201
|
Abstract
The airway epithelium represents the first point of contact for inhaled foreign organisms. The protective arsenal of the airway epithelium is provided in the form of physical barriers and a vast array of receptors and antimicrobial compounds that constitute the innate immune system. Many of the known innate immune receptors, including the Toll-like receptors and nucleotide oligomerization domain-like receptors, are expressed by the airway epithelium, which leads to the production of proinflammatory cytokines and chemokines that affect microorganisms directly and recruit immune cells, such as neutrophils and T cells, to the site of infection. The airway epithelium also produces a number of resident antimicrobial proteins, such as lysozyme, lactoferrin, and mucins, as well as a swathe of cationic proteins. Dysregulation of the airway epithelial innate immune system is associated with a number of medical conditions that can result in compromised immunity and chronic inflammation of the lung. This review focuses on the innate immune capabilities of the airway epithelium and its role in protecting the lung from infection as well as the outcomes when its function is compromised.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
202
|
Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, Lee JC, Goyette P, Imielinski M, Latiano A, Lagacé C, Scott R, Amininejad L, Bumpstead S, Baidoo L, Baldassano RN, Barclay M, Bayless TM, Brand S, Büning C, Colombel JF, Denson LA, De Vos M, Dubinsky M, Edwards C, Ellinghaus D, Fehrmann RSN, Floyd JAB, Florin T, Franchimont D, Franke L, Georges M, Glas J, Glazer NL, Guthery SL, Haritunians T, Hayward NK, Hugot JP, Jobin G, Laukens D, Lawrance I, Lémann M, Levine A, Libioulle C, Louis E, McGovern DP, Milla M, Montgomery GW, Morley KI, Mowat C, Ng A, Newman W, Ophoff RA, Papi L, Palmieri O, Peyrin-Biroulet L, Panés J, Phillips A, Prescott NJ, Proctor DD, Roberts R, Russell R, Rutgeerts P, Sanderson J, Sans M, Schumm P, Seibold F, Sharma Y, Simms LA, Seielstad M, Steinhart AH, Targan SR, van den Berg LH, Vatn M, Verspaget H, Walters T, Wijmenga C, Wilson DC, Westra HJ, Xavier RJ, Zhao ZZ, Ponsioen CY, Andersen V, Torkvist L, Gazouli M, Anagnou NP, Karlsen TH, Kupcinskas L, Sventoraityte J, Mansfield JC, Kugathasan S, Silverberg MS, Halfvarson J, Rotter JI, Mathew CG, Griffiths AM, Gearry R, Ahmad T, Brant SR, Chamaillard M, et alAnderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, Lee JC, Goyette P, Imielinski M, Latiano A, Lagacé C, Scott R, Amininejad L, Bumpstead S, Baidoo L, Baldassano RN, Barclay M, Bayless TM, Brand S, Büning C, Colombel JF, Denson LA, De Vos M, Dubinsky M, Edwards C, Ellinghaus D, Fehrmann RSN, Floyd JAB, Florin T, Franchimont D, Franke L, Georges M, Glas J, Glazer NL, Guthery SL, Haritunians T, Hayward NK, Hugot JP, Jobin G, Laukens D, Lawrance I, Lémann M, Levine A, Libioulle C, Louis E, McGovern DP, Milla M, Montgomery GW, Morley KI, Mowat C, Ng A, Newman W, Ophoff RA, Papi L, Palmieri O, Peyrin-Biroulet L, Panés J, Phillips A, Prescott NJ, Proctor DD, Roberts R, Russell R, Rutgeerts P, Sanderson J, Sans M, Schumm P, Seibold F, Sharma Y, Simms LA, Seielstad M, Steinhart AH, Targan SR, van den Berg LH, Vatn M, Verspaget H, Walters T, Wijmenga C, Wilson DC, Westra HJ, Xavier RJ, Zhao ZZ, Ponsioen CY, Andersen V, Torkvist L, Gazouli M, Anagnou NP, Karlsen TH, Kupcinskas L, Sventoraityte J, Mansfield JC, Kugathasan S, Silverberg MS, Halfvarson J, Rotter JI, Mathew CG, Griffiths AM, Gearry R, Ahmad T, Brant SR, Chamaillard M, Satsangi J, Cho JH, Schreiber S, Daly MJ, Barrett JC, Parkes M, Annese V, Hakonarson H, Radford-Smith G, Duerr RH, Vermeire S, Weersma RK, Rioux JD. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011. [PMID: 21297633 DOI: 10.1038/ng.764ng.764] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P < 5 × 10(-8)), increasing the number of ulcerative colitis-associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association signals between Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Carl A Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011; 2011:347594. [PMID: 21274449 PMCID: PMC3025378 DOI: 10.1155/2011/347594] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/13/2010] [Accepted: 12/22/2010] [Indexed: 12/19/2022]
Abstract
Tuberculosis, which is caused by infection with Mycobacterium tuberculosis (Mtb), remains one of the major bacterial infections worldwide. Host defense against Mtb is mediated by a combination of innate and adaptive immune responses. In the last 15 years, the mechanisms for activation of innate immunity have been elucidated. Toll-like receptors (TLRs) have been revealed to be critical for the recognition of pathogenic microorganisms including mycobacteria. Subsequent studies further revealed that NOD-like receptors and C-type lectin receptors are responsible for the TLR-independent recognition of mycobacteria. Several molecules, such as active vitamin D3, secretary leukocyte protease inhibitor, and lipocalin 2, all of which are induced by TLR stimulation, have been shown to direct innate immune responses to mycobacteria. In addition, Irgm1-dependent autophagy has recently been demonstrated to eliminate intracellular mycobacteria. Thus, our understanding of the mechanisms for the innate immune response to mycobacteria is developing.
Collapse
|
204
|
Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog 2011; 7:e1001246. [PMID: 21253574 PMCID: PMC3017120 DOI: 10.1371/journal.ppat.1001246] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 12/01/2010] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Interferon Regulatory Factor 5 (IRF-5) has been shown to be involved in the induction of proinflammatory cytokines in response to viral infections and TLR activation and to play an essential role in the innate inflammatory response. In this study, we used the experimental model of visceral leishmaniasis to investigate the role of IRF-5 in the generation of Th1 responses and in the formation of Th1-type liver granulomas in Leishmania donovani infected mice. We show that TLR7-mediated activation of IRF-5 is essential for the development of Th1 responses to L. donovani in the spleen during chronic infection. We also demonstrate that IRF-5 deficiency leads to the incapacity to control L. donovani infection in the liver and to the formation of smaller granulomas. Granulomas in Irf5-/- mice are characterized by an increased IL-4 and IL-10 response and concomitant low iNOS expression. Collectively, these results identify IRF-5 as a critical molecular switch for the development of Th1 immune responses following L. donovani infections and reveal an indirect role of IRF-5 in the regulation of iNOS expression. Leishmania donovani is a parasite that currently infects 12 million people around the world. In order to better understand why this parasite causes incurable disease we chose to investigate how the immune system sees L. donovani. The immune system sees infecting organisms by the recognition of molecules that are specifically expressed by pathogens. This is done by a family of receptors expressed by cells called Toll Like Receptors (TLRs). When TLRs recognize a pathogen it leads to a molecular chain reaction within the cell resulting in the release of cytokines. Interferon Regulatory Factors (IRFs) are a very important part of this signaling chain. The protein we have studied, IRF-5, has been identified as having a key role in inducing pro-inflammatory cytokines following the recognition of viruses by TLRs. However, whether it plays a role in the immune response to parasitic disease has not yet been examined. In this study we infected mice deficient of IRF-5 with L. donovani and demonstrate for the first time that IRF-5 is essential to develop a protective response against this parasite. These results are important as they help us to understand the molecular mechanisms required for an immune response to fight L. donovani.
Collapse
|
205
|
Abstract
Since the discovery of the protein "interferon" over 50 years ago, IFNβ, an antiviral cytokine, has been well studied. In particular, the pathways inducing this cytokine during viral infection have been characterized, leading to the discovery of a multitude of pattern recognition receptors. IFNβ is also induced during bacterial infection, following recognition of bacterial ligands by the host viral and DNA sensors. However, the function of IFNβ during bacterial infection is variable and sometimes detrimental to the host. This review discusses the currently identified receptors and pathways engaged in IFNβ induction during infection, with emphasis on the role of IFNβ during bacterial infection.
Collapse
Affiliation(s)
- Uma Nagarajan
- Division of Pediatric Infectious Diseases, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
206
|
Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 2010; 79:562-70. [PMID: 21041496 DOI: 10.1128/iai.00651-10] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens that colonize mucosal surfaces have acquired resistance to antimicrobials that are abundant at these sites. One of the main antimicrobials present on mucosal surfaces is lysozyme, a muramidase that hydrolyzes the peptidoglycan backbone of bacteria. Cleavage of the peptidoglycan backbone leads to bacterial cell death and lysis, which releases bacterial fragments, including peptidoglycan, at the site of infection. Peptidoglycan fragments can be recognized by host receptors and initiate an immune response that will aid in clearing infection. Many mucosal pathogens modify the peptidoglycan residues surrounding the cleavage site for lysozyme to avoid peptidoglycan degradation and the release of these proinflammatory fragments. This review will focus specifically on peptidoglycan modifications, their role in lysozyme resistance, and downstream effects on the host immune response to infection.
Collapse
|
207
|
Lalande JD, Behr MA. Mycobacteria in Crohn's disease: how innate immune deficiency may result in chronic inflammation. Expert Rev Clin Immunol 2010; 6:633-41. [PMID: 20594136 DOI: 10.1586/eci.10.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crohn's disease (CD) is often considered to be an autoimmune condition or, alternatively, an autoinflammatory condition, based on the observation of host-directed inflammatory processes. However, the underlying basis of this deleterious inflammatory response remains elusive. Recent findings from genetic and genomic studies have altered the perspective on the pathogenesis of CD, hinting at defects in innate immune sensing of intracellular bacteria and the handling of these organisms through autophagy. These findings are consistent with emerging data from immunological studies that point to a systemic immune deficiency in CD patients. Both sets of data (genetic predisposition and immunodeficiency) are consistent with the longstanding hypothesis that mycobacteria might be involved in the etiology of CD. In this article, we discuss the convergence of these three lines of investigation and highlight important knowledge gaps required in order to address the mycobacterial hypothesis with greater clarity. In the coming years, clinical immunological investigations should focus on defining the specificity of functional immune defects with regards to microbes and their associated ligands. Should CD result from a dysfunctional host-pathogen interaction, elucidation of the microbes that can exploit such defects to induce a chronic inflammatory disease is critical for the development of subsequent diagnostic assays and clinical interventions.
Collapse
Affiliation(s)
- Jean-Daniel Lalande
- Department of Medicine, McGill University Health Centre, A5.156, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
208
|
Abstract
The immune response to viral infections is determined by a complex interplay between the pathogen and the host. Innate immune cells express a set of cytosolic sensors to detect viral infection. Recognition by these sensors induces the production of type I interferons and the assembly of inflammasome complexes that activate caspase-1, leading to production of interleukin-1β (IL-1β) and IL-18. Here, I discuss recent progress in our understanding of the central roles of NOD-like receptors (NLRs) and inflammasomes in the immune response during viral infections. This information will improve our understanding of host defence mechanisms against viruses and provide new avenues for interfering in the pathogenesis of infectious diseases.
Collapse
|
209
|
Abstract
Although the role of type I interferon (IFN) in the protection against viral infections has been known and studied for decades, its role in other immunologically relevant scenarios, including bacterial infections, shock, autoimmunity, and cancer, is less well defined and potentially much more complicated.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
210
|
Simmons DP, Canaday DH, Liu Y, Li Q, Huang A, Boom WH, Harding CV. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2405-15. [PMID: 20660347 PMCID: PMC2990778 DOI: 10.4049/jimmunol.0904005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) cross process exogenous Ags and present them by class I MHC (MHC-I) molecules to CD8(+) T cells specific for Ags from viruses and bacteria such as Mycobacterium tuberculosis. Unmethylated CpG DNA signals through TLR9 to induce type I IFN (IFN-alpha/beta), which enhances MHC-I Ag cross processing, but lipoproteins that signal through TLR2 do not induce IFN-alpha/beta. In these studies we observed that M. tuberculosis, which expresses agonists of both TLR9 and TLR2, did not induce production of IFN-alpha/beta or cross processing by murine DCs. Furthermore, M. tuberculosis and TLR2 agonists inhibited induction of IFN-alpha/beta and DC cross processing by CpG DNA. Exogenous IFN-alpha/beta effectively enhanced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA, bypassing the inhibition of induction of endogenous IFN-alpha/beta. In addition, inhibition of TLR9-induced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA could be circumvented by pretreating cells with CpG DNA to induce IFN-alpha/beta and MHC-I cross processing before inhibitory mycobacterial TLR2 agonists were present. Inhibition of the response to one TLR by another may affect the ultimate response to pathogens like M. tuberculosis that express agonists of multiple TLRs, including TLR2 and TLR9. This mechanism may contribute to immune evasion and explain why IFN-alpha/beta provides little contribution to host immunity to M. tuberculosis. However, downregulation of certain TLR responses may benefit the host by preventing detrimental excessive inflammation that may occur in the presence of persistent infection.
Collapse
Affiliation(s)
- Daimon P. Simmons
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
| | - David H. Canaday
- Division of Infectious Diseases, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
- Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
- Geriatric Research, Education and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Yi Liu
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Qing Li
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
- Division of Infectious Diseases, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Alex Huang
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
- Department of Pediatrics, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
| | - W. Henry Boom
- Division of Infectious Diseases, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
- Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
- Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106
| |
Collapse
|
211
|
Farlik M, Reutterer B, Schindler C, Greten F, Vogl C, Müller M, Decker T. Nonconventional initiation complex assembly by STAT and NF-kappaB transcription factors regulates nitric oxide synthase expression. Immunity 2010; 33:25-34. [PMID: 20637660 PMCID: PMC2914224 DOI: 10.1016/j.immuni.2010.07.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/03/2010] [Accepted: 07/01/2010] [Indexed: 01/14/2023]
Abstract
Transcriptional regulation of the Nos2 gene encoding inducible nitric oxide synthase (iNOS) requires type I interferon (IFN-I) signaling and additional signals emanating from pattern recognition receptors. Here we showed sequential and cooperative contributions of the transcription factors ISGF3 (a complex containing STAT1, STAT2, and IRF9 subunits) and NF-kappaB to the transcriptional induction of the Nos2 gene in macrophages infected with the intracellular bacterial pathogen Listeria monocytogenes. NF-kappaB preceded ISGF3 at the Nos2 promoter and generated a transcriptional memory effect by depositing basal transcription factor TFIIH with the associated CDK7 kinase for serine 5 phosphorylation of the RNA polymerase II (pol II) carboxyterminal domain (CTD). Subsequent to TFIIH deposition by NF-kappaB, ISGF3 attracted the pol II enzyme and phosphorylation at CTD S5 occurred. Thus, STATs and NF-kappaB cooperate through pol II promoter recruitment and the phosphorylation of its CTD, respectively, as a prerequisite for productive elongation of iNOS mRNA.
Collapse
Affiliation(s)
- Matthias Farlik
- Max F. Perutz Laboratories, Department of Genetics, Microbiology and Immunobiology, University of Vienna, Dr. Bohr-Gasse 9/4, A1030 Vienna, Austria
| | - Benjamin Reutterer
- Max F. Perutz Laboratories, Department of Genetics, Microbiology and Immunobiology, University of Vienna, Dr. Bohr-Gasse 9/4, A1030 Vienna, Austria
| | - Christian Schindler
- Departments of Microbiology and Medicine, Columbia University, 701 West 168 Street, New York, NY 10032, USA
| | - Florian Greten
- Klinikum Rechts der Isar, Technical University, Ismaninger Straße 22, 81675 Munich, Germany
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinärplatz 1, A1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinärplatz 1, A1210 Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Genetics, Microbiology and Immunobiology, University of Vienna, Dr. Bohr-Gasse 9/4, A1030 Vienna, Austria
| |
Collapse
|
212
|
Abstract
Type I interferons (IFNs) are secreted cytokines that orchestrate diverse immune responses to infection. Although typically considered to be most important in the response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. Although diverse mechanisms have been described, bacterial induction of type I IFNs occurs upon stimulation of two main pathways: (i) Toll-like receptor (TLR) recognition of bacterial molecules such as lipopolysaccharide (LPS); (ii) TLR-independent recognition of molecules delivered to the host cell cytosol. Cytosolic responses can be activated by two general mechanisms. First, viable bacteria can secrete stimulatory ligands into the cytosol via specialized bacterial secretion systems. Second, ligands can be released from bacteria that lyse or are degraded. The bacterial ligands that induce the cytosolic pathways remain uncertain in many cases, but appear to include various nucleic acids. In this review, we discuss recent advances in our understanding of how bacteria induce type I interferons and the roles type I IFNs play in host immunity.
Collapse
Affiliation(s)
- Kathryn M. Monroe
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Sarah M. McWhirter
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Russell E. Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
213
|
EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 2010; 6:e1000957. [PMID: 20585630 PMCID: PMC2891827 DOI: 10.1371/journal.ppat.1000957] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/20/2010] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall.
Collapse
|
214
|
The Lyme disease spirochete Borrelia burgdorferi utilizes multiple ligands, including RNA, for interferon regulatory factor 3-dependent induction of type I interferon-responsive genes. Infect Immun 2010; 78:3144-53. [PMID: 20404081 DOI: 10.1128/iai.01070-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently discovered a critical role for type I interferon (IFN) in the development of murine Lyme arthritis. Borrelia burgdorferi-mediated induction of IFN-responsive genes by bone marrow-derived macrophages (BMDMs) was dependent upon a functional type I IFN receptor but independent of Toll-like receptor 2 (TLR2), TLR4, TLR9, and the adapter molecule MyD88. We now demonstrate that induction of the IFN transcriptional profile in B. burgdorferi-stimulated BMDMs occurs independently of the adapter TRIF and of the cytoplasmic sensor NOD2. In contrast, B. burgdorferi-induced transcription of these genes was dependent upon a rapid STAT1 feedback amplification pathway. IFN profile gene transcription was IRF3 dependent but did not utilize B. burgdorferi-derived DNA or DNase-sensitive ligands. Instead, IFN-responsive gene expression could be induced by B. burgdorferi-derived RNA. Interferon regulatory factor 3 (IRF3)-dependent IFN profile gene transcription was also induced by sonicated bacteria, by the lipoprotein OspA, and by factors released into the BSKII medium during culture of B. burgdorferi. The IFN-stimulatory activity of B. burgdorferi culture supernatants was not destroyed by nuclease treatment. Nuclease digestion also had no effect on IFN profile induction mediated by sonicated B. burgdorferi. Thus, B. burgdorferi-derived RNA, OspA, and non-nucleic acid ligands present in both sonicated bacteria and B. burgdorferi culture medium contribute to type I IFN-responsive gene induction. These findings suggest that B. burgdorferi invasion of joint tissue and the resultant type I IFN induction associated with Lyme arthritis development may involve multiple triggering ligands.
Collapse
|
215
|
Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 2010; 8:296-307. [PMID: 20234378 PMCID: PMC3037727 DOI: 10.1038/nrmicro2321] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis survives in antigen-presenting cells (APCs) such as macrophages and dendritic cells. APCs present antigens in association with major histocompatibility complex (MHC) class II molecules to stimulate CD4(+) T cells, and this process is essential to contain M. tuberculosis infection. Immune evasion allows M. tuberculosis to establish persistent or latent infection in macrophages and results in Toll-like receptor 2 (TLR2)-dependent inhibition of MHC class II transactivator expression, MHC class II molecule expression and antigen presentation. This reduction of antigen presentation might reflect a general mechanism of negative-feedback regulation that prevents excessive T cell-mediated inflammation and that M. tuberculosis has subverted to create a niche for survival in infected macrophages and evasion of recognition by CD4(+) T cells.
Collapse
Affiliation(s)
- Clifford V Harding
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-7288, USA.
| | | |
Collapse
|
216
|
Resuscitation promoting factors in bacterial population dynamics during TB infection. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ddmec.2010.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
217
|
Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF, Anes E. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 2010; 12:1046-63. [PMID: 20148899 DOI: 10.1111/j.1462-5822.2010.01450.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin-1beta (IL-1beta) represents one of the most important mediators of inflammation and host responses to infection. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, induces IL-1beta secretion at the site of infection, but the underlying mechanism(s) are poorly understood. In this work we show that Mtb infection of macrophages stimulates caspase-1 activity and promotes the secretion of IL-1beta. This stimulation requires live intracellular bacteria expressing a functional ESX-1 secretion system. ESAT-6, an ESX-1 substrate implicated in membrane damage, is both necessary and sufficient for caspase-1 activation and IL-1beta secretion. ESAT-6 promotes the access of other immunostimulatory agents such as AG85 into the macrophage cytosol, indicating that this protein may contribute to caspase-1 activation largely by perturbing host cell membranes. Using a high-throughput shRNA-based screen we found that numerous NOD-like receptors (NLRs) and CARD domain-containing proteins (CARDs) were important for IL-1beta secretion upon Mtb infection. Most importantly, NLRP3, ASC and caspase-1 form an infection-inducible inflammasome complex that is essential for IL-1beta secretion. In summary, we show that recognition of Mtb infection by the NLRP3 inflammasome requires the activity of the bacterial virulence factor ESAT-6, and the subsequent IL-1beta response is regulated by a number of NLR/CARD proteins.
Collapse
Affiliation(s)
- Bibhuti B Mishra
- Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
218
|
Richez C, Yasuda K, Bonegio RG, Watkins AA, Aprahamian T, Busto P, Richards RJ, Liu CL, Cheung R, Utz PJ, Marshak-Rothstein A, Rifkin IR. IFN regulatory factor 5 is required for disease development in the FcgammaRIIB-/-Yaa and FcgammaRIIB-/- mouse models of systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:796-806. [PMID: 20007534 PMCID: PMC2858062 DOI: 10.4049/jimmunol.0901748] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are strongly associated in human genetic studies with an increased risk of developing the autoimmune disease systemic lupus erythematosus. However, the biological role of IRF5 in lupus pathogenesis has not previously been tested in an animal model. In this study, we show that IRF5 is absolutely required for disease development in the FcgammaRIIB(-/-)Yaa and FcgammaRIIB(-/-) lupus models. In contrast to IRF5-sufficient FcgammaRIIB(-/-)Yaa mice, IRF5-deficient FcgammaRIIB(-/-)Yaa mice do not develop lupus manifestations and have a phenotype comparable to wild-type mice. Strikingly, full expression of IRF5 is required for the development of autoimmunity, as IRF5 heterozygotes had dramatically reduced disease. One effect of IRF5 is to induce the production of the type I IFN, IFN-alpha, a cytokine implicated in lupus pathogenesis. To address the mechanism by which IRF5 promotes disease, we evaluated FcgammaRIIB(-/-)Yaa mice lacking the type I IFN receptor subunit 1. Unlike the IRF5-deficient and IRF5-heterozygous FcgammaRIIB(-/-)Yaa mice, type I IFN receptor subunit 1-deficient FcgammaRIIB(-/-)Yaa mice maintained a substantial level of residual disease. Furthermore, in FcgammaRIIB(-/-) mice lacking Yaa, IRF5-deficiency also markedly reduced disease manifestations, indicating that the beneficial effects of IRF5 deficiency in FcgammaRIIB(-/-)Yaa mice are not due only to inhibition of the enhanced TLR7 signaling associated with the Yaa mutation. Overall, we demonstrate that IRF5 plays an essential role in lupus pathogenesis in murine models and that this is mediated through pathways beyond that of type I IFN production.
Collapse
Affiliation(s)
- Christophe Richez
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
|
220
|
Daffis S, Suthar MS, Szretter KJ, Gale, M, Diamond MS. Induction of IFN-beta and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7. PLoS Pathog 2009; 5:e1000607. [PMID: 19798431 PMCID: PMC2747008 DOI: 10.1371/journal.ppat.1000607] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 09/08/2009] [Indexed: 12/28/2022] Open
Abstract
Interferon regulatory factors (IRF)-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-α/β) induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7 genes showed increased vulnerability to West Nile virus (WNV) infection. Whereas mice and cells lacking IRF-7 showed reduced IFN-α levels after WNV infection, those lacking IRF-3 or IRF-7 had relatively normal IFN-b production. Here, we generated IRF-3−/−× IRF-7−/− double knockout (DKO) mice, analyzed WNV pathogenesis, IFN responses, and signaling of innate defenses. Compared to wild type mice, the DKO mice exhibited a blunted but not abrogated systemic IFN response and sustained uncontrolled WNV replication leading to rapid mortality. Ex vivo analysis showed complete ablation of the IFN-α response in DKO fibroblasts, macrophages, dendritic cells, and cortical neurons and a substantial decrease of the IFN-β response in DKO fibroblasts and cortical neurons. In contrast, the IFN-β response was minimally diminished in DKO macrophages and dendritic cells. However, pharmacological inhibition of NF-κB and ATF-2/c-Jun, the two other known components of the IFN-β enhanceosome, strongly reduced IFN-β gene transcription in the DKO dendritic cells. Finally, a genetic deficiency of IPS-1, an adaptor involved in RIG-I- and MDA5-mediated antiviral signaling, completely abolished the IFN-β response after WNV infection. Overall, our experiments suggest that, unlike fibroblasts and cortical neurons, IFN-β gene regulation after WNV infection in myeloid cells is IPS-1-dependent but does not require full occupancy of the IFN-β enhanceosome by canonical constituent transcriptional factors. West Nile virus (WNV) is a mosquito-transmitted virus that infects birds, horses, and humans and has become an emerging infectious disease threat in the Western Hemisphere. In humans, WNV can invade into the brain and spinal cord and destroy neurons, causing severe neurological disease, particularly in the immunocompromised and elderly. A better understanding of how the immune system controls WNV infection is critical for developing new treatments and vaccines. In this study, using a mouse model of WNV infection, we evaluate the combined role of two key transcription factors, interferon-regulatory factor-3 (IRF-3) and IRF-7, that orchestrate antiviral and interferon (IFN) responses after infection. Mice that lack both IRF-3 and IRF-7 were highly vulnerable to lethal infection and cells lacking IRF-3 and IRF-7 had a markedly attenuated IFN-α response. Surprisingly, macrophages and dendritic cells lacking IRF-3 and IRF-7 showed a relatively normal IFN-β response. Furthermore, a genetic deficiency of IPS-1, a protein that signals downstream of the RIG-I- and MDA5 cytoplasmic viral RNA sensors, completely abolished IFN-β production. Our experiments suggest that in specific cell types infected with WNV, IFN-β can be induced through an IPS-1-dependent transcriptional signal that does not require the master transcriptional regulators IRF-3 and IRF-7.
Collapse
Affiliation(s)
- Stephane Daffis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mehul S. Suthar
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kristy J. Szretter
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael Gale,
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
221
|
|
222
|
Kana BD, Mizrahi V. Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. ACTA ACUST UNITED AC 2009; 58:39-50. [PMID: 19799629 DOI: 10.1111/j.1574-695x.2009.00606.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resuscitation-promoting factor (Rpf) is a muralytic enzyme that increases the culturability of dormant bacteria. Recently, considerable progress has been made in understanding the structure, function and physiological role of Rpfs in different organisms, most notably the major human pathogen, Mycobacterium tuberculosis, which encodes multiple rpf-like genes. A key unresolved question, however, concerns the relationship between the predicted biochemical activity of Rpfs - cleavage of the beta-1,4 glycosidic bond in the glycan backbone of peptidoglycan - and their effect on culturability. In M. tuberculosis, the interaction between RpfB and the d,l-endopeptidase, Rpf interacting protein A (RipA), enables these proteins to synergistically degrade peptidoglycan to facilitate growth. Furthermore, the combined action of Rpfs with RipA and other peptidoglycan hydrolases might produce muropeptides that could exert diverse biological effects through host and/or bacterial signaling, the latter involving serine/threonine protein kinases. Here, we explore these possibilities in the context of the structure and composition of mycobacterial peptidoglycan. Clearly, a deeper understanding of the role of Rpfs and associated peptidoglycan remodeling enzymes in bacterial growth and culturability is necessary to establish the significance of dormancy and resuscitation in diseases such as tuberculosis, which are associated with long-term persistence of viable bacterial populations recalcitrant to antibiotic and immune clearance.
Collapse
Affiliation(s)
- Bavesh Davandra Kana
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| | | |
Collapse
|