201
|
Qiu Y, Seager M, Osman A, Castle-Miller J, Bevan H, Tortonese DJ, Murphy D, Harper SJ, Fraser HM, Donaldson LF, Bates DO. Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction 2012; 143:501-11. [PMID: 22232745 PMCID: PMC3325318 DOI: 10.1530/rep-11-0091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 12/07/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
Angiogenesis and vascular regression are critical for the female ovulatory cycle. They enable progression and regression of follicular development, and corpora lutea formation and regression. Angiogenesis in the ovary occurs under the control of the vascular endothelial growth factor-A (VEGFA) family of proteins, which are generated as both pro-(VEGF(165)) and anti(VEGF(165)b)-angiogenic isoforms by alternative splicing. To determine the role of the VEGF(165)b isoforms in the ovulatory cycle, we measured VEGF(165)b expression in marmoset ovaries by immunohistochemistry and ELISA, and used transgenic mice over-expressing VEGF(165)b in the ovary. VEGF(165)b was expressed in the marmoset ovaries in granulosa cells and theca, and the balance of VEGF(165)b:VEGF(165) was regulated during luteogenesis. Mice over-expressing VEGF(165)b in the ovary were less fertile than wild-type littermates, had reduced secondary and tertiary follicles after mating, increased atretic follicles, fewer corpora lutea and generated fewer embryos in the oviduct after mating, and these were more likely not to retain the corona radiata. These results indicate that the balance of VEGFA isoforms controls follicle progression and luteogenesis, and that control of isoform expression may regulate fertility in mammals, including in primates.
Collapse
Affiliation(s)
- Y Qiu
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - M Seager
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - A Osman
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - J Castle-Miller
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
- Centre for Comparative and Clinical AnatomyUniversity of BristolPre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - H Bevan
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - D J Tortonese
- Centre for Comparative and Clinical AnatomyUniversity of BristolPre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - D Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK
| | - S J Harper
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - H M Fraser
- MRC Human Reproductive Sciences UnitQueen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - L F Donaldson
- School of Physiology and PharmacologyMedical Sciences Building, University Walk, Bristol, BS8 1TDUK
| | - D O Bates
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| |
Collapse
|
202
|
Simpson A, Custovic A, Tepper R, Graves P, Stern DA, Jones M, Hankinson J, Curtin JA, Wu J, Blekic M, Bukvic BK, Aberle N, Marinho S, Belgrave D, Morgan WJ, Martinez FD. Genetic variation in vascular endothelial growth factor-a and lung function. Am J Respir Crit Care Med 2012; 185:1197-204. [PMID: 22461367 DOI: 10.1164/rccm.201112-2191oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Given the role of vascular endothelial growth factor (VEGF) in lung development, we hypothesized that polymorphisms in VEGF-A may be associated with lung function. OBJECTIVES The current study was designed to assess the role of genetic variants in VEGF-A as determinants of airway function from infancy through early adulthood. METHODS Association between five single-nucleotide polymorphisms (SNPs) in VEGF-A and lung function were assessed longitudinally in two unselected birth cohorts and cross-sectionally among infants. Replication with two SNPs was conducted in adults and children with asthma. We investigated the functionality of the SNP most consistently associated with lung function (rs3025028) using Western blotting to measure the ratio of plasma VEGF-A(165b)/panVEGF-A(165) among homozygotes. MEASUREMENTS AND MAIN RESULTS In two populations in infancy, C-allele homozygotes of rs3025028 had significantly higher VmaxFRC, forced expiratory flow(50), and forced expiratory flow(25-75) compared with other genotype groups. Among preschool children (age 3 yr), C allele of rs3025028 was associated with significantly higher specific airway conductance, with similar findings observed for lung function in school-age children. For FEV(1)/FVC ratio similar findings were observed among adolescents and young adults (birth cohort), and then replicated in adults and schoolchildren with asthma (cross-sectional studies). For rs3025038, plasma VEGF-A(165b)/panVEGF-A(165) was significantly higher among CC versus GG homozygotes (P ≤ 0.02) at birth, in school-age children, and in adults. CONCLUSIONS We report significant associations between VEGF-A SNP rs3025028 and parameters of airway function measured throughout childhood, with the effect persisting into adulthood. We propose that the mechanism may be mediated through the ratios of active and inhibitory isoforms of VEGF-A(165), which may be determined by alternative splicing.
Collapse
Affiliation(s)
- Angela Simpson
- University of Manchester, Wythenshawe Hospital, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Blanco FJ, Bernabéu C. The Splicing Factor SRSF1 as a Marker for Endothelial Senescence. Front Physiol 2012; 3:54. [PMID: 22470345 PMCID: PMC3314196 DOI: 10.3389/fphys.2012.00054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 01/03/2023] Open
Abstract
Aging is the major risk factor per se for the development of cardiovascular diseases. The senescence of the endothelial cells (ECs) that line the lumen of blood vessels is the cellular basis for these age-dependent vascular pathologies, including atherosclerosis and hypertension. During their lifespan, ECs may reach a stage of senescence by two different pathways; a replicative one derived from their preprogrammed finite number of cell divisions; and one induced by stress stimuli. Also, certain physiological stimuli, such as transforming growth factor-β, are able to modulate cellular senescence. Currently, the cellular aging process is being widely studied to identify novel molecular markers whose changes correlate with senescence. This review focuses on the regulation of alternative splicing mediated by the serine-arginine splicing factor 1 (SRSF1, or ASF/SF2) during endothelial senescence, a process that is associated with a differential subcellular localization of SRSF1, which typically exhibits a scattered distribution throughout the cytoplasm. Based on its senescence-dependent involvement in alternative splicing, we postulate that SRSF1 is a key marker of EC senescence, regulating the expression of alternative isoforms of target genes such as endoglin (ENG), vascular endothelial growth factor A (VEGFA), tissue factor (T3), or lamin A (LMNA) that integrate in a common molecular senescence program.
Collapse
Affiliation(s)
- Francisco Javier Blanco
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid, Spain
| | | |
Collapse
|
204
|
Biselli-Chicote PM, Oliveira ARCP, Pavarino EC, Goloni-Bertollo EM. VEGF gene alternative splicing: pro- and anti-angiogenic isoforms in cancer. J Cancer Res Clin Oncol 2012; 138:363-70. [PMID: 22045472 DOI: 10.1007/s00432-011-1073-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/21/2011] [Indexed: 12/28/2022]
Abstract
Tumor growth and progression depend on angiogenesis, a process of new blood vessels formation from a preexisting vascular endothelium. Tumors promote angiogenesis by secreting or activating angiogenic factors that stimulate endothelial proliferation and migration and capillary morphogenesis. The newly formed blood vessels provide nutrients and oxygen to the tumor, increasing its growth. Thus, angiogenesis plays a key role in cancer progression and development of metastases. An important growth factor that promotes angiogenesis and participates in a variety of physiological and pathological processes is the vascular endothelial growth factor (VEGF-A or VEGF). Overexpression of VEGF results in increased angiogenesis in normal and pathological conditions. The existence of an alternative site of splicing at the 3' untranslated region of the mRNA results in the expression of isoforms with a C-terminal region which are downregulated in tumors and may have differential inhibitory effects. This suggests that control of splicing can be an important regulatory mechanism of angiogenesis in cancer.
Collapse
Affiliation(s)
- P M Biselli-Chicote
- Genetics and Molecular Biology Research Unit - UPGEM, Medical School of Sao Jose do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Bloco U6, Sao Jose do Rio Preto, SP 15090-000, Brazil
| | | | | | | |
Collapse
|
205
|
Caires KC, de Avila JM, Cupp AS, McLean DJ. VEGFA family isoforms regulate spermatogonial stem cell homeostasis in vivo. Endocrinology 2012; 153:887-900. [PMID: 22147017 PMCID: PMC3275389 DOI: 10.1210/en.2011-1323] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of the present study was to investigate vascular endothelial growth factor A (VEGFA) isoform regulation of cell fate decisions of spermatogonial stem cells (SSC) in vivo. The expression pattern and cell-specific distribution of VEGF isoforms, receptors, and coreceptors during testis development postnatal d 1-180 suggest a nonvascular function for VEGF regulation of early germ cell homeostasis. Populations of undifferentiated spermatogonia present shortly after birth were positive for VEGF receptor activation as demonstrated by immunohistochemical analysis. Thus, we hypothesized that proangiogenic isoforms of VEGF (VEGFA(164)) stimulate SSC self-renewal, whereas antiangiogenic isoforms of VEGF (VEGFA(165)b) induce differentiation of SSC. To test this hypothesis, we used transplantation to assay the stem cell activity of SSC obtained from neonatal mice treated daily from postnatal d 3-5 with 1) vehicle, 2) VEGFA(164), 3) VEGFA(165)b, 4) IgG control, 5) anti-VEGFA(164), and 6) anti-VEGFA(165)b. SSC transplantation analysis demonstrated that VEGFA(164) supports self-renewal, whereas VEGFA(165)b stimulates differentiation of mouse SSC in vivo. Gene expression analysis of SSC-associated factors and morphometric analysis of germ cell populations confirmed the effects of treatment on modulating the biological activity of SSC. These findings indicate a nonvascular role for VEGF in testis development and suggest that a delicate balance between VEGFA(164) and VEGFA(165)b isoforms orchestrates the cell fate decisions of SSC. Future in vivo and in vitro experimentation will focus on elucidating the mechanisms by which VEGFA isoforms regulate SSC homeostasis.
Collapse
Affiliation(s)
- Kyle C Caires
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
206
|
Baba T, McLeod DS, Edwards MM, Merges C, Sen T, Sinha D, Lutty GA. VEGF 165 b in the developing vasculatures of the fetal human eye. Dev Dyn 2012; 241:595-607. [PMID: 22275161 DOI: 10.1002/dvdy.23743] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/19/2022] Open
Abstract
VEGF(165) b is an anti-angiogenic form of VEGF(165) produced by alternative splicing. The localization of pro-angiogenic VEGF(165) and anti-angiogenic VEGF(165) b was investigated during development of the vasculatures in fetal human eyes from 7 to 21 weeks gestation (WG). The fetal vasculature of vitreous, which includes tunica vasculosa lentis (TVL), had moderate VEGF(165) immunoreactivity at 7WG and very little VEGF(165) b. Both forms were elevated at 12WG. VEGF(165) then decreased around 17WG when the TVL regresses but VEGF(165) b remained elevated. In choroid, VEGF(165) was present in forming choriocapillaris (CC) and retinal pigment epithelium (RPE) at 7WG while VEGF165b was present in CC and mesenchymal precursors within the choroidal stroma. By 21WG, both forms were elevated in RPE and choroidal blood vessels but VEGF(165) b was apical and VEGF(165) basal in RPE. Diffuse VEGF(165) immunoreactivity was prominent in 12WG innermost retina where blood vessels will form while VEGF(165) b was present in most CXCR4(+) progenitors in the inner neuroblastic layer and migrating angioblasts in the putative nerve fiber layer. By 21WG, VEGF(165) was present in nerve fibers and VEGF(165) b in the inner Muller cell process. The localization of VEGF(165) b was distinctly different from VEGF(165) both spatially and temporally and it was often associated with nucleus in progenitors.
Collapse
Affiliation(s)
- Takayuki Baba
- Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Lupu M, Khalil M, Iordache F, Andrei E, Pfannkuche K, Spitkovsky D, Baumgartner S, Rubach M, Abdelrazik H, Buzila C, Brockmeier K, Simionescu M, Hescheler J, Maniu H. Direct contact of umbilical cord blood endothelial progenitors with living cardiac tissue is a requirement for vascular tube-like structures formation. J Cell Mol Med 2012; 15:1914-26. [PMID: 21029374 PMCID: PMC3918047 DOI: 10.1111/j.1582-4934.2010.01197.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The umbilical cord blood derived endothelial progenitor cells (EPCs) contribute to vascular regeneration in experimental models of ischaemia. However, their ability to participate in cardiovascular tissue restoration has not been elucidated yet. We employed a novel coculture system to investigate whether human EPCs have the capacity to integrate into living and ischaemic cardiac tissue, and participate to neovascularization. EPCs were cocultured with either living or ischaemic murine embryonic ventricular slices, in the presence or absence of a pro-angiogenic growth factor cocktail consisting of VEGF, IGF-1, EGF and bFGF. Tracking of EPCs within the cocultures was performed by cell transfection with green fluorescent protein or by immunostaining performed with anti-human vWF, CD31, nuclei and mitochondria antibodies. EPCs generated vascular tube-like structures in direct contact with the living ventricular slices. Furthermore, the pro-angiogenic growth factor cocktail reduced significantly tubes formation. Coculture of EPCs with the living ventricular slices in a transwell system did not lead to vascular tube-like structures formation, demonstrating that the direct contact is necessary and that the soluble factors secreted by the living slices were not sufficient for their induction. No vascular tubes were formed when EPCs were cocultured with ischaemic ventricular slices, even in the presence of the pro-angiogenic cocktail. In conclusion, EPCs form vascular tube-like structures in contact with living cardiac tissue and the direct cell-to-cell interaction is a prerequisite for their induction. Understanding the cardiac niche and micro-environmental interactions that regulate EPCs integration and neovascularization are essential for applying these cells to cardiovascular regeneration.
Collapse
Affiliation(s)
- Marilena Lupu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H, Toullec A, Lidereau R, Perret GY, Bieche I, Perrot-Applanat M. Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. Cell Adh Migr 2011; 5:332-43. [PMID: 21897119 DOI: 10.4161/cam.5.4.17287] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The existence of multiple VEGF-A isoforms raised the possibility that they may have distinct functions in tumor growth. We have previously published that VEGF189 and VEGF165 contribute to breast cancer progression and angiogenesis, but VEGF165 induced the most rapid tumor uptake. Since VEGF165 has been described as a survival factor for breast tumor cells, we questioned here the effects of VEGF189 on the survival/apoptosis of MDA-MB-231 cells. We used clones which overexpress VEGF189 (V189) or VEGF165 (V165) isoforms and compared them to a control one (cV). Overexpression of VEGF189 resulted in increased cell apoptosis, as determined by Annexin-V apoptosis assay, under serum starvation and doxorubicin treatment, while VEGF 165 was confirmed to be a survival factor. Since MDA-MB-231 highly express NRP1 (a co-receptor for VEGF-A), we used short hairpin RNA (shRNA) to knockdown NRP1 expression. V189shNRP1 clones were characterized by reduced apoptosis and higher necrosis, as compared to V189shCtl, under stress conditions. Unexpectedly, NRP1 knock-down had no effect on the survival or apoptosis of V165 cells. VEGF189 showed greater affinity towards NRP1 than VEGF165 using a BIAcore binding assay. Finally, since endogenously produced urokinase-type plasminogen (uPA) has been found to prevent apoptosis in breast cancers, we analyzed the level of uPA activity in our clones. An inhibition of uPA activity was observed in V189shNRP1 clones. Altogether, these results suggest a major role of NRP1 in apoptosis induced by VEGF189 in stress conditions and confirm VEGF165 as a survival factor.
Collapse
|
209
|
Amin EM, Oltean S, Hua J, Gammons MVR, Hamdollah-Zadeh M, Welsh GI, Cheung MK, Ni L, Kase S, Rennel ES, Symonds KE, Nowak DG, Royer-Pokora B, Saleem MA, Hagiwara M, Schumacher VA, Harper SJ, Hinton DR, Bates DO, Ladomery MR. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 2011; 20:768-80. [PMID: 22172722 PMCID: PMC3574979 DOI: 10.1016/j.ccr.2011.10.016] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/10/2011] [Accepted: 10/17/2011] [Indexed: 12/19/2022]
Abstract
Angiogenesis is regulated by the balance of proangiogenic VEGF(165) and antiangiogenic VEGF(165)b splice isoforms. Mutations in WT1, the Wilms' tumor suppressor gene, suppress VEGF(165)b and cause abnormal gonadogenesis, renal failure, and Wilms' tumors. In WT1 mutant cells, reduced VEGF(165)b was due to lack of WT1-mediated transcriptional repression of the splicing-factor kinase SRPK1. WT1 bound to the SRPK1 promoter, and repressed expression through a specific WT1 binding site. In WT1 mutant cells SRPK1-mediated hyperphosphorylation of the oncogenic RNA binding protein SRSF1 regulated splicing of VEGF and rendered WT1 mutant cells proangiogenic. Altered VEGF splicing was reversed by wild-type WT1, knockdown of SRSF1, or SRPK1 and inhibition of SRPK1, which prevented in vitro and in vivo angiogenesis and associated tumor growth.
Collapse
Affiliation(s)
- Elianna M Amin
- Centre for Research in Biomedicine, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Chen J, Li Z, Zhang S, Zhang R, Dassarath M, Wu G. Effects of exogenous VEGF(165)b on invasion and migration of human lung adenocarcinoma A549 cells. ACTA ACUST UNITED AC 2011; 31:619. [PMID: 22038350 DOI: 10.1007/s11596-011-0571-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 01/19/2023]
Abstract
Vascular endothelial growth factor 165 (VEGF(165))-mediated autocrine stimulation of tumor cells enhances the progression to a malignant phenotype. VEGF(165)b competes with VEGF(165) and binds to vascular endothelial growth factor receptor (VEGFR), resulting in inhibition of downstream signal transduction pathways. This study was designed to investigate the role of VEGF(165)b in the migration and invasion of human lung adenocarcinoma A549 cells. The full-length of VEGF(165)b was constructed and cloned into an expression plasmid (pVEGF(165)b), and then transfected into A549 cells. Dimethylthiazolyl- 1 -2, 5-diphenyltetrazolium bromide (MTT) assay was used to detect the effect of VEGF(165)b on proliferation of transfected cells. Reverse transcription polymerase chain reaction (RT-PCR) was employed to examine the effect of VEGF(165)b on the expression of VEGF(165) in transfected cells. Wound-healing assays were used to investigate the effect of VEGF(165)b on migration of transfected cells. Matrix metalloproteinase (MMPs) activity assay and in vitro invasion assay were used to determine the role of VEGF(165)b in invasion of transfected cells. There was no significant change in proliferation of A549 cells after transfection of pVEGF(165)b, but the expression of VEGF(165), migration and invasion in A549 cells were inhibited. Furthermore, exogenous VEGF(165)b inhibited the activity of MMP9 in the supernatant of A549 cells and the subsequent invasion capacity of those cells. We therefore conclude that exogenous VEGF(165)b can inhibit the expression of VEGF(165), as well as the migration and invasion of A549 cells, but has no effect on the proliferation of A549 cells.
Collapse
Affiliation(s)
- Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meera Dassarath
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Oncology, Queen Victoria Hospital, Candos, Quatre-Bornes, Mauritius
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
211
|
Abstract
Numerous studies
report splicing alterations in a multitude of
cancers by using gene-by-gene analysis. However,
understanding of the role of alternative
splicing in cancer is now reaching a new level,
thanks to the use of novel technologies allowing
the analysis of splicing at a large-scale level.
Genome-wide analyses of alternative splicing
indicate that splicing alterations can affect
the products of gene networks involved in key
cellular programs. In addition, many splicing
variants identified as being misregulated in
cancer are expressed in normal tissues. These
observations suggest that splicing programs
contribute to specific cellular programs that
are altered during cancer initiation and
progression. Supporting this model, recent
studies have identified splicing factors
controlling cancer-associated splicing programs.
The characterization of splicing programs and
their regulation by splicing factors will allow
a better understanding of the genetic mechanisms
involved in cancer initiation and progression
and the development of new therapeutic
targets.
Collapse
|
212
|
VEGF spliced variants: possible role of anti-angiogenesis therapy. J Nucleic Acids 2011; 2012:162692. [PMID: 22013509 PMCID: PMC3195439 DOI: 10.1155/2012/162692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney). Among these tumour types, clear cell renal cell carcinomas (RCCs) are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF). Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich) proteins implicated in VEGF splicing.
Collapse
|
213
|
Impaired Angiogenesis in Systemic Sclerosis: The Emerging Role of the Antiangiogenic VEGF165b Splice Variant. Trends Cardiovasc Med 2011; 21:204-10. [DOI: 10.1016/j.tcm.2012.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
214
|
Zucker M, Rosenberg N, Peretz H, Green D, Bauduer F, Zivelin A, Seligsohn U. Point mutations regarded as missense mutations cause splicing defects in the factor XI gene. J Thromb Haemost 2011; 9:1977-84. [PMID: 21718436 DOI: 10.1111/j.1538-7836.2011.04426.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Point mutations within exons are frequently defined as missense mutations. In the factor (F)XI gene, three point mutations, c.616C>T in exon 7, c.1060G>A in exon 10 and c.1693G>A in exon 14 were reported as missense mutations P188S, G336R and E547K, respectively, according to their exonic positions. Surprisingly, expression of the three mutations in cells yielded substantially higher FXI antigen levels than was expected from the plasma of patients bearing these mutations. OBJECTIVES To test the possibility that the three mutations, albeit their positions within exons, cause splicing defects. METHODS AND RESULTS Platelet mRNA analysis of a heterozygous patient revealed that the c.1693A mutation caused aberrant splicing. Platelet mRNA of a second compound heterozygote for c.616T and c.1060A mutations was undetectable suggesting its degradation. Cells transfected with a c.616T minigene favored production of an aberrantly spliced mRNA that skips exon 7. Cells transfected with a mutated minigene spanning exons 8-10 exhibited a significant decrease in the amount of normally spliced mRNA. In silico analysis revealed that the three mutations are located within sequences of exonic splicing enhancers (ESEs) that bind special proteins and are potentially important for correct splicing. Compensatory mutations created near the natural mutations corrected the putative function of ESEs thereby restoring normal splicing of exons 7 and 10. CONCLUSIONS The present findings define a new mechanism of mutations in F11 and underscore the need to perform expression studies and mRNA analysis of point mutations before stating that they are missense mutations.
Collapse
Affiliation(s)
- M Zucker
- The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
215
|
Blanco FJ, Bernabeu C. Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence. Aging Cell 2011; 10:896-907. [PMID: 21668763 DOI: 10.1111/j.1474-9726.2011.00727.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing involving intron retention plays a key role in the regulation of gene expression. We previously reported that the alternatively spliced short isoform of endoglin (S-endoglin) is induced during the aging or senescence of endothelial cells by a mechanism of intron retention. In this work, we demonstrate that the alternative splicing factor or splicing factor-2 (ASF/SF2) is involved in the synthesis of endoglin. Overexpression of ASF/SF2 in endothelial cells switched the balance between the two endoglin isoforms, favoring the synthesis of S-endoglin. Using a minigene reporter vector and RNA immunoprecipitation experiments, it was shown that ASF/SF2 interacts with the nucleotide sequence of the endoglin minigene, suggesting the direct involvement of ASF/SF2. Accordingly, the sequence recognized by ASF/SF2 in the endoglin gene was identified inside the retained intron near the consensus branch point. Finally, the ASF/SF2 subcellular localization during endothelial senescence showed a preferential scattered distribution throughout the cytoplasm, where it interferes with the activity of the minor spliceosome, leading to an increased expression of S-endoglin mRNA. In summary, we report for the first time the molecular mechanisms by which ASF/SF2 regulates the alternative splicing of endoglin in senescent endothelial cells, as well as the involvement of ASF/SF2 in the minor spliceosome.
Collapse
MESH Headings
- Alternative Splicing
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Blotting, Western
- Cellular Senescence
- Conserved Sequence
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Endoglin
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Immunoprecipitation/methods
- Introns
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Francisco J Blanco
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Raras, c/Ramiro de Maeztu 9, Madrid, Spain.
| | | |
Collapse
|
216
|
Mataftsi A, Dimitrakos SA, Adams GGW. Mediators involved in retinopathy of prematurity and emerging therapeutic targets. Early Hum Dev 2011; 87:683-90. [PMID: 21700404 DOI: 10.1016/j.earlhumdev.2011.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/30/2022]
Abstract
Retinopathy of prematurity (ROP) is a potentially blinding disease of premature infants and despite timely treatment some infants develop retinal detachment and sight loss. Current treatment utilises laser therapy which causes destruction of treated retinal tissue resulting in field loss. There is considerable research work ongoing on neovascular eye disease which is likely to result in antiangiogenic approaches that will arrest the development of ROP by specifically targeting the involved molecular mediators. Some of these new therapeutic interventions have entered clinical trials. This article reviews new information available on the molecular pathogenesis of ROP which may result in novel treatments for ROP; it does not discuss the well-known role of oxygen in the development of ROP.
Collapse
Affiliation(s)
- A Mataftsi
- Great Ormond Street Hospital, London, United Kingdom.
| | | | | |
Collapse
|
217
|
Venables JP, Vignal E, Baghdiguian S, Fort P, Tazi J. Tissue-Specific Alternative Splicing of Tak1 Is Conserved in Deuterostomes. Mol Biol Evol 2011; 29:261-9. [DOI: 10.1093/molbev/msr193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
218
|
Passarelli MN, Coghill AE, Hutter CM, Zheng Y, Makar KW, Potter JD, Newcomb PA. Common colorectal cancer risk variants in SMAD7 are associated with survival among prediagnostic nonsteroidal anti-inflammatory drug users: a population-based study of postmenopausal women. Genes Chromosomes Cancer 2011; 50:875-86. [PMID: 21910156 DOI: 10.1002/gcc.20913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/06/2011] [Indexed: 12/21/2022] Open
Abstract
Common single nucleotide polymorphisms (SNPs) in SMAD7 (18q21) have been linked to colorectal cancer (CRC) risk in genome-wide association studies, but little is known about their effects on survival. SMAD7 regulates gastrointestinal inflammation by inhibiting transforming growth factor-β (TGFB), which can act as both a tumor suppressor and a promoter of metastasis. Regular use of cyclooxygenase-2 (COX2) inhibitors, such as nonsteroidal anti-inflammatory drugs (NSAIDs), reduces the risk of developing CRC. Because COX2 overexpression reduces the growth suppressing effects of TGFB, we hypothesized that survival may depend on both SMAD7 genotype and prediagnostic NSAID use. Postmenopausal women, ages 50-74, diagnosed with incident invasive CRC from 1997 to 2002 were identified using the Seattle-Puget Sound Surveillance, Epidemiology, and End Results (SEER) cancer registry. Information on prediagnostic NSAID use and other risk factors was ascertained by interview, and women were followed-up for survival through December 31, 2009. Seven hundred and twenty-seven cases were genotyped for two GWAS hits in SMAD7 with minor allele frequency > 30%, one with minor allele associated with decreased risk (rs4939827) and one with minor allele associated with increased risk (rs4464148). Two hundred and forty-two deaths occurred, 160 attributable to CRC. Among those without distant disease at diagnosis, CRC-specific survival differed by genotype only for NSAID users: each minor allele of rs4939827 was associated with worse survival [hazard ratio (HR) = 2.67, 95% confidence interval (CI): 1.33-5.37] and each minor allele of rs4464148 was associated with better survival (HR = 0.41, CI 0.18-0.94). SMAD7 variants known to be important for CRC risk were associated with disease-specific survival among prediagnostic NSAID users.
Collapse
Affiliation(s)
- Michael N Passarelli
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Levels of VEGF but not VEGF(165b) are increased in the vitreous of patients with retinal vein occlusion. Am J Ophthalmol 2011; 152:298-303.e1. [PMID: 21621189 DOI: 10.1016/j.ajo.2011.01.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine the concentration of the pro-angiogenic vascular endothelial growth factor VEGF(165) (VEGF) and the anti-angiogenic VEGF(165b) in vitreous samples of patients with branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) in comparison to patients without retinal occlusive disease. DESIGN Experimental laboratory investigation. METHODS Vitreous samples were collected from patients undergoing surgery for arteriovenous dissection after BRVO, radial optic neurotomy after CRVO in the occlusion group, or macular pucker or macular hole in the control group. Concentrations of VEGF and VEGF(165b) were determined by ELISA and an ELISA-type antibody microarray. RESULTS Average vitreal concentration of VEGF was 8.6 ng/mL in the CRVO group and 2.0 ng/mL in the BRVO group as compared to 0.26 ng/mL in the control group. Average vitreal concentration of VEGF(165b) was 27 pg/mL in the CRVO group, 42 pg/mL in the BRVO group, and 49 pg/mL in the control group. In patients with CRVO and BRVO, the angiogenic balance was shifted towards angiogenic stimulation. CONCLUSION The severity of RVO from BRVO to CRVO correlates with an increase of VEGF and the decrease of VEGF(165b), indicating a pro-angiogenic shift. Altering the ratio of VEGF(165b)/VEGF(165) might be a feasible approach for treating retinal occlusive diseases.
Collapse
|
220
|
Xu J, Dou T, Liu C, Fu M, Huang Y, Gu S, Zhou Y, Xie Y. The evolution of alternative splicing exons in vascular endothelial growth factor A. Gene 2011; 487:143-50. [PMID: 21782909 DOI: 10.1016/j.gene.2011.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/12/2011] [Accepted: 06/18/2011] [Indexed: 12/13/2022]
Abstract
The C-terminus alternative splicing in VEGFA (vascular endothelial growth factor A) is known for its impact on physiological and pathological angiogenesis. Based on our prediction and RT-PCR verification, we identified anti-angiogenic VEGFA165b isoforms in mouse and rabbit for the first time. We also found that the relative expression level of VEGFA165b isoform had been increasing from rodents to human, and exon8b may have experienced a minor-to-major form exon conversion, possibly correlated with its gain-of-function. It is suggested that introduction of alternative splicing exons (esp. exon6 and exon8b) made important contributions to the transcriptional diversity of VEGFA and played a crucial role in the evolution of its regulatory mechanism.
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Debdab M, Carreaux F, Renault S, Soundararajan M, Fedorov O, Filippakopoulos P, Lozach O, Babault L, Tahtouh T, Baratte B, Ogawa Y, Hagiwara M, Eisenreich A, Rauch U, Knapp S, Meijer L, Bazureau JP. Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. J Med Chem 2011; 54:4172-86. [PMID: 21615147 DOI: 10.1021/jm200274d] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We here report on the synthesis, optimization, and biological characterization of leucettines, a family of kinase inhibitors derived from the marine sponge leucettamine B. Stepwise synthesis of analogues starting from the natural structure, guided by activity testing on eight purified kinases, led to highly potent inhibitors of CLKs and DYRKs, two families of kinases involved in alternative pre-mRNA splicing and Alzheimer's disease/Down syndrome. Leucettine L41 was cocrystallized with CLK3. It interacts with key residues located within the ATP-binding pocket of the kinase. Leucettine L41 inhibits the phosphorylation of serine/arginine-rich proteins (SRp), a family of proteins regulating pre-RNA splicing. Indeed leucettine L41 was demonstrated to modulate alternative pre-mRNA splicing, in a cell-based reporting system. Leucettines should be further explored as pharmacological tools to study and modulate pre-RNA splicing. Leucettines may also be investigated as potential therapeutic drugs in Alzheimer's disease (AD) and in diseases involving abnormal pre-mRNA splicing.
Collapse
Affiliation(s)
- Mansour Debdab
- Université de Rennes 1, Sciences Chimiques de Rennes, UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Manetti M, Guiducci S, Romano E, Ceccarelli C, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res 2011; 109:e14-26. [PMID: 21636803 DOI: 10.1161/circresaha.111.242057] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Systemic sclerosis (SSc) is characterized by widespread microangiopathy, fibrosis, and autoimmunity. Despite the lack of angiogenesis, the expression of vascular endothelial growth factor A (VEGF) was shown to be upregulated in SSc skin and circulation; however, previous studies did not distinguish between proangiogenic VEGF(165) and antiangiogenic VEGF(165)b isoforms, which are generated by alternative splicing in the terminal exon of VEGF pre-RNA. OBJECTIVE We investigated whether VEGF isoform expression could be altered in skin and circulation of patients with SSc. METHODS AND RESULTS Here, we show that the endogenous antiangiogenic VEGF(165)b splice variant is selectively overexpressed at both the mRNA and protein levels in SSc skin. Elevated VEGF(165)b expression correlated with increased expression of profibrotic transforming growth factor-β1 and serine/arginine protein 55 splicing factor in keratinocytes, fibroblasts, endothelial cells, and perivascular inflammatory cells. Circulating levels of VEGF(165)b were significantly higher in patients with SSc than in control subjects. Microvascular endothelial cells (MVECs) isolated from SSc skin expressed and released higher levels of VEGF(165)b than healthy MVECs. Transforming growth factor-β1 upregulated the expression of VEGF(165)b and serine/arginine protein 55 in both SSc and healthy MVECs. In SSc MVECs, VEGF receptor-2 was overexpressed, but its phosphorylation was impaired. Recombinant VEGF(165)b and SSc-MVEC-conditioned medium inhibited VEGF(165)-mediated VEGF receptor-2 phosphorylation and capillary morphogenesis in healthy MVECs. The addition of anti-VEGF(165)b blocking antibodies abrogated the antiangiogenic effect of SSc-MVEC-conditioned medium. Capillary morphogenesis was severely impaired in SSc MVECs and could be ameliorated by treatment with recombinant VEGF(165) and anti-VEGF(165)b blocking antibodies. CONCLUSIONS In SSc, a switch from proangiogenic to antiangiogenic VEGF isoforms may have a crucial role in the insufficient angiogenic response to chronic ischemia.
Collapse
Affiliation(s)
- Mirko Manetti
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Viale G.B. Morgagni 85, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Target inhibition in antiangiogenic therapy a wide spectrum of selectivity and specificity. Cancer J 2011; 16:635-42. [PMID: 21131797 DOI: 10.1097/ppo.0b013e3181ff37cf] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have revealed a previously unsuspected degree of vascular specialization within the host tissue and a tumor's microenvironment. The "vascular zip code" has been used to describe the unique expression of cell-surface molecules found in each vascular bed. Characterization of tumor blood vessels includes selective overexpression of a heterogenous group of proteins such as proteases, integrins, growth factor receptors, and proteoglycans. The process of angiogenesis consists of a "true cytokine storm," requiring many molecular events and biological steps. Antiangiogenic drugs may target a single critical kinase pathway or may interact with several nonspecific molecular targets via a process termed extended spectrum kinase inhibition. The latter strategy may lead to an absence of selectivity and specificity and may result in enhanced toxicities. In this review, we discuss recent developments in the pathogenesis of commonly observed adverse events and summarize new strategies that may ultimately improve efficacy and limit toxicity.
Collapse
|
224
|
Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 2011; 32:88-111. [PMID: 21565214 DOI: 10.1016/j.mam.2011.04.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Vascular endothelial growth factors (VEGFs) are critical regulators of vascular and lymphatic function during development, in health and in disease. There are five mammalian VEGF ligands and three VEGF receptor tyrosine kinases. In addition, several VEGF co-receptors that lack intrinsic catalytic activity, but that indirectly modulate the responsiveness to VEGF contribute to the final biological effect. This review describes the molecular features of VEGFs, VEGFRs and co-receptors with focus on their role in the treatment of cancer.
Collapse
Affiliation(s)
- Sònia Tugues
- Uppsala University, Dept. of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
225
|
Li ZY, Zhu F, Hu JL, Peng G, Chen J, Zhang S, Chen X, Zhang RG, Chen LJ, Liu P, Luo M, Sun ZH, Ren JH, Huang LL, Wu G. Sp1 inhibition-mediated upregulation of VEGF165b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549. Tumour Biol 2011; 32:677-87. [DOI: 10.1007/s13277-011-0168-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022] Open
|
226
|
Cromer W, Jennings MH, Odaka Y, Mathis JM, Alexander JS. Murine rVEGF164b, an inhibitory VEGF reduces VEGF-A-dependent endothelial proliferation and barrier dysfunction. Microcirculation 2011; 17:536-47. [PMID: 21040119 DOI: 10.1111/j.1549-8719.2010.00047.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effects of the murine inhibitory vascular endothelial growth factor (VEGF, rVEGF164b), we generated an adenoviral vector encoding rVEGF164b, and examined its effects on endothelial barrier, growth, and structure. METHOD Mouse vascular endothelial cells (MVEC) proliferation was determined by an MTT assay. Barrier of MVEC monolayers was measured by trans-endothelial electrical resistance (TEER). Reorganization of actin and zonula occludens-1 (ZO-1) were determined by fluorescent microscopy. RESULTS Mouse venous endothelial cells treated with murine VEGF-A (VEGF-A) (50 ng/mL) increased proliferation (60.7 ± 0.1%) within 24 hours (p < 0.05) and rVEGF164b inhibited VEGF-A-induced proliferation. TEER was significantly decreased by VEGF-A (81.7 ± 6.2% of control). Treatment with rVEGF164b at 50 ng/mL transiently reduced MVEC barrier (p < 0.05) at 30 minutes post-treatment (87.9 ± 1.7% of control TEER), and returned to control levels by 40 minutes post-treatment. Treatment with rVEGF164b prevented barrier changes by subsequent exposure to VEGF-A. Treatment of MVECS with VEGF-A reorganized F-actin and ZO-1, which was attenuated by rVEGF164b. CONCLUSIONS VEGF-A may dysregulate endothelial barrier through junctional cytoskeleton processes, which can be attenuated by rVEGF164b. The VEGF-A stimulated MVEC proliferation, barrier dysregulation, and cytoskeletal rearrangement. However, rVEGF164b blocks these effects, therefore it may be useful for regulation studies of VEGF-A/VEGF-R signaling in many different models.
Collapse
Affiliation(s)
- Walter Cromer
- Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
227
|
Pucci S, Mazzarelli P. MicroRNA Dysregulation in Colon Cancer Microenvironment Interactions: The Importance of Small Things in Metastases. CANCER MICROENVIRONMENT 2011; 4:155-62. [PMID: 21909877 PMCID: PMC3170419 DOI: 10.1007/s12307-011-0062-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
The influence of the microenvironment through the various steps of cancer progression is signed by different cytokines and growth factors, that could directly affect cell proliferation and survival, either in cancer and stromal cells. In colon cancer progression, the cooperation between hypoxia, IL-6 and VEGF-A165 could regulate the DNA repair capacity of the cell, whose impairment is the first step of colon cancer development. This cooperation redirects the activity of proteins involved in the metabolic shift and cell death, affecting the cell fate. The pathways triggered by micro environmental factors could modulate cancer-related gene transcription, affecting also small non coding mRNA, microRNAs. MicroRNAs have emerged as key post-transcriptional regulators of gene expression, directly involved in human cancers. The present review will focus first on the intertwined connection between cancer microenvironment and aberrant expression of microRNAs which contribute to carcinogenesis. In particular, the epigenetic mechanisms triggered by tissue microenvironment will be discussed, in view of the recent identification of miRNAs able to directly or indirectly modulate the epigenetic machinery (epi-miRNAs) and that are involved in the epithelial to mesenchimal transition and metastases development.
Collapse
Affiliation(s)
- Sabina Pucci
- Department of Biopathology, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy,
| | | |
Collapse
|
228
|
Cromer WE, Mathis JM, Granger DN, Chaitanya GV, Alexander JS. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol 2011; 17:578-93. [PMID: 21350707 PMCID: PMC3040330 DOI: 10.3748/wjg.v17.i5.578] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines, growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.
Collapse
|
229
|
David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2011; 24:2343-64. [PMID: 21041405 DOI: 10.1101/gad.1973010] [Citation(s) in RCA: 639] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alternative splicing of mRNA precursors is a nearly ubiquitous and extremely flexible point of gene control in humans. It provides cells with the opportunity to create protein isoforms of differing, even opposing, functions from a single gene. Cancer cells often take advantage of this flexibility to produce proteins that promote growth and survival. Many of the isoforms produced in this manner are developmentally regulated and are preferentially re-expressed in tumors. Emerging insights into this process indicate that pathways that are frequently deregulated in cancer often play important roles in promoting aberrant splicing, which in turn contributes to all aspects of tumor biology.
Collapse
Affiliation(s)
- Charles J David
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
230
|
Woolard J, Vousden W, Moss SJ, Krishnakumar A, Gammons MVR, Nowak DG, Dixon N, Micklefield J, Spannhoff A, Bedford MT, Gregory MA, Martin CJ, Leadlay PF, Zhang MQ, Harper SJ, Bates DO, Wilkinson B. Borrelidin modulates the alternative splicing of VEGF in favour of anti-angiogenic isoforms. Chem Sci 2011; 2011:273-278. [PMID: 22822423 PMCID: PMC3399765 DOI: 10.1039/c0sc00297f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The polyketide natural product borrelidin 1 is a potent inhibitor of angiogenesis and spontaneous metastasis. Affinity biopanning of a phage display library of colon tumor cell cDNAs identified the tandem WW domains of spliceosome-associated protein formin binding protein 21 (FBP21) as a novel molecular target of borrelidin, suggesting that borrelidin may act as a modulator of alternative splicing. In support of this idea, 1, and its more selective analog 2, bound to purified recombinant WW domains of FBP21. They also altered the ratio of vascular endothelial growth factor (VEGF) isoforms in retinal pigmented endothelial (RPE) cells in favour of anti-angiogenic isoforms. Transfection of RPE cells with FBP21 altered the ratio in favour of pro-angiogenic VEGF isoforms, an effect inhibited by 2. These data implicate FBP21 in the regulation of alternative splicing and suggest the potential of borrelidin analogs as tools to deconvolute key steps of spliceosome function.
Collapse
Affiliation(s)
- Jeanette Woolard
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - William Vousden
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Steven J. Moss
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Arjun Krishnakumar
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - Melissa VR Gammons
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - David G Nowak
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - Neil Dixon
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jason Micklefield
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Astrid Spannhoff
- The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Mark T. Bedford
- The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Matthew A. Gregory
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Christine J. Martin
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Peter F. Leadlay
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Ming Q. Zhang
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| | - Steven J. Harper
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - David O. Bates
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street Bristol, BS2 8EJ, UK. Fax: +44 (0)117 9288151; Tel: +44 (0)117 9289818;
| | - Barrie Wilkinson
- Biotica, Chesterford Research Park, Cambridge, CB10 1XL, UK. Fax: +44 (0)1799 532921; Tel: +44 (0)1799 532925;
| |
Collapse
|
231
|
Ponnambalam S, Alberghina M. Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol 2011; 43:192-206. [PMID: 21271303 DOI: 10.1007/s12035-011-8167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/12/2011] [Indexed: 12/27/2022]
Abstract
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.
Collapse
Affiliation(s)
- Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Leeds, UK.
| | | |
Collapse
|
232
|
Fedorov O, Huber K, Eisenreich A, Filippakopoulos P, King O, Bullock AN, Szklarczyk D, Jensen LJ, Fabbro D, Trappe J, Rauch U, Bracher F, Knapp S. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. CHEMISTRY & BIOLOGY 2011; 18:67-76. [PMID: 21276940 PMCID: PMC3145970 DOI: 10.1016/j.chembiol.2010.11.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 12/02/2022]
Abstract
There is a growing recognition of the importance of protein kinases in the control of alternative splicing. To define the underlying regulatory mechanisms, highly selective inhibitors are needed. Here, we report the discovery and characterization of the dichloroindolyl enaminonitrile KH-CB19, a potent and highly specific inhibitor of the CDC2-like kinase isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures of KH-CB19 with CLK1 and CLK3 revealed a non-ATP mimetic binding mode, conformational changes in helix αC and the phosphate binding loop and halogen bonding to the kinase hinge region. KH-CB19 effectively suppressed phosphorylation of SR (serine/arginine) proteins in cells, consistent with its expected mechanism of action. Chemical inhibition of CLK1/CLK4 generated a unique pattern of splicing factor dephosphorylation and had at low nM concentration a profound effect on splicing of the two tissue factor isoforms flTF (full-length TF) and asHTF (alternatively spliced human TF).
Collapse
Affiliation(s)
- Oleg Fedorov
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Kilian Huber
- Ludwig-Maximilians Universität, Department of Pharmacy-Center for Drug Research, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Andreas Eisenreich
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz-und Kreislaufmedizin, Berlin, Germany
| | - Panagis Filippakopoulos
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Oliver King
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Alex N. Bullock
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Damian Szklarczyk
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Lars J. Jensen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Doriano Fabbro
- Novartis Pharma AG, Klybeckstrasse 141, CH-4002 Basel, Switzerland
| | - Jörg Trappe
- Novartis Pharma AG, Klybeckstrasse 141, CH-4002 Basel, Switzerland
| | - Ursula Rauch
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz-und Kreislaufmedizin, Berlin, Germany
| | - Franz Bracher
- Ludwig-Maximilians Universität, Department of Pharmacy-Center for Drug Research, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Stefan Knapp
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- University of Oxford, Department of Clinical Pharmacology, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
233
|
Mo XG, Chen QW, Li XS, Zheng MM, Ke DZ, Deng W, Li GQ, Jiang J, Wu ZQ, Wang L, Wang P, Yang Y, Cao GY. Suppression of NHE1 by small interfering RNA inhibits HIF-1α-induced angiogenesis in vitro via modulation of calpain activity. Microvasc Res 2010; 81:160-8. [PMID: 21185840 DOI: 10.1016/j.mvr.2010.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 12/26/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) orchestrates angiogenesis under hypoxic conditions mainly due to increased expression of such target genes as vascular endothelial growth factor (VEGF). Na+/H+exchanger-1 (NHE1), a potential HIF target gene product, plays a pivotal role in proliferation, survival, migration, adhesion and so on. However, it is unknown whether NHE1 is involved in HIF-1α-induced angiogenesis. This present study demonstrated that the expression of NHE1 was much higher in human umbilical vein endothelial cells (HUVECs) infected with adenovirus encoding HIF-1α (rAd-HIF) than with vacuum adenovirus (vAd). HIF-1α also increased the expression of VEGF, the expression and activity of calpains, and the intracellular pH. Moreover, small interfering RNA targeting NHE1 (NHE1 siRNA) dramatically decreased the expression of NHE1 and thus lowered the intracellular pH, and it also attenuated the protein expression of calpain-2 but not calpain-1, resulting in the lower calpain activity. Furthermore, HIF-1α enhanced the proliferation, migration and Matrigel tube formation, which were inhibited by NHE1 siRNA. Finally, the inhibitory effect of NHE1 siRNA was reversed by VEGF and the reversibility of the later was abrogated by the calpain inhibitor ALLM. In conclusion, the findings have revealed that NHE1 might participate in HIF-1-induced angiogenesis due, at least in part, to the alteration of the calpain activity, suggesting that NHE1 as well as calpains might represent a potential target of controlling angiogenesis in response to the hypoxic stress under various pathological conditions.
Collapse
Affiliation(s)
- Xian-Gang Mo
- Department of Geriatrics Cardiology, 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Urzúa U, Owens GA, Zhang GM, Cherry JM, Sharp JJ, Munroe DJ. Tumor and reproductive traits are linked by RNA metabolism genes in the mouse ovary: a transcriptome-phenotype association analysis. BMC Genomics 2010; 11 Suppl 5:S1. [PMID: 21210965 PMCID: PMC3045792 DOI: 10.1186/1471-2164-11-s5-s1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The link between reproductive life history and incidence of ovarian tumors is well known. Periods of reduced ovulations may confer protection against ovarian cancer. Using phenotypic data available for mouse, a possible association between the ovarian transcriptome, reproductive records and spontaneous ovarian tumor rates was investigated in four mouse inbred strains. NIA15k-DNA microarrays were employed to obtain expression profiles of BalbC, C57BL6, FVB and SWR adult ovaries. RESULTS Linear regression analysis with multiple-test control (adjusted p ≤ 0.05) resulted in ovarian tumor frequency (OTF) and number of litters (NL) as the top-correlated among five tested phenotypes. Moreover, nearly one-hundred genes were coincident between these two traits and were decomposed in 76 OTF(-) NL(+) and 20 OTF(+) NL(-) genes, where the plus/minus signs indicate the direction of correlation. Enriched functional categories were RNA-binding/mRNA-processing and protein folding in the OTF(-) NL(+) and the OTF(+) NL(-) subsets, respectively. In contrast, no associations were detected between OTF and litter size (LS), the latter a measure of ovulation events in a single estrous cycle. CONCLUSION Literature text-mining pointed to post-transcriptional control of ovarian processes including oocyte maturation, folliculogenesis and angiogenesis as possible causal relationships of observed tumor and reproductive phenotypes. We speculate that repetitive cycling instead of repetitive ovulations represent the actual link between ovarian tumorigenesis and reproductive records.
Collapse
Affiliation(s)
- Ulises Urzúa
- Laboratorio de Genómica Aplicada, ICBM, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
235
|
Peiris-Pagès M, Harper S, Bates D, Ramani P. Balance of pro- versus anti-angiogenic splice isoforms of vascular endothelial growth factor as a regulator of neuroblastoma growth. J Pathol 2010; 222:138-47. [PMID: 20662003 PMCID: PMC3287290 DOI: 10.1002/path.2746] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 06/04/2010] [Indexed: 12/25/2022]
Abstract
Neuroblastoma (NB) is the second most common extracranial tumour of childhood. Angiogenesis plays a crucial role in the growth and development of NB and vascular endothelial growth factor (VEGF), one of the most potent stimuli of angiogenesis, has been studied extensively in vitro. VEGF(165) has been shown to be the predominant angiogenic isoform expressed in NB cell lines and tumours. In this study, we investigated the anti-angiogenic isoform of VEGF-A, generated from distal splice site selection in the terminal exon of VEGF (VEGF(165)b) and shown to be down-regulated in epithelial malignancies. The expression of both the pro- (VEGF(xxx)) and the anti-angiogenic (VEGF(xxx)b) isoforms was compared in a range of NB and ganglioneuroma (GN) tumours. Whereas VEGF(xxx)b and VEGF(xxx) were both expressed in GN, specific up-regulation of the VEGF(xxx) isoforms was seen in NB at RNA and protein levels. Highly tumourigenic NB cell lines also showed up-regulation of the angiogenic isoforms relative to VEGF(xxx)b compared to less tumourigenic cell lines, and the isoforms were differentially secreted. These results indicate that VEGF(165) is up-regulated in NB and that there is a difference in the balance of isoform expression from anti-angiogenic VEGF(165)b to angiogenic VEGF(165). Treatment with recombinant human VEGF(165)b significantly reduced the growth rate of established xenografts of SK-N-BE(2)-C cells (4.24 +/- 1.01 fold increase in volume) compared with those treated with saline (9.76 +/- 3.58, p < 0.01). Microvascular density (MVD) was significantly decreased in rhVEGF(165)b-treated tumours (19.4 +/- 1.9 vessels/mm(3)) in contrast to the saline-treated tumours (45.5 +/- 8.6 vessels/mm(3)). VEGF(165)b had no significant effect on the proliferative or apoptotic activity, viability or cytotoxicity of SK-N-BE(2)-C cells after 48 h. In conclusion, VEGF(165)b is an effective inhibitor of NB growth. These findings provide the rationale for further investigation of VEGF(165)b in NB and other paediatric malignancies.
Collapse
Affiliation(s)
- M. Peiris-Pagès
- Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD Phone: 0117 928 8368
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ Phone: 0117 928 9818
| | - S.J. Harper
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ Phone: 0117 928 9818
| | - D.O. Bates
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ Phone: 0117 928 9818
| | - P. Ramani
- Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD Phone: 0117 928 8368
- Department of Pathology Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW Phone:0117 928 4548 Fax: 0117 929 2440
| |
Collapse
|
236
|
Qiu Y, Ferguson J, Oltean S, Neal CR, Kaura A, Bevan H, Wood E, Sage LM, Lanati S, Nowak DG, Salmon AHJ, Bates D, Harper SJ. Overexpression of VEGF165b in podocytes reduces glomerular permeability. J Am Soc Nephrol 2010; 21:1498-509. [PMID: 20688932 PMCID: PMC3013528 DOI: 10.1681/asn.2009060617] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 05/08/2010] [Indexed: 11/03/2022] Open
Abstract
The observation that therapeutic agents targeting vascular endothelial growth factor-A (VEGF-A) associate with renal toxicity suggests that VEGF plays a role in the maintenance of the glomerular filtration barrier. Alternative mRNA splicing produces the VEGF(xxx)b family, which consists of antiangiogenic peptides that reduce permeability and inhibit tumor growth; the contribution of these peptides to normal glomerular function is unknown. Here, we established and characterized heterozygous and homozygous transgenic mice that overexpress VEGF(165)b specifically in podocytes. We confirmed excess production of glomerular VEGF(165)b by reverse transcriptase-PCR, immunohistochemistry, and ELISA in both heterozygous and homozygous animals. Macroscopically, the mice seemed normal up to 18 months of age, unlike the phenotype of transgenic podocyte-specific VEGF(164)-overexpressing mice. Animals overexpressing VEGF(165)b, however, had a significantly reduced normalized glomerular ultrafiltration fraction with accompanying changes in ultrastructure of the glomerular filtration barrier on the vascular side of the glomerular basement membrane. These data highlight the contrasting properties of VEGF splice variants and their impact on glomerular function and phenotype.
Collapse
Affiliation(s)
- Yan Qiu
- Microvascular Research Laboratories, Department Physiology and Pharmacology, Bristol Heart Institute, Preclinical Veterinary School, Southwell Street, Bristol, BS2 8EJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Aguirre A, Planell JA, Engel E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun 2010; 400:284-91. [PMID: 20732306 DOI: 10.1016/j.bbrc.2010.08.073] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/17/2010] [Indexed: 01/07/2023]
Abstract
Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.
Collapse
Affiliation(s)
- A Aguirre
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | | | | |
Collapse
|
238
|
Giacca M. Non-redundant functions of the protein isoforms arising from alternative splicing of the VEGF-A pre-mRNA. Transcription 2010; 1:149-153. [PMID: 21326890 DOI: 10.4161/trns.1.3.13229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/13/2023] Open
Abstract
The different protein isoforms generated from the vascular endothelial growth factor-A (VEGF-A) gene, an essential regulator of blood vessel formation, differ in biochemical property and functional activity. Despite the relevance of VEGF-A for both normal and pathologic angiogenesis, our understanding of the molecular mechanisms governing alternative splicing of its pre-mRNA is still in its infancy.
Collapse
Affiliation(s)
- Mauro Giacca
- Molecular Medicine Laboratory; International Centre for Genetic Engineering and Biotechnology; Trieste, Italy
| |
Collapse
|
239
|
Magnussen AL, Rennel ES, Hua J, Bevan HS, Long NB, Lehrling C, Gammons M, Floege J, Harper SJ, Agostini HT, Bates DO, Churchill AJ. VEGF-A165b is cytoprotective and antiangiogenic in the retina. Invest Ophthalmol Vis Sci 2010; 51:4273-81. [PMID: 20237249 PMCID: PMC2910648 DOI: 10.1167/iovs.09-4296] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/19/2009] [Accepted: 01/16/2010] [Indexed: 01/22/2023] Open
Abstract
PURPOSE A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A(165), the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A(165)b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF(165)b and its effect on retinal epithelial and endothelial cell survival. METHODS VEGF-A(165)b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A(165)b. RESULTS VEGF-A(165)b dose dependently inhibited angiogenesis (IC(50), 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A(165) across monolayers in culture (IC(50), 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A(165)b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC(50), 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A(165)b. CONCLUSIONS The survival effects of VEGF-A(165)b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A(165)b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Anette L. Magnussen
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Emma S. Rennel
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Jing Hua
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Heather S. Bevan
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Nicholas Beazley Long
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Melissa Gammons
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Juergen Floege
- Division of Nephrology and Clinical Immunology, University Hospital, RWTH University of Aachen, Achen, Germany; and
| | - Steven J. Harper
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | | | - David O. Bates
- From the Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Amanda J. Churchill
- Unit of Ophthalmology, University of Bristol, Bristol Eye Hospital, Bristol, United Kingdom
| |
Collapse
|
240
|
Merdzhanova G, Gout S, Keramidas M, Edmond V, Coll JL, Brambilla C, Brambilla E, Gazzeri S, Eymin B. The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo. Oncogene 2010; 29:5392-403. [PMID: 20639906 DOI: 10.1038/onc.2010.281] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transcription factor E2F1 has a crucial role in the control of cell growth and has been shown to regulate neoangiogenesis in a p53-dependent manner through inhibition of activity of the VEGF-A (vascular endothelial growth factor) promoter. Besides being regulated by transcription, VEGF-A is also highly regulated by pre-mRNA alternative splicing, resulting in the expression of several VEGF isoforms with either pro-(VEGF(xxx)) or anti-(VEGF(xxx)b) angiogenic properties. Recently, we identified the SR (Ser-Rich/Arg) protein SC35, a splicing factor, as a new transcriptional target of E2F1. Here, we show that E2F1 downregulates the activity of the VEGF-A promoter in tumour cells independently of p53, leading to a strong decrease in VEGF(xxx) mRNA levels. We further show that, strikingly, E2F1 alters the ratio of pro-VEGF(xxx) versus anti-VEGF(xxx)b angiogenic isoforms, favouring the antiangiogenic isoforms, by a mechanism involving the induction of SC35 expression. Finally, using lung tumour xenografts in nude mice, we provide evidence that E2F1 and SC35 proteins increase the VEGF(165)b/VEGF ratio and decrease tumour neovascularization in vivo. Overall, these findings highlight E2F1 and SC35 as two regulators of the VEGF(xxx)/VEGF(xxx)b angiogenic switch in human cancer cells, a role that could be crucial during tumour progression, as well as in tumour response to antiangiogenic therapies.
Collapse
Affiliation(s)
- G Merdzhanova
- INSERM, U823, Equipe 2 Bases Moléculaires de la Progression des Cancers du Poumon, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Hua J, Spee C, Kase S, Rennel ES, Magnussen AL, Qiu Y, Varey A, Dhayade S, Churchill AJ, Harper SJ, Bates DO, Hinton DR. Recombinant human VEGF165b inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2010; 51:4282-8. [PMID: 20237252 DOI: 10.1167/iovs.09-4360] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Vascular endothelial growth factor (VEGF-A) is the principal stimulator of angiogenesis in wet age-related macular degeneration (AMD). However, VEGF-A is generated by alternate splicing into two families, the proangiogenic VEGF-A(xxx) family and the antiangiogenic VEGF-A(xxx)b family. It is the proangiogenic family that is responsible for the blood vessel growth seen in AMD. METHODS To determine the role of antiangiogenic isoforms of VEGF-A as inhibitors of choroidal neovascularization, the authors used a model of laser-induced choroidal neovascularization in the mouse eye and investigated VEGF-A(165)b effects on endothelial cells and VEGFRs in vitro. RESULTS VEGF-A(165)b inhibited VEGF-A(165)-mediated endothelial cell migration with a dose effect similar to that of ranibizumab and bevacizumab and 200-fold more potent than that of pegaptanib. VEGF-A(165)b bound both VEGFR1 and VEGFR2 with affinity similar to that of VEGF-A(165). After laser injury, mice were injected either intraocularly or subcutaneously with recombinant human VEGF-A(165)b. Intraocular injection of rhVEGF-A(165)b gave a pronounced dose-dependent inhibition of fluorescein leakage, with an IC(50) of 16 pg/eye, neovascularization (IC(50), 0.8 pg/eye), and lesion as assessed by histologic staining (IC(50), 8 pg/eye). Subcutaneous administration of 100 microg twice a week also inhibited fluorescein leakage and neovascularization and reduced lesion size. CONCLUSIONS These results show that VEGF-A(165)b is a potent antiangiogenic agent in a mouse model of age-related macular degeneration and suggest that increasing the ratio of antiangiogenic-to-proangiogenic isoforms may be therapeutically effective in this condition.
Collapse
Affiliation(s)
- Jing Hua
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, Bristol Heart Institute, School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Moulton VR, Tsokos GC. Alternative splicing factor/splicing factor 2 regulates the expression of the zeta subunit of the human T cell receptor-associated CD3 complex. J Biol Chem 2010; 285:12490-6. [PMID: 20118245 DOI: 10.1074/jbc.m109.091660] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cells from patients with systemic lupus erythematosus express decreased levels of the T cell receptor-associated CD3 zeta chain, a feature directly linked to their aberrant function. The decrease in CD3zeta protein expression is in part due to decreased levels of functional wild type isoform of the 3'-untranslated region (UTR) of CD3zeta mRNA with concomitant increased levels of an unstable alternatively spliced isoform. In order to identify factors involved in the post-transcriptional regulation of CD3zeta, we performed mass spectrometric analysis of Jurkat T cell nuclear proteins "pulled down" by a CD3zeta 3'-UTR oligonucleotide, which identified the splicing protein alternative splicing factor/splicing factor 2 (ASF/SF2). We show for the first time that ASF/SF2 binds specifically to the 3'-UTR of CD3zeta and regulates expression of CD3zeta protein by limiting the production of the alternatively spliced isoform. During activation of human T cells, an increase in the wild type CD3zeta mRNA is associated with increased expression of ASF/SF2. Finally, we show a significant correlation between ASF/SF2 and CD3zeta protein levels in T cells from systemic lupus erythematosus patients. Thus, our results identify ASF/SF2 as a novel factor in the regulation of alternative splicing of the 3'-UTR of CD3zeta and protein expression in human T cells.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
243
|
Murukesh N, Dive C, Jayson GC. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer 2010; 102:8-18. [PMID: 20010945 PMCID: PMC2813747 DOI: 10.1038/sj.bjc.6605483] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/05/2009] [Accepted: 11/18/2009] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) has been confirmed as an important therapeutic target in randomised clinical trials in multiple disease settings. However, the extent to which individual patients benefit from VEGF inhibitors is unclear. If we are to optimise the use of these drugs or develop combination regimens that build on this efficacy, it is critical to identify those patients who are likely to benefit, particularly as these agents can be toxic and are expensive. To this end, biomarkers have been evaluated in tissue, in circulation and by imaging. Consistent drug-induced increases in plasma VEGF-A and blood pressure, as well as reductions in soluble VEGF-R2 and dynamic contrast-enhanced MRI parameters have been reported. In some clinical trials, biomarker changes were statistically significant and associated with clinical end points, but there is considerable heterogeneity between studies that are to some extent attributable to methodological issues. On the basis of observations with these biomarkers, it is now appropriate to conduct detailed prospective studies to define a suite of predictive, pharmacodynamic and surrogate response biomarkers that identify those patients most likely to benefit from and monitor their response to this novel class of drugs.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bevacizumab
- Biomarkers
- Blood Pressure/drug effects
- Cell Hypoxia
- Contrast Media
- Drug Delivery Systems
- Endothelial Cells/pathology
- Humans
- Magnetic Resonance Imaging/methods
- Neoplasms/blood
- Neoplasms/blood supply
- Neoplasms/diagnostic imaging
- Neoplasms/drug therapy
- Neoplasms/pathology
- Neovascularization, Pathologic/blood
- Neovascularization, Pathologic/diagnostic imaging
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Patient Selection
- Polymorphism, Single Nucleotide
- Positron-Emission Tomography
- Randomized Controlled Trials as Topic
- Receptors, Vascular Endothelial Growth Factor/blood
- Receptors, Vascular Endothelial Growth Factor/drug effects
- Research Design
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/blood
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/immunology
Collapse
Affiliation(s)
- N Murukesh
- Department of Medical Oncology, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Cancer Research UK and University of Manchester, Wilmslow Road, Withington, Manchester M20 4BX, UK
| | - C Dive
- Cancer Research UK and Clinical and Experimental Pharmacology Group, Manchester Cancer Research Centre, Paterson Institute of Cancer Research, Withington, Manchester M20 4BX, UK
| | - G C Jayson
- Department of Medical Oncology, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Cancer Research UK and University of Manchester, Wilmslow Road, Withington, Manchester M20 4BX, UK
| |
Collapse
|
244
|
Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:323-35. [PMID: 20204740 DOI: 10.1007/978-1-60761-500-2_21] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract Of diverse growth factors that contribute to normal lung development, vascular endothelial growth factor (VEGF) plays an especially prominent role in the normal growth and development of the pulmonary circulation in the fetus and newborn. Strong experimental and clinical data support the role of impaired VEGF signaling in the pathogenesis of two major clinical disorders of the developing lung circulation: persistent pulmonary hypertension of the newborn (PPHN) and bronchopulmonary dysplasia (BPD). These disorders are each characterized by impaired vascular growth, structure and reactivity, which are at least partly due to endothelial cell dysfunction. This chapter will briefly discuss VEGF signaling during normal lung development and how disruption of VEGF signaling contribute to the pathogenesis of neonatal pulmonary vascular disease in these settings.
Collapse
|
245
|
Qiu Y, Hoareau-Aveilla C, Oltean S, Harper SJ, Bates DO. The anti-angiogenic isoforms of VEGF in health and disease. Biochem Soc Trans 2009; 37:1207-13. [PMID: 19909248 PMCID: PMC2882696 DOI: 10.1042/bst0371207] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anti-angiogenic VEGF (vascular endothelial growth factor) isoforms, generated from differential splicing of exon 8, are widely expressed in normal human tissues but down-regulated in cancers and other pathologies associated with abnormal angiogenesis (cancer, diabetic retinopathy, retinal vein occlusion, the Denys-Drash syndrome and pre-eclampsia). Administration of recombinant VEGF(165)b inhibits ocular angiogenesis in mouse models of retinopathy and age-related macular degeneration, and colorectal carcinoma and metastatic melanoma. Splicing factors and their regulatory molecules alter splice site selection, such that cells can switch from the anti-angiogenic VEGF(xxx)b isoforms to the pro-angiogenic VEGF(xxx) isoforms, including SRp55 (serine/arginine protein 55), ASF/SF2 (alternative splicing factor/splicing factor 2) and SRPK (serine arginine domain protein kinase), and inhibitors of these molecules can inhibit angiogenesis in the eye, and splice site selection in cancer cells, opening up the possibility of using splicing factor inhibitors as novel anti-angiogenic therapeutics. Endogenous anti-angiogenic VEGF(xxx)b isoforms are cytoprotective for endothelial, epithelial and neuronal cells in vitro and in vivo, suggesting both an improved safety profile and an explanation for unpredicted anti-VEGF side effects. In summary, C-terminal distal splicing is a key component of VEGF biology, overlooked by the vast majority of publications in the field, and these findings require a radical revision of our understanding of VEGF biology in normal human physiology.
Collapse
Affiliation(s)
- Yan Qiu
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, U.K
| | - Coralie Hoareau-Aveilla
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, U.K
| | - Sebastian Oltean
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, U.K
| | - Steven J. Harper
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, U.K
| | - David O. Bates
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, U.K
| |
Collapse
|
246
|
Wang R, Crystal RG, Hackett NR. Identification of an exonic splicing silencer in exon 6A of the human VEGF gene. BMC Mol Biol 2009; 10:103. [PMID: 19922608 PMCID: PMC2784459 DOI: 10.1186/1471-2199-10-103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 11/17/2009] [Indexed: 11/15/2022] Open
Abstract
Background The different isoforms of vascular endothelial growth factor (VEGF) play diverse roles in vascular growth, structure and function. Alternative splicing of the VEGF gene results in the expression of three abundant isoforms: VEGF121, VEGF165 and VEGF189. The mRNA for VEGF189 contains the alternatively spliced exon 6A whereas the mRNA for VEGF165 lacks this exon. The objective of this study was to identify the cis elements that control utilization of exon 6A. A reporter minigene was constructed (pGFP-E6A) containing the coding sequence for GFP whose translation was dependent on faithful splicing for removal of the VEGF exon 6A. To identify cis-acting splicing elements, sequential deletions were made across exon 6A in the pGFP-E6A plasmid. Results A candidate cis-acting exonic splicing silencer (ESS) comprising nucleotides 22-30 of exon 6A sequence was identified corresponding to the a silencer consensus sequence of AAGGGG. The function of this sequence as an ESS was confirmed in vivo both in the context of the reporter minigene as a plasmid and in the context of a longer minigene with VEGF exon 6A in its native context in an adenoviral gene transfer vector. Further mutagenesis studies resulted in the identification of the second G residue of the putative ESS as the most critical for function. Conclusion This work establishes the identity of cis sequences that regulate alternative VEGF splicing and dictate the relative expression levels of VEGF isoforms.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | | |
Collapse
|
247
|
Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G, Hagiwara M, Harper SJ, Woolard J, Ladomery MR, Bates DO. Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 2009; 285:5532-40. [PMID: 19906640 PMCID: PMC2820781 DOI: 10.1074/jbc.m109.074930] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.
Collapse
Affiliation(s)
- Dawid G Nowak
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Chua RA, Arbiser JL, Chua RA, Arbiser JL. The role of angiogenesis in the pathogenesis of psoriasis. Autoimmunity 2009; 42:574-9. [DOI: 10.1080/08916930903002461] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
249
|
Abstract
The vascular endothelial growth factor (VEGF) family of proteins regulates blood flow, growth, and function in both normal physiology and disease processes. VEGF-A is alternatively spliced to form multiple isoforms, in two subfamilies, that have specific, novel functions. Alternative splicing of exons 5-7 of the VEGF gene generates forms with differing bioavailability and activities, whereas alternative splice-site selection in exon 8 generates proangiogenic, termed VEGF(xxx), or antiangiogenic proteins, termed VEGF(xxx)b. Despite its name, emerging roles for VEGF isoforms on cell types other than endothelium have now been identified. Although VEGF-A has conventionally been considered to be a family of proangiogenic, propermeability vasodilators, the identification of effects on nonendothelial cells, and the discovery of the antiangiogenic subfamily of splice isoforms, has added further complexity to their regulation of microvascular function. The distally spliced antiangiogenic isoforms are expressed in normal human tissue, but downregulated in angiogenic diseases, such as cancer and proliferative retinopathy, and in developmental pathologies, such as Denys Drash syndrome and preeclampsia. Here, we examine the molecular diversity of VEGF-A as a regulator of its biological activity and compare the role of the pro- and antiangiogenic VEGF-A splice isoforms in both normal and pathophysiological processes.
Collapse
Affiliation(s)
- Jeanette Woolard
- Department of Physiology and Pharmacology, Bristol Heart Institute, School of Veterinary Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
250
|
Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:567-80. [PMID: 19761875 DOI: 10.1016/j.bbapap.2009.09.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/22/2009] [Accepted: 09/04/2009] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factors (VEGFs) constitute a family of six polypeptides, VEGF-A, -B, -C, -D, -E and PlGF, that regulate blood and lymphatic vessel development. VEGFs specifically bind to three type V receptor tyrosine kinases (RTKs), VEGFR-1, -2 and -3, and to coreceptors such as neuropilins and heparan sulfate proteoglycans (HSPG). VEGFRs are activated upon ligand-induced dimerization mediated by the extracellular domain (ECD). A study using receptor constructs carrying artificial dimerization-promoting transmembrane domains (TMDs) showed that receptor dimerization is necessary, but not sufficient, for receptor activation and demonstrates that distinct orientation of receptor monomers is required to instigate transmembrane signaling. Angiogenic signaling by VEGF receptors also depends on cooperation with specific coreceptors such as neuropilins and HSPG. A number of VEGF isoforms differ in binding to coreceptors, and ligand-specific signal output is apparently the result of the specific coreceptor complex assembled by a particular VEGF isoform. Here we discuss the structural features of VEGF family ligands and their receptors in relation to their distinct signal output and angiogenic potential.
Collapse
|