing. Fibroblast growth factor receptor 1 and 2 expression was present throughout fracture repair, in the early proliferating periosteal mesenchyme, in the osteoblasts during intramembranous bone formation, and in the chondrocytes and osteoblasts during endochondral bone formation. Fibroblast growth factor receptor 3 expression colocalized with fibroblast growth factor receptor 1 and 2 expression in the chondrocytes and osteoblasts beginning at 10 days of healing, and persisted throughout endochondral bone formation. Fibroblast growth factor receptor 3 recapitulated its expression in fetal skeletal development, suggesting that it has a similar function in the control of endochondral bone growth during fracture repair. Fibroblast growth factor receptor 4 expression was not observed at any time. The extensive colocalized expression of the fibroblast growth factor receptors in healing indicates that fibroblast growth factor regulation of fracture callus maturation is extensive, and accurate identification of the receptor isoforms is necessary to establish the functions of fibroblast growth factor family members in fracture repair.
Collapse
Affiliation(s)
- Charles H Rundle
- Musculoskeletal Disease Center, J.L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357, USA
| | | | | | | | | | | |
Collapse
|
227
|
Cormier S, Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Bonaventure J, Silve C. Parathyroid hormone receptor type 1/Indian hedgehog expression is preserved in the growth plate of human fetuses affected with fibroblast growth factor receptor type 3 activating mutations. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1325-35. [PMID: 12368206 PMCID: PMC1867304 DOI: 10.1016/s0002-9440(10)64409-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes.
Collapse
Affiliation(s)
- Sarah Cormier
- Institut National de la Santé et de la Recherche Médicale U426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | |
Collapse
|
228
|
Hall CR, Cole WG, Haynes R, Hecht JT. Reevaluation of a genetic model for the development of exostosis in hereditary multiple exostosis. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 112:1-5. [PMID: 12239711 DOI: 10.1002/ajmg.10635] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
EXT1 and EXT2 are genes that have been shown to cause hereditary multiple exostosis (HME), a syndrome marked by the formation of bony growths juxtaposed to the growth plate. These genes are members of a growing family of proteins with glycosyltransferase activity required for the synthesis of heparan sulfate chains. This protein activity is predicted to play a role in the expression of proteoglycans on the cell surface and in the extracellular matrix. We and others have previously suggested that a two-hit mutational model applies to the development of an exostosis where a germline mutation coupled with a somatic mutation results in the loss of EXT1 or EXT2 function and subsequent tumor formation. We report the direct sequencing and loss of heterozygosity (LOH) analysis of 12 exostoses from 10 HME families, 4 solitary exostoses, and their corresponding constitutional DNA. Of the 16 exostoses screened, we find only one solitary case in which two somatic mutations, a deletion and an LOH, are present. This provides limited support for the two-hit hypothesis involving the EXT1 and EXT2 genes for the development of an exostosis. Alternative models are developed based on the functional significance of EXT proteins in heparan sulfate biosynthesis.
Collapse
Affiliation(s)
- Catherine R Hall
- Department of Pediatrics, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
229
|
Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002; 3:439-49. [PMID: 12361605 DOI: 10.1016/s1534-5807(02)00261-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in fibroblast growth factor (FGF) receptor 3 lead to the human dwarfism syndrome achondroplasia. Using a limb culture system, we have analyzed the role of FGF signaling and its interaction with the Ihh/Pthlh and BMP pathways in regulating chondrocyte differentiation. In contrast to previous suggestions, we demonstrate that FGF signaling accelerates both the onset and the pace of hypertrophic differentiation. We furthermore found that FGF and BMP signaling act in an antagonistic relationship regulating chondrocyte proliferation, Ihh expression, and the process of hypertrophic differentiation. Importantly, BMP signaling rescues the reduced domains of proliferating and hypertrophic chondrocytes in a mouse model for achondroplasia. We propose a model in which the balance of BMP and FGF signaling adjusts the pace of the differentiation process to the proliferation rate.
Collapse
Affiliation(s)
- Eleonora Minina
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
230
|
Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, Chen C, Nardi A, Reid DC, Yamada K, Ornitz DM. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron 2002; 35:25-38. [PMID: 12123606 DOI: 10.1016/s0896-6273(02)00744-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fibroblast growth factor 14 (FGF14) belongs to a distinct subclass of FGFs that is expressed in the developing and adult CNS. We disrupted the Fgf14 gene and introduced an Fgf14(N-beta-Gal) allele that abolished Fgf14 expression and generated a fusion protein (FGF14N-beta-gal) containing the first exon of FGF14 and beta-galactosidase. Fgf14-deficient mice were viable, fertile, and anatomically normal, but developed ataxia and a paroxysmal hyperkinetic movement disorder. Neuropharmacological studies showed that Fgf14-deficient mice have reduced responses to dopamine agonists. The paroxysmal hyperkinetic movement disorder phenocopies a form of dystonia, a disease often associated with dysfunction of the putamen. Strikingly, the FGF14N-beta-gal chimeric protein was efficiently transported into neuronal processes in the basal ganglia and cerebellum. Together, these studies identify a novel function for FGF14 in neuronal signaling and implicate FGF14 in axonal trafficking and synaptosomal function.
Collapse
Affiliation(s)
- Qing Wang
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002; 16:1446-65. [PMID: 12080084 DOI: 10.1101/gad.990702] [Citation(s) in RCA: 635] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- David M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
232
|
Arikawa-Hirasawa E, Wilcox WR, Yamada Y. Dyssegmental dysplasia, Silverman-Handmaker type: unexpected role of perlecan in cartilage development. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 106:254-7. [PMID: 11891676 DOI: 10.1002/ajmg.10229] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dyssegmental dysplasia, Silverman-Handmaker type (DDSH), is a lethal autosomal recessive form of dwarfism with characteristic anisospondylic micromelia. The remarkable similarities in the radiographic, clinical, and chondroosseous morphology of DDSH patients to those of perlecan-null mice led to the identification of mutations in the perlecan gene (HSPG2) of DDSH. Perlecan, a large heparan sulfate proteoglycan, is expressed in various tissues and is a component of all basement membrane extracellular matrices. A chondrodysplasia phenotype caused by the loss of perlecan was unexpected, because cartilage does not have basement membranes. Insertion and splicing mutations in HSPG2 of DDSH were found that were predicted to create a premature termination codon. Immunostaining and biochemical analysis revealed that the mutant perlecan molecules were unstable and not secreted into the extracellular matrix. These results indicate that DDSH is caused by functional null mutations of HSPG2 and that perlecan is essential for cartilage development. Published 2002 Wiley-Liss, Inc.
Collapse
|
233
|
Petiot A, Ferretti P, Copp AJ, Chan CTJ. Induction of chondrogenesis in neural crest cells by mutant fibroblast growth factor receptors. Dev Dyn 2002; 224:210-21. [PMID: 12112473 DOI: 10.1002/dvdy.10102] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Activating mutations in human fibroblast growth factor receptors (FGFR) result in a range of skeletal disorders, including craniosynostosis. Because the cranial bones are largely neural crest derived, the possibility arises that increased FGF signalling may predispose to premature/excessive skeletogenic differentiation in neural crest cells. To test this hypothesis, we expressed wild-type and mutant FGFRs in quail embryonic neural crest cells. Chondrogenesis was consistently induced when mutant FGFR1-K656E or FGFR2-C278F were electroporated in ovo into stage 8 quail premigratory neural crest, followed by in vitro culture without FGF2. Neural crest cells electroporated with wild-type FGFR1 or FGFR2 cDNAs exhibited no chondrogenic differentiation in culture. Cartilage differentiation was accompanied by expression of Sox9, Col2a1, and osteopontin. This closely resembled the response of nonelectroporated neural crest cells to FGF2 in vitro: 10 ng/ml induces chondrogenesis, Sox9, Col2a1, and osteopontin expression, whereas 1 ng/ml FGF2 enhances cell survival and Sox9 and Col2a1 expression, but never induces chondrogenesis or osteopontin expression. Transfection of neural crest cells with mutant FGFRs in vitro, after their emergence from the neural tube, in contrast, produced chondrogenesis at a very low frequency. Hence, mutant FGFRs can induce cartilage differentiation when electroporated into premigratory neural crest cells but this effect is drastically reduced if transfection is carried out after the onset of neural crest migration.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Animals
- Cell Movement
- Chondrocytes/metabolism
- Coturnix
- Craniosynostoses
- DNA, Complementary/metabolism
- Electroporation
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- Microscopy, Fluorescence
- Mutation
- Neural Crest/embryology
- Osteopontin
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sialoglycoproteins/metabolism
- Signal Transduction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Anita Petiot
- Developmental Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
234
|
Sakano S, Hasegawa Y, Murata Y, Ito T, Genda E, Iwata H, Ishiguro N, Seo H. Inhibitory effect of bFGF on endochondral heterotopic ossification. Biochem Biophys Res Commun 2002; 293:680-5. [PMID: 12054522 DOI: 10.1016/s0006-291x(02)00273-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Basic fibroblast growth factor (bFGF) is reported to stimulate repair of fracture and bony defects in in vivo animal studies. However, most studies performed in vitro demonstrate inhibitory effect of bFGF on cartilage and bone differentiation. To understand the discrepancy observed in in vivo and in vitro studies, we evaluated the effect of bFGF on chondro-osteogenesis initiated by bone matrix powder (MP). MP was implanted in the murine hamstring muscles with or without administration of bFGF. Injection of 1 microg of bFGF markedly reduced the size of heterotopic bone induced by MP, as detected by X-ray. Injection of 10 microg of bFGF completely inhibited ossification and only fibrous tissues were observed at the site of MP implantation. The expressions of alkaline phosphatase and osteocalcin mRNAs, markers for bone differentiation, were completely suppressed by 10 microg of bFGF. These results demonstrate the inhibitory effect of bFGF on endochondral ossification in vivo, implicating a precaution for its use in musculo-skeletal disorders.
Collapse
Affiliation(s)
- Shinji Sakano
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 2002; 16:1089-101. [PMID: 12000792 PMCID: PMC186247 DOI: 10.1101/gad.988402] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 03/27/2002] [Indexed: 11/24/2022]
Abstract
Dlx homeobox genes are mammalian homologs of the Drosophila Distal-less (Dll) gene. The Dlx/Dll gene family is of ancient origin and appears to play a role in appendage development in essentially all species in which it has been identified. In Drosophila, Dll is expressed in the distal portion of the developing appendages and is critical for the development of distal structures. In addition, human Dlx5 and Dlx6 homeobox genes have been identified as possible candidate genes for the autosomal dominant form of the split-hand/split-foot malformation (SHFM), a heterogeneous limb disorder characterized by missing central digits and claw-like distal extremities. Targeted inactivation of Dlx5 and Dlx6 genes in mice results in severe craniofacial, axial, and appendicular skeletal abnormalities, leading to perinatal lethality. For the first time, Dlx/Dll gene products are shown to be critical regulators of mammalian limb development, as combined loss-of-function mutations phenocopy SHFM. Furthermore, spatiotemporal-specific transgenic overexpression of Dlx5, in the apical ectodermal ridge of Dlx5/6 null mice can fully rescue Dlx/Dll function in limb outgrowth.
Collapse
Affiliation(s)
- Raymond F Robledo
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
236
|
Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 2002; 16:870-9. [PMID: 11937494 PMCID: PMC186331 DOI: 10.1101/gad.965702] [Citation(s) in RCA: 351] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fibroblast growth factor (FGF) signaling is involved in skeletal development of the vertebrate. Gain-of-function mutations of FGF receptors (FGFR) cause craniosynostosis, premature fusion of the skull, and dwarfism syndromes. Disruption of Fgfr3 results in prolonged growth of long bones and vertebrae. However, the role that FGFs actually play in skeletal development in the embryo remains unclear. Here we show that Fgf18 is expressed in and required for osteogenesis and chondrogenesis in the mouse embryo. Fgf18 is expressed in both osteogenic mesenchymal cells and differentiating osteoblasts during calvarial bone development. In addition, Fgf18 is expressed in the perichondrium and joints of developing long bones. In calvarial bone development of Fgf18-deficient mice generated by gene targeting, the progress of suture closure is delayed. Furthermore, proliferation of calvarial osteogenic mesenchymal cells is decreased, and terminal differentiation to calvarial osteoblasts is specifically delayed. Delay of osteogenic differentiation is also observed in the developing long bones of this mutant. Conversely, chondrocyte proliferation and the number of differentiated chondrocytes are increased. Therefore, FGF18 appears to regulate cell proliferation and differentiation positively in osteogenesis and negatively in chondrogenesis.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
238
|
Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond F, Ren H, Shea P, Sprecher C, Storey H, Thompson DL, Waggie K, Yao L, Fernandes RJ, Eyre DR, Hughes SD. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage 2002; 10:308-20. [PMID: 11950254 DOI: 10.1053/joca.2002.0514] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to examine the effects of recombinant human Fgf18 on chondrocyte proliferation and matrix production in vivo and in vitro. In addition, the expressions of Fgf18 and Fgf receptors (Fgfr) in adult human articular cartilage were examined. METHODS Adenovirus-mediated transfer of Fgf18 into murine pinnae and addition of FGF18 to primary cultures of adult articular chondrocytes were used to assess the effects of FGF18 on chondrocytes. In situ hybridization was used to examine the expression of Fgf18 and Fgfr s in adult human articular cartilage. RESULTS Expression of Fgf18 by adenovirus-mediated gene transfer in murine pinnae resulted in a significant increase in chondrocyte number. Chondrocytes were identified by staining with toluidine blue and a monoclonal antibody directed against type II collagen. Fgf18, Fgfr 2-(IIIc), Fgfr 3-(IIIc), and Fgfr 4 mRNAs were detected within these cells by in situ hybridization. The nuclei of the chondrocytes stained with antibodies to PCNA and FGF receptor (FGFR) 2. Addition of FGF18 to the culture media of primary articular chondrocytes increased the proliferation of these cells and increased their production of extracellular matrix. To assess the receptor selectivity of FGF18, BaF3 cells stably expressing the genes for the major splice variants of Fgfr1-3 were used. Proliferation of cells expressing Fgfr 3-(IIIc) or Fgfr 2-(IIIc) was increased by incubation with FGF18. Using FGFR-Fc fusion proteins and BaF3 cells expressing Fgfr 3-(IIIc), only FGFR 3-(IIIc)-Fc, FGFR 2-(IIIc)-Fc or FGFR 4-Fc reduced FGF18-mediated cell proliferation. Expression of Fgf18, Fgfr 3-(IIIc) and Fgfr 2-(IIIc) mRNAs was localized to chondrocytes of human articular cartilage by in situ hybridization. CONCLUSION These data demonstrate that Fgf18 can act as a trophic factor for elastic chondrocytes and their progenitors in vivo and articular chondrocytes cultured in vitro. Expression of Fgf18 and the genes for two of its receptors in chondrocytes suggests that Fgf18 may play an autocrine role in the biology of normal articular cartilage.
Collapse
Affiliation(s)
- J L Ellsworth
- ZymoGenetics, Inc., 1201 Eastlake Avenue East, Seattle, Washington 98102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 2002; 16:859-69. [PMID: 11937493 PMCID: PMC186326 DOI: 10.1101/gad.965602] [Citation(s) in RCA: 351] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gain of function mutations in fibroblast growth factor (FGF) receptors cause chondrodysplasia and craniosynostosis syndromes. The ligands interacting with FGF receptors (FGFRs) in developing bone have remained elusive, and the mechanisms by which FGF signaling regulates endochondral, periosteal, and intramembranous bone growth are not known. Here we show that Fgf18 is expressed in the perichondrium and that mice homozygous for a targeted disruption of Fgf18 exhibit a growth plate phenotype similar to that observed in mice lacking Fgfr3 and an ossification defect at sites that express Fgfr2. Mice lacking either Fgf18 or Fgfr3 exhibited expanded zones of proliferating and hypertrophic chondrocytes and increased chondrocyte proliferation, differentiation, and Indian hedgehog signaling. These data suggest that FGF18 acts as a physiological ligand for FGFR3. In addition, mice lacking Fgf18 display delayed ossification and decreased expression of osteogenic markers, phenotypes not seen in mice lacking Fgfr3. These data demonstrate that FGF18 signals through another FGFR to regulate osteoblast growth. Signaling to multiple FGFRs positions FGF18 to coordinate chondrogenesis in the growth plate with osteogenesis in cortical and trabecular bone.
Collapse
Affiliation(s)
- Zhonghao Liu
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
240
|
Praul CA, Ford BC, Leach RM. Effect of fibroblast growth factors 1, 2, 4, 5, 6, 7, 8, 9, and 10 on avian chondrocyte proliferation. J Cell Biochem 2002; 84:359-66. [PMID: 11787065 DOI: 10.1002/jcb.1300] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that fibroblast growth factor receptors are key regulators of endochondral bone growth. However, it has not been determined what fibroblast growth factor ligand(s) (FGFs) are important in this process. This study sought to determine whether FGFs 1, 2, 4, 5, 6, 7, 8, 9, and 10 were capable of stimulating avian chondrocyte proliferation in vitro. We have found that FGFs 2, 4, and 9 strongly stimulate avian chondrocyte proliferation while FGFs 6 and 8 stimulate proliferation to a lesser extent. RT-PCR indicates that FGF-2 and FGF-4 are expressed in the postnatal avian epiphyseal growth plate (EGP) while FGF-8 and FGF-9 are not. Thus, FGF-2 and FGF-4 stimulate chondrocyte proliferation and are both present in the EGP. This suggests that FGF-2 and FGF-4 may be important ligands, in vivo, for the regulation of endochondral bone growth. These observations coupled with our observation that multiple avian FGF receptors (Cek1, Cek2, Cek3, and FREK) are expressed in proliferative chondrocytes highlights the complexity of FGF signaling pathways in postnatal endochondral bone growth.
Collapse
Affiliation(s)
- Craig A Praul
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
241
|
de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 2001; 13:721-7. [PMID: 11698188 DOI: 10.1016/s0955-0674(00)00276-3] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three transcription factors of the Sox family have essential roles in different steps of the chondrocyte differentiation pathway. Because the transcription factor Cbfa1, which is needed for osteoblast differentiation, also stimulates hypertrophic chondrocyte maturation, it links the chondrocyte and osteoblast differentiation pathways in endochondral bone formation. Signaling molecules, including Indian Hedgehog, PTHrP and FGFs, also establish essential links either between these pathways, between steps in these pathways or between signaling molecules and transcription factors, so that a more comprehensive view of endochondral bone formation is emerging.
Collapse
Affiliation(s)
- B de Crombrugghe
- The University of Texas M.D. Anderson Cancer Center, Department of Molecular Genetics, 1515 Holcombe Boulevard, Box #11, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
242
|
Britto JA, Evans RD, Hayward RD, Jones BM. From genotype to phenotype: the differential expression of FGF, FGFR, and TGFbeta genes characterizes human cranioskeletal development and reflects clinical presentation in FGFR syndromes. Plast Reconstr Surg 2001; 108:2026-39; discussion 2040-6. [PMID: 11743396 DOI: 10.1097/00006534-200112000-00030] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in the fibroblast growth factor receptor (FGFR) genes 1, 2, and 3 are causal in a number of craniofacial dysostosis syndromes featuring craniosynostosis with basicranial and midfacial deformity. Great clinical variability is displayed in the pathologic phenotypes encountered. To investigate the influence of developmental genetics on clinical diversity in these syndromes, the expression of several genes implicated in their pathology was studied at sequential stages of normal human embryo-fetal cranial base and facial ossification (n = 6). At 8 weeks of gestation, FGFR1, FGFR2, and FGFR3 are equally expressed throughout the predifferentiated mesenchyme of the cranium, the endochondral skull base, and midfacial mesenchyme. Both clinically significant isoforms of FGFR2, IgIIIa/c and IgIIIa/b, are coexpressed in maxillary and basicranial ossification. By 10 to 13 weeks, FGFR1 and FGFR2 are broadly expressed in epithelia, osteogenic, and chondrogenic cell lineages. FGFR3, however, is maximally expressed in dental epithelia and proliferating chondrocytes of the skull base, but poorly expressed in the osteogenic tissues of the midface. FGF2 and FGF4, but not FGF7, and TGFbeta1 and TGFbeta3 are expressed throughout both osteogenic and chondrogenic tissues in early human craniofacial skeletogenesis. Maximal FGFR expression in the skull base proposes a pivotal role for syndromic growth dysplasia at this site. Paucity of FGFR3 expression in human midfacial development correlates with the relatively benign human mutant FGFR3 midfacial phenotypes. The regulation of FGFR expression in human craniofacial skeletogenesis against background excess ligand and selected cofactors may therefore play a profound role in the pathologic craniofacial development of children bearing FGFR mutations.
Collapse
Affiliation(s)
- J A Britto
- Craniofacial Centre, Great Ormond Street Hospital for Children, the Developmental Biology Unit, Institute of Child Health, London, England.
| | | | | | | |
Collapse
|
243
|
Amsterdam A, Kannan K, Givol D, Yoshida Y, Tajima K, Dantes A. Apoptosis of granulosa cells and female infertility in achondroplastic mice expressing mutant fibroblast growth factor receptor 3G374R. Mol Endocrinol 2001; 15:1610-23. [PMID: 11518810 DOI: 10.1210/mend.15.9.0700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors play an important role in the control of ovarian folliculogenesis, but the complete repertoire of ovarian receptors which can transduce the fibroblast growth factor signals and their precise localization in the ovary have not yet been characterized. The most common form of inherited human dwarfism results from a point mutation in the transmembrane region of fibroblast growth factor receptor 3. A mouse model for achondroplasia was generated by introducing the human mutation (glycine 380-arginine) into the mouse fibroblast growth factor receptor 3 (G374R) by a "knock-in" approach using gene targeting leading to a constitutively active receptor. This resulted in the development of dwarf mice that share many features with human achondroplasia. Here we report that female (fibroblast growth factor receptor 3 G374R) dwarf mice become infertile. While no significant changes were observed in the anatomical and histological appearance of ovaries of 3-wk-old dwarf mice, a dramatic difference was observed in ovaries of 3-month-old mice. The normal ovary consists mainly of healthy corpora lutea and follicles at different stages of development, whereas the ovaries of the dwarf mice remain small and contain mainly follicles with a progressive apoptosis in the granulosa cells, and no corpora lutea could be observed. The levels of LH, FSH, and progesterone were lower by 72.3%, 38.0%, and 40.0%, respectively, in the blood of the dwarf mice compared with normal mice, and the total bioactivity of pituitary FSH and LH was lower by 65.6% and 79.6%, respectively, in the dwarf mice compared with normal mice. However treatment with PMSG and human CG of the dwarf mice led to rapid follicular development and formation of corpora lutea. Interestingly, the expression of the tumor suppressor gene p53 was increased dramatically in ovaries of the dwarf mice. The presence of the fibroblast growth factor receptor 3 cellular receptors in both normal and dwarf animals was demonstrated by Western blot and immunostaining. However, the distribution of the fibroblast growth factor receptors in the two strains shows significant differences. In the normal ovaries fibroblast growth factor receptor 3 was homogeneously distributed on the cell membrane of the granulosa cells and was absent in theca as well as corpora lutea cells, whereas in dwarf mice ovaries it was highly clustered on granulosa cells and very often appears in endocytic vesicles. Aged oocytes were more frequently observed in preantral follicles of ovaries of the dwarf mice. Nevertheless, oocytes isolated from antral follicles resume their meiotic division at a high percentage, similar to oocytes obtained from normal ovaries. The results imply fibroblast growth factor receptor 3 involvement in the control of follicular development through regulation of granulosa cell growth and differentiation, and that unovulation in the dwarf mice could be overcome in part by administration of exogenous gonadotropins. Moreover, it is suggested that the infertile phenotype is partially due to defects in the pituitary-gonadal axis.
Collapse
Affiliation(s)
- A Amsterdam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | |
Collapse
|
244
|
Aikawa T, Segre GV, Lee K. Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E-Cdk2. J Biol Chem 2001; 276:29347-52. [PMID: 11384971 DOI: 10.1074/jbc.m101859200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF) and its receptor (FGFR) are thought to be negative regulators of chondrocytic growth, as exemplified by achondroplasia and related chondrodysplasias, which are caused by constitutively active mutations in FGFR3. To understand the growth-inhibitory mechanisms of FGF, we analyzed the effects of FGF2 on cell cycle-regulating molecules in chondrocytes. FGF2 dramatically inhibited proliferation of rat chondrosarcoma (RCS) cells and arrested their cell cycle at the G(1) phase. FGF2 increased p21 expression in RCS cells, which assembled with the cyclin E-Cdk2 complexes, although the expression of neither cyclin E nor Cdk2 increased. In addition, the kinase activity of immunoprecipitated cyclin E or Cdk2, assessed with retinoblastoma protein (pRb) as substrate, was dramatically reduced by FGF-2. Moreover, FGF2 shifted pRb to its underphosphorylated, active form in RCS cells. FGF2 not only induced p21 protein expression in proliferating chondrocytes in mouse fetal limbs cultured in vitro but also decreased their proliferation as assessed by the expression of histone H4 mRNA, a marker for cells in S phase. Furthermore, inhibitory effects of FGF2 on chondrocytic proliferation were partially reduced in p21-null limbs, compared with those in wild-type limbs in vitro. Taken together, FGF's growth inhibitory effects of chondrocytes appear to be mediated at least partially through p21 induction and the subsequent inactivation of cyclin E-Cdk2 and activation of pRb.
Collapse
Affiliation(s)
- T Aikawa
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
245
|
Alvarez J, Horton J, Sohn P, Serra R. The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. Dev Dyn 2001; 221:311-21. [PMID: 11458391 DOI: 10.1002/dvdy.1141] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Endochondral bone formation is complex and requires the coordination of signals from several factors and multiple cell types. Thus, chondrocyte differentiation is regulated by factors synthesized by both chondrocytes and cells in the perichondrium. Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in perichondrium/periosteum resulted in increased hypertrophic differentiation in growth plate chondrocytes, suggesting a role for TGF-beta signaling to the perichondrium in limiting terminal differentiation in vivo. Using an organ culture model, we later demonstrated that TGF-beta1 inhibits chondrocyte proliferation and hypertrophic differentiation by two separate mechanisms. Inhibition of hypertrophic differentiation was shown to be dependent on Parathyroid hormone-related peptide (PTHrP) and expression of PTHrP mRNA was stimulated in the perichondrium after treatment with TGF-beta1. In this report, the hypothesis that the perichondrium is required for the effects of TGF-beta1 on growth and/or hypertrophic differentiation in mouse metatarsal organ cultures is tested. Treatment with TGF-beta1 inhibited expression of type X collagen mRNA in metatarsal cultures with the perichondrium intact. In contrast, hypertrophic differentiation as measured by expression of Type X collagen was not inhibited by TGF-beta1 in perichondrium-free cultures. TGF-beta1 added to intact cultures inhibited BrdU incorporation in chondrocytes and increased incorporation in the perichondrium; however, TGF-beta1 treatment stimulated chondrocyte proliferation in metatarsals from which the perichondrium had been enzymatically removed. These results suggest that the TGF-beta1-mediated regulation of both chondrocyte proliferation and hypertrophic differentiation is dependent upon the perichondrium. Thus, one or several factors from the perichondrium might mediate the way chondrocytes respond to TGF-beta1.
Collapse
Affiliation(s)
- J Alvarez
- Department of Molecular and Cellular Physiology, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0576, USA
| | | | | | | |
Collapse
|
246
|
Yoshida E, Noshiro M, Kawamoto T, Tsutsumi S, Kuruta Y, Kato Y. Direct inhibition of Indian hedgehog expression by parathyroid hormone (PTH)/PTH-related peptide and up-regulation by retinoic acid in growth plate chondrocyte cultures. Exp Cell Res 2001; 265:64-72. [PMID: 11281644 DOI: 10.1006/excr.2001.5161] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indian hedgehog (Ihh) is highly expressed in prehypertrophic chondrocytes in vivo and has been proposed to regulate the proliferation and maturation of chondrocytes and bone collar formation in the growth plate. In high-density cultures of rabbit growth-plate chondrocytes, Ihh mRNA was also expressed at the highest level in the prehypertrophic stage. To explore endogenous factors that regulate Ihh expression in chondrocytes, we examined the effects of various growth factors on Ihh mRNA expression in this system. Retinoic acid (RA) and bone morphogenetic protein-2 enhanced Ihh mRNA expression, whereas PTH/PTH-related peptide (PTHrP) markedly suppressed Ihh expression. RA at more than 10(-8) M induced the expression of Ihh and Patched 1 (Ptc1) within 3 h, before it increased the type X collagen mRNA level at 6-24 h. Cycloheximide blocked the up-regulation of Ihh by RA, indicating the requirement of de novo protein synthesis for this stimulation. These findings suggest that RA is involved in the up-regulation of Ihh during endochondral bone formation. In contrast to RA, PTH (1-84) at 10(-7) M abolished the mRNA expression of Ihh and Ptc1 within 2-4 h, before it suppressed the expression of type X collagen at 12-24 h. The inhibition of Ihh expression by PTH (1-84) did not require de novo protein synthesis. PTH (1-34), PTHrP (1-34), and (Bu)(2)cAMP also suppressed Ihh expression. On the other hand, Ihh has been reported to induce PTHrP synthesis in the perichondrium. Consequently, the direct inhibitory action of PTH/PTHrP on Ihh appears to be a negative feedback mechanism that prevents excess PTHrP accumulation in cartilage.
Collapse
Affiliation(s)
- E Yoshida
- Department of Biochemistry, Hiroshima University Faculty of Dentistry, Hiroshima, 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
247
|
Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M, Nakao K. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 2001; 98:4016-21. [PMID: 11259675 PMCID: PMC31171 DOI: 10.1073/pnas.071389098] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc(-/-) mice). The Nppc(-/-) mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc(-/-) mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia.
Collapse
Affiliation(s)
- H Chusho
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 2001; 104:875-89. [PMID: 11290325 DOI: 10.1016/s0092-8674(01)00284-7] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fgfs direct embryogenesis of several organs, including the lung, limb, and anterior pituitary. Here we report male-to-female sex reversal in mice lacking Fibroblast growth factor 9 (Fgf9), demonstrating a novel role for FGF signaling in testicular embryogenesis. Fgf9(-/-) mice also exhibit lung hypoplasia and die at birth. Reproductive system phenotypes range from testicular hypoplasia to complete sex reversal, with most Fgf9(-/-) XY reproductive systems appearing grossly female at birth. Fgf9 appears to act downstream of Sry to stimulate mesenchymal proliferation, mesonephric cell migration, and Sertoli cell differentiation in the embryonic testis. While Sry is found only in some mammals, Fgfs are highly conserved. Thus, Fgfs may function in sex determination and reproductive system development in many species.
Collapse
Affiliation(s)
- J S Colvin
- Department of Molecular Biology and, Pharmacology, Washington University Medical School, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
249
|
Abstract
Early development of the vertebrate skeleton depends on genes that pattern the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations at sites of future skeletal elements. Within these condensations, cells differentiate to chondrocytes or osteoblasts and form cartilages and bones under the control of various transcription factors. In most of the skeleton, organogenesis results in cartilage models of future bones; in these models cartilage is replaced by bone by the process of endochondral ossification. Lastly, through a controlled process of bone growth and remodeling the final skeleton is shaped and molded. Significant and exciting insights into all aspects of vertebrate skeletal development have been obtained through molecular and genetic studies of animal models and humans with inherited disorders of skeletal morphogenesis, organogenesis, and growth.
Collapse
Affiliation(s)
- B R Olsen
- Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
250
|
Abstract
Intramembranous bone growth is achieved through bone formation within a periosteum or by bone formation at sutures. Sutures are formed during embryonic development at the sites of approximation of the membranous bones of the craniofacial skeleton. They serve as the major sites of bone expansion during postnatal craniofacial growth. For sutures to function as intramembranous bone growth sites, they need to remain in an unossified state, yet allow new bone to be formed at the edges of the overlapping bone fronts. This process relies on the production of sufficient new bone cells to be recruited into the bone fronts, while ensuring that the cells within the suture remain undifferentiated. Unlike endochondral growth plates, which expand through chondrocyte hypertrophy, sutures do not have intrinsic growth potential. Rather, they produce new bone at the sutural edges of the bone fronts in response to external stimuli, such as signals arising from the expanding neurocranium. This process allows growth of the cranial vault to be coordinated with growth of the neurocranium. Too little or delayed bone growth will result in wide-open fontanels and suture agenesis, whereas too much or accelerated bone growth will result in osseous obliteration of the sutures or craniosynostosis. Craniosynostosis in humans, suture fusion in animals, and induced suture obliteration in vitro has been associated with mutations or alterations in expression of several transcription factors, growth factors, and their receptors. Much of the data concerning signaling within sutures has been garnered from research on cranial sutures; hence, only the cranial sutures will be discussed in detail in this review. This review synthesizes classic descriptions of suture growth and pathology with modern molecular analysis of genetics and cell function in normal and abnormal suture morphogenesis and growth in a unifying hypothesis. At the same time, the reader is reminded of the importance of the suture as an intramembranous bone growth site.
Collapse
Affiliation(s)
- L A Opperman
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Sciences Center, Dallas, Texas 75266-0677, USA.
| |
Collapse
|