201
|
Wang Y, Xu J, Zhao W, Li J, Chen J. Genome-wide identification, characterization, and genetic diversity of CCR gene family in Dalbergia odorifera. FRONTIERS IN PLANT SCIENCE 2022; 13:1064262. [PMID: 36600926 PMCID: PMC9806228 DOI: 10.3389/fpls.2022.1064262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lignin is a complex aromatic polymer plays major biological roles in maintaining the structure of plants and in defending them against biotic and abiotic stresses. Cinnamoyl-CoA reductase (CCR) is the first enzyme in the lignin-specific biosynthetic pathway, catalyzing the conversion of hydroxycinnamoyl-CoA into hydroxy cinnamaldehyde. Dalbergia odorifera T. Chen is a rare rosewood species for furniture, crafts and medicine. However, the CCR family genes in D. odorifera have not been identified, and their function in lignin biosynthesis remain uncertain. METHODS AND RESULTS Here, a total of 24 genes, with their complete domains were identified. Detailed sequence characterization and multiple sequence alignment revealed that the DoCCR protein sequences were relatively conserved. They were divided into three subfamilies and were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that seven DoCCRs were grouped together with functionally characterized CCRs of dicotyledons involved in developmental lignification. Synteny analysis showed that segmental and tandem duplications were crucial in the expansion of CCR family in D. odorifera, and purifying selection emerged as the main force driving these genes evolution. Cis-acting elements in the putative promoter regions of DoCCRs were mainly associated with stress, light, hormones, and growth/development. Further, analysis of expression profiles from the RNA-seq data showed distinct expression patterns of DoCCRs among different tissues and organs, as well as in response to stem wounding. Additionally, 74 simple sequence repeats (SSRs) were identified within 19 DoCCRs, located in the intron or untranslated regions (UTRs), and mononucleotide predominated. A pair of primers with high polymorphism and good interspecific generality was successfully developed from these SSRs, and 7 alleles were amplified in 105 wild D. odorifera trees from 17 areas covering its whole native distribution. DISCUSSION Overall, this study provides a basis for further functional dissection of CCR gene families, as well as breeding improvement for wood properties and stress resistance in D. odorifera.
Collapse
Affiliation(s)
- Yue Wang
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jieru Xu
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Wenxiu Zhao
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jia Li
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Research Institute of Forestry, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| |
Collapse
|
202
|
Li G, Jin L, Sheng S. Genome-Wide Identification of bHLH Transcription Factor in Medicago sativa in Response to Cold Stress. Genes (Basel) 2022; 13:genes13122371. [PMID: 36553638 PMCID: PMC9777957 DOI: 10.3390/genes13122371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Alfalfa represents one of the most important legume forages, and it is also applied as an organic fertilizer to improve soil quality. However, this perennial plant is native to warmer temperate regions, and its valuable cold-acclimation-related regulatory mechanisms are still less known. In higher plants, the bHLH transcription factors play pleiotropic regulatory roles in response to abiotic stresses. The recently released whole genome sequencing data of alfalfa allowed us to identify 469 MsbHLHs by multi-step homolog search. Herein, we primarily identified 65 MsbHLH genes that significantly upregulated under cold stress, and such bHLHs were classified into six clades according to their expression patterns. Interestingly, the phylogenetic analysis and conserved motif screening of the cold-induced MsbHLHs showed that the expression pattern is relatively varied in each bHLH subfamily, this result indicating that the 65 MsbHLHs may be involved in a complex cold-responsive regulatory network. Hence, we analyzed the TFBSs at promoter regions that unraveled a relatively conserved TFBS distribution with genes exhibiting similar expression patterns. Eventually, to verify the core components involved in long-term cold acclimation, we examined transcriptome data from a freezing-tolerant species (cv. Zhaodong) in the field and compared the expression of cold-sensitive/tolerant subspecies of alfalfa, giving 11 bHLH as candidates, which could be important for further cold-tolerance enhancement and molecular breeding through genetic engineering in alfalfa.
Collapse
|
203
|
Chang X, Yang Z, Zhang X, Zhang F, Huang X, Han X. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different stress in Cynanchum thesioides. PeerJ 2022; 10:e14436. [PMID: 36518281 PMCID: PMC9744163 DOI: 10.7717/peerj.14436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Cynanchum thesioides (Freyn) K. Schum. is an important economic and medicinal plant widely distributed in northern China. WRKY transcription factors (TFs) play important roles in plant growth, development and regulating responses. However, there is no report on the WRKY genes in Cynanchum thesioides. A total of 19 WRKY transcriptome sequences with complete ORFs were identified as WRKY transcriptome sequences by searching for WRKYs in RNA sequencing data. Then, the WRKY genes were classified by phylogenetic and conserved motif analysis of the WRKY family in Cynanchum thesioides and Arabidopsis thaliana. qRT-PCR was used to determine the expression patterns of 19 CtWRKY genes in different tissues and seedlings of Cynanchum thesioides under plant hormone (ABA and ETH) and abiotic stresses (cold and salt). The results showed that 19 CtWRKY genes could be divided into groups I-III according to their structure and phylogenetic characteristics, and group II could be divided into five subgroups. The prediction of CtWRKY gene protein interactions indicates that CtWRKY is involved in many biological processes. In addition, the CtWRKY gene was differentially expressed in different tissues and positively responded to abiotic stress and phytohormone treatment, among which CtWRKY9, CtWRKY18, and CtWRKY19 were significantly induced under various stresses. This study is the first to identify the WRKY gene family in Cynanchum thesioides, and the systematic analysis lays a foundation for further identification of the function of WRKY genes in Cynanchum thesioides.
Collapse
Affiliation(s)
- Xiaoyao Chang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Zhongren Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiaoyan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Fenglan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiumei Huang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xu Han
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| |
Collapse
|
204
|
Khater I, Nassar A. Potential antiviral peptides targeting the SARS-CoV-2 spike protein. BMC Pharmacol Toxicol 2022; 23:91. [PMID: 36461109 PMCID: PMC9716172 DOI: 10.1186/s40360-022-00627-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The coronavirus disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an international pandemic and created a public health crisis. The binding of the viral Spike glycoprotein to the human cell receptor angiotensin-converting enzyme 2 (ACE2) initiates viral infection. The development of efficient treatments to combat coronavirus disease is considered essential. METHODS An in silico approach was employed to design amino acid peptide inhibitor against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The designed inhibitor (SARS-CoV-2 PEP 49) consists of amino acids with the α1 helix and the β4 - β5 sheets of ACE2. The PEP-FOLD3 web tool was used to create the 3D structures of the peptide amino acids. Analyzing the interaction between ACE2 and the RBD of the Spike protein for three protein data bank entries (6M0J, 7C8D, and 7A95) indicated that the interacting amino acids were contained inside two regions of ACE2: the α1 helical protease domain (PD) and the β4 - β5 sheets. RESULTS Molecular docking analysis of the designed inhibitor demonstrated that SARS-CoV-2 PEP 49 attaches directly to the ACE2 binding site of the Spike protein with a binding affinity greater than the ACE2, implying that the SARS-CoV-2 PEP 49 model may be useful as a potential RBD binding blocker.
Collapse
Affiliation(s)
- Ibrahim Khater
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington DC, USA
| |
Collapse
|
205
|
Genome-Wide Identification and Expression Profile of the HD-Zip Transcription Factor Family Associated with Seed Germination and Abiotic Stress Response in Miscanthus sinensis. Genes (Basel) 2022; 13:genes13122256. [PMID: 36553523 PMCID: PMC9777646 DOI: 10.3390/genes13122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Miscanthus sinensis is an ornamental grass, non-food bioenergy crop, and forage with high feeding value. It can adapt to many kinds of soil conditions due to its high level of resistance to various abiotic stresses. However, a low level of seed germination restricts the utilization and application of M. sinensis. It is reported that the Homeodomain-leucine zipper (HD-Zip) gene family participates in plant growth and development and ability to cope with outside environment stresses, which may potentially regulate seed germination and stress resistance in M. sinensis. In this study, a complete overview of M. sinensis HD-Zip genes was conducted, including gene structure, conserved motifs, chromosomal distribution, and gene duplication patterns. A total of 169 members were identified, and the HD-Zip proteins were divided into four subgroups. Inter-chromosomal evolutionary analysis revealed that four pairs of tandem duplicate genes and 72 segmental duplications were detected, suggesting the possible role of gene replication events in the amplification of the M. sinensis HD-Zip gene family. There was an uneven distribution of HD-Zip genes on 19 chromosomes of M. sinensis. Also, evolutionary analysis showed that M. sinensis HD-Zip gene family members had more collinearity with monocotyledons and less with dicotyledons. The gene structure analysis showed that there were 93.5% of proteins with motif 1 and motif 4, while motif 10 was only found in group IV. Based on the cis-elements analysis, it appeared that most of the genes were related to plant growth and development, various hormones, and abiotic stress. Furthermore, qRT-PCR analysis showed that Misin06G303300.1 was significantly expressed in seed germination and Misin05G030000.1 and Misin06G303300.1 were highly expressed under chromium, salt, and drought stress. Results in this study will provide a basis for further exploring the potential role of HD-Zip genes in stress responses and genetic improvement of M. sinensis seed germination.
Collapse
|
206
|
Ma J, Ma Y, Li Y, Sun Z, Sun X, Padmakumar V, Cheng Y, Zhu W. Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation. World J Microbiol Biotechnol 2022; 39:17. [PMID: 36409385 DOI: 10.1007/s11274-022-03466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Feruloyl esterase (FAE; EC 3.1.1.73) cleaves the ester bond between ferulic acid (FA) and sugar, to assist the release of FAs and degradation of plant cell walls. In this study, two FAEs (Fae13961 and Fae16537) from the anaerobic fungus Pecoramyces sp. F1 were heterologously expressed in Pichia pastoris (P. pastoris). Compared with Fae16537, Fae13961 had higher catalytic efficiency. The optimum temperature and pH of both the FAEs were 45 ℃ and 7.0, respectively. They showed good stability-Fae16537 retained up to 80% activity after incubation at 37 ℃ for 24 h. The FAEs activity was enhanced by Ca2+ and reduced by Zn2+, Mn2+, Fe2+ and Fe3+. Additionally, the effect of FAEs on the hydrolytic efficiency of xylanase and cellulase was also determined. The FAE Fae13961 had synergistic effect with xylanase and it promoted the degradation of xylan substrates by xylanase, but it did not affect the degradation of cellulose substrates by cellulase. When Fae13961 was added in a mixture of xylanase and cellulase to degrade complex agricultural biomass, it significantly enhanced the mixture's ability to disintegrate complex substrates. These FAEs could serve as superior auxiliary enzymes for other lignocellulosic enzymes in the process of degradation of agricultural residues for industrial applications.
Collapse
Affiliation(s)
- Jing Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuping Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoni Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
207
|
Ye LX, Luo MM, Wang Z, Bai FX, Luo X, Gao L, Peng J, Chen QH, Zhang L. Genome-wide analysis of MADS-box gene family in kiwifruit (Actinidia chinensis var. chinensis) and their potential role in floral sex differentiation. Front Genet 2022; 13:1043178. [PMID: 36468015 PMCID: PMC9714460 DOI: 10.3389/fgene.2022.1043178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kiwifruit (Actinidia chinensis Planch.) is a functionally dioecious plant, which displays diverse morphology in male and female flowers. MADS-box is an ancient and huge gene family that plays a key role in plant floral organ differentiation. In this study, we have identified 89 MADS-box genes from A. chinensis Red 5 genome. These genes are distributed on 26 chromosomes and are classified into type I (21 genes) and type II (68 genes). Overall, type II AcMADS-box genes have more complex structures than type I with more exons, protein domains, and motifs, indicating that type II genes may have more diverse functions. Gene duplication analysis showed that most collinearity occurred in type II AcMADS-box genes, which was consistent with a large number of type II genes. Analysis of cis-acting elements in promoters showed that AcMADS-box genes are mainly associated with light and phytohormone responsiveness. The expression profile of AcMADS-box genes in different tissues showed that most genes were highly expressed in flowers. Further, the qRT-PCR analysis of the floral organ ABCDE model-related genes in male and female flowers revealed that AcMADS4, AcMADS56, and AcMADS70 were significantly expressed in female flowers. It indicated that those genes may play an important role in the sex differentiation of kiwifruit. This work provided a comprehensive analysis of the AcMADS-box genes and may help facilitate our understanding of the sex differentiation regulatory mechanism in kiwifruit.
Collapse
Affiliation(s)
- Li-Xia Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min-Min Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Zhi Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fu-Xi Bai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuan Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Gao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jue Peng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qing-Hong Chen
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| | - Lei Zhang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| |
Collapse
|
208
|
Cao J, Huang C, Liu J, Li C, Liu X, Zheng Z, Hou L, Huang J, Wang L, Zhang Y, Shangguan X, Chen Z. Comparative Genomics and Functional Studies of Putative m 6A Methyltransferase (METTL) Genes in Cotton. Int J Mol Sci 2022; 23:14111. [PMID: 36430588 PMCID: PMC9694044 DOI: 10.3390/ijms232214111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification plays important regulatory roles in plant development and adapting to the environment, which requires methyltransferases to achieve the methylation process. However, there has been no research regarding m6A RNA methyltransferases in cotton. Here, a systematic analysis of the m6A methyltransferase (METTL) gene family was performed on twelve cotton species, resulting in six METTLs identified in five allotetraploid cottons, respectively, and three to four METTLs in the seven diploid species. Phylogenetic analysis of protein-coding sequences revealed that METTL genes from cottons, Arabidopsis thaliana, and Homo sapiens could be classified into three clades (METTL3, METTL14, and METTL-like clades). Cis-element analysis predicated the possible functions of METTL genes in G. hirsutum. RNA-seq data revealed that GhMETTL14 (GH_A07G0817/GH_D07G0819) and GhMETTL3 (GH_A12G2586/GH_D12G2605) had high expressions in root, stem, leaf, torus, petal, stamen, pistil, and calycle tissues. GhMETTL14 also had the highest expression in 20 and 25 dpa fiber cells, implying a potential role at the cell wall thickening stage. Suppressing GhMETTL3 and GhMETTL14 by VIGS caused growth arrest and even death in G. hirsutum, along with decreased m6A abundance from the leaf tissues of VIGS plants. Overexpression of GhMETTL3 and GhMETTL14 produced distinct differentially expressed genes (DEGs) in A. thaliana, indicating their possible divergent functions after gene duplication. Overall, GhMETTLs play indispensable but divergent roles during the growth of cotton plants, which provides the basis for the systematic investigation of m6A in subsequent studies to improve the agronomic traits in cotton.
Collapse
Affiliation(s)
- Junfeng Cao
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaochen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun’e Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chenyi Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xia Liu
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Zishou Zheng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lipan Hou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinquan Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yugao Zhang
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Xiaoxia Shangguan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044099, China
| | - Zhiwen Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
209
|
Multi-Epitope Vaccine for Monkeypox Using Pan-Genome and Reverse Vaccinology Approaches. Viruses 2022; 14:v14112504. [PMID: 36423113 PMCID: PMC9695528 DOI: 10.3390/v14112504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of monkeypox virus infections have imposed major health concerns worldwide, with high morbidity threats to children and immunocompromised adults. Although repurposed drugs and vaccines are being used to curb the disease, the evolving traits of the virus, exhibiting considerable genetic dynamicity, challenge the limits of a targeted treatment. A pan-genome-based reverse vaccinology approach can provide fast and efficient solutions to resolve persistent inconveniences in experimental vaccine design during an outbreak-exigency. The approach encompassed screening of available monkeypox whole genomes (n = 910) to identify viral targets. From 102 screened viral targets, viral proteins L5L, A28, and L5 were finalized based on their location, solubility, and antigenicity. The potential T-cell and B-cell epitopes were extracted from the proteins using immunoinformatics tools and algorithms. Multiple vaccine constructs were designed by combining the epitopes. Based on immunological properties, chemical stability, and structural quality, a novel multi-epitopic vaccine construct, V4, was finalized. Flexible-docking and coarse-dynamics simulation portrayed that the V4 had high binding affinity towards human HLA-proteins (binding energy < -15.0 kcal/mol) with low conformational fluctuations (<1 Å). Thus, the vaccine construct (V4) may act as an efficient vaccine to induce immunity against monkeypox, which encourages experimental validation and similar approaches against emerging viral infections.
Collapse
|
210
|
Comprehensive Analysis of StSRO Gene Family and Its Expression in Response to Different Abiotic Stresses in Potato. Int J Mol Sci 2022; 23:ijms232113518. [DOI: 10.3390/ijms232113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
As a highly conserved family of plant-specific proteins, SIMILAR-TO-RCD-ONE (SROs) play an essential role in plant growth, development and response to abiotic stresses. In this study, six StSRO genes were identified by searching the PARP, RST and WWE domains based on the genome-wide data of potato database DM v6.1, and they were named StSRO1–6 according to their locations on chromosomes. StSRO genes were comprehensively analyzed using bioinformatics methods. The results showed that six StSRO genes were irregularly distributed on five chromosomes. Phylogenetic analysis showed that 30 SRO genes of four species were distributed in three groups, while StSRO genes were distributed in groups II and III. The promoter sequence of StSRO genes contained many cis-acting elements related to hormones and stress responses. In addition, the expression level of StSRO genes in different tissues of doubled monoploid (DM) potato, as well as under salt, drought stresses and hormone treatments, was analyzed by RNA-seq data from the online database and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Furthermore, the expression level of StSRO genes was analyzed by transcriptome analysis under mild, moderate and severe salt stress. It was concluded that StSRO genes could respond to different abiotic conditions, but their expression level was significantly different. This study lays a foundation for further studies on the biological functions of the StSRO gene family.
Collapse
|
211
|
Yu Y, Yang M, Liu X, Xia Y, Hu R, Xia Q, Jing D, Guo Q. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat ( Eriobotrya japonica). FRONTIERS IN PLANT SCIENCE 2022; 13:1024515. [PMID: 36407616 PMCID: PMC9669421 DOI: 10.3389/fpls.2022.1024515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family plays a crucial role in stem cell maintenance, apical meristem formation, embryonic development, and various other developmental processes. However, the identification and function of WOX genes have not been reported in perennial loquat. In this study, 18 EjWOX genes were identified in the loquat genome. Chromosomal localization analysis showed that 18 EjWOX genes were located on 12 of 17 chromosomes. Gene structure analysis showed that all EjWOX genes contain introns, of which 11 EjWOX genes contain untranslated regions. There are 8 pairs of segmental duplication genes and 0 pairs of tandem duplication genes in the loquat WOX family, suggesting that segmental duplications might be the main reason for the expansion of the loquat WOX family. A WOX transcription factor gene named EjWUSa was isolated from loquat. The EjWUSa protein was localized in the nucleus. Protein interactions between EjWUSa with EjWUSa and EjSTM were verified. Compared with wild-type Arabidopsis thaliana, the 35S::EjWUSa transgenic Arabidopsis showed early flowering. Our study provides an important basis for further research on the function of EjWOX genes and facilitates the molecular breeding of loquat early-flowering varieties.
Collapse
Affiliation(s)
- Yuanhui Yu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Miaomiao Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinya Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ruoqian Hu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
212
|
Shey RA, Ghogomu SM, Nebangwa DN, Shintouo CM, Yaah NE, Yengo BN, Nkemngo FN, Esoh KK, Tchatchoua NMT, Mbachick TT, Dede AF, Lemoge AA, Ngwese RA, Asa BF, Ayong L, Njemini R, Vanhamme L, Souopgui J. Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1046522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost a decade ago, it was recognized that the global elimination of onchocerciasis by 2030 will not be feasible without, at least, an effective prophylactic and/or therapeutic vaccine to complement chemotherapy and vector control strategies. Recent advances in computational immunology (immunoinformatics) have seen the design of novel multi-epitope onchocerciasis vaccine candidates which are however yet to be evaluated in clinical settings. Still, continued research to increase the pool of vaccine candidates, and therefore the chance of success in a clinical trial remains imperative. Here, we designed a multi-epitope vaccine candidate by assembling peptides from 14 O. volvulus (Ov) proteins using an immunoinformatics approach. An initial 126 Ov proteins, retrieved from the Wormbase database, and at least 90% similar to orthologs in related nematode species of economic importance, were screened for localization, presence of transmembrane domain, and antigenicity using different web servers. From the 14 proteins retained after the screening, 26 MHC-1 and MHC-II (T-cell) epitopes, and linear B-lymphocytes epitopes were predicted and merged using suitable linkers. The Mycobacterium tuberculosis Resuscitation-promoting factor E (RPFE_MYCTU), which is an agonist of TLR4, was then added to the N-terminal of the vaccine candidate as a built-in adjuvant. Immune simulation analyses predicted strong B-cell and IFN-γ based immune responses which are necessary for protection against O. volvulus infection. Protein-protein docking and molecular dynamic simulation predicted stable interactions between the 3D structure of the vaccine candidate and human TLR4. These results show that the designed vaccine candidate has the potential to stimulate both humoral and cellular immune responses and should therefore be subject to further laboratory investigation.
Collapse
|
213
|
Cui Y, Miao C, Chen W, Shang W, Qi Q, Zhou W, Wang X, Li Y, Yan Z, Jiang Y. Construction and protective efficacy of a novel Streptococcus pneumoniae fusion protein vaccine NanAT1-TufT1-PlyD4. Front Immunol 2022; 13:1043293. [PMID: 36389808 PMCID: PMC9659761 DOI: 10.3389/fimmu.2022.1043293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2024] Open
Abstract
During the past decades, with the implementation of pneumococcal polysaccharide vaccine (PPV) and pneumococcal conjugate vaccines (PCVs), a dramatic reduction in vaccine type diseases and transmissions has occurred. However, it is necessary to develop a less expensive, serotype-independent pneumococcal vaccine due to the emergence of nonvaccine-type pneumococcal diseases and the limited effect of vaccines on colonization. As next-generation vaccines, conserved proteins, such as neuraminidase A (NanA), elongation factor Tu (Tuf), and pneumolysin (Ply), are promising targets against pneumococcal infections. Here, we designed and constructed a novel fusion protein, NanAT1-TufT1-PlyD4, using the structural and functional domains of full-length NanA, Tuf and Ply proteins with suitable linkers based on bioinformatics analysis and molecular cloning technology. Then, we tested whether the protein protected against focal and lethal pneumococcal infections and examined its potential protective mechanisms. The fusion protein NanAT1-TufT1-PlyD4 consists of 627 amino acids, which exhibits a relatively high level of thermostability, high stability, solubility and a high antigenic index without allergenicity. The purified fusion protein was used to subcutaneously immunize C57BL/6 mice, and NanAT1-TufT1-PlyD4 induced a strong and significant humoral immune response. The anti-NanAT1-TufT1-PlyD4 specific IgG antibody assays increased after the first immunization and reached the highest value at the 35th day. The results from in vitro experiments showed that anti-NanAT1-TufT1-PlyD4 antisera could inhibit the adhesion of Streptococcus pneumoniae (S. pneumoniae) to A549 cells. In addition, immunization with NanAT1-TufT1-PlyD4 significantly reduced S. pneumoniae colonization in the lung and decreased the damage to the lung tissues induced by S. pneumoniae infection. After challenge with a lethal dose of serotype 3 (NC_WCSUH32403), a better protection effect was observed with NanAT1-TufT1-PlyD4-immunized mice than with the separate full-length proteins and the adjuvant control; the survival rate was 50%, which met the standard of the marketed vaccine. Moreover, we showed that the humoral immune response and the Th1, Th2 and Th17-cellular immune pathways are involved in the immune protection of NanAT1-TufT1-PlyD4 to the host. Collectively, our results support that the novel fusion protein NanAT1-TufT1-PlyD4 exhibits extensive immune stimulation and is effective against pneumococcal challenges, and these properties are partially attributed to humoral and cellular-mediated immune responses.
Collapse
Affiliation(s)
- Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, China
| | - Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wenling Shang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qianqian Qi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
214
|
Wu J, Zong Y, Tu Z, Yang L, li W, Cui Z, Hao Z, Li H. Genome-wide identification of XTH genes in Liriodendron chinense and functional characterization of LcXTH21. FRONTIERS IN PLANT SCIENCE 2022; 13:1014339. [PMID: 36388518 PMCID: PMC9647132 DOI: 10.3389/fpls.2022.1014339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Liriodendron chinense is a relic tree species of the family Magnoliaceae with multiple uses in timber production, landscape decoration, and afforestation. L. chinense often experiences drought stress in arid areas. However, the molecular basis underlying the drought response of L. chinense remains unclear. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in drought stress resistance. Hereby, to explore the drought resistance mechanism of L. chinense, we identify XTH genes on a genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L. chinense, and these genes were classified into three subfamilies. Drought treatment and RT-qPCR analysis revealed that six LcXTH genes significantly responded to drought stress, especially LcXTH21. Hence, we cloned the LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its function. The roots of transgenic plants were more developed than those of wild-type plants under different polyethylene glycol (PEG) concentration, and further RT-qPCR analysis showed that LcXTH21 highly expressed in root compared to aboveground organs, indicating that LcXTH21 may play a role in drought resistance through promoting root development. The results of this study provide new insights into the roles of LcXTH genes in the drought stress response. Our findings will also aid future studies of the molecular mechanisms by which LcXTH genes contribute to the drought response.
Collapse
|
215
|
Song I, Hong S, Huh SU. Identification and Expression Analysis of the Solanum tuberosum StATG8 Family Associated with the WRKY Transcription Factor. PLANTS (BASEL, SWITZERLAND) 2022; 11:2858. [PMID: 36365311 PMCID: PMC9659186 DOI: 10.3390/plants11212858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Autophagy is an evolutionarily well-conserved cellular catabolic pathway in eukaryotic cells and plays an important role in cellular processes. Autophagy is regulated by autophagy-associated (ATG) proteins. Among these ATG proteins, the ubiquitin-like protein ATG8/LC3 is essential for autophagosome formation and function. In this study, the potato StATG8 family showed clade I and clade II with significantly different sequences. Expression of the StATG8 family was also increased in senescence. Interestingly, the expression of the StATG8 and other core StATG genes decreased in potato tubers as the tubers matured. The StATG8 family also responded to a variety of stresses such as heat, wounding, salicylic acid, and salt stress. We also found that some Arabidopsis WRKY transcription factors interacted with the StATG8 protein in planta. Based on group II-a WRKY, StATG8-WRKY interaction is independent of the ATG8 interacting motif (AIM) or LC3 interacting region (LIR) motif. This study showed that the StATG8 family had diverse functions in tuber maturation and multiple stress responses in potatoes. Additionally, StATG8 may have an unrelated autophagy function in the nucleus with the WRKY transcription factor.
Collapse
Affiliation(s)
| | | | - Sung Un Huh
- Department of Biological Science, Kunsan National University, Gunsan 54150, Korea
| |
Collapse
|
216
|
Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential. Antibiotics (Basel) 2022; 11:antibiotics11101448. [PMID: 36290106 PMCID: PMC9598152 DOI: 10.3390/antibiotics11101448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phage lysins are a promising alternative to common antibiotic chemotherapy. However, they have been regarded as less effective against Gram-negative pathogens unless engineered, e.g., by fusing them to antimicrobial peptides (AMPs). AMPs themselves pose an alternative to antibiotics. In this work, AMP P87, previously derived from a phage lysin (Pae87) with a presumed nonenzymatic mode-of-action, was investigated to improve its antibacterial activity. Five modifications were designed to maximize the hydrophobic moment and net charge, producing the modified peptide P88, which was evaluated in terms of bactericidal activity, cytotoxicity, MICs or synergy with antibiotics. P88 had a better bactericidal performance than P87 (an average of 6.0 vs. 1.5 log-killing activity on Pseudomonas aeruginosa strains treated with 10 µM). This did not correlate with a dramatic increase in cytotoxicity as assayed on A549 cell cultures. P88 was active against a range of P. aeruginosa isolates, with no intrinsic resistance factors identified. Synergy with some antibiotics was observed in vitro, in complex media, and in a respiratory infection mouse model. Therefore, P88 can be a new addition to the therapeutic toolbox of alternative antimicrobials against Gram-negative pathogens as a sole therapeutic, a complement to antibiotics, or a part to engineer proteinaceous antimicrobials.
Collapse
|
217
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
218
|
Riemerella anatipestifer AS87_RS02955 Acts as a Virulence Factor and Displays Endonuclease Activity. Appl Environ Microbiol 2022; 88:e0127622. [PMID: 36106871 PMCID: PMC9552600 DOI: 10.1128/aem.01276-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.
Collapse
|
219
|
Liu Y, Chen Y, Jiang H, Shui Z, Zhong Y, Shang J, Yang H, Sun X, Du J. Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2022; 13:1006028. [PMID: 36275562 PMCID: PMC9583537 DOI: 10.3389/fpls.2022.1006028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
RALFs (RAPID ALKALINIZATION FACTORs) are small peptides required for plant growth, development and immunity. RALF has recently been discovered to regulate plant resistance to fungal infection. However, little is known in crops, particularly in soybean. Here, 27 RALFs were identified in the genome of Glycine max. All Glycine max RALFs (GmRALFs) and 34 Arabidopsis RALFs were classified into 12 clades via the phylogenetic analyses. Gene structures, conserved motifs, chromosome distribution and cis-elements were analyzed in this study. Furthermore, 18 GmRALFs were found in response to Fusarium oxysporum (F. oxysporum) infection in soybean and to have distinct expression patterns. Among them, secretory function of two GmRALFs were identified, and three GmRALFs were detected to interact with FERONIA in Glycine max (GmFERONIA, GmFER). Our current study systematically identified and characterized GmRALFs in the soybean genome, laying a groundwork for further functional analyses and soybean breeding.
Collapse
Affiliation(s)
- Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Zhaowei Shui
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yujun Zhong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
220
|
The Identification and Characterization of the KNOX Gene Family as an Active Regulator of Leaf Development in Trifolium repens. Genes (Basel) 2022; 13:genes13101778. [PMID: 36292663 PMCID: PMC9601826 DOI: 10.3390/genes13101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Leaves are the primary and critical feed for herbivores. They directly determine the yield and quality of legume forage. Trifolium repens (T. repens) is an indispensable legume species, widely cultivated in temperate pastures due to its nutritional value and nitrogen fixation. Although the leaves of T. repens are typical trifoliate, they have unusual patterns to adapt to herbivore feeding. The number of leaflets in T. repens affects its production and utilization. The KNOX gene family encodes transcriptional regulators that are vital in regulating and developing leaves. Identification and characterization of TrKNOX gene family as an active regulator of leaf development in T. repens were studied. A total of 21 TrKNOX genes were identified from the T. repens genome database and classified into three subgroups (Class I, Class II, and Class M) based on phylogenetic analysis. Nineteen of the genes identified had four conserved domains, except for KNOX5 and KNOX9, which belong to Class M. Varying expression levels of TrKNOX genes were observed at different developmental stages and complexities of leaves. KNOX9 was observed to upregulate the leaf complexity of T. repens. Research on TrKNOX genes could be novel and further assist in exploring their functions and cultivating high-quality T. repens varieties.
Collapse
|
221
|
Identification and bioinformatic analysis of the CaCesA/Csls family members and the expression of the CaCslD1 in the flower buds of CMS/Rf system in pepper. Funct Integr Genomics 2022; 22:1411-1431. [PMID: 36138269 DOI: 10.1007/s10142-022-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/04/2022]
Abstract
The cellulose synthase gene superfamily contains cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which synthesize cellulose and hemicellulose in plant cell walls and play a crucial role in plant growth and development. However, the CesA/Csl gene family has not been reported in pepper. Therefore, the genome-wide research of the CaCesA/CaCsl gene family was conducted in pepper. In this study, a total of 39 CaCesA/CaCsls genes (10 CesAs genes and 29 Csls genes) were identified in pepper and unevenly distributed on 11 chromosomes. These CaCesA/Csls were divided into seven subfamilies (CesAs, CslAs, CslBs, CslCs, CslDs, CslEs, CslGs), and most of CaCesA/Csls genes are closely related to AtCesA/Csls genes. The cis-acting elements in the promoters of CaCesA/Csls genes are mainly related to hormone response and stress response. There are ten collinear gene pairs between the CesA/Csls gene family of pepper and Arabidopsis, and four fragment duplication gene pairs of the CaCesA/Csls genes were discovered. RNA-seq analysis shows that the majority of CaCesA/Csls are expressed in a variety of plant tissues, indicating that most CaCesA/Csls gene expression patterns are not organ-specific, and CaCslD1/D4 have the highest expression in anthers, followed by petal, ovary, and F9. RNA-seq analysis shows that most CaCesA/Csls are responsive to five hormones (IAA, GA3, ABA, SA, and MeJA). The tissue-specific expression analysis of the CaCslD1 gene shows that the CaCslD1 gene is expressed specifically in flowers. In the flower buds IV of cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system, CaCslD1 reach the highest expression respectively. However, the relative expression level of CaCslD1 in the fertile accessions is extremely significantly higher than in the sterile accessions. This study shows an overall understanding of the CaCesA/Csls gene family and provides a new insight for understanding the function of CaCslD1 in pollen development and exploring the fertility restoration of CMS in pepper.
Collapse
|
222
|
Li B, He S, Zheng Y, Wang Y, Lang X, Wang H, Fan K, Hu J, Ding Z, Qian W. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics 2022; 23:667. [PMID: 36138347 PMCID: PMC9502961 DOI: 10.1186/s12864-022-08894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background As a type of calmodulin binding protein, CAMTAs are widely involved in vegetative and reproductive processes as well as various hormonal and stress responses in plants. To study the functions of CAMTA genes in tea plants, we investigated bioinformatics analysis and performed qRT-PCR analysis of the CAMTA gene family by using the genomes of ‘ShuChaZao’ tea plant cultivar. Results In this study, 6 CsCAMTAs were identified from tea plant genome. Bioinformatics analysis results showed that all CsCAMTAs contained six highly conserved functional domains. Tissue-specific analysis results found that CsCAMTAs played great roles in mediating tea plant aging and flowering periods. Under hormone and abiotic stress conditions, most CsCAMTAs were upregulated at different time points under different treatment conditions. In addition, the expression levels of CsCAMTA1/3/4/6 were higher in cold-resistant cultivar ‘LongJing43’ than in the cold-susceptible cultivar ‘DaMianBai’ at cold acclimation stage, while CsCAMTA2/5 showed higher expression levels in ‘DaMianBai’ than in ‘LongJing43’ during entire cold acclimation periods. Conclusions In brief, the present results revealed that CsCAMTAs played great roles in tea plant growth, development and stress responses, which laid the foundation for deeply exploring their molecular regulation mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08894-x.
Collapse
Affiliation(s)
- Bo Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Shan He
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yiqian Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xuxu Lang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China. .,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China.
| |
Collapse
|
223
|
Chen S, Mo Y, Zhang Y, Zhu H, Ling Y. Insights into sweet potato SR proteins: from evolution to species-specific expression and alternative splicing. PLANTA 2022; 256:72. [PMID: 36083517 DOI: 10.1007/s00425-022-03965-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
SR proteins from sweet potato have conserved functional domains and similar gene structures as that of Arabidopsis and rice in general. However, expression patterns and alternative splicing regulations of SR genes from different species have changed under stresses. Novel alternative splicing regulations were found in sweet potato SR genes. Serine/arginine-rich (SR) proteins play important roles in plant development and stress response by regulating the pre-mRNA splicing process. However, SR proteins have not been identified so far from an important crop sweet potato. Through bioinformatics analysis, our study identified 24 SR proteins from sweet potato, with comprehensively analyzing of protein characteristics, gene structure, chromosome localization, and cis-acting elements in promotors. Salt, heat, and mimic drought stresses triggered extensive but different expressional regulations on sweet potato SR genes. Interestingly, heat stress caused the most active disturbances in both gene transcription and pre-mRNA alternative splicing (AS). Tissue and species-specific transcriptional and pre-mRNA AS regulations in response to stresses were found in sweet potato, in comparison with Arabidopsis and rice. Moreover, novel patterns of pre-mRNA alternative splicing were found in SR proteins from sweet potato. Our study provided an insight into similarities and differences of SR proteins in different plant species from gene sequences to gene structures and stress responses, indicating SR proteins may regulate their downstream genes differently between different species and tissues by varied transcriptional and pre-mRNA AS regulations.
Collapse
Affiliation(s)
- Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Hongbao Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
224
|
Zhang Y, Liang S, Zhang S, Zhang S, Yu Y, Huochun Y, Liu Y, Zhang W, Liu G. Development and evaluation of a multi-epitope subunit vaccine against group B Streptococcus infection. Emerg Microbes Infect 2022; 11:2371-2382. [PMID: 36069613 PMCID: PMC9543083 DOI: 10.1080/22221751.2022.2122585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a multi-host pathogen, even causing life-threatening infections in newborns. Vaccination with GBS crossed serotypes vaccine is one of the best options for long-term infection control. Here we built a comprehensive in silico epitope-prediction workflow pipeline to design a multivalent multiepitope-based subunit vaccine containing 11 epitopes against Streptococcus agalactiae (MVSA). All epitopes in MVSA came from the proteins which were antigenic-confirmed, virulent-associated, surface-exposed and conserved in ten GBS serotypes. The in-silico analysis showed MVSA had potential to evoke strong immune responses and enable worldwide population coverage. To validate MVSA protection efficacy against GBS infection, immune protection experiments were performed in a mouse model. Importantly, MVSA induced a high titre of antibodies, significant proliferation of mice splenocytes and elicited strong protection against lethal-dose challenge with a survival rate of 100% in mice after three vaccinations. Meanwhile, the polyclonal antibody against MVSA did not only inhibit for growth of GBS from six crucial serotypes in vitro, but also protect 100% naive mice from GBS lethal challenge. These active and passive immunity assay results suggested that MVSA could therefore be an efficacious multi-epitope vaccine against GBS infection.
Collapse
Affiliation(s)
- Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Shiyu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Shidan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yao Huochun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
225
|
Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis. Int J Mol Sci 2022; 23:ijms231710044. [PMID: 36077441 PMCID: PMC9456127 DOI: 10.3390/ijms231710044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Secretion efficiency of heterologous proteins in the Generally Regarded As Safe (GRAS) Lactococcus lactis is often reported to be insufficiently low due to limitations such as poor targeting and translocation by the signal peptide or degradation by the host proteases. In this study, the secretion efficiency in the host was enhanced through the utilization of a heterologous signal peptide (SP) SPK1 of Pediococcus pentosaceus. The SPK1 was subjected to site-directed mutations targeting its tripartite N-, H-, and C-domains, and the effect on secretion efficiency as compared to the wild-type SPK1 and native lactococcal USP45 was determined on a reporter nuclease (NUC) of Staphylococcus aureus. A Fluorescence Resonance Energy Transfer (FRET) analysis indicated that four out of eight SPK1 variants successfully enhanced the secretion of NUC, with the best mutant, SPKM19, showing elevated secretion efficiency up to 88% (or by 1.4-fold) and an improved secretion activity yield of 0.292 ± 0.122 U/mL (or by 1.7-fold) compared to the wild-type SPK1. Modifications of the SPK1 at the cleavage site C-domain region had successfully augmented the secretion efficiency. Meanwhile, mutations in the H-domain region had resulted in a detrimental effect on the NUC secretion. The development of heterologous SPs with better efficacy than the USP45 has been demonstrated in this study for enhanced secretion of heterologous production and mucosal delivery applications in the lactococcal host.
Collapse
|
226
|
Lu C, Ye J, Chang Y, Mi Z, Liu S, Wang D, Wang Z, Niu J. Genome-Wide Identification and Expression Patterns of the SWEET Gene Family in Bletilla striata and its Responses to Low Temperature and Oxidative Stress. Int J Mol Sci 2022; 23:ijms231710057. [PMID: 36077463 PMCID: PMC9456286 DOI: 10.3390/ijms231710057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
SWEETs (sugars will eventually be exported transporters), a well-known class of sugar transporters, are involved in plant growth and development, sugar transport, biotic and abiotic stresses, etc. However, to date, there have been few investigations of SWEETs in Orchidaceae. In this study, 23 SWEET genes were identified in Bletilla striata for the first time, with an MtN3/saliva conserved domain, and were divided into four subgroups by phylogenetic tree. The same subfamily members had similar gene structures and motifs. Multiple cis-elements related to sugar and environmental stresses were found in the promoter region. Further, 21 genes were localized on 11 chromosomes and 2 paralogous pairs were found via intraspecific collinearity analysis. Expression profiling results showed that BsSWEETs were tissue-specific. It also revealed that BsSWEET10 and BsSWEET18 were responsive to low temperature and oxidative stresses. In addition, subcellular localization study indicated that BsSWEET15 and BsSWEET16 were localized in the cell membrane. This study provided important clues for the in-depth elucidation of the sugar transport mechanism of BsSWEET genes and their functional roles in response to abiotic stresses.
Collapse
|
227
|
Németh BZ, Demcsák A, Micsonai A, Kiss B, Schlosser G, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Arg236 in human chymotrypsin B2 (CTRB2) is a key determinant of high enzyme activity, trypsinogen degradation capacity, and protection against pancreatitis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140831. [PMID: 35934298 PMCID: PMC9426946 DOI: 10.1016/j.bbapap.2022.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic chymotrypsins (CTRs) are digestive proteases that in humans include CTRB1, CTRB2, CTRC, and CTRL. The highly similar CTRB1 and CTRB2 are the products of gene duplication. A common inversion at the CTRB1-CTRB2 locus reverses the expression ratio of these isoforms in favor of CTRB2. Carriers of the inversion allele are protected against the inflammatory disorder pancreatitis presumably via their increased capacity for CTRB2-mediated degradation of harmful trypsinogen. To reveal the protective molecular determinants of CTRB2, we compared enzymatic properties of CTRB1, CTRB2, and bovine CTRA (bCTRA). By evolving substrate-like Schistocerca gregaria proteinase inhibitor 2 (SGPI-2) inhibitory loop variants against the chymotrypsins, we found that the substrate binding groove of the three enzymes had overlapping specificities. Based on the selected sequences, we produced eight SGPI-2 variants. Remarkably, CTRB2 and bCTRA bound these inhibitors with significantly higher affinity than CTRB1. Moreover, digestion of peptide substrates, beta casein, and human anionic trypsinogen unequivocally confirmed that CTRB2 is a generally better enzyme than CTRB1 while the potency of bCTRA lies between those of the human isoforms. Unexpectedly, mutation D236R alone converted CTRB1 to a CTRB2-like high activity protease. Modeling indicated that in CTRB1 Met210 partially obstructed the substrate binding groove, which was relieved by the D236R mutation. Taken together, we identify CTRB2 Arg236 as a key positive determinant, while CTRB1 Asp236 as a negative determinant for chymotrypsin activity. These findings strongly support the concept that in carriers of the CTRB1-CTRB2 inversion allele, the superior trypsinogen degradation capacity of CTRB2 protects against pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Andrea Geisz
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
228
|
Analysis of Foot and Mouth Disease Virus Polyprotein for Multi Peptides Vaccine Design: An In silico Strategy. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is small RNA virus from Picornaviridae family; genus Aphthovirus. FMDV causes maximum levels of infectivity in cattle and harmful socioeconomic effects. The present report attempted to design vaccine candidate from the polyprotein of FMDV to stimulate protective immune response. The IEDB server was used to predict B and T cells epitopes that were linked via GPGPG and YAA linkers, respectively. Mycobacterium tuberculosis 50S ribosomal protein was exploited as an adjuvant and a six histidine-tag sequence was linked to the carboxyl end of the vaccine for purification and identification. The predicted vaccine comprised 313aa and was antigenic and not allergic. Moreover, the vaccine was acidic and showed stability and hydrophilicity. Vaccine secondary and tertiary structures were predicted. The tertiary structure was refined to ameliorate the quality of the global and local structures of the vaccine. Vaccine model validation was performed and the final quality score of the structural model was computed. The validated model was used for molecular docking with bovine (N*01801-BoLA-A11) allele. Docking process in terms of binding free energy score was significant. Vaccine solubility was investigated based on the protein of E. coli and the stability was based on the disulfide bonding to lessen the entropic and mobile points in vaccine. Lastly, the in silico cloning ensured the proper cloning and best translation of the DNA of vaccine in molecular vectors.
Collapse
|
229
|
Soto LF, Romaní AC, Jiménez-Avalos G, Silva Y, Ordinola-Ramirez CM, Lopez Lapa RM, Requena D. Immunoinformatic analysis of the whole proteome for vaccine design: An application to Clostridium perfringens. Front Immunol 2022; 13:942907. [PMID: 36110855 PMCID: PMC9469472 DOI: 10.3389/fimmu.2022.942907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium perfringens is a dangerous bacterium and known biological warfare weapon associated with several diseases, whose lethal toxins can produce necrosis in humans. However, there is no safe and fully effective vaccine against C. perfringens for humans yet. To address this problem, we computationally screened its whole proteome, identifying highly immunogenic proteins, domains, and epitopes. First, we identified that the proteins with the highest epitope density are Collagenase A, Exo-alpha-sialidase, alpha n-acetylglucosaminidase and hyaluronoglucosaminidase, representing potential recombinant vaccine candidates. Second, we further explored the toxins, finding that the non-toxic domain of Perfringolysin O is enriched in CTL and HTL epitopes. This domain could be used as a potential sub-unit vaccine to combat gas gangrene. And third, we designed a multi-epitope protein containing 24 HTL-epitopes and 34 CTL-epitopes from extracellular regions of transmembrane proteins. Also, we analyzed the structural properties of this novel protein using molecular dynamics. Altogether, we are presenting a thorough immunoinformatic exploration of the whole proteome of C. perfringens, as well as promising whole-protein, domain-based and multi-epitope vaccine candidates. These can be evaluated in preclinical trials to assess their immunogenicity and protection against C. perfringens infection.
Collapse
Affiliation(s)
- Luis F. Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ana C. Romaní
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Gabriel Jiménez-Avalos
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Yshoner Silva
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Carla M. Ordinola-Ramirez
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Rainer M. Lopez Lapa
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Instituto de Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, United States
- *Correspondence: David Requena,
| |
Collapse
|
230
|
Yrjänäinen A, Patrikainen MS, Azizi L, Tolvanen MEE, Laitaoja M, Jänis J, Hytönen VP, Nocentini A, Supuran CT, Parkkila S. Biochemical and Biophysical Characterization of Carbonic Anhydrase VI from Human Milk and Saliva. Protein J 2022; 41:489-503. [PMID: 35947329 PMCID: PMC9464147 DOI: 10.1007/s10930-022-10070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Carbonic anhydrases (CA, EC 4.2.1.1) catalyze the hydration of carbon dioxide and take part in many essential physiological processes. In humans, 15 CAs are characterized, including the only secreted isoenzyme CA VI. CA VI has been linked to specific processes in the mouth, namely bitter taste perception, dental caries, and maintenance of enamel pellicle, and implicated in several immunity-related phenomena. However, little is known of the mechanisms of the above. In this study, we characterized human CA VI purified from saliva and milk with biophysical methods and measured their enzyme activities and acetazolamide inhibition. Size-exclusion chromatography showed peaks of salivary and milk CA VI corresponding to hexameric state or larger at pH 7.5. At pH 5.0 the hexamer peaks dominated. SDS- PAGE of milk CA VI protein treated with a bifunctional crosslinker further confirmed that a majority of CA VI is oligomers of similar sizes in solution. Mass spectrometry experiments confirmed that both of the two putative N-glycosylation sites, Asn67 and Asn256, are heterogeneously glycosylated. The attached glycans in milk CA VI were di- and triantennary complex-type glycans, carrying both a core fucose and 1 to 2 additional fucose units, whereas the glycans in salivary CA VI were smaller, seemingly degraded forms of core fucosylated complex- or hybrid-type glycans. Mass spectrometry also verified the predicted signal peptide cleavage site and the terminal residue, Gln 18, being in pyroglutamate form. Thorough characterization of CA VI paves way to better understanding of the biological function of the protein.
Collapse
Affiliation(s)
- Alma Yrjänäinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maarit S Patrikainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Alessio Nocentini
- Neurofarba Department, Sezione di Chimica Farmaceutica, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica, University of Florence, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
231
|
Sabbir MG, Wigle JT, Taylor CG, Zahradka P. Growth State-Dependent Expression of Arachidonate Lipoxygenases in the Human Endothelial Cell Line EA.hy926. Cells 2022; 11:cells11162478. [PMID: 36010555 PMCID: PMC9406857 DOI: 10.3390/cells11162478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
Endothelial cells regulate vascular homeostasis through the secretion of various paracrine molecules, including bioactive lipids, but little is known regarding the enzymes responsible for generating these lipids under either physiological or pathophysiological conditions. Arachidonate lipoxygenase (ALOX) expression was therefore investigated in confluent and nonconfluent EA.h926 endothelial cells, which represent the normal quiescent and proliferative states, respectively. mRNAs for ALOX15, ALOX15B, and ALOXE3 were detected in EA.hy926 cells, with the highest levels present in confluent cells compared to nonconfluent cells. In contrast, ALOX5, ALOX12, and ALOX12B mRNAs were not detected. At the protein level, only ALOX15B and ALOXE3 were detected but only in confluent cells. ALOXE3 was also observed in confluent human umbilical artery endothelial cells (HUAEC), indicating that its expression, although previously unreported, may be a general feature of endothelial cells. Exposure to laminar flow further increased ALOXE3 levels in EA.hy926 cells and HUAECs. The evidence obtained in this study indicates that proliferative status and shear stress are both important factors that mediate endothelial ALOX gene expression. The presence of ALOX15B and ALOXE3 exclusively in quiescent human endothelial cells suggests their activity likely contributes to the maintenance of a healthy endothelium.
Collapse
Affiliation(s)
- Mohammad G. Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +204-235-3507; Fax: +204-237-4018
| |
Collapse
|
232
|
Islam SI, Mou MJ, Sanjida S. Application of reverse vaccinology to design a multi-epitope subunit vaccine against a new strain of Aeromonas veronii. J Genet Eng Biotechnol 2022; 20:118. [PMID: 35939149 PMCID: PMC9358925 DOI: 10.1186/s43141-022-00391-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aeromonas veronii is one of the most common pathogens of freshwater fishes that cause sepsis and ulcers. There are increasing numbers of cases showing that it is a significant zoonotic and aquatic agent. Epidemiological studies have shown that A. veronii virulence and drug tolerance have both increased over the last few years as a result of epidemiological investigations. Cadaverine reverse transporter (CadB) and maltoporin (LamB protein) contribute to the virulence of A. veronii TH0426. TH0426 strain is currently showing severe cases on fish species, and its resistance against therapeutic has been increasing. Despite these devastating complications, there is still no effective cure or vaccine for this strain of A.veronii. RESULTS In this regard, an immunoinformatic method was used to generate an epitope-based vaccine against this pathogen. The immunodominant epitopes were identified using the CadB and LamB protein of A. veronii. The final constructed vaccine sequence was developed to be immunogenic, non-allergenic as well as have better solubility. Molecular dynamic simulation revealed significant binding stability and structural compactness. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher CAI value, which was then included in the cloning vector pET2+ (a). CONCLUSION Altogether, our outcomes imply that the proposed peptide vaccine might be a good option for A. veronii TH0426 prophylaxis.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
233
|
Yin Y, Shi H, Mi J, Qin X, Zhao J, Zhang D, Guo C, He X, An W, Cao Y, Zhu J, Zhan X. Genome-Wide Identification and Analysis of the BBX Gene Family and Its Role in Carotenoid Biosynthesis in Wolfberry (Lycium barbarum L.). Int J Mol Sci 2022; 23:ijms23158440. [PMID: 35955573 PMCID: PMC9369241 DOI: 10.3390/ijms23158440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
The B-box proteins (BBXs) are a family of zinc-finger transcription factors with one/two B-Box domain(s) and play important roles in plant growth and development as well as stress responses. Wolfberry (Lycium barbarum L.) is an important traditional medicinal and food supplement in China, and its genome has recently been released. However, comprehensive studies of BBX genes in Lycium species are lacking. In this study, 28 LbaBBX genes were identified and classified into five clades by a phylogeny analysis with BBX proteins from Arabidopsis thaliana and the LbaBBXs have similar protein motifs and gene structures. Promoter cis-regulatory element prediction revealed that LbaBBXs might be highly responsive to light, phytohormone, and stress conditions. A synteny analysis indicated that 23, 20, 8, and 5 LbaBBX genes were orthologous to Solanum lycopersicum, Solanum melongena, Capsicum annuum, and Arabidopsis thaliana, respectively. The gene pairs encoding LbaBBX proteins evolved under strong purifying selection. In addition, the carotenoid content and expression patterns of selected LbaBBX genes were analyzed. LbaBBX2 and LbaBBX4 might play key roles in the regulation of zeaxanthin and antheraxanthin biosynthesis. Overall, this study improves our understanding of LbaBBX gene family characteristics and identifies genes involved in the regulation of carotenoid biosynthesis in wolfberry.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Hongyan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
| | - Jia Mi
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Dekai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
| | - Cong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
| | - Xinru He
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (J.Z.); (X.Z.)
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
- Correspondence: (J.Z.); (X.Z.)
| |
Collapse
|
234
|
Wang S, Wang R, Yang C. Selection and functional identification of Dof genes expressed in response to nitrogen in Populus simonii × Populus nigra. Open Life Sci 2022; 17:756-780. [PMID: 35891966 PMCID: PMC9281594 DOI: 10.1515/biol-2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
In plants, Dof transcription factors are involved in regulating the expression of a series of genes related to N uptake and utilization. Therefore, the present study investigated how DNA-binding with one finger (Dof) genes are expressed in response to nitrogen (N) form and concentration to clarify the role of Dof genes and their functions in promoting N assimilation and utilization in poplar. The basic characteristics and expression patterns of Dof genes in poplar were analyzed by the use of bioinformatics methods. Dof genes expressed in response to N were screened, after which the related genes were cloned and transformed into Arabidopsis thaliana; the physiological indexes and the expression of related genes were subsequently determined. The function of Dof genes was then verified in Arabidopsis thaliana plants grown in the presence of different N forms and concentrations. Forty-four Dof genes were identified, most of which were expressed in the roots and young leaves, and some of the Dof genes were expressed under ammonia- and nitrate-N treatments. Three genes related to N induction were cloned, their proteins were found to localize in the nucleus, and PnDof30 was successfully transformed into Arabidopsis thaliana for functional verification. On comparing Arabidopsis thaliana with WT Arabidopsis thaliana plants, Arabidopsis thaliana plants overexpressing the Dof gene grew better under low N levels; the contents of soluble proteins and chlorophyll significantly increased, while the soluble sugar content significantly decreased. The expressions of several AMT, NRT, and GS genes were upregulated, while the expressions of several others were downregulated, and the expression of PEPC and PK genes significantly increased. In addition, the activity of PEPC, PK, GS, and NR enzymes significantly increased. The results showed that overexpression of PnDof30 significantly increased the level of carbon and N metabolism and improved the growth of transgenic Arabidopsis thaliana plants under low-N conditions. The study revealed the biological significance of poplar Dof transcription factors in N response and regulation of related downstream gene expression and provided some meaningful clues to explain the huge difference between poplar and Arabidopsis thaliana transformed by exogenous Dof gene, which could promote the comprehensive understanding of the molecular mechanism of efficient N uptake and utilization in trees.
Collapse
Affiliation(s)
- Shenmeng Wang
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin City, Heilongjiang Province, PR China.,School of Forestry, Northeast Forestry University, No. 26, Hexing Road, Harbin City, PR China
| | - Ruoning Wang
- School of Forestry, Northeast Forestry University, No. 26, Hexing Road, Harbin City, PR China
| | - Chengjun Yang
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin City, Heilongjiang Province, PR China.,School of Forestry, Northeast Forestry University, No. 26, Hexing Road, Harbin City, PR China
| |
Collapse
|
235
|
Mei X, Chang Y, Shen J, Zhang Y, Han J, Xue C. Characterization of a Novel Carrageenan-Specific Carbohydrate-Binding Module: a Promising Tool for the In Situ Investigation of Carrageenan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9066-9072. [PMID: 35830544 DOI: 10.1021/acs.jafc.2c03139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carrageenan is a commercially important polysaccharide widely applied in the food industry. Specific probes are critical tools for the in situ investigation of polysaccharides, whereas the carrageenan-specific probes are limited at present. Carbohydrate-binding modules (CBMs) could serve as specific probes for the in situ investigation of polysaccharides. In the present study, an unknown function module from the κ-carrageenase Cgk16A was cloned and expressed in Escherichia coli. The expressed protein Cgk16A-CBM92 could specifically bind to carrageenan. Its novelty sheds light on a new CBM family (CBM92) as the founding member. Furthermore, a fluorescent probe was successfully constructed by fusing Cgk16A-CBM92 with a green fluorescent protein. The application potential of Cgk16A-CBM92 as a probe served in the in situ visualization of carrageenan was evaluated. The discovery of Cgk16A-CBM92 provided a promising tool for the in situ investigation of carrageenan.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jin Han
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
236
|
Mao Y, Chen X, Yan K, Liang Z, Xia P. Multi-algorithm cooperation comprehensive research of bZIP genes under Nitrogen stress in Panax notoginseng. Gene X 2022; 841:146768. [PMID: 35905849 DOI: 10.1016/j.gene.2022.146768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors play an irreplaceable position in the regulation of plant secondary metabolism, growth and development, and resistance to abiotic stress. Panax notoginseng is a traditional medicinal plant in China, but the systematic identification and the resistance of Panax notoginseng bZIP (PnbZIP) family under nitrogen stress have not been reported before, considering the excessive application of N fertilizers. In this study, we conducted a genome-wide identification of the PnbZIP family and analyzed its phylogeny, tissue selectivity, and abiotic resistence. 74 PnbZIPs were distributed on 12 chromosomes and 8 were not successfully located. Through phylogenetic analysis of Arabidopsis and Panax notoginseng, we divided them into 14 subgroups. In the same subgroup, bZIPs had similiar intron/exon structure and conserved motifs. In the analysis of chromosome structure, two PnbZIP genes were duplicated in tandem on chromosome 3. Intraspecific collinearity analysis showed that 28 PnbZIPs participated in segmental replication. Each PnbZIP promoter contained at least one stress response element or stress-related hormone response element. RNA-seq and qRT-PCR methods were used to analyze the expression patterns of the PnbZIP gene in different tissues (roots, flowers, and leaves) and under different nitrogen stresses. The results showed that the PnbZIP gene had the highest expression level in flowers and reflected tissue-specific expressions. Meanwhile, under the stress of ammonium nitrogen fertilizer and nitrate nitrogen fertilizer, PnbZIPs in roots were differently expressed. 10 PnbZIP stress-responsive genes were screened for significant expression, among which PnbZIP46 was significantly up-regulated, which could be a candidate gene for resistance to Nitrogen stress. This study laid the foundation for functional identification of PnbZIPs and improved the cultivation of Panax notoginseng.
Collapse
Affiliation(s)
- Yucheng Mao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kaijing Yan
- Tasly Pharmaceutical Group Co., Ltd, Tianjin 300410, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
237
|
Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation. Sci Rep 2022; 12:12653. [PMID: 35879323 PMCID: PMC9314435 DOI: 10.1038/s41598-022-16540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.
Collapse
|
238
|
Genome-Wide Identification of R2R3-MYB Transcription Factor and Expression Analysis under Abiotic Stress in Rice. PLANTS 2022; 11:plants11151928. [PMID: 35893632 PMCID: PMC9330779 DOI: 10.3390/plants11151928] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The myeloblastosis (MYB) family comprises a large group of transcription factors (TFs) that has a variety of functions. Among them, the R2R3-MYB type of proteins are the largest group in plants, which are involved in controlling various biological processes such as plant growth and development, physiological metabolism, defense, and responses to abiotic and biotic stresses. In this study, bioinformatics was adopted to conduct genome-wide identification of the R2R3-MYB TFs in rice. We identified 190 MYB TFs (99 R2R3-MYBs), which are unevenly distributed on the 12 chromosomes of rice. Based on the phylogenetic clustering and protein sequence characteristics, OsMYBs were classified into five subgroups, and 59.6% of the Os2R_MYB genes contained two introns. Analysis of cis-acting elements in the 2000 bp upstream region of Os2R_MYB genes showed that all Os2R_MYB genes contained plant hormones-related or stress-responsive elements since 91.9%, 79.8%, 79.8%, and 58.6% of Os2R_MYB genes contain ABRE, TGACG, CGTCA, and MBS motifs, respectively. Protein–protein network analysis showed that the Os2R_MYBs were involved in metabolic process, biosynthetic process, and tissue development. In addition, some genes showed a tissue-specific or developmental-stage-specific expression pattern. Moreover, the transcription levels of 20 Os2R_MYB genes under polyethylene glycol (PEG) and cadmium chloride (CdCl2) stress inducers were dissected by qRT-PCR. The results indicated genes with an altered expression upon PEG or CdCl2 stress induction. These results potentially supply a basis for further research on the role that Os2R_MYB genes play in plant development and stress responses.
Collapse
|
239
|
Polli JR, Balthasar JP. Cell Penetrating Peptides Conjugated to Anti-Carcinoembryonic Antigen "Catch-and-Release" Monoclonal Antibodies Alter Plasma and Tissue Pharmacokinetics in Colorectal Cancer Xenograft Mice. Bioconjug Chem 2022; 33:1456-1466. [PMID: 35867869 DOI: 10.1021/acs.bioconjchem.2c00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell penetrating peptides conjugated to delivery vehicles, such as nanoparticles or antibodies, can enhance the cytosolic delivery of macromolecules. The present study examines the effects of conjugation to cell penetrating and endosomal escape peptides (i.e., TAT, GALA, and H6CM18) on the pharmacokinetics and distribution of an anti-carcinoembryonic antigen "catch-and-release" monoclonal antibody, 10H6, in a murine model of colorectal cancer. GALA and TAT were conjugated to 10H6 using SoluLINK technology that allowed the evaluation of peptide-to-antibody ratio by ultraviolet spectroscopy. H6CM18 was conjugated to either NHS or maleimide-modified 10H6 using an azide-modified valine-citrulline linker and copper-free click chemistry. Unmodified and peptide-conjugated 10H6 preparations were administered intravenously at 6.67 nmol/kg to mice-bearing MC38CEA+ tumors. Unconjugated 10H6 demonstrated a clearance of 19.9 ± 1.36 mL/day/kg, with an apparent volume of distribution of 62.4 ± 7.78 mL/kg. All antibody-peptide conjugates exhibited significantly decreased plasma and tissue exposure, increased plasma clearance, and increased distribution volume. Examination of tissue-to-plasma exposure ratios showed an enhanced selectivity of 10H6-TAT for the GI tract (+25%), kidney (+24%), liver (+38%), muscle (+3%), and spleen (+33%). 10H6-GALA and 10H6-H6CM18 conjugates demonstrated decreased exposure in all tissues, relative to unmodified 10H6. All conjugates demonstrated decreased tumor exposure and selectivity; however, differences in tumor selectivity between 10H6 and 10H6-H6CM18 (maleimide) were not statistically significant. Relationships between the predicted peptide conjugate isoelectric point (pI) and pharmacokinetic parameters were bell-shaped, where pI values around 6.8-7 exhibit the slowest plasma clearance and smallest distribution volume. The data and analyses presented in this work may guide future efforts to develop immunoconjugates with cell penetrating and endosomal escape peptides.
Collapse
Affiliation(s)
- Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215, United States
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215, United States
| |
Collapse
|
240
|
Kwon H, Park SY, Kim MS, Kim SG, Park SC, Kim JH. Characterization of a Lytic Bacteriophage vB_SurP-PSU3 Infecting Staphylococcus ureilyticus and Its Efficacy Against Biofilm. Front Microbiol 2022; 13:925866. [PMID: 35923398 PMCID: PMC9340203 DOI: 10.3389/fmicb.2022.925866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
In response to the increasing nosocomial infections caused by antimicrobial-resistant coagulase-negative staphylococci (CoNS), bacteriophages (phages) have emerged as an alternative to antibiotics. Staphylococcus ureilyticus, one of the representative species of the CoNS, is now considered a notable pathogen that causes nosocomial bloodstream infections, and its biofilm-forming ability increases pathogenicity and resistance to antimicrobial agents. In this study, a lytic phage infecting S. ureilyticus was newly isolated from wastewater collected from a sewage treatment plant and its biological and antimicrobial characteristics are described. The isolated phage, named vB_SurP-PSU3, was morphologically similar to Podoviridae and could simultaneously lyse some S. warneri strains used in this study. The sequenced genome of the phage consisted of linear dsDNA with 18,146 bp and genome-based phylogeny revealed that vB_SurP-PSU3 belonged to the genus Andhravirus. Although its overall genomic arrangement and contents were similar to those of other members of the Andhravirus, the predicted endolysin of vB_SurP-PSU3 distinctly differed from the other members of the genus. The bacteriolytic activity of vB_SurP-PSU3 was evaluated using S. ureilyticus ATCC 49330, and the phage could efficiently inhibit the planktonic growth of the bacteria. Moreover, the anti-biofilm analysis showed that vB_SurP-PSU3 could prevent the formation of bacterial biofilm and degrade the mature biofilm in vitro. In an additional cytotoxicity assay of vB_SurP-PSU3, no significant adverse effects were observed on the tested cell. Based on these findings, the newly isolated phage vB_SurP-PSU3 could be classified as a new member of Andhravirus and could be considered an alternative potential biocontrol agent against S. ureilyticus infections and its biofilm.
Collapse
Affiliation(s)
- Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
241
|
Development of a Multi-Epitope Vaccine for Mycoplasma hyopneumoniae and Evaluation of Its Immune Responses in Mice and Piglets. Int J Mol Sci 2022; 23:ijms23147899. [PMID: 35887246 PMCID: PMC9318870 DOI: 10.3390/ijms23147899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma hyopneumoniae (Mhp), the primary pathogen causing Mycoplasma pneumonia of swine (MPS), brings massive economic losses worldwide. Genomic variability and post-translational protein modification can enhance the immune evasion of Mhp, which makes MPS prone to recurrent outbreaks on farms, even with vaccination or other treatments. The reverse vaccinology pipeline has been developed as an attractive potential method for vaccine development due to its high efficiency and applicability. In this study, a multi-epitope vaccine for Mhp was developed, and its immune responses were evaluated in mice and piglets. Genomic core proteins of Mhp were retrieved through pan-genome analysis, and four immunodominant antigens were screened by host homologous protein removal, membrane protein screening, and virulence factor identification. One immunodominant antigen, AAV27984.1 (membrane nuclease), was expressed by E. coli and named rMhp597. For epitope prioritization, 35 B-cell-derived epitopes were identified from the four immunodominant antigens, and 10 MHC-I and 6 MHC-II binding epitopes were further identified. The MHC-I/II binding epitopes were merged and combined to produce recombinant proteins MhpMEV and MhpMEVC6His, which were used for animal immunization and structural analysis, respectively. Immunization of mice and piglets demonstrated that MhpMEV could induce humoral and cellular immune responses. The mouse serum antibodies could detect all 11 synthetic epitopes, and the piglet antiserum suppressed the nuclease activity of rMhp597. Moreover, piglet serum antibodies could also detect cultured Mhp strain 168. In summary, this study provides immunoassay results for a multi-epitope vaccine derived from the reverse vaccinology pipeline, and offers an alternative vaccine for MPS.
Collapse
|
242
|
Pu T, Mo Z, Su L, Yang J, Wan K, Wang L, Liu R, Liu Y. Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:503. [PMID: 35831784 PMCID: PMC9281163 DOI: 10.1186/s12864-022-08719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The filamentous temperature-sensitive H protease (ftsH) gene family plays an important role in plant growth and development. FtsH proteins belong to the AAA protease family. Studies have shown that it is a key gene for plant chloroplast development and photosynthesis regulation. In addition, the ftsH gene is also involved in plant response to stress. At present, the research and analysis of the ftsH gene family are conducted in microorganisms such as Escherichia coli and Oenococcus and various plants such as Arabidopsis, pear, rice, and corn. However, analysis reports on ftsH genes from tobacco (Nicotiana tabacum L.), an important model plant, are still lacking. Since ftsH genes regulate plant growth and development, it has become necessary to systematically study this gene in an economically important plant like tobacco. RESULTS This is the first study to analyze the ftsH gene from Nicotiana tabacum L. K326 (NtftsH). We identified 20 ftsH genes from the whole genome sequence, renamed them according to their chromosomal locations, and divided them into eight subfamilies. These 20 NtftsH genes were unevenly distributed across the 24 chromosomes. We found four pairs of fragment duplications. We further investigated the collinearity between these genes and related genes in five other species. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified differential expression patterns of NtftsH in different tissues and under various abiotic stress conditions. CONCLUSIONS This study provides a comprehensive analysis of the NtftsH gene family. The exon-intron structure and motif composition are highly similar in NtftsH genes that belong to the same evolutionary tree branch. Homology analysis and phylogenetic comparison of ftsH genes from several different plants provide valuable clues for studying the evolutionary characteristics of NtftsH genes. The NtftsH genes play important roles in plant growth and development, revealed by their expression levels in different tissues as well as under different stress conditions. Gene expression and phylogenetic analyses will provide the basis for the functional analysis of NtftsH genes. These results provide a valuable resource for a better understanding of the biological role of the ftsH genes in the tobacco plant.
Collapse
Affiliation(s)
- Tianxiunan Pu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Zejun Mo
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Long Su
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Jing Yang
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Ke Wan
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Linqi Wang
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Renxiang Liu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Yang Liu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China.
| |
Collapse
|
243
|
Han P, Zhang W, Pu M, Li Y, Song L, An X, Li M, Li F, Zhang S, Fan H, Tong Y. Characterization of the Bacteriophage BUCT603 and Therapeutic Potential Evaluation Against Drug-Resistant Stenotrophomonas maltophilia in a Mouse Model. Front Microbiol 2022; 13:906961. [PMID: 35865914 PMCID: PMC9294509 DOI: 10.3389/fmicb.2022.906961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen that is resistant to many antibiotics. Bacteriophages are considered to be an effective alternative to antibiotics for the treatment of drug-resistant bacterial infections. In this study, we isolated and characterized a phage, BUCT603, infecting drug-resistant S. maltophilia. Genome sequencing showed BUCT603 genome was composed of 44,912 bp (32.5% G + C content) with 64 predicted open reading frames (ORFs), whereas no virulence-related genes, antibiotic-resistant genes or tRNA were identified. Whole-genome alignments showed BUCT603 shared 1% homology with other phages in the National Center for Biotechnology Information (NCBI) database, and a phylogenetic analysis indicated BUCT603 can be classified as a new member of the Siphoviridae family. Bacteriophage BUCT603 infected 10 of 15 S. maltophilia and used the TonB protein as an adsorption receptor. BUCT603 also inhibited the growth of the host bacterium within 1 h in vitro and effectively increased the survival rate of infected mice in a mouse model. These findings suggest that bacteriophage BUCT603 has potential for development as a candidate treatment of S. maltophilia infection.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjing Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Shuyan Zhang
- Department of Medical Technology Support, Jingdong Medical District of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuyan Zhang,
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Huahao Fan,
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|
244
|
Yu G, Chen Q, Chen F, Liu H, Lin J, Chen R, Ren C, Wei J, Zhang Y, Yang F, Sheng Y. Glutathione Promotes Degradation and Metabolism of Residual Fungicides by Inducing UDP-Glycosyltransferase Genes in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:893508. [PMID: 35860529 PMCID: PMC9289782 DOI: 10.3389/fpls.2022.893508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 05/28/2023]
Abstract
Reduced glutathione (GSH) is a key antioxidant, which plays a crucial role in the detoxification of xenobiotics in plants. In the present study, glutathione could reduce chlorothalonil (CHT) residues in tomatoes by inducing the expression of the UDP-glycosyltransferase (UGT) gene. In plants, UGT is an important glycosylation catalyst, which can respond to stresses in time by activating plant hormones and defense compounds. Given the importance of plant growth and development, the genome-wipe analyses of Arabidopsis and soybean samples have been carried out, though not on the tomato, which is a vital vegetable crop. In this study, we identified 143 UGT genes in the tomato that were unevenly distributed on 12 chromosomes and divided into 16 subgroups and found that a variety of plant hormones and stress response cis-elements were discovered in the promoter region of the SlUGT genes, indicating that the UGT genes were involved in several aspects of the tomato stress response. Transcriptome analysis and results of qRT-PCR showed that most SlUGT genes could be induced by CHT, and the expression of these genes was regulated by glutathione. In addition, we found that SlUGT genes could participate in plant detoxification through interaction with transcription factors. These findings further clarify the potential function of the UGT gene family in the detoxification of exogenous substances in tomatoes and provide valuable information for the future study of functional genomics of tomatoes.
Collapse
Affiliation(s)
- Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiusen Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fengqiong Chen
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hanlin Liu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaxin Lin
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Runan Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Tropical Crop, Hainan University, Haikou, China
| | - Chunyuan Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinpeng Wei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Ministry of Agriculture and Rural Affairs Agro-products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, China
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
245
|
Cappetta E, De Palma M, D’Alessandro R, Aiello A, Romano R, Graziani G, Ritieni A, Paolo D, Locatelli F, Sparvoli F, Docimo T, Tucci M. Development of a High Oleic Cardoon Cell Culture Platform by SAD Overexpression and RNAi-Mediated FAD2.2 Silencing. FRONTIERS IN PLANT SCIENCE 2022; 13:913374. [PMID: 35845700 PMCID: PMC9285897 DOI: 10.3389/fpls.2022.913374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2023]
Abstract
The development of effective tools for the sustainable supply of phyto-ingredients and natural substances with reduced environmental footprints can help mitigate the dramatic scenario of climate change. Plant cell cultures-based biorefineries can be a technological advancement to face this challenge and offer a potentially unlimited availability of natural substances, in a standardized composition and devoid of the seasonal variability of cultivated plants. Monounsaturated (MUFA) fatty acids are attracting considerable attention as supplements for biodegradable plastics, bio-additives for the cosmetic industry, and bio-lubricants. Cardoon (Cynara cardunculus L. var. altilis) callus cultures accumulate fatty acids and polyphenols and are therefore suitable for large-scale production of biochemicals and valuable compounds, as well as biofuel precursors. With the aim of boosting their potential uses, we designed a biotechnological approach to increase oleic acid content through Agrobacterium tumefaciens-mediated metabolic engineering. Bioinformatic data mining in the C. cardunculus transcriptome allowed the selection and molecular characterization of SAD (stearic acid desaturase) and FAD2.2 (fatty acid desaturase) genes, coding for key enzymes in oleic and linoleic acid formation, as targets for metabolic engineering. A total of 22 and 27 fast-growing independent CcSAD overexpressing (OE) and CcFAD2.2 RNAi knocked out (KO) transgenic lines were obtained. Further characterization of five independent transgenic lines for each construct demonstrated that, successfully, SAD overexpression increased linoleic acid content, e.g., to 42.5%, of the relative fatty acid content, in the CcSADOE6 line compared with 30.4% in the wild type (WT), whereas FAD2.2 silencing reduced linoleic acid in favor of the accumulation of its precursor, oleic acid, e.g., to almost 57% of the relative fatty acid content in the CcFAD2.2KO2 line with respect to 17.7% in the WT. Moreover, CcSADOE6 and CcFAD2.2KO2 were also characterized by a significant increase in total polyphenolic content up to about 4.7 and 4.1 mg/g DW as compared with 2.7 mg/g DW in the WT, mainly due to the accumulation of dicaffeoyl quinic and feruloyl quinic acids. These results pose the basis for the effective creation of an engineered cardoon cells-based biorefinery accumulating high levels of valuable compounds from primary and specialized metabolism to meet the industrial demand for renewable and sustainable sources of innovative bioproducts.
Collapse
Affiliation(s)
- Elisa Cappetta
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Monica De Palma
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Rosa D’Alessandro
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Alessandra Aiello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Dario Paolo
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Franca Locatelli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Teresa Docimo
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Marina Tucci
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| |
Collapse
|
246
|
Zhang CP, Zhang JL, Sun ZR, Liu XY, Shu LZ, Wu H, Song Y, He DH. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene X 2022; 828:146462. [PMID: 35413394 DOI: 10.1016/j.gene.2022.146462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Terpenoids are widely distributed in plants and play important roles in the regulation of plant growth and development and in the interactions between plants and both the environment and other organisms. However, terpene synthase (TPS) genes have not been systematically investigated in the tetraploid Gossypium hirsutum. In this study, whole genome identification and characterization of the TPS family from G. hirsutum were carried out. Eighty-five TPS genes, including 47 previously unidentified genes, were identified in the G. hirsutum genome and classified into 5 subfamilies according to protein sequence similarities, as follows: 43 GhTPS-a, 29 GhTPS-b, 4 GhTPS-c, 7 GhTPS-e/f, and 2 GhTPS-g members. These 85 TPS genes were mapped onto 19 chromosomes of the G. hirsutum genome. Segmental duplications and tandem duplications contributed greatly to the expansion of TPS genes in G. hirsutum and were followed by intense purifying selection during evolution. Indentification of cis-acting regulatory elements suggest that the expression of TPS genes is regulated by a variety of hormones. RNA sequencing (RNA-seq) expression profile analysis revealed that the TPS genes had distinct spatiotemporal expression patterns, and several genes were highly and preferentially expressed in the leaves of cotton with gossypol glands (glanded cotton) versus a glandless strain. Virus-induced gene silencing (VIGS) of three TPS genes yielded plants characterized by fewer, smaller, and lighter gossypol glands, which indicated that these three genes were responsible for gland activity. Taken together, our results provide a solid basis for further elucidation of the biological functions of TPS genes in relation to gland activity and gossypol biosynthesis to develop cotton cultivars with low cottonseed gossypol contents.
Collapse
Affiliation(s)
- Cui-Ping Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jin-Li Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zheng-Ran Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiu-Yan Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Li-Zhe Shu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yin Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dao-Hua He
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
247
|
Maglioco A, Agüero FA, Valacco MP, Valdez AJ, Paulino M, Fuchs AG. Characterization of the B-Cell Epitopes of Echinococcus granulosus Histones H4 and H2A Recognized by Sera From Patients With Liver Cysts. Front Cell Infect Microbiol 2022; 12:901994. [PMID: 35770070 PMCID: PMC9234146 DOI: 10.3389/fcimb.2022.901994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic disease worldwide distributed, caused by the cestode Echinococcus granulosus sensu lato (E. granulosus), with an incidence rate of 50/100,000 person/year and a high prevalence in humans of 5-10%. Serology has variable sensitivity and specificity and low predictive values. Antigens used are from the hydatid fluid and recombinant antigens have not demonstrated superiority over hydatid fluid. A cell line called EGPE was obtained from E. granulosus sensu lato G1 strain from bovine liver. Serum from CE patients recognizes protein extracts from EGPE cells with higher sensitivity than protein extracts from hydatid fluid. In the present study, EGPE cell protein extracts and supernatants from cell colonies were eluted from a protein G affinity column performed with sera from 11 CE patients. LC-MS/MS proteomic analysis of the eluted proteins identified four E. granulosus histones: one histone H4 in the cell extract and supernatant, one histone H2A only in the cell extract, and two histones H2A only in the supernatant. This differential distribution of histones could reflect different parasite viability stages regarding their role in gene transcription and silencing and could interact with host cells. Bioinformatics tools characterized the linear and conformational epitopes involved in antibody recognition. The three-dimensional structure of each histone was obtained by molecular modeling and validated by molecular dynamics simulation and PCR confirmed the presence of the epitopes in the parasite genome. The three histones H2A were very different and had a less conserved sequence than the histone H4. Comparison of the histones of E. granulosus with those of other organisms showed exclusive regions for E. granulosus. Since histones play a role in the host-parasite relationship they could be good candidates to improve the predictive value of serology in CE.
Collapse
Affiliation(s)
- Andrea Maglioco
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Facundo A. Agüero
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Pía Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masas (CEQUIBIEM), Instituto de Química Biológica Ciencias Exactas y Naturales- Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alejandra Juárez Valdez
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
| | - Margot Paulino
- Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Bioinformatica DETEMA- Udelar, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Margot Paulino, ; Alicia G. Fuchs,
| | - Alicia G. Fuchs
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Instituto Nacional de Parasitología “Dr Mario Fatala- Chaben”, (Administración Nacional de Laboratorios e Institutos de Salud )ANLIS‐Malbrán, Buenos Aires, Argentina
- *Correspondence: Margot Paulino, ; Alicia G. Fuchs,
| |
Collapse
|
248
|
Yang J, Zhang B, Gu G, Yuan J, Shen S, Jin L, Lin Z, Lin J, Xie X. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genomics 2022; 23:432. [PMID: 35681121 PMCID: PMC9178890 DOI: 10.1186/s12864-022-08658-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The R2R3-MYB transcription factor is one of the largest gene families in plants and involved in the regulation of plant development, hormone signal transduction, biotic and abiotic stresses. Tobacco is one of the most important model plants. Therefore, it will be of great significance to investigate the R2R3-MYB gene family and their expression patterns under abiotic stress and senescence in tobacco. RESULTS A total of 174 R2R3-MYB genes were identified from tobacco (Nicotiana tabacum L.) genome and were divided into 24 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were especially conserved among the NtR2R3-MYB genes, especially members within the same subgroup. The NtR2R3-MYB genes were distributed on 24 tobacco chromosomes. Analysis of gene duplication events obtained 3 pairs of tandem duplication genes and 62 pairs of segmental duplication genes, suggesting that segmental duplications is the major pattern for R2R3-MYB gene family expansion in tobacco. Cis-regulatory elements of the NtR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponsive. Expression profile analysis showed that NtR2R3-MYB genes were widely expressed in different maturity tobacco leaves, and however, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 15 NtR2R3-MYBs confirmed their differential expression under different abiotic stresses (cold, salt and drought), and notably, NtMYB46 was significantly up-regulated under three treatments. CONCLUSIONS In summary, a genome-wide identification, evolutionary and expression analysis of R2R3-MYB gene family in tobacco were conducted. Our results provided a solid foundation for further biological functional study of NtR2R3-MYB genes in tobacco.
Collapse
Affiliation(s)
- Jiahan Yang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, 28301, USA
| | - Shaojun Shen
- Longyan Company of Fujian Tobacco Corporation, Longyan, 364000, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | - Zhiqiang Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | - Jianfeng Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
249
|
In silico Structural and Functional Characterization of a Hypothetical Protein from Stenotrophomonas maltophilia SRM01. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a low-virulence opportunistic pathogen that causes human infections, especially in profound ill patients. Even if the bacterial genomes seem understood, the activities of many proteins are unknown. The purpose of our current research is to unravel the functional characteristics i.e. functional domain search and valuable regions of a hypothetical protein that would aid in the identification of potential drug targets in Stenotrophomonas maltophilia. The hypothetical protein of S.maltophilia was located and annotated using different in silico techniques. Our target protein was predicted to be Transcrip Reg superfamily YebC/PmpR based on motif and domain analysis by functional annotation tools. The regulator proteins of the YebC family are part of a vast collection of widely conserved hypothetical proteins with unclear functions. Examining and reviewing the function of YebC family protein, they repress Quorum sensing by directly binding to the promoter region of QS master regulator pqrS. It has also been reported that T3SS expression is regulated by YebC, to activate the virulence expression direct interaction with one of the T3SS promoters is needed.
Collapse
|
250
|
Tan C, Zhu F, Xiao Y, Wu Y, Meng X, Liu S, Liu T, Chen S, Zhou J, Li C, Wu A. Immunoinformatics Approach Toward the Introduction of a Novel Multi-Epitope Vaccine Against Clostridium difficile. Front Immunol 2022; 13:887061. [PMID: 35720363 PMCID: PMC9204425 DOI: 10.3389/fimmu.2022.887061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium difficile (C.difficile) is an exclusively anaerobic, spore-forming, and Gram-positive pathogen that is the most common cause of nosocomial diarrhea and is becoming increasingly prevalent in the community. Because C. difficile is strictly anaerobic, spores that can survive for months in the external environment contribute to the persistence and diffusion of C. difficile within the healthcare environment and community. Antimicrobial therapy disrupts the natural intestinal flora, allowing spores to develop into propagules that colonize the colon and produce toxins, thus leading to antibiotic-associated diarrhea and pseudomembranous enteritis. However, there is no licensed vaccine to prevent Clostridium difficile infection (CDI). In this study, a multi-epitope vaccine was designed using modern computer methods. Two target proteins, CdeC, affecting spore germination, and fliD, affecting propagule colonization, were chosen to construct the vaccine so that it could simultaneously induce the immune response against two different forms (spore and propagule) of C. difficile. We obtained the protein sequences from the National Center for Biotechnology Information (NCBI) database. After the layers of filtration, 5 cytotoxic T-cell lymphocyte (CTL) epitopes, 5 helper T lymphocyte (HTL) epitopes, and 7 B-cell linear epitopes were finally selected for vaccine construction. Then, to enhance the immunogenicity of the designed vaccine, an adjuvant was added to construct the vaccine. The Prabi and RaptorX servers were used to predict the vaccine's two- and three-dimensional (3D) structures, respectively. Additionally, we refined and validated the structures of the vaccine construct. Molecular docking and molecular dynamics (MD) simulation were performed to check the interaction model of the vaccine-Toll-like receptor (TLR) complexes, vaccine-major histocompatibility complex (MHC) complexes, and vaccine-B-cell receptor (BCR) complex. Furthermore, immune stimulation, population coverage, and in silico molecular cloning were also conducted. The foregoing findings suggest that the final formulated vaccine is promising against the pathogen, but more researchers are needed to verify it.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqi Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| |
Collapse
|