201
|
Busà R, Geremia R, Sette C. Genotoxic stress causes the accumulation of the splicing regulator Sam68 in nuclear foci of transcriptionally active chromatin. Nucleic Acids Res 2010; 38:3005-18. [PMID: 20110258 PMCID: PMC2875014 DOI: 10.1093/nar/gkq004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA-damaging agents cause a multifaceted cellular stress response. Cells set in motion either repair mechanisms or programmed cell death pathways, depending on the extent of the damage and on their ability to withstand it. The RNA-binding protein (RBP) Sam68, which is up-regulated in prostate carcinoma, promotes prostate cancer cell survival to genotoxic stress. Herein, we have investigated the function of Sam68 in this cellular response. Mitoxantrone (MTX), a topoisomerase II inhibitor, induced relocalization of Sam68 from the nucleoplasm to nuclear granules, together with several other RBPs involved in alternative splicing, such as TIA-1, hnRNP A1 and the SR proteins SC35 and ASF/SF2. Sam68 accumulation in nuclear stress granules was independent of signal transduction pathways activated by DNA damage. Using BrU labelling and immunofluorescence, we demonstrate that MTX-induced nuclear stress granules are transcriptionally active foci where Sam68 and the phosphorylated form of RNA polymerase II accumulate. Finally, we show that MTX-induced relocalization of Sam68 correlates with changes in alternative splicing of its mRNA target CD44, and that MTX-induced CD44 splicing depends on Sam68 expression. These results strongly suggest that Sam68 is part of a RNA-mediated stress response of the cell that modulates alternative splicing in response to DNA damage.
Collapse
Affiliation(s)
- Roberta Busà
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | |
Collapse
|
202
|
Moran-Jones K, Grindlay J, Jones M, Smith R, Norman JC. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res 2010; 69:9219-27. [PMID: 19934309 DOI: 10.1158/0008-5472.can-09-1852] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Largely owing to widespread deployment of microarray analysis, many of the transcriptional events associated with invasive cell migration are becoming clear. However, the transcriptional drives to invasive migration are likely modified by alternative splicing of pre-mRNAs to produce functionally distinct patterns of protein expression. Heterogenous nuclear ribonucleoprotein (hnRNP A2) is a known regulator of alternative splicing that is upregulated in a number of invasive cancer types. Here, we report that although siRNA of hnRNP A2 had little influence on the ability of cells to migrate on plastic surfaces, the splicing regulator was clearly required for cells to move effectively on three-dimensional matrices and to invade into plugs of extracellular matrix proteins. We used exon-tiling microarrays to determine that hnRNP A2 controlled approximately six individual splicing events in a three-dimensional matrix-dependent fashion, one of which influenced invasive migration. Here, we show that alternative splicing of an exon in the 5' untranslated region of a gene termed TP53INP2 is a key event downstream of hnRNP A2 that is necessary for cells to invade the extracellular matrix. Furthermore, we report that the consequences of altered TP53INP2 splicing on invasion are likely mediated via alterations in Golgi complex integrity during migration on three-dimensional matrices.
Collapse
Affiliation(s)
- Kim Moran-Jones
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
203
|
Feng J, Li W, Jiang T. Inference of Isoforms from Short Sequence Reads. LECTURE NOTES IN COMPUTER SCIENCE 2010. [DOI: 10.1007/978-3-642-12683-3_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
204
|
O'Leary DA, Sharif O, Anderson P, Tu B, Welch G, Zhou Y, Caldwell JS, Engels IH, Brinker A. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening. PLoS One 2009; 4:e8348. [PMID: 20020055 PMCID: PMC2791862 DOI: 10.1371/journal.pone.0008348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022] Open
Abstract
One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ∼10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.
Collapse
Affiliation(s)
- Debra A. O'Leary
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (DAO); (IHE)
| | - Orzala Sharif
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Paul Anderson
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Buu Tu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Genevieve Welch
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeremy S. Caldwell
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ingo H. Engels
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (DAO); (IHE)
| | - Achim Brinker
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| |
Collapse
|
205
|
Maia C, Santos C, Schmitt F, Socorro S. Regucalcin is under-expressed in human breast and prostate cancers: Effect of sex steroid hormones. J Cell Biochem 2009; 107:667-76. [PMID: 19347872 DOI: 10.1002/jcb.22158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regucalcin plays an important role in maintenance of intracellular Ca(2+) homeostasis, suppresses cell proliferation, inhibits expression of oncogenes, and increases the expression of tumour suppressor genes. This suggests that regucalcin functions may be altered in cancer tissues. In this study the regucalcin expression in breast and prostate cancer cases was analysed by RT-PCR and immunohistochemistry showing that the mRNA and/or protein are under-expressed in these tumors. The effect of sex steroid hormones on regucalcin expression in breast and prostate cancer cells was determined by real-time PCR. MCF-7 and LNCaP cells were stimulated with 0, 1, and 10 nM of 17beta-estradiol (E(2)) or 5alpha-dihydrotestosterone (DHT), respectively, for 0, 6, 12, 24, and 48 h. MCF-7 cells were also stimulated with E(2) conjugated to BSA (E(2)-BSA). To explore the mechanisms underlying the sex steroid regulation of regucalcin expression, control treatments with ICI 182,780, flutamide and cyclohexamide were carried out. E(2) effects regulating regucalcin expression were not abrogated in the presence of ICI 182,780, and were similar to those observed with E(2)-BSA, which suggests the involvement of a membrane-bound estrogen receptor. In LNCaP cells, DHT down-regulated regucalcin expression, an effect inhibited by the presence of both flutamide and cyclohexamide, suggesting the involvement of androgen receptor and de novo protein synthesis. The loss of regucalcin expression in breast and prostate cancer cases and the regulation of its expression by sex steroid hormones suggest that it may be associated with development and progression of these human tumors.
Collapse
Affiliation(s)
- Cláudio Maia
- CICS, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|
206
|
Markovic D, Challiss RAJ. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci 2009; 66:3337-52. [PMID: 19629391 PMCID: PMC11115665 DOI: 10.1007/s00018-009-0093-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 12/16/2022]
Abstract
The G protein-coupled receptors (GPCRs) are a superfamily of transmembrane receptors that have a broad distribution and can collectively recognise a diverse array of ligands. Activation or inhibition of GPCR signalling can affect many (patho)physiological processes, and consequently they are a major target for existing and emerging drug therapies. A common observation has been that the pharmacological, signalling and regulatory properties of GPCRs can differ in a cell- and tissue-specific manner. Such "phenotypic" diversity might be attributable to post-translational modifications and/or association of GPCRs with accessory proteins, however, post-transcriptional mechanisms are also likely to contribute. Although approximately 50% of GPCR genes are intronless, those that possess introns can undergo alternative splicing, generating GPCR subtype isoforms that may differ in their pharmacological, signalling and regulatory properties. In this review we shall highlight recent research into GPCR splice variation and discuss the potential consequences this might have for GPCR function in health and disease.
Collapse
Affiliation(s)
- Danijela Markovic
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Leicester, UK.
| | | |
Collapse
|
207
|
Piekielko-Witkowska A, Master A, Wojcicka A, Boguslawska J, Brozda I, Tanski Z, Nauman A. Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer. Thyroid 2009; 19:1105-13. [PMID: 19534619 DOI: 10.1089/thy.2008.0284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. METHODS Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). RESULTS Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. CONCLUSIONS Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.
Collapse
Affiliation(s)
- Agnieszka Piekielko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Center of Postgraduate Education, 01-813 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
208
|
Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, Iwai A, Sakai Y, Takahashi R, Chiba T. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer 2009; 125:2029-35. [PMID: 19585504 DOI: 10.1002/ijc.24565] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkin has a critical role in the ubiquitin-proteasome system as an E3-ligase targeting several substrates. Our recent finding that Parkin-deficient mice are susceptible to tumorigenesis provided evidence that Parkin is a tumor suppressor gene. Dysfunction of the Parkin gene is frequently observed in various human cancers, but the mechanism underlying the cell cycle disruption induced by Parkin dysfunction that leads to carcinogenesis is not known. Here, we demonstrated that Parkin expression in colonic epithelial cells is regulated in a cell cycle-associated manner. Epidermal growth factor (EGF) stimulation upregulated Parkin gene expression in human colon cells. Inhibition of the phosphoinositide 3-kinase [PI(3)K]-Akt-dependent pathways suppressed growth factor-induced Parkin expression. The expression of alternatively spliced Parkin isoforms with various deletions spanning exons 3-6 was detected in 18 of 43 (42%) human colorectal cancer tissues. Wild-type Parkin induced the degradation of cyclin E protein, but the alternatively spliced Parkin identified in colon cancers showed defective proteolysis of cyclin E. These findings indicate that Parkin expression is induced by growth factor stimulation and is involved in the cell cycle regulation of colon cells. Tumor-specific expression of alternatively spliced Parkin isoforms might contribute to enhanced cell proliferation through the attenuation of proteolysis-mediated cyclin E regulation in human colorectal cancers.
Collapse
Affiliation(s)
- Kyoko Ikeuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Ding W, Lin L, Ren F, Zou H, Duan Z, Dai J. Effects of splice sites on the intron retention in histamine H3 receptors from rats and mice. J Genet Genomics 2009; 36:475-82. [PMID: 19683670 DOI: 10.1016/s1673-8527(08)60137-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 05/11/2009] [Indexed: 11/28/2022]
Abstract
In the alternative splicing, intron retention, of histamine H(3) receptors in rats and mice, the short transcript isoforms that are excised alternatively spliced introns are easily detected in a very low level in rats and are undetectable in mice using the regular PCR protocol. The retained introns have common 5' splice site and different 3' splice sites. The detailed mechanism for the special alternative splicing remains largely unclear. In this study, we developed a minigene splicing system to recapitulate natural alternative splicing of the receptors and investigated the effects of 5' and 3' splice sites on intron retention in HeLa cells. Mutating weak 5' and 3' splice sites of the alternatively spliced introns toward the canonical consensus sequences promoted the splicing of the corresponding introns in rat and mouse minigenes. The effect of splice site strength was context-dependent and much more significant for the 3' splice site of the longer alternative intron than for the 3' splice site of the shorter alternative intron and the common 5' splice sites; it was also more significant in the rat minigene than in the mouse minigene. Mutating the 3' splice site of the longer alternative intron resulted in almost complete splicing of the intron and made the corresponding isoform to become the nearly exclusive transcript in the rat minigene.
Collapse
Affiliation(s)
- Wenyong Ding
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | | | |
Collapse
|
210
|
Focus on the splicing of secretin GPCRs transmembrane-domain 7. Trends Biochem Sci 2009; 34:443-52. [PMID: 19733082 DOI: 10.1016/j.tibs.2009.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/20/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
Abstract
The family of G-protein coupled receptors (GPCRs) is one of the largest protein families in the mammalian genome with a fundamental role in cell biology. GPCR activity is finely tuned by various transcriptional, post-transcriptional and post-translational mechanisms. Alternative pre-mRNA splicing is now emerging as a crucial process regulating GPCR biological function. Intriguingly, this mechanism appears to extensively target the Secretin family of GPCRs, especially the exon that encodes a 14 amino acid sequence that forms the distal part of 7th transmembrane helix, and exhibits an unusually high level of sequence conservation among most Secretin GPCRs. Do the "TMD7-short" receptor variants have a role as novel regulators of GPCR signallng and, if so, what are the implications for hormonal actions and physiology?
Collapse
|
211
|
Li M, Jin Y, Sun WJ, Yu Y, Bai J, Tong DD, Qi JP, Du JR, Geng JS, Huang Q, Huang XY, Huang Y, Han FF, Meng XN, Rosales JL, Lee KY, Fu SB. Reduced expression and novel splice variants of ING4 in human gastric adenocarcinoma. J Pathol 2009; 219:87-95. [PMID: 19479822 PMCID: PMC3855470 DOI: 10.1002/path.2571] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 04/16/2009] [Indexed: 01/06/2023]
Abstract
ING4, a new member of the ING (inhibitor of growth) family of tumour suppressor genes, has been found to be deleted or down-regulated in gliomas, breast tumours, and head and neck squamous cell carcinomas. The goal of the present study was to investigate whether the expression and alternative splicing of ING4 transcripts are involved in the initiation and progression of stomach adenocarcinoma. ING4 mRNA and protein expression was examined in gastric adenocarcinoma tissues and human gastric adenocarcinoma cell lines by RT-PCR, real-time RT-PCR, tissue microarray immunohistochemistry, and western blot analysis. Alterations in ING4 transcripts were determined through sequence analysis of ING4 cDNA. Our data showed that ING4 mRNA and protein were dramatically reduced in stomach adenocarcinoma cell lines and tissues, and significantly less in female than in male patients. We also found that reduced ING4 mRNA expression correlated with the stage of the tumour. Interestingly, by sequence analysis, we discovered five novel aberrantly spliced variant forms of ING4_v1 and ING4_v2. These variants cause a codon frame-shift and, eventually, deletion of the NLS or PHD domain contributing to the mislocalization of p53 and/or HAT/HDAC complexes and, subsequently, altered gene expression in gastric adenocarcinoma. These results suggest that attenuated and aberrant ING4 expression may be involved in the initiation and progression of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wen-jing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dan-dan Tong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Ji-ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-rong Du
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing-shu Geng
- Department of Pathology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Huang
- Morphology Center, Harbin Medical University, Harbin, China
| | - Xiao-yi Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Fei-fei Han
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiang-ning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jesusa L Rosales
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Canada
| | - Song-bin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin, China
| |
Collapse
|
212
|
Rajan P, Elliott DJ, Robson CN, Leung HY. Alternative splicing and biological heterogeneity in prostate cancer. Nat Rev Urol 2009; 6:454-60. [PMID: 19657379 DOI: 10.1038/nrurol.2009.125] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological diversity of prostate cancer confounds standardization of therapy. Advances in molecular profiling suggest that differences in the genetic composition of tumors significantly contribute to the complexity of the disease. Alternative pre-mRNA splicing is a key genetic process underlying biological diversity. During alternative splicing, coding and noncoding regions of a single gene are rearranged to generate several messenger RNA transcripts yielding distinct protein isoforms with differing biological functions. Misregulation of the splicing machinery and mutations in key regulatory elements affect splicing of cancer-relevant genes. In prostate cancer, aberrant and alternative splicing generates proteins that influence cell phenotypes and survival of patients. Splicing events may be exploited for clinical benefit, and technological advances are beginning to uncover novel biomarkers and therapeutic targets. Since splicing mediates information transfer from the genome to the proteome, it adds an important dimension to '-omics'-based molecular signatures used to individualize care of patients.
Collapse
|
213
|
Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation. EMBO J 2009; 28:2733-47. [PMID: 19644446 DOI: 10.1038/emboj.2009.216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/07/2009] [Indexed: 12/31/2022] Open
Abstract
The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1-MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity.
Collapse
|
214
|
Santoro A, Bica MG, Dagnino L, Agueli C, Salemi D, Cannella S, Veltroni M, Cetica V, Giarin E, Fabbiano F, Basso G, Arico M. Altered mRNA expression of PAX5 is a common event in acute lymphoblastic leukaemia. Br J Haematol 2009; 146:686-9. [PMID: 19604238 DOI: 10.1111/j.1365-2141.2009.07815.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
215
|
Gonçalves V, Matos P, Jordan P. Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet 2009; 18:3696-707. [DOI: 10.1093/hmg/ddp317] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
216
|
Ebbesen P, Pettersen EO, Gorr TA, Jobst G, Williams K, Kieninger J, Wenger RH, Pastorekova S, Dubois L, Lambin P, Wouters BG, Van Den Beucken T, Supuran CT, Poellinger L, Ratcliffe P, Kanopka A, Görlach A, Gasmann M, Harris AL, Maxwell P, Scozzafava A. Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem 2009; 24 Suppl 1:1-39. [PMID: 19005871 DOI: 10.1080/14756360902784425] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer cells in hypoxic areas of solid tumors are to a large extent protected against the action of radiation as well as many chemotherapeutic drugs. There are, however, two different aspects of the problem caused by tumor hypoxia when cancer therapy is concerned: One is due to the chemical reactions that molecular oxygen enters into therapeutically targeted cells. This results in a direct chemical protection against therapy by the hypoxic microenvironment, which has little to do with cellular biological regulatory processes. This part of the protective effect of hypoxia has been known for more than half a century and has been studied extensively. However, in recent years there has been more focus on the other aspect of hypoxia, namely the effect of this microenvironmental condition on selecting cells with certain genetic prerequisites that are negative with respect to patient prognosis. There are adaptive mechanisms, where hypoxia induces regulatory cascades in cells resulting in a changed metabolism or changes in extracellular signaling. These processes may lead to changes in cellular intrinsic sensitivity to treatment irrespective of oxygenation and, furthermore, may also have consequences for tissue organization. Thus, the adaptive mechanisms induced by hypoxia itself may have a selective effect on cells, with a fine-tuned protection against damage and stress of many kinds. It therefore could be that the adaptive mechanisms may take advantage of for new tumor labeling/imaging and treatment strategies. One of the Achilles' heels of hypoxia research has always been the exact measurements of tissue oxygenation as well as the control of oxygenation in biological tumor models. Thus, development of technology that can ease this control is vital in order to study mechanisms and perform drug development under relevant conditions. An integrated EU Framework project 2004-2009, termed EUROXY, demonstrates several pathways involved in transcription and translation control of the hypoxic cell phenotype and evidence of cross-talk with responses to pH and redox changes. The carbonic anhydrase isoenzyme CA IX was selected for further studies due to its expression on the surface of many types of hypoxic tumors. The effort has led to marketable culture flasks with sensors and incubation equipment, and the synthesis of new drug candidates against new molecular targets. New labeling/imaging methods for cancer diagnosing and imaging of hypoxic cancer tissue are now being tested in xenograft models and are also in early clinical testing, while new potential anti-cancer drugs are undergoing tests using xenografted tumor cancers. The present article describes the above results in individual consortium partner presentations.
Collapse
Affiliation(s)
- Peter Ebbesen
- Laboratory for Stem Cell Research, Aalborg University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, Cote GJ. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. ACTA ACUST UNITED AC 2009; 132:2277-88. [PMID: 19506066 DOI: 10.1093/brain/awp153] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a multi-functional RNA-binding protein that is aberrantly overexpressed in glioma. PTBP1 and its brain-specific homologue polypyrimidine tract-binding protein 2 (PTBP2) regulate neural precursor cell differentiation. However, the overlapping and non-overlapping target transcripts involved in this process are still unclear. To determine why PTBP1 and not PTBP2 would promote glial cell-derived tumours, both PTBP1 and PTBP2 were knocked down in the human glioma cell lines U251 and LN229 to determine the role of these proteins in cell proliferation, migration, and adhesion. Surprisingly, removal of both PTBP1 and PTBP2 slowed cell proliferation, with the double knockdown having no additive effects. Decreased expression of both proteins individually and in combination inhibited cell migration and increased adhesion of cells to fibronectin and vitronectin. A global survey of differential exon expression was performed following PTBP1 knockdown in U251 cells using the Affymetrix Exon Array to identify PTBP1-specific splicing targets that enhance gliomagenesis. In the PTBP1 knockdown, previously determined targets were unaltered in their splicing patterns. A single gene, RTN4 (Nogo) had significantly enhanced inclusion of exon 3 when PTBP1 was removed. Overexpression of the splice isoform containing exon 3 decreased cell proliferation to a similar degree as the removal of PTBP1. These results provide the first evidence that RNA-binding proteins affect the invasive and rapid growth characteristics of glioma cell lines. Its actions on proliferation appear to be mediated, in part, through alternative splicing of RTN4.
Collapse
Affiliation(s)
- Hannah C Cheung
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Ding W, Lin L, Xiao Z, Zou H, Duan Z, Dai J. Multiple sequence elements determine the intron retention in histamine H3 receptors in rats and mice. Int J Biochem Cell Biol 2009; 41:2281-6. [PMID: 19446035 DOI: 10.1016/j.biocel.2009.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
Intron retention in histamine H(3) receptors has been found in many mammals, including rats and mice. The short transcript isoforms that exclude alternatively spliced introns are readily detected in very low abundance in rats and are undetectable in mice using the regular PCR approach. The detailed mechanism for the special alternative splicing remains poorly understood. The aim of this work was to investigate the effects of essential splice signals on intron retention and to identify sequence elements that determine the differences in splicing between rats and mice. We have constructed a minigene-splicing system to mimic natural alternative receptor splicing and analyzed the regulatory elements in HEK293 cells. Mutating suboptimal 5' and 3' splice sites toward the consensus sequences can enhance the splicing of corresponding alternative introns. The effect is much more significant for the 3' splice site of the longer intron than for the other two splice sites; it is also more significant in rats than in mice. The splicing differences between rats and mice are primarily determined by the six discrepant nucleotides within the alternative introns, which promote or suppress the intron splicing in different ways and cooperate to make splicing of the two introns more efficient in rats. From these results we conclude that (1) the weakness of the splice sites is an important determinant for very low efficiency during intron splicing and, (2) multiple sequence elements determine the splicing differences between rats and mice. The results provide insight into special alternative splicing regulation in H(3) receptors.
Collapse
Affiliation(s)
- Wenyong Ding
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
219
|
Takeo K, Kawai T, Nishida K, Masuda K, Teshima-Kondo S, Tanahashi T, Rokutan K. Oxidative stress-induced alternative splicing of transformer 2beta (SFRS10) and CD44 pre-mRNAs in gastric epithelial cells. Am J Physiol Cell Physiol 2009; 297:C330-8. [PMID: 19439532 DOI: 10.1152/ajpcell.00009.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tra2beta gene encoding an alternative splicing regulator, transformer 2-beta (Tra2beta), generates five alternative splice variant transcripts (tra2beta1-5). Functionally active, full-length Tra2beta is encoded by tra2beta1 isoform. Expression and physiological significance of the other isoforms, particularly tra2beta4, are not fully understood. Rat gastric mucosa constitutively expressed tra2beta1 isoform and specifically generated tra2beta4 isoform that includes premature termination codon-containing exon 2, when exposed to restraint and water immersion stress. Treatment of a gastric cancer cell line (AGS) with arsenite (100 microM) preferentially generated tra2beta4 isoform and caused translocation of Tra2beta from the nucleus to the cytoplasm in association with enhanced phosphorylation during the initial 4-6 h (acute phase). Following the acute phase, AGS cells continued upregulated tra2beta1 mRNA expression, and higher amounts of Tra2beta were reaccumulated in their nuclei. Treatment with small interference RNAs targeting up-frameshift-1 or transfection of a plasmid containing tra2beta1 cDNA did not induce tra2beta4 isoform expression and did not modify the arsenite-induced expression of this isoform, suggesting that neither the nonsense-mediated mRNA decay nor the autoregulatory control by excess amounts of Tra2beta participated in the tra2beta4 isoform generation. Knockdown of Tra2beta facilitated skipping of the central variable region of the CD44 gene and suppressed cell growth. In contrast, overexpression of Tra2beta stimulated combinatorial inclusion of multiple variable exons in the region and cell growth. The similar skipping and inclusion of the variable region were observed in arsenite-treated cells. Our results suggest that Tra2beta may regulate cellular oxidative response by changing alternative splicing of distinct genes including CD44.
Collapse
Affiliation(s)
- Keiko Takeo
- Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
220
|
Analytical methods for inferring functional effects of single base pair substitutions in human cancers. Hum Genet 2009; 126:481-98. [PMID: 19434427 PMCID: PMC2762536 DOI: 10.1007/s00439-009-0677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
Abstract
Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence.
Collapse
|
221
|
Fackenthal JD, Godley LA. Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 2009; 1:37-42. [PMID: 19048051 DOI: 10.1242/dmm.000331] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the myriad of alterations present in cancer cells are an abundance of aberrant mRNA transcripts. Whether abnormal gene transcription is a by-product of cellular transformation or whether it represents an inherent element that contributes to the properties of cancer cells is not yet clear. Here, we present growing evidence that in many cases, aberrant mRNA transcripts contribute to essential phenotypes associated with transformed cells, suggesting that alterations in the splicing machinery are common and functionally important for cancer development. The proteins encoded by these abnormal transcripts are often truncated or missing domains, thereby altering protein function or conferring new functions altogether. Thus, aberrant splicing regulation has genome-wide effects, potentially altering gene expression in many cancer-associated pathways.
Collapse
Affiliation(s)
- James D Fackenthal
- Section of Hematology/Oncology, Department of Medicine and the Cancer Research Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
222
|
Gruver AM, Yard BD, McInnes C, Rajesh C, Pittman DL. Functional characterization and identification of mouse Rad51d splice variants. BMC Mol Biol 2009; 10:27. [PMID: 19327148 PMCID: PMC2667185 DOI: 10.1186/1471-2199-10-27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 03/27/2009] [Indexed: 11/10/2022] Open
Abstract
Background The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns. Results Yeast-2-hybrid analysis was used to determine that the Mus musculus Rad51d splice variant product RAD51DΔ7b (deleted for residues 219 through 223) was capable of interacting with both RAD51C and XRCC2 and that RAD51D+int3 interacted with XRCC2. In addition, the linker region (residues 54 through 77) of RAD51D was identified as a region that potentially mediates binding with XRCC2. Cellular localization, detected by EGFP fusion proteins, demonstrated that each of the splice variant products tested was distributed throughout the cell similar to the full-length protein. However, none of the splice variants were capable of restoring resistance of Rad51d-deficient cell lines to mitomycin C. RT-PCR expression analysis revealed that Rad51dΔ3 (deleted for exon 3) and Rad51dΔ5 (deleted for exon 5)transcripts display tissue specific expression patterns with Rad51dΔ3 being detected in each tissue except ovary and Rad51dΔ5 not detected in mammary gland and testis. These expression studies also led to the identification of two additional Rad51d ubiquitously expressed transcripts, one deleted for both exon 9 and 10 and one deleted for only exon 10. Conclusion These results suggest Rad51d alternative splice variants potentially modulate mechanisms of HR by sequestering either RAD51C or XRCC2.
Collapse
Affiliation(s)
- Aaron M Gruver
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina Campus, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
223
|
Koscielny G, Texier VL, Gopalakrishnan C, Kumanduri V, Riethoven JJ, Nardone F, Stanley E, Fallsehr C, Hofmann O, Kull M, Harrington E, Boué S, Eyras E, Plass M, Lopez F, Ritchie W, Moucadel V, Ara T, Pospisil H, Herrmann A, G. Reich J, Guigó R, Bork P, Doeberitz MVK, Vilo J, Hide W, Apweiler R, Thanaraj TA, Gautheret D. ASTD: The Alternative Splicing and Transcript Diversity database. Genomics 2009; 93:213-20. [DOI: 10.1016/j.ygeno.2008.11.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
224
|
Biamonti G, Caceres JF. Cellular stress and RNA splicing. Trends Biochem Sci 2009; 34:146-53. [PMID: 19208481 DOI: 10.1016/j.tibs.2008.11.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 01/02/2023]
Abstract
In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | |
Collapse
|
225
|
Abstract
Cellular functions depend on numerous protein-coding and noncoding RNAs and the RNA-binding proteins associated with them, which form ribonucleoprotein complexes (RNPs). Mutations that disrupt either the RNA or protein components of RNPs or the factors required for their assembly can be deleterious. Alternative splicing provides cells with an exquisite capacity to fine-tune their transcriptome and proteome in response to cues. Splicing depends on a complex code, numerous RNA-binding proteins, and an enormously intricate network of interactions among them, increasing the opportunity for exposure to mutations and misregulation that cause disease. The discovery of disease-causing mutations in RNAs is yielding a wealth of new therapeutic targets, and the growing understanding of RNA biology and chemistry is providing new RNA-based tools for developing therapeutics.
Collapse
Affiliation(s)
- Thomas A. Cooper
- Departments of Pathology and Molecular and Cellular Biology Baylor College of Medicine Houston, TX 77030, USA
| | - Lili Wan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, PA 19104, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, PA 19104, USA
| |
Collapse
|
226
|
Genetic sequence variations of BRCA1-interacting genes AURKA, BAP1, BARD1 and DHX9 in French Canadian Families with high risk of breast cancer. J Hum Genet 2009; 54:152-61. [DOI: 10.1038/jhg.2009.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
227
|
Zhang Q, Li Y, Liu G, Xu X, Song X, Liang B, Li R, Xie J, Du M, Xiao L, Gan X, Huang D. Alternative transcription initiation and splicing variants of the DHRS4 gene cluster. Biosci Rep 2009; 29:47-56. [PMID: 18754758 DOI: 10.1042/bsr20080040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The DHRS4 (short-chain dehydrogenase/reductase superfamily member 4) gene cluster, consisting of DHRS4 and its copy gene DHRS4L2, is localized on 14q11.2. The DHRS4 gene product NADP(H)-dependent retinol oxidoreductase participates in the metabolism of retinoids. The expression patterns of the DHRS4 gene cluster were investigated in human neuroblastoma cells. Transcript analysis of the DHRS4 gene cluster using 3'- and 5'-RACE (rapid amplification of cDNA ends), reverse transcription-PCR and bioinformatics approaches showed an alternative transcription start site in the copy gene DHRS4L2 which generates two transcripts, DHRS4A1 (GenBank(R) nucleotide sequence database accession number AY616183) and DHRS4A2 (AY943857), together with at least six alternative splicing variants (DHRS4A_v1-6) (AY920361, AY920362, DN237886, DN237887, DN237890 and DN237892 respectively), resulted from alternative splicing. DHRS4A1 and DHRS4A2 were specifically transcribed in neuroblastoma cells. RNA structural analysis of DHRS4A1 and DHRS4A2 suggested that they are non-coding RNAs. Expression analysis of DHRS4 by quantitative real-time PCR and Western blotting showed a lack of correlation between the levels of transcription and translation in the tissues examined. Bisulfite genomic sequencing PCR experiments indicated that the expression of DHRS4L2 was regulated by methylation of its CpG islands.
Collapse
Affiliation(s)
- Qiaoxia Zhang
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Mantina P, MacDonald L, Kulaga A, Zhao L, Hansen D. A mutation in teg-4, which encodes a protein homologous to the SAP130 pre-mRNA splicing factor, disrupts the balance between proliferation and differentiation in the C. elegans germ line. Mech Dev 2009; 126:417-29. [PMID: 19368799 DOI: 10.1016/j.mod.2009.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/31/2023]
Abstract
Dividing stem cells can give rise to two types of daughter cells; self-renewing cells that have virtually the same properties as the parent cell, and differentiating cells that will eventually form part of a tissue. The Caenorhabditis elegans germ line serves as a model to study how the balance between these two types of daughter cells is maintained. A mutation in teg-4 causes over-proliferation of the stem cells, thereby disrupting the balance between proliferation and differentiation. We have cloned teg-4 and found it to encode a protein homologous to the highly conserved splicing factor subunit 3 of SF3b. Our allele of teg-4 partially reduces TEG-4 function. In an effort to determine how teg-4 functions in controlling stem cell proliferation, we have performed genetic epistasis analysis with known factors controlling stem cell proliferation. We found that teg-4 is synthetic tumorous with genes in both major redundant genetic pathways that function downstream of GLP-1/Notch signaling to control the balance between proliferation and differentiation. Therefore, teg-4 is unlikely to function specifically in either of these two genetic pathways. Further, the synthetic tumorous phenotype seen with one of the genes from these pathways is epistatic to glp-1, indicating that teg-4 functions downstream of glp-1, likely as a positive regulator of meiotic entry. We propose that a reduction in teg-4 activity reduces the splicing efficiency of targets involved in controlling the balance between proliferation and differentiation. This results in a shift in the balance towards proliferation, eventually forming a germline tumor.
Collapse
Affiliation(s)
- Pallavi Mantina
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
229
|
Sze KMF, Ching YP, Jin DY, Ng IOL. Role of a novel splice variant of mitotic arrest deficient 1 (MAD1), MAD1beta, in mitotic checkpoint control in liver cancer. Cancer Res 2008; 68:9194-201. [PMID: 19010891 DOI: 10.1158/0008-5472.can-08-2600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of mitotic checkpoint contributes to chromosomal instability, leading to carcinogenesis. In this study, we identified a novel splicing variant of mitotic arrest deficient 1 (MAD1), designated MAD1beta, and investigated its role in mitotic checkpoint control in hepatocellular carcinoma (HCC). The expression levels of human MAD1beta were examined in hepatoma cell lines and human HCC samples. The functional roles of MAD1beta in relation to the mitotic checkpoint control, chromosomal instability, and binding with MAD2 were assessed in hepatoma cell lines. On sequencing, MAD1beta was found to have deletion of exon 4. It was expressed at both mRNA and protein levels in the nine hepatoma cell lines tested and was overexpressed in 12 of 50 (24%) human HCCs. MAD1beta localized in the cytoplasm, whereas MAD1alpha was found in the nucleus. This cytoplasmic localization of MAD1beta was due to the absence of a nuclear localization signal in MAD1alpha. In addition, MAD1beta was found to physically interact with MAD2 and sequester it in the cytoplasm. Furthermore, expression of MAD1beta induced mitotic checkpoint impairment, chromosome bridge formation, and aberrant chromosome numbers via binding with MAD2. Our data suggest that the novel splicing variant MAD1beta may have functions different from those of MAD1alpha and may play opposing roles to MAD1alpha in mitotic checkpoint control in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Karen Man-Fong Sze
- Liver Cancer and Hepatitis Research Laboratory, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
230
|
A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 2008; 134:221-7. [PMID: 19105971 DOI: 10.1016/j.jconrel.2008.11.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 02/03/2023]
Abstract
Aberrations in splicing patterns play a significant role in several diseases, and splice correction, together with other forms of gene regulation, is consequently an emerging therapeutic target. In order to achieve successful oligonucleotide transfection, efficient delivery vectors are generally necessary. In this study we present one such vector, the chemically modified cell-penetrating peptide (CPP) TP10, for efficient delivery of a splice-correcting 2'-OMe RNA oligonucleotide. Utilizing a functional splice correction assay, we assessed the transfection efficiency of non-covalent complexes of oligonucleotides and stearylated or cysteamidated CPPs. Stearylation of the CPPs Arg9 and penetratin, as well as cysteamidation of MPG and TP10, did not improve transfection, whereas the presence of an N-terminal stearyl group on TP10 improved delivery efficiency remarkably compared to the unmodified peptide. The splice correction levels observed with stearyl-TP10 are in fact in parity with the effects seen with the commercially available transfection agent Lipofectamine 2000. However, the inherent toxicity associated with cationic lipid-based transfections can be completely eliminated when using the stearylated TP10, making this vector highly promising for non-covalent delivery of negatively charged oligonucleotides.
Collapse
|
231
|
Gonçalves V, Matos P, Jordan P. The beta-catenin/TCF4 pathway modifies alternative splicing through modulation of SRp20 expression. RNA (NEW YORK, N.Y.) 2008; 14:2538-49. [PMID: 18952824 PMCID: PMC2590949 DOI: 10.1261/rna.1253408] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 09/15/2008] [Indexed: 05/24/2023]
Abstract
Gene expression programs can become activated in response to extracellular signals. One evolutionarily conserved example is binding of Wnt glycoproteins to their receptor, which triggers a signal transduction cascade that stabilizes cytoplasmic beta-catenin protein, allowing it to translocate into the nucleus. There, beta-catenin binds to TCF/Lef family transcription factors and promotes the expression of target genes. Mutations in either the beta-catenin gene itself or its partner protein APC are responsible for the oncogenic activation of this pathway in colorectal tumors. Here we report the splicing factor SRp20 as a novel target gene of beta-catenin/TCF4 signaling. Transfection of activated beta-catenin mutants into colorectal cells increased expression of endogenous SRp20 transcript and protein and also stimulated a luciferase reporter construct containing the SRp20 gene promoter. In contrast, inhibition of endogenous beta-catenin signaling by a dominant-negative TCF4 construct down-regulated both luciferase reporter and SRp20 expression. We further demonstrate that the beta-catenin/TCF4-mediated increase in SRp20 protein levels is sufficient to modulate alternative splicing decisions in the cells. In particular, we observed a change in the alternative splicing pattern in a control minigene reporter as well as in the endogenous SRp20-regulated CD44 cell adhesion protein. These results demonstrate that the beta-catenin/TCF4 pathway not only stimulates gene transcription, but also promotes the generation of transcript variants through alternative splicing. Our data support the recent notion that transcription and alternative splicing represent two different layers of gene expression and that signaling pathways act upon a coordinated network of transcripts in each layer.
Collapse
Affiliation(s)
- Vânia Gonçalves
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | |
Collapse
|
232
|
Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure 2008; 16:1605-15. [PMID: 19000813 DOI: 10.1016/j.str.2008.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 12/14/2022]
Abstract
Most eukaryotic pre-mRNAs contain non-coding sequences (introns) that must be removed in order to accurately place the coding sequences (exons) in the correct reading frame. This critical regulatory pre-mRNA splicing event is fundamental in development and cancer. It occurs within a mega-Dalton multicomponent machine composed of RNA and proteins, which undergoes dynamic changes in RNA-RNA, RNA-protein, and protein-protein interactions during the splicing reaction. Recent years have seen progress in functional and structural analyses of the splicing machine and its subcomponents, and this review is focused on structural aspects of the pre-mRNA splicing machine and their mechanistic implications on the splicing of multi-intronic pre-mRNAs. It brings together, in a comparative manner, structural information on spliceosomes and their intermediates in the stepwise assembly process in vitro, and on the preformed supraspliceosomes, which are isolated from living cell nuclei, with a view of portraying a consistent picture.
Collapse
Affiliation(s)
- Joseph Sperling
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
233
|
Grosso AR, Martins S, Carmo-Fonseca M. The emerging role of splicing factors in cancer. EMBO Rep 2008; 9:1087-93. [PMID: 18846105 DOI: 10.1038/embor.2008.189] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/05/2008] [Indexed: 11/09/2022] Open
Abstract
Recent progress in global sequence and microarray data analysis has revealed the increasing complexity of the human transcriptome. Alternative splicing generates a huge diversity of transcript variants and disruption of splicing regulatory networks is emerging as an important contributor to various diseases, including cancer. Current efforts to establish the dynamic repertoire of transcripts that are generated in health and disease are showing that many cancer-associated alternative-splicing events occur in the absence of mutations in the affected genes. A growing body of evidence reveals changes in splicing-factor expression that correlate with cancer development, progression and response to therapy. Here, we discuss how recent links between cancer and altered expression of proteins implicated in splicing regulation are bringing the splicing machinery to the fore as a potential target for anticancer treatment.
Collapse
Affiliation(s)
- Ana Rita Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
234
|
Chuman Y, Kurihashi W, Mizukami Y, Nashimoto T, Yagi H, Sakaguchi K. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J Biochem 2008; 145:1-12. [PMID: 18845566 DOI: 10.1093/jb/mvn135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PPM1D is a PPM1 type protein phosphatase and is induced in response to DNA damage. PPM1D-deficient mice show defects in spermatogenesis and lymphoid cell functions but the mechanisms underlying these phenotypes remain unknown. In our current study, we identify and characterize an alternative splicing variant (denoted PPM1D430) of human PPM1D at both the mRNA and protein level. PPM1D430 comprises the common 420 residues of the known PPM1D protein (PPM1D605) and contains a stretch of PPM1D430-specific 10 amino acids. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that PPM1D430 mRNA is also induced in response to the genotoxic stress in a p53-dependent manner. In vitro phosphatase analysis and PPM1D430-specific RNA interference analysis further indicated that PPM1D430 can dephosphorylate Ser15 of human p53 both in vitro and in vivo. On the other hand, expression profiling of this gene by RT-PCR analysis of a human tissue cDNA panel revealed that PPM1D430 is expressed exclusively in testes and in leucocytes whereas PPM1D605 is ubiquitous. In addition, PPM1D430 shows a different subcellular localization pattern and protein stability when compared with PPM1D605 under some conditions. Our current findings thus suggest that PPM1D430 may exert specific functions in immune response and/or spermatogenesis.
Collapse
Affiliation(s)
- Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
235
|
Kang YK, Schiff R, Ko L, Wang T, Tsai SY, Tsai MJ, W. O’Malley B. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis. Cancer Res 2008; 68:7887-96. [PMID: 18829545 PMCID: PMC2597518 DOI: 10.1158/0008-5472.can-08-1734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Cycle/genetics
- Cell Line
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cyclin D1/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor/physiology
- Genes, myc
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Kidney/metabolism
- Kidney/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Nude
- Models, Biological
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Isoforms/physiology
- Proto-Oncogene Mas
- S-Phase Kinase-Associated Proteins/genetics
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yun Kyoung Kang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Rachel Schiff
- Breast Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Lan Ko
- Medical College of Georgia, 1120 15th Street, CB2803, Augusta, GA 30912
| | - Tao Wang
- Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
236
|
Anczuków O, Buisson M, Salles MJ, Triboulet S, Longy M, Lidereau R, Sinilnikova OM, Mazoyer S. Unclassified variants identified in BRCA1 exon 11: Consequences on splicing. Genes Chromosomes Cancer 2008; 47:418-26. [PMID: 18273839 DOI: 10.1002/gcc.20546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Numerous mutations identified in breast/ovarian cancer families occur in splice sites of the BRCA1 gene. Splicing can also be disrupted by mutations occurring in exonic splicing enhancer (ESE) sequences. It is important to identify those mutations among the large number of nontruncating sequence variants that are identified during molecular diagnosis, as this could help to classify some of them as cancer predisposing. Several software programs have been designed to identify ESEs and can therefore be used to predict the outcome of genetic variation. However, it is not known whether these predictions are relevant in the case of BRCA1 exon 11 (3.4 kb). In this study, we assessed the consequences on splicing of 108 exon 11 variants identified in French breast/ovarian cancer families, most of them predicted to alter putative ESEs, and of nine variants located in the exon 11 alternative donor splice site. We employed a BRCA1 minigene consisting of exon 10 to 12, into which we introduced separately each of the variants to be tested. RNA was analyzed by RT-PCR after transient transfection of the resulting minigenes. None of the tested variants was found to dramatically alter splicing through disruption of an ESE. However, we identified several variants in the alternative donor splice site that are likely to be of biological significance as they appear to favor the expression of BRCA1-Delta11b over that of the full-length transcript. The results of this study will be of value to classify BRCA1 exon 11 variants of unknown significance. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Olga Anczuków
- Laboratoire de Génétique Moléculaire, Signalisation et Cancer UMR5201 CNRS, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Brown-Bryan TA, Leoh LS, Ganapathy V, Pacheco FJ, Mediavilla-Varela M, Filippova M, Linkhart TA, Gijsbers R, Debyser Z, Casiano CA. Alternative splicing and caspase-mediated cleavage generate antagonistic variants of the stress oncoprotein LEDGF/p75. Mol Cancer Res 2008; 6:1293-307. [PMID: 18708362 PMCID: PMC2790462 DOI: 10.1158/1541-7786.mcr-08-0125] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence that an augmented state of cellular oxidative stress modulates the expression of stress genes implicated in diseases associated with health disparities such as certain cancers and diabetes. Lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, is emerging as a survival oncoprotein that promotes resistance to oxidative stress-induced cell death and chemotherapy. We previously showed that LEDGF/p75 is targeted by autoantibodies in prostate cancer patients and is overexpressed in prostate tumors, and that its stress survival activity is abrogated during apoptosis. LEDGF/p75 has a COOH-terminally truncated splice variant, p52, whose role in stress survival and apoptosis has not been thoroughly investigated. We observed unbalanced expression of these proteins in a panel of tumor cell lines, with LEDGF/p75 generally expressed at higher levels. During apoptosis, caspase-3 cleaved p52 to generate a p38 fragment that lacked the NH(2)-terminal PWWP domain and failed to transactivate the Hsp27 promoter in reporter assays. However, p38 retained chromatin association properties and repressed the transactivation potential of LEDGF/p75. Overexpression of p52 or its variants with truncated PWWP domains in several tumor cell lines induced apoptosis, an activity that was linked to the presence of an intron-derived COOH-terminal sequence. These results implicate the PWWP domain of p52 in transcription function but not in chromatin association and proapoptotic activities. Consistent with their unbalanced expression in tumor cells, LEDGF/p75 and p52 seem to play antagonistic roles in the cellular stress response and could serve as targets for novel antitumor therapies.
Collapse
Affiliation(s)
- Terry A. Brown-Bryan
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Division of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, California
| | - Lai S. Leoh
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Division of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, California
| | - Vidya Ganapathy
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Division of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, California
| | - Fabio J. Pacheco
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Biological Sciences, Centro Universitário Adventista de São Paulo, São Paulo, Brazil
| | - Melanie Mediavilla-Varela
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Division of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, California
| | - Maria Filippova
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California
| | - Thomas A. Linkhart
- Muskuloskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California
| | - Rik Gijsbers
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium
| | - Zeger Debyser
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Division of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
238
|
Cloutier P, Toutant J, Shkreta L, Goekjian S, Revil T, Chabot B. Antagonistic Effects of the SRp30c Protein and Cryptic 5 ′ Splice Sites on the Alternative Splicing of the Apoptotic Regulator Bcl-x. J Biol Chem 2008; 283:21315-24. [DOI: 10.1074/jbc.m800353200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
239
|
Patek CE, Arends MJ, Rose L, Luo F, Walker M, Devenney PS, Berry RL, Lawrence NJ, Ridgway RA, Sansom OJ, Hooper ML. The pro-apoptotic K-Ras 4A proto-oncoprotein does not affect tumorigenesis in the ApcMin/+ mouse small intestine. BMC Gastroenterol 2008; 8:24. [PMID: 18554389 PMCID: PMC2442095 DOI: 10.1186/1471-230x-8-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 06/13/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alterations in gene splicing occur in human sporadic colorectal cancer (CRC) and may contribute to tumour progression. The K-ras proto-oncogene encodes two splice variants, K-ras 4A and 4B, and K-ras activating mutations which jointly affect both isoforms are prevalent in CRC. Past studies have established that splicing of both the K-ras oncogene and proto-oncogene is altered in CRC in favour of K-ras 4B. The present study addressed whether the K-Ras 4A proto-oncoprotein can suppress tumour development in the absence of its oncogenic allele, utilising the ApcMin/+ (Min) mouse that spontaneously develops intestinal tumours that do not harbour K-ras activating mutations, and the K-rastmDelta4A/tmDelta4A mouse that can express the K-ras 4B splice variant only. By this means tumorigenesis in the small intestine was compared between ApcMin/+, K-ras+/+ and ApcMin/+, K-rastmDelta4A/tmDelta4A mice that can, and cannot, express the K-ras 4A proto-oncoprotein respectively. METHODS The relative levels of expression of the K-ras splice variants in normal small intestine and small intestinal tumours were quantified by real-time RT-qPCR analysis. Inbred (C57BL/6) ApcMin/+, K-ras+/+ and ApcMin/+, K-rastmDelta4A/tmDelta4A mice were generated and the genotypes confirmed by PCR analysis. Survival of stocks was compared by the Mantel-Haenszel test, and tumour number and area compared by Student's t-test in outwardly healthy mice at approximately 106 and 152 days of age. DNA sequencing of codons 12, 13 and 61 was performed to confirm the intestinal tumours did not harbour a K-ras activating mutation. RESULTS The K-ras 4A transcript accounted for about 50% of K-ras expressed in the small intestine of both wild-type and Min mice. Tumours in the small intestine of Min mice showed increased levels of K-ras 4B transcript expression, but no appreciable change in K-ras 4A transcript levels. No K-ras activating mutations were detected in 27 intestinal tumours derived from Min and compound mutant Min mice. K-Ras 4A deficiency did not affect mouse survival, or tumour number, size or histopathology. CONCLUSION The K-Ras 4A proto-oncoprotein does not exhibit tumour suppressor activity in the small intestine, even though the K-ras 4A/4B ratio is reduced in adenomas lacking K-ras activating mutations.
Collapse
Affiliation(s)
- Charles E Patek
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Mark J Arends
- Department of Pathology, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Lorraine Rose
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Rheumatic Diseases Unit, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Feijun Luo
- Department of Pathology, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Marion Walker
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Division of Oncology, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, ,EH4 2XU, UK
| | - Paul S Devenney
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Comparative and Developmental Genetics, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Rachel L Berry
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Comparative and Developmental Genetics, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Nicola J Lawrence
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Department of Genetics, Erasmus University Medical Centre, Dr. Molewaterplein, Rotterdam, 3015 GE, The Netherlands
| | - Rachel A Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin L Hooper
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
240
|
Cork DMW, Lennard TWJ, Tyson-Capper AJ. Alternative splicing and the progesterone receptor in breast cancer. Breast Cancer Res 2008; 10:207. [PMID: 18557990 PMCID: PMC2481493 DOI: 10.1186/bcr2097] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions.
Collapse
Affiliation(s)
- David M W Cork
- Surgical and Reproductive Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | | |
Collapse
|
241
|
Cheung HC, Baggerly KA, Tsavachidis S, Bachinski LL, Neubauer VL, Nixon TJ, Aldape KD, Cote GJ, Krahe R. Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays. BMC Genomics 2008; 9:216. [PMID: 18474104 PMCID: PMC2410136 DOI: 10.1186/1471-2164-9-216] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/12/2008] [Indexed: 12/22/2022] Open
Abstract
Background Tumor-predominant splice isoforms were identified during comparative in silico sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples. Results In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2). Our data indicate that large changes (> 5-fold) in alternative splicing are infrequent in gliomagenesis (< 3% of interrogated RefSeq entries). The lack of splicing changes may derive from the small number of splicing factors observed to be aberrantly expressed. Conclusion While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by in silico mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.
Collapse
Affiliation(s)
- Hannah C Cheung
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M, D, Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, Villanueva A, Loke J, Tarocchi M, Akita K, Shirasawa S, Sasazuki T, Martignetti JA, Llovet JM, Friedman SL. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology 2008; 134:1521-31. [PMID: 18471523 PMCID: PMC2600656 DOI: 10.1053/j.gastro.2008.02.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 02/02/2008] [Accepted: 02/07/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide and the third most lethal. Dysregulation of alternative splicing underlies a number of human diseases, yet its contribution to liver cancer has not been explored fully. The Krüppel-like factor 6 (KLF6) gene is a zinc finger transcription factor that inhibits cellular growth in part by transcriptional activation of p21. KLF6 function is abrogated in human cancers owing to increased alternative splicing that yields a dominant-negative isoform, KLF6 splice variant 1 (SV1), which antagonizes full-length KLF6-mediated growth suppression. The molecular basis for stimulation of KLF6 splicing is unknown. METHODS In human HCC samples and cell lines, we functionally link oncogenic Ras signaling to increased alternative splicing of KLF6 through signaling by phosphatidylinositol-3 kinase and Akt, mediated by the splice regulatory protein ASF/SF2. RESULTS In 67 human HCCs, there is a significant correlation between activated Ras signaling and increased KLF6 alternative splicing. In cultured cells, Ras signaling increases the expression of KLF6 SV1, relative to full-length KLF6, thereby enhancing proliferation. Abrogation of oncogenic Ras signaling by small interfering RNA (siRNA) or a farnesyl-transferase inhibitor decreases KLF6 SV1 and suppresses growth. Growth inhibition by farnesyl-transferase inhibitor in transformed cell lines is overcome by ectopic expression of KLF6 SV1. Down-regulation of the splice factor ASF/SF2 by siRNA increases KLF6 SV1 messenger RNA levels. KLF6 alternative splicing is not coupled to its transcriptional regulation. CONCLUSIONS Our findings expand the role of Ras in human HCC by identifying a novel mechanism of tumor-suppressor inactivation through increased alternative splicing mediated by an oncogenic signaling cascade.
Collapse
Affiliation(s)
- Steven Yea
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Goutham Narla
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Xiao Zhao
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Rakhi Garg
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Sigal Tal-Kremer
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Eldad Hod
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Augusto Villanueva
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Johnny Loke
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Mirko Tarocchi
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Kunihara Akita
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Senji Shirasawa
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Takehiko Sasazuki
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Josep M Llovet
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- BCLC Group, Liver Unit, Hospital Clinic, Barcelona
| | - Scott L Friedman
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| |
Collapse
|
243
|
Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY, Elliott DJ. The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol 2008; 215:67-77. [PMID: 18273831 DOI: 10.1002/path.2324] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 12/30/2007] [Indexed: 11/10/2022]
Abstract
The RNA-binding protein Sam68 has been reported to be up-regulated in clinical cases of prostate cancer (PCa), where it is thought to contribute to cell proliferation and survival. Consistent with this, we observed over-expression of Sam68 in a panel of clinical prostate tumours as compared with benign controls. Since Sam68 is implicated in a number of signalling pathways, we reasoned that its role in PCa may involve modulation of the androgen receptor (AR) signalling cascade, which drives the onset and progression of PCa. We found that Sam68 interacts with the AR in vivo in LNCaP cells, and is dynamically recruited to androgen response elements within the promoter region of the prostate-specific antigen (PSA) gene. Based on its known functions and nuclear location, Sam68 might either: (a) co-regulate AR-dependent transcription positively or negatively; or (b) modulate AR-dependent alternative splicing by enhancing incorporation of a Sam68-responsive exon transcribed under the control of an androgen-responsive promoter. We tested these possibilities using functional assays. Both wild-type Sam68 protein and the Sam68(V229F) mutant, which is impaired in RNA binding, functioned as a ligand-dependent AR co-activator on an androgen-regulated reporter gene. In contrast, splicing of a Sam68-responsive variable exon, transcribed under control of an androgen-responsive promoter, was strongly repressed in the presence of AR and androgens. This splicing inhibition was reversed by ectopic expression of Sam68 but enhanced by Sam68(V229F). These results demonstrate that Sam68 has separable effects on AR-regulated transcriptional activity and alternative splicing, both of which may affect PCa phenotypes.
Collapse
Affiliation(s)
- P Rajan
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | |
Collapse
|
244
|
Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci U S A 2008; 105:6004-9. [PMID: 18413612 DOI: 10.1073/pnas.0710748105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pre-mRNA splicing and polyadenylation are tightly connected to transcription, and transcriptional stimuli and elongation dynamics can affect mRNA maturation. However, whether this regulatory mechanism has a physio/pathological impact is not known. In cancer, where splice variant expression is often deregulated, many mutated oncogenes are transcriptional regulators. In particular, the Ewing sarcoma (EwSa) oncogene, resulting from a fusion of the EWS and FLI1 genes, encodes a well characterized transcription factor. EWS-FLI1 directly stimulates transcription of the CCND1 protooncogene encoding cyclin D1a and a less abundant but more oncogenic splice isoform, D1b. We show that, although both EWS and EWS-FLI1 enhance cyclin D1 gene expression, they regulate the D1b/D1a transcript ratio in an opposite manner. Detailed analyses of RNA polymerase dynamics along the gene and of the effects of an inhibitor of elongation show that EWS-FLI1 favors D1b isoform expression by decreasing the elongation rate, whereas EWS has opposite effects. As a result, the D1b/D1a ratio is elevated in EwSa cell lines and tumors. The endogenous D1b protein is enriched in nuclei, where the oncogenic activity of cyclin D1 is known to occur, and depleting D1b in addition to D1a results in a stronger reduction of EwSa cell growth than depleting D1a only. These data show that elevated expression of a splice isoform in cancer can be due to an alteration of the transcription process by a mutated transcriptional regulator and provide evidence for a physio/pathological impact of the coupling between transcription and mRNA maturation.
Collapse
|
245
|
Pymar LS, Platt FM, Askham JM, Morrison EE, Knowles MA. Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Hum Mol Genet 2008; 17:2006-17. [PMID: 18397877 PMCID: PMC2427143 DOI: 10.1093/hmg/ddn098] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
More than 50% of transitional cell carcinomas of the bladder show loss of heterozygosity of a region spanning the TSC1 locus at 9q34 and mutations of TSC1 have been identified in 14.5% of tumours. These comprise nonsense mutations, splicing mutations, small deletions and missense mutations. Missense mutations are only rarely found in the germline in TSC disease. Therefore, we have examined six somatic missense mutations found in bladder cancer to determine whether these result in loss of function. We describe loss of function via distinct mechanisms. Five mutations caused mutually exclusive defects at mRNA and protein levels. Of these, two mutations caused pre-mRNA splicing errors that were predicted to result in premature protein truncation and three resulted in markedly reduced stability of exogenous TSC1 protein. Primary tumours with aberrant TSC1 pre-mRNA splicing were confirmed as negative for TSC1 expression by immunohistochemistry. Expression was also significantly reduced in a tumour with a TSC1 missense mutation resulting in diminished protein half-life. A single TSC1 missense mutation identified in a tumour with retained heterozygosity of the TSC1 region on chromosome 9 caused an apparently TSC2- and mTOR-independent localization defect of the mutant protein. We conclude that although TSC1 missense mutations do not play a major role in causation of TSC disease, they represent a significant proportion of somatic loss of function mutations in bladder cancer.
Collapse
Affiliation(s)
- Louis S Pymar
- Cancer Research UK Clinical Centre in Leeds, Leeds Institute for Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | | | | | |
Collapse
|
246
|
Thorsen K, Sørensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AMK, Kruhøffer M, Laurberg S, Borre M, Wang K, Brunak S, Krainer AR, Tørring N, Dyrskjøt L, Andersen CL, Orntoft TF. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics 2008; 7:1214-24. [PMID: 18353764 DOI: 10.1074/mcp.m700590-mcp200] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages from colon, urinary bladder, and prostate. We identified 2069 candidate alternative splicing events between normal tissue samples from colon, bladder, and prostate and selected 15 splicing events for RT-PCR validation, 10 of which were successfully validated by RT-PCR and sequencing. Furthermore 23, 19, and 18 candidate tumor-specific splicing alterations in colon, bladder, and prostate, respectively, were selected for RT-PCR validation on an independent set of 81 normal and tumor tissue samples. In total, seven genes with tumor-specific splice variants were identified (ACTN1, CALD1, COL6A3, LRRFIP2, PIK4CB, TPM1, and VCL). The validated tumor-specific splicing alterations were highly consistent, enabling clear separation of normal and cancer samples and in some cases even of different tumor stages. A subset of the tumor-specific splicing alterations (ACTN1, CALD1, and VCL) was found in all three organs and may represent general cancer-related splicing events. In silico protein predictions suggest that the identified cancer-specific splice variants encode proteins with potentially altered functions, indicating that they may be involved in pathogenesis and hence represent novel therapeutic targets. In conclusion, we identified and validated alternative splicing between normal tissue samples from colon, bladder, and prostate in addition to cancer-specific splicing events in colon, bladder, and prostate cancer that may have diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Kasper Thorsen
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Ritchie W, Granjeaud S, Puthier D, Gautheret D. Entropy measures quantify global splicing disorders in cancer. PLoS Comput Biol 2008; 4:e1000011. [PMID: 18369415 PMCID: PMC2268240 DOI: 10.1371/journal.pcbi.1000011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 01/28/2008] [Indexed: 11/19/2022] Open
Abstract
Most mammalian genes are able to express several splice variants in a phenomenon known as alternative splicing. Serious alterations of alternative splicing occur in cancer tissues, leading to expression of multiple aberrant splice forms. Most studies of alternative splicing defects have focused on the identification of cancer-specific splice variants as potential therapeutic targets. Here, we examine instead the bulk of non-specific transcript isoforms and analyze their level of disorder using a measure of uncertainty called Shannon's entropy. We compare isoform expression entropy in normal and cancer tissues from the same anatomical site for different classes of transcript variations: alternative splicing, polyadenylation, and transcription initiation. Whereas alternative initiation and polyadenylation show no significant gain or loss of entropy between normal and cancer tissues, alternative splicing shows highly significant entropy gains for 13 of the 27 cancers studied. This entropy gain is characterized by a flattening in the expression profile of normal isoforms and is correlated to the level of estimated cellular proliferation in the cancer tissue. Interestingly, the genes that present the highest entropy gain are enriched in splicing factors. We provide here the first quantitative estimate of splicing disruption in cancer. The expression of normal splice variants is widely and significantly disrupted in at least half of the cancers studied. We postulate that such splicing disorders may develop in part from splicing alteration in key splice factors, which in turn significantly impact multiple target genes.
Collapse
Affiliation(s)
- William Ritchie
- Université de la Méditerranée, INSERM ERM 206, Technologies Avancées pour le Génome et la Clinique, Marseille, France
| | - Samuel Granjeaud
- Université de la Méditerranée, INSERM ERM 206, Technologies Avancées pour le Génome et la Clinique, Marseille, France
| | - Denis Puthier
- Université de la Méditerranée, INSERM ERM 206, Technologies Avancées pour le Génome et la Clinique, Marseille, France
| | - Daniel Gautheret
- Université Paris-Sud 11, CNRS UMR 8621, Institut de Génétique et Microbiologie, Orsay, France
- * E-mail:
| |
Collapse
|
248
|
Haapasalo J, Hilvo M, Nordfors K, Haapasalo H, Parkkila S, Hyrskyluoto A, Rantala I, Waheed A, Sly WS, Pastorekova S, Pastorek J, Parkkila AK. Identification of an alternatively spliced isoform of carbonic anhydrase XII in diffusely infiltrating astrocytic gliomas. Neuro Oncol 2008; 10:131-8. [PMID: 18322268 DOI: 10.1215/15228517-2007-065] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Carbonic anhydrase XII (CA XII) is a transmembrane enzyme that is associated with neoplastic growth. CA XII has been proposed to be involved in acidification of the extracellular milieu, creating an appropriate microenvironment for rapid tumor growth. Because RNA sequence databases have indicated that two isoforms of CA XII might exist in human tissues, and because alternatively spliced protein forms have been linked to aggressive behavior of cancer cells, we designed a study to evaluate the presence of the two forms of CA XII in diffuse astrocytomas, a tumor type known for its aggressive and often noncurable behavior. Reverse transcription PCR of tumor samples surprisingly revealed that CA XII present in diffuse astrocytomas is mainly encoded by a shorter mRNA variant. We further showed by Western blotting that anti-CA XII antibody recognized both isoforms in the glioblastoma cell lines, and we then evaluated the expression of CA XII in astrocytomas using immunohistochemistry and correlated the results with various clinicopathological and molecular factors. Of 370 diffusely infiltrating astrocytomas, 363 cases (98%) showed immunoreactions for CA XII. Importantly, CA XII expression correlated with poorer patient prognosis in univariate (p = 0.010, log-rank test) and multivariate survival analyses (p = 0.039, Cox analysis). From these results, we conclude that CA XII is commonly expressed in diffuse astrocytomas and that it might be used as a biomarker of poor prognosis. The absence of 11 amino acids in the shorter isoform, which seems to be common in astrocytomas, may affect the normal quaternary structure and biological function of CA XII.
Collapse
Affiliation(s)
- Joonas Haapasalo
- Institute of Medical Technology, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Thakur A, Bollig A, Wu J, Liao DJ. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice. Mol Cancer 2008; 7:11. [PMID: 18218118 PMCID: PMC2259361 DOI: 10.1186/1476-4598-7-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 01/24/2008] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Results Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. Conclusion We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.
Collapse
Affiliation(s)
- Archana Thakur
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E, Warren Ave,, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
250
|
Li L, Ryser S, Dizin E, Pils D, Krainer M, Jefford CE, Bertoni F, Zeillinger R, Irminger-Finger I. Oncogenic BARD1 isoforms expressed in gynecological cancers. Cancer Res 2008; 67:11876-85. [PMID: 18089818 DOI: 10.1158/0008-5472.can-07-2370] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BARD1 is required for protein stability and tumor suppressor functions of BRCA1, which depend on the ubiquitin ligase activity of the BRCA1-BARD1 heterodimer. The NH(2)-terminal RING domains of both proteins act as interaction modules and form a ubiquitin ligase, which has functions in DNA repair, cell cycle checkpoint regulation, and mitosis. Interestingly, up-regulated expression of truncated BARD1 isoforms was found to be associated with poor prognosis in breast and ovarian cancers and, in a hormonally regulated fashion, in the human cytotrophoblast, a cell type with properties reminiscent of cancer cells. We therefore performed reverse transcription-PCR to determine the structure of BARD1 isoforms in cell lines derived from hormone-dependent and hormone-independent cancers. We found a specific combination of isoforms, generated by differential splicing and alternative transcription initiation, mostly lacking the BRCA1 interaction domain, in gynecologic but not hematologic cancer cell lines. To investigate the prevalence of BARD1 isoforms in tumors, we applied immunohistochemistry to ovarian cancers, using antibodies distinguishing full-length BARD1 and isoforms. Expression of NH(2) terminally truncated BARD1 was correlated with advanced stage of cancer, and expression of spliced isoforms was typical for clear cell carcinoma, the ovarian cancer with worst prognosis, suggesting a role of BARD1 isoforms in cancer progression. To challenge this hypothesis, we silenced BARD1 isoforms in ovarian cancer cells that lacked wild-type BARD1 by siRNA interference, which led to a complete proliferation arrest. Thus, BARD1 isoform expression is required for cancer cell proliferation, which is compatible with the notion that BARD1 isoforms act as cancer maintenance genes.
Collapse
Affiliation(s)
- Lin Li
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|