201
|
Yan M, Zhu W, Zheng X, Li Y, Tang L, Lu B, Chen W, Qiu P, Leng T, Lin S, Yan G, Yin W. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons. Mol Med Rep 2016; 13:2499-505. [PMID: 26821268 PMCID: PMC4768955 DOI: 10.3892/mmr.2016.4819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK-801 and the calcium chelator ethylene glycolbis (2-aminoethylether)-N, N, N′, N′-tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal-associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α-fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N-Acetyl-L-cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity.
Collapse
Affiliation(s)
- Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tiandong Leng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
202
|
Hornedo-Ortega R, Cerezo AB, Troncoso AM, Garcia-Parrilla MC, Mas A. Melatonin and Other Tryptophan Metabolites Produced by Yeasts: Implications in Cardiovascular and Neurodegenerative Diseases. Front Microbiol 2016; 6:1565. [PMID: 26834716 PMCID: PMC4718080 DOI: 10.3389/fmicb.2015.01565] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/27/2015] [Indexed: 12/13/2022] Open
Abstract
Yeast metabolism produces compounds derived from tryptophan, which are found in fermented beverages, such as wine and beer. In particular, melatonin and serotonin, may be relevant due to their bioactivity in humans. Indeed, the former is a neurohormone related to circadian rhythms, which also has a putative protective effect against degenerative diseases. Moreover, serotonin is a neurotransmitter itself, in addition to being a precursor of melatonin synthesis. This paper summarizes data reported on fermented beverages, to evaluate dietary intake. Additionally, the article reviews observed effects of yeast amino acid metabolites on the prevention of neurodegenerative diseases (Alzheimer’s and Parkinson’s) and angiogenesis, focusing on evidence of the molecular mechanism involved and identification of molecular targets.
Collapse
Affiliation(s)
| | - Ana B Cerezo
- Facultad de Farmacia, Universidad de Sevilla Sevilla, Spain
| | - Ana M Troncoso
- Facultad de Farmacia, Universidad de Sevilla Sevilla, Spain
| | | | - Albert Mas
- Facultad de Enología, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
203
|
Mitochondrial FOXO3a is involved in amyloid β peptide-induced mitochondrial dysfunction. J Bioenerg Biomembr 2016; 48:189-96. [PMID: 26782277 DOI: 10.1007/s10863-016-9645-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/13/2016] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid β peptide (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the precise mechanism(s) of Aβ-induced mitochondrial dysfunction has not been fully understood. There is evidence that Forkhead box O3a (FOXO3a) is normally present in neuronal mitochondria. Using HT22 murine hippocampal neuronal cells and primary hippocampal neurons, the present study investigated whether mitochondrial FOXO3a was involved in mitochondrial dysfunction induced by Aβ. It was found that Aβ induced dephosphorylation and mitochondrial translocation of FOXO3a. In addition, Aβ enhanced association of FOXO3a with mitochondrial DNA (mtDNA), causing a decrease in the expression of cytochrome c oxidase subunit 1 (COX1) and the activity of COX. In addition, Aβ-induced mitochondrial dysfunction, indicated by the decrease in 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion, mitochondrial adenosine triphosphate (ATP) production and COX activity, could be suppressed by knockdown of FOXO3a (FOXO3a-KD). These results provide new insights into the mechanism underlying Aβ-induced neurotoxicity and open up new therapeutic perspectives for AD.
Collapse
|
204
|
Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC. Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 2016; 13:12. [PMID: 26780950 PMCID: PMC4717833 DOI: 10.1186/s12974-016-0478-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Activation of NADPH oxidase (PHOX) plays a critical role in mediating dopaminergic neuroinflammation. In the present study, we investigated the role of PHOX in methamphetamine (MA)-induced neurotoxic and inflammatory changes in mice. METHODS We examined changes in mitogen-activated protein kinases (MAPKs), mitochondrial function [i.e., mitochondrial membrane potential, intramitochondrial Ca(2+) accumulation, mitochondrial oxidative burdens, mitochondrial superoxide dismutase expression, and mitochondrial translocation of the cleaved form of protein kinase C delta type (cleaved PKCδ)], microglial activity, and pro-apoptotic changes [i.e., cytosolic cytochrome c release, cleaved caspase 3, and terminal deoxynucleotidyl transferase dUDP nick-end labeling (TUNEL) positive populations] after a neurotoxic dose of MA in the striatum of mice to achieve a better understanding of the effects of apocynin, a non-specific PHOX inhibitor, or genetic inhibition of p47phox (by using p47phox knockout mice or p47phox antisense oligonucleotide) against MA-induced dopaminergic neurotoxicity. RESULTS Phosphorylation of extracellular signal-regulated kinases (ERK1/2) was most pronounced out of MAPKs after MA. We observed MA-induced phosphorylation and membrane translocation of p47phox in the striatum of mice. The activation of p47phox promoted mitochondrial stresses followed by microglial activation into the M1 phenotype, and pro-apoptotic changes, and led to dopaminergic impairments. ERK activated these signaling pathways. Apocynin or genetic inhibition of p47phox significantly protected these signaling processes induced by MA. ERK inhibitor U0126 did not exhibit any additional positive effects against protective activity mediated by apocynin or p47phox genetic inhibition, suggesting that ERK regulates p47phox activation, and ERK constitutes the crucial target for apocynin-mediated inhibition of PHOX activation. CONCLUSIONS Our results indicate that the neuroprotective mechanism of apocynin against MA insult is via preventing mitochondrial burdens, microglial activation, and pro-apoptotic signaling process by the ERK-dependent activation of p47phox.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, South Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan. .,NPO, Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| |
Collapse
|
205
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
206
|
Srivastava P, Yadav RS. Efficacy of Natural Compounds in Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2016; 12:107-123. [PMID: 27651251 DOI: 10.1007/978-3-319-28383-8_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurodegenerative disorders represent clusters of serious diseases that results in progressive deterioration of normal structure and physiology of central nervous system. Pathophysiology of Alzheimer's, Parkinson's or other neurodegenerative disorders involves multifaceted permutation of genetic and environmental factors. Combinations of lifestyle modification linked with environmental factor jointly or alone represent the largest share of cases of these disorders. Etiology of such neuronal degeneration involves manifestation of toxic reaction in the form of functional anomalies leading to dysfunction of the ubiquitin-proteasome system, activated inflammatory cascade, compromised neuronal survival pathway, mitochondrial dysfunction and finally neuronal apoptosis/necrosis and cell death. Furthermore, evidences from various studies exhibited role of oxidative stress and compromised anti-oxidant defense system as one of the prime factors associated with activation of various signal transduction pathways that would ultimately lead to the formation of amyloid beta or alpha synuclein in the brain. Keeping in view of complex etiology and pathophysiology along with a miniscule of available treatment options associated with these neurodegenerative disorders, the role of natural agents and herbal extracts as therapeutic alternatives alone or in combination with synthetic drugs could not be ruled out. In the same context the present chapter has been aimed to investigate the role of selected natural plants like Withania somnifera, Bacopa monnieri, Curcuma longa, Centella asiatica, Ocimum sanctum, Nardostachys jatamansi and Emblica officinalis in various neurodegenerative disorders and explore their targets to ameliorate neurotoxicity in various experimental models. The rationale for selection of these plants was based on their strong anti-inflammatory and anti-oxidant potential and large body of evidence that suggest their efficacy in preclinical as well as in clinical studies. Active constituents if these herbals might play an important role in preserving the integrity of various neurotransmitters and their receptor in the brain influencing its functions at the molecular level.
Collapse
Affiliation(s)
- Pranay Srivastava
- Developmental Toxicology Division, Indian Institute of Toxicology Research, 80, MG Marg, Lucknow, 226 001, UP, India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003, MP, India.
| |
Collapse
|
207
|
Hofmann E, Webster J, Do T, Kline R, Snider L, Hauser Q, Higginbottom G, Campbell A, Ma L, Paula S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg Med Chem 2015; 24:578-87. [PMID: 26762836 DOI: 10.1016/j.bmc.2015.12.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones' effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class.
Collapse
Affiliation(s)
- Emily Hofmann
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Jonathan Webster
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Thuy Do
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Reid Kline
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Lindsey Snider
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Quintin Hauser
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Grace Higginbottom
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Austin Campbell
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Lili Ma
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Stefan Paula
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA; Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA.
| |
Collapse
|
208
|
Watanabe K, Uemura K, Asada M, Maesako M, Akiyama H, Shimohama S, Takahashi R, Kinoshita A. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease. Mol Brain 2015; 8:82. [PMID: 26637371 PMCID: PMC4670528 DOI: 10.1186/s13041-015-0174-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/30/2015] [Indexed: 01/02/2023] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by senile plaques, extracellular deposits composed primarily of amyloid–beta (Aβ), and neurofibrillary tangles, which are abnormal intracellular inclusions containing hyperphosphorylated tau. The amyloid cascade hypothesis posits that the deposition of Aβ in the brain parenchyma initiates a sequence of events that leads to dementia. However, the molecular process by which the extracellular accumulation of Aβ peptides promotes intracellular pathologic changes in tau filaments remains unclear. To elucidate this process, we presumed that astrocytes might trigger neuronal reactions, leading to tau phosphorylation. In this study, we examined AD pathology from the perspective of the astrocyte-neuron interaction. Results A cytokine-array analysis revealed that Aβ stimulates astrocytes to release several chemical mediators that are primarily related to inflammation and cell adhesion. Among those mediators, insulin-like growth factor (IGF)-binding protein 3 (IGFBP-3) was highly upregulated. In AD brains, the expression of IGFBP-3 was found to be increased by western blot analysis, and increased expression of IGFBP-3 was observed in astrocytes via fluorescence microscopy. In addition, we reproduced the increase in IGFBP-3 after treatment with Aβ using human astrocytoma cell lines and found that IGFBP-3 was expressed via calcineurin. In AD brains, the activated forms of calcineurin were found to be increased by western blot analysis, and increased expression of calcineurin was observed in astrocytes via fluorescence microscopy. When Ser9 of glycogen synthase kinase-3β (GSK-3β) is phosphorylated, GSK-3β is controlled and tau phosphorylation is suppressed. Aβ suppresses the phosphorylation of GSK-3β, leading to tau phosphorylation. In this study, we found that IGF-Ι suppressed tau phosphorylation induced by Aβ, although IGFBP-3 inhibited this property of IGF-Ι. As a result, IGFBP-3 contributed to tau phosphorylation and cell death induced by Aβ. Conclusions Our study suggested that calcineurin in astrocytes was activated by Aβ, leading to IGFBP-3 release. We further demonstrated that IGFBP-3 produced by astrocytes induced tau phosphorylation in neurons. Our study provides novel insights into the role of astrocytes in the induction of tau phosphorylation and suggests that IGFBP-3 could be an important link between Aβ and tau pathology and an important therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0174-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiwamu Watanabe
- Department of Neurology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Megumi Asada
- Department of Neurology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,School of Human Health Sciences Faculty of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masato Maesako
- School of Human Health Sciences Faculty of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Haruhiko Akiyama
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University School of Medicine, 16 Minami-1-jyo-Nishi, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Ayae Kinoshita
- School of Human Health Sciences Faculty of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
209
|
Fluteau A, Ince PG, Minett T, Matthews FE, Brayne C, Garwood CJ, Ratcliffe LE, Morgan S, Heath PR, Shaw PJ, Wharton SB, Simpson JE. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain. Neurosci Lett 2015; 609:11-7. [PMID: 26455863 PMCID: PMC4674771 DOI: 10.1016/j.neulet.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023]
Abstract
The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council's Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment.
Collapse
Affiliation(s)
- Adeline Fluteau
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom; MRC Human Genetics Unit, University of Edinburgh, United Kingdom
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Thais Minett
- Institute of Public Health, University of Cambridge, United Kingdom; Department of Radiology, University of Cambridge, United Kingdom
| | - Fiona E Matthews
- MRC Biostatistics Unit, Cambridge, United Kingdom; Institute of Health and Society, University of Newcastle, United Kingdom; Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, United Kingdom
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Laura E Ratcliffe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Sarah Morgan
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | | |
Collapse
|
210
|
Abeti R, Abramov AY. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol Res 2015; 99:377-81. [DOI: 10.1016/j.phrs.2015.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
|
211
|
Hoppe J, Salbego CG, Cimarosti H. SUMOylation: Novel Neuroprotective Approach for Alzheimer's Disease? Aging Dis 2015; 6:322-30. [PMID: 26425387 DOI: 10.14336/ad.2014.1205] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/05/2014] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized in the brain by the formation of amyloid-beta (Aβ)-containing plaques and neurofibrillary tangles containing the microtubule-associated protein tau. Neuroinflammation is another feature of AD and astrocytes are receiving increasing attention as key contributors. Although some progress has been made, the molecular mechanisms underlying the pathophysiology of AD remain unclear. Interestingly, some of the main proteins involved in AD, including amyloid precursor protein (APP) and tau, have recently been shown to be SUMOylated. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to regulate APP and tau and may modulate other proteins implicated in AD. Here we present an overview of recent studies suggesting that protein SUMOylation might be involved in the underlying pathogenic mechanisms of AD and discuss how this could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
| | - Christianne G Salbego
- 1 Laboratory of Neuroprotection and Cell Signaling, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Helena Cimarosti
- 2 Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
212
|
Lin CL, Huang WN, Li HH, Huang CN, Hsieh S, Lai C, Lu FJ. Hydrogen-rich water attenuates amyloid β-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells. Chem Biol Interact 2015; 240:12-21. [PMID: 26271894 DOI: 10.1016/j.cbi.2015.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022]
Abstract
Amyloid β (Aβ) peptides are identified in cause of neurodegenerative diseases such as Alzheimer's disease (AD). Previous evidence suggests Aβ-induced neurotoxicity is linked to the stimulation of reactive oxygen species (ROS) production. The accumulation of Aβ-induced ROS leads to increased mitochondrial dysfunction and triggers apoptotic cell death. This suggests antioxidant therapies may be beneficial for preventing ROS-related diseases such as AD. Recently, hydrogen-rich water (HRW) has been proven effective in treating oxidative stress-induced disorders because of its ROS-scavenging abilities. However, the precise molecular mechanisms whereby HRW prevents neuronal death are still unclear. In the present study, we evaluated the putative pathways by which HRW protects against Aβ-induced cytotoxicity. Our results indicated that HRW directly counteracts oxidative damage by neutralizing excessive ROS, leading to the alleviation of Aβ-induced cell death. In addition, HRW also stimulated AMP-activated protein kinase (AMPK) in a sirtuin 1 (Sirt1)-dependent pathway, which upregulates forkhead box protein O3a (FoxO3a) downstream antioxidant response and diminishes Aβ-induced mitochondrial potential loss and oxidative stress. Taken together, our findings suggest that HRW may have potential therapeutic value to inhibit Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Nung Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sam Hsieh
- Unitira Applied Materials Corp., Taipei, Taiwan
| | - Copper Lai
- Fluxtek International Corp., Pingtung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
213
|
Saha P, Biswas SC. Amyloid-β induced astrocytosis and astrocyte death: Implication of FoxO3a-Bim-caspase3 death signaling. Mol Cell Neurosci 2015; 68:203-11. [PMID: 26260111 DOI: 10.1016/j.mcn.2015.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022] Open
Abstract
Astrocytes, the main element of the homeostatic system in the brain, are affected in various neurological conditions including Alzheimer's disease (AD). A common astrocytic reaction in pathological state is known as astrocytosis which is characterized by a specific change in astrocyte shape due to cytoskeletal remodeling, cytokine secretion and cellular proliferation. Astrocytes also undergo apoptosis in various neurological conditions or in response to toxic insults. AD is pathologically characterized by progressive deposition of amyloid-β (Aβ) in senile plaques, intraneuronal neurofibrillary tangles, synaptic dysfunction and neuron death. Astrocytosis and astrocyte death have been reported in AD brain as well as in response to Aβ in vitro. However, how astrocytes undergo both proliferation and death in response to Aβ remains elusive. In this study, we used primary cultures of cortical astrocytes and exposed them to various doses of oligomeric Aβ. We found that cultured astrocytes proliferate and manifest all signs of astrocytosis at a low dose of Aβ. However, at high dose of Aβ the activated astrocytes undergo apoptosis. Astrocytosis was also noticed in vivo in response to Aβ in the rat brain. Next, we investigated the mechanism of astrocyte apoptosis in response to a high dose of Aβ. We found that death of astrocyte induced by Aβ requires a set of molecules that are instrumental for neuron death in response to Aβ. It involves activation of Forkhead transcription factor Foxo3a, induction of its pro-apoptotic target Bim and activation of its downstream molecule, caspase3. Hence, this study demonstrates that the concentration of Aβ decides whether astrocytes do proliferate or undergo apoptosis via a mechanism that is required for neuron death.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
214
|
Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 2015; 9:278. [PMID: 26283915 PMCID: PMC4522610 DOI: 10.3389/fncel.2015.00278] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Kelly Ceyzériat
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| |
Collapse
|
215
|
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20:13384-421. [PMID: 26205061 PMCID: PMC6332083 DOI: 10.3390/molecules200713384] [Citation(s) in RCA: 1114] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023] Open
Abstract
Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.
Collapse
Affiliation(s)
- Leonardo G Ferreira
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone 1100, São Carlos-SP 13563-120, Brazil.
| | - Ricardo N Dos Santos
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone 1100, São Carlos-SP 13563-120, Brazil.
| | - Glaucius Oliva
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone 1100, São Carlos-SP 13563-120, Brazil.
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone 1100, São Carlos-SP 13563-120, Brazil.
| |
Collapse
|
216
|
Abstract
Astrocytes exhibit cellular excitability through variations in their intracellular calcium (Ca²⁺) levels in response to synaptic activity. Astrocyte Ca²⁺ elevations can trigger the release of neuroactive substances that can modulate synaptic transmission and plasticity, hence promoting bidirectional communication with neurons. Intracellular Ca²⁺ dynamics can be regulated by several proteins located in the plasma membrane, within the cytosol and by intracellular organelles such as mitochondria. Spatial dynamics and strategic positioning of mitochondria are important for matching local energy provision and Ca²⁺ buffering requirements to the demands of neuronal signalling. Although relatively unresolved in astrocytes, further understanding the role of mitochondria in astrocytes may reveal more about the complex bidirectional relationship between astrocytes and neurons in health and disease. In the present review, we discuss some recent insights regarding mitochondrial function, transport and turnover in astrocytes and highlight some important questions that remain to be answered.
Collapse
|
217
|
Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020628. [PMID: 25877220 DOI: 10.1101/cshperspect.a020628] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocytes contribute to the maintenance of the health and function of the central nervous system (CNS). Thus, it is not surprising that these multifunctional cells have been implicated in the onset and progression of several neurodegenerative diseases. The involvement of astrocytes in the neuropathology of these diseases is likely a consequence of both the loss of normal homeostatic functions and gain of toxic functions. Intracellular aggregates in astrocytes are a common feature of various neurodegenerative diseases, and these aggregates perturb normal astrocytic functions in ways that can be harmful to neuronal viability. Here, we review the role of astrocytes in neurodegenerative diseases, focusing on their dysfunction in Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Hemali Phatnani
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| | - Tom Maniatis
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| |
Collapse
|
218
|
Brain mitochondrial ATP-insensitive large conductance Ca⁺²-activated K⁺ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp Neurol 2015; 269:8-16. [PMID: 25828534 DOI: 10.1016/j.expneurol.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/01/2014] [Accepted: 12/20/2014] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid-beta (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was undertaken to investigate whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive-IbTx-sensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a rat model of Aβ neurotoxicity. Aβ1-42 (4 μg/μl) was intracerebroventricularly injected in male Wistar rats (220-250 g). Brain Aβ accumulation was confirmed two weeks later on the basis of an immunohistochemistry staining assay, and physiological impacts measured in passive avoidance task cognitive performance experiments. Brain mitochondrial inner membranes were then extracted and membrane vesicles prepared for channel incorporation into bilayer lipid. Purity of the cell fraction was confirmed by Western blot using specific markers of mitochondria, plasma membrane, endoplasmic reticulum, and Golgi. Our results first provide evidence for differences in mitoBKCa ion permeation properties with channels coming from Aβ vesicle preparations characterized by an inward rectifying I-V curve, in contrast to control mitoBKCa channels which showed a linear I-V relationship under the same ionic conditions (200 mM cis/50mM trans). More importantly the open probability of channels from Aβ vesicles appeared 1.5 to 2.5 smaller compared to controls, the most significant decrease being observed at depolarizing potentials (30 mV to 50 mV). Because BKCa-β4 subunit has been documented to shift the BKCa channel voltage dependence curve, a Western blot analysis was undertaken where expression of mitoBKCa α and β4 subunits was estimated using anti-α and β4 subunit antibodies. Our results indicated a significant increase in mitoBKCa-β4 subunit expression coupled to a decrease in the expression of α subunit. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from a rat model of Aβ neurotoxicity, an effect potentially linked to a change in mitoBKCa-β4 and -α subunits expression or increased ROS production due to an enhanced Aβ mitochondrial accumulation. Our results may provide new insights into the cellular mechanisms underlying mitochondrial dysfunctions in Aβ neurotoxicity.
Collapse
|
219
|
Silva RR, Mariante RM, Silva AA, dos Santos ALB, Roffê E, Santiago H, Gazzinelli RT, Lannes-Vieira J. Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi. PLoS One 2015; 10:e0118600. [PMID: 25695249 PMCID: PMC4335051 DOI: 10.1371/journal.pone.0118600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022] Open
Abstract
The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.
Collapse
Affiliation(s)
- Rafael Rodrigues Silva
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz—Fiocruz, Rio de Janeiro, Brasil
| | - Rafael M. Mariante
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz—Fiocruz, Rio de Janeiro, Brasil
| | - Andrea Alice Silva
- Laboratório Multidisciplinar de Apoio à Pesquisa, Departamento de Medicina Clínica, Universidade Federal Fluminense, Rio de Janeiro, Brasil
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brasil
| | | | - Ester Roffê
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz—Fiocruz, Rio de Janeiro, Brasil
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou—Fiocruz, Minas Gerais, Brasil
| | - Helton Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz—Fiocruz, Rio de Janeiro, Brasil
| |
Collapse
|
220
|
Cytotoxin-induced NADPH oxides activation: roles in regulation of cell death. Arch Toxicol 2015; 89:991-1006. [PMID: 25690733 DOI: 10.1007/s00204-015-1476-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Numerous studies have shown that a variety of cytotoxic agents can activate the NADPH oxidase system and induce redox-dependent regulation of cellular functions. Cytotoxin-induced NADPH oxidase activation may either exert cytoprotective actions (e.g., survival, proliferation, and stress tolerance) or cause cell death. Here we summarize the experimental evidence showing the context-dependent dichotomous effects of NADPH oxidase on cell fate under cytotoxic stress conditions and the potential redox signaling mechanisms underlying this phenomenon. Clearly, it is difficult to create a unified paradigm on the toxicological implications of NADPH oxidase activation in response to cytotoxic stimuli. We suggest that interventional strategies targeting the NADPH oxidase system to prevent the adverse impacts of cytotoxins need to be contemplated in a stimuli- and cell type-specific manner.
Collapse
|
221
|
Ye X, Sun X, Starovoytov V, Cai Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum Mol Genet 2015; 24:2938-51. [PMID: 25678552 DOI: 10.1093/hmg/ddv056] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
Accumulation of dysfunctional mitochondria is one of the hallmarks in Alzheimer's disease (AD). Mitophagy, a selective autophagy for eliminating damaged mitochondria, constitutes a key cellular pathway in mitochondrial quality control. Recent studies established that acute depolarization of mitochondrial membrane potential (Δψm) using Δψm dissipation reagents in vitro induces Parkin-mediated mitophagy in many non-neuronal cell types or neuronal cell lines. However, neuronal pathways inducing mitophagy, particularly under pathophysiological relevant context in AD mouse models and patient brains, are largely unknown. Here, we reveal, for the first time, that Parkin-mediated mitophagy is robustly induced in mutant hAPP neurons and AD patient brains. In the absence of Δψm dissipation reagents, hAPP neurons exhibit increased recruitment of cytosolic Parkin to depolarized mitochondria. Under AD-linked pathophysiological conditions, Parkin translocation predominantly occurs in the somatodendritic regions; such distribution is associated with reduced anterograde and increased retrograde transport of axonal mitochondria. Enhanced mitophagy was further confirmed in AD patient brains, accompanied with depletion of cytosolic Parkin over disease progression. Thus, aberrant accumulation of dysfunctional mitochondria in AD-affected neurons is likely attributable to inadequate mitophagy capacity in eliminating increased numbers of damaged mitochondria. Altogether, our study provides the first line of evidence that AD-linked chronic mitochondrial stress under in vitro and in vivo pathophysiological conditions effectively triggers Parkin-dependent mitophagy, thus establishing a foundation for further investigations into cellular pathways in regulating mitophagy to ameliorate mitochondrial pathology in AD.
Collapse
Affiliation(s)
- Xuan Ye
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaqin Sun
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Valentin Starovoytov
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
222
|
|
223
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
224
|
Chou CT, Lin HT, Hwang PA, Wang ST, Hsieh CH, Hwang DF. Taurine resumed neuronal differentiation in arsenite-treated N2a cells through reducing oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. Amino Acids 2014; 47:735-44. [DOI: 10.1007/s00726-014-1901-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022]
|
225
|
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 2014; 94:1077-98. [PMID: 25287860 DOI: 10.1152/physrev.00041.2013] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Astrocytes are the most abundant cells in the central nervous system (CNS) that provide nutrients, recycle neurotransmitters, as well as fulfill a wide range of other homeostasis maintaining functions. During the past two decades, astrocytes emerged also as increasingly important regulators of neuronal functions including the generation of new nerve cells and structural as well as functional synapse remodeling. Reactive gliosis or reactive astrogliosis is a term coined for the morphological and functional changes seen in astroglial cells/astrocytes responding to CNS injury and other neurological diseases. Whereas this defensive reaction of astrocytes is conceivably aimed at handling the acute stress, limiting tissue damage, and restoring homeostasis, it may also inhibit adaptive neural plasticity mechanisms underlying recovery of function. Understanding the multifaceted roles of astrocytes in the healthy and diseased CNS will undoubtedly contribute to the development of treatment strategies that will, in a context-dependent manner and at appropriate time points, modulate reactive astrogliosis to promote brain repair and reduce the neurological impairment.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
226
|
Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model. Nat Commun 2014; 5:5422. [PMID: 25406732 DOI: 10.1038/ncomms6422] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Astrocytic network alterations have been reported in Alzheimer's disease (AD), but the underlying pathways have remained undefined. Here we measure astrocytic calcium, cerebral blood flow and amyloid-β plaques in vivo in a mouse model of AD using multiphoton microscopy. We find that astrocytic hyperactivity, consisting of single-cell transients and calcium waves, is most pronounced in reactive astrogliosis around plaques and is sometimes associated with local blood flow changes. We show that astroglial hyperactivity is reduced after P2 purinoreceptor blockade or nucleotide release through connexin hemichannels, but is augmented by increasing cortical ADP concentration. P2X receptor blockade has no effect, but inhibition of P2Y1 receptors, which are strongly expressed by reactive astrocytes surrounding plaques, completely normalizes astrocytic hyperactivity. Our data suggest that astroglial network dysfunction is mediated by purinergic signalling in reactive astrocytes, and that intervention aimed at P2Y1 receptors or hemichannel-mediated nucleotide release may help ameliorate network dysfunction in AD.
Collapse
|
227
|
Abstract
Hydrogen peroxide (H2O2), a key reactive oxygen species, is produced at low levels during normal cellular metabolism and at higher concentrations under pathological conditions such as ischemia-reperfusion injury. The mechanisms by which H2O2 contributes to physiological and pathological processes in the brain remain poorly understood. Inhibitory GABA type A (GABAA) receptors critically regulate brain function by generating tonic and synaptic currents; however, it remains unknown whether H2O2 directly modulates GABAA receptor function. Here, we performed patch-clamp recordings, together with pharmacological and genetic approaches, to investigate the effects of H2O2 on GABAA receptor-mediated tonic and synaptic currents recorded in cultured mouse hippocampal neurons and CA1 pyramidal neurons in hippocampal slices. We found that H2O2 caused a dramatic increase in tonic current, whereas synaptic currents were unaffected. This increase in tonic current resulted from an extracellular oxidative reaction, which increased the potency of GABA, but only when GABAA receptors were activated by low concentrations of GABA. Oxygen-glucose deprivation, which produces high endogenous levels of H2O2, similarly increased the tonic current. These results suggest that GABAA receptor-mediated tonic current, which is potentiated by H2O2, might contribute to H2O2-induced brain dysfunction.
Collapse
|
228
|
Kovac S, Domijan AM, Walker MC, Abramov AY. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 2014; 5:e1442. [PMID: 25275601 PMCID: PMC4649505 DOI: 10.1038/cddis.2014.390] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022]
Abstract
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na(+)] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets.
Collapse
Affiliation(s)
- S Kovac
- 1] UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK [2] Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - A-M Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - M C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - A Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
229
|
Interaction of neurons and astrocytes underlies the mechanism of Aβ-induced neurotoxicity. Biochem Soc Trans 2014; 42:1286-90. [DOI: 10.1042/bst20140153] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the aggregation of amyloid β-peptide (Aβ) into β-sheet-rich fibrils. Although plaques containing Aβ fibrils have been viewed as the conventional hallmark of AD, recent research implicates small oligomeric species formed during the aggregation of Aβ in the neuronal toxicity and cognitive deficits associated with AD. We have demonstrated that oligomers, but not monomers, of Aβ40 and Aβ42 were found to induce calcium signalling in astrocytes but not in neurons. This cell specificity was dependent on the higher cholesterol level in the membrane of astrocytes compared with neurons. The Aβ-induced calcium signal stimulated NADPH oxidase and induced increased reactive oxygen species (ROS) production. These events are detectable at physiologically relevant concentrations of Aβ. Excessive ROS production and Ca2+ overload induced mitochondrial depolarization through activation of the DNA repairing enzyme poly(ADP-ribose) polymerase-1 (PARP-1) and opening mitochondrial permeability transition pore (mPTP). Aβ significantly reduced the level of GSH in both astrocytes and neurons, an effect which is dependent on external calcium. Thus Aβ induces a [Ca2+]c signal in astrocytes which could regulate the GSH level in co-cultures that in the area of excessive ROS production could be a trigger for neurotoxicity. The pineal hormone melatonin, the glycoprotein clusterin and regulation of the membrane cholesterol can modify Aβ-induced calcium signals, ROS production and mitochondrial depolarization, which eventually lead to neuroprotection.
Collapse
|
230
|
Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 2014; 15:627-42. [PMID: 25217383 DOI: 10.1007/s10522-014-9529-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022]
Abstract
The progression of physiological ageing is driven by intracellular aberrations including telomere attrition, genomic instability, epigenetic alterations and loss of proteostasis. These in turn damage cells and compromise their functionality. Cellular senescence, a stable irreversible cell-cycle arrest, is elicited in damaged cells and prevents their propagation in the organism. Under normal conditions, senescent cells recruit the immune system which facilitates their removal from tissues. Nevertheless, during ageing, tissue-residing senescent cells tend to accumulate, and might negatively impact their microenvironment via profound secretory phenotype with pro-inflammatory characteristics, termed senescence-associated secretory phenotype (SASP). Indeed, senescent cells are mostly abundant at sites of age-related pathologies, including degenerative disorders and malignancies. Interestingly, studies on progeroid mice indicate that selective elimination of senescent cells can delay age-related deterioration. This suggests that chronic inflammation induced by senescent cells might be a main driver of these pathologies. Importantly, senescent cells accumulate as a result of deficient immune surveillance, and their removal is increased upon the use of immune stimulatory agents. Insights into mechanisms of senescence surveillance could be combined with current approaches for cancer immunotherapy to propose new preventive and therapeutic strategies for age-related diseases.
Collapse
|
231
|
Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr 2014; 47:89-99. [PMID: 25216534 PMCID: PMC4323516 DOI: 10.1007/s10863-014-9576-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
The sustained integrity of the mitochondrial population of a cell is critical for maintained cell health, and disruption of that integrity is linked strongly to human disease, especially to the neurodegenerative diseases. These are appalling diseases causing untold levels of suffering for which treatment is woefully inadequate. Understanding the mechanisms that disturb mitochondrial homeostasis may therefore prove key to identification of potential new therapeutic pathways. Mechanisms causing mitochondrial dysfunction include the acute catastrophic loss of function caused by opening of the mitochondrial permeability transition pore (mPTP), which collapses bioenergetic function and initiates cell death. This is best characterised in ischaemic reperfusion injury, although it may also contribute to a number of other diseases. More insidious disturbances of mitochondrial homeostasis may result from impaired balance in the pathways that promote mitochondrial repair (biogenesis) and pathways that remove dysfunctional mitochondria (mitophagy). Impaired coordination between these processes is emerging as a key feature of a number of neurodegenerative and neuromuscular disorders. Here we review pathways that may prove to be valuable potential therapeutic targets, focussing on the molecular mechanisms that govern the coordination of these processes and their involvement in neurodegenerative diseases.
Collapse
|
232
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
233
|
Zolezzi JM, Inestrosa NC. Brain metabolite clearance: impact on Alzheimer's disease. Metab Brain Dis 2014; 29:553-61. [PMID: 24664180 DOI: 10.1007/s11011-014-9527-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disorder often associated with aging and characterized by several critical molecular changes that take place in the brain. Among the molecular hallmarks of AD, increased levels of amyloid β-peptide (Aβ) and the subsequent Aβ-derived damage are the most well-studied factors; however, despite the large amounts of effort and resources devoted to the study of AD and AD pathophysiology, the scientific community still awaits therapeutic alternatives capable of ensuring a better outcome for AD patients. In 2012, Cramer et al. (Science 335:1503-1506 2012) astonished the scientific community by rescuing behavioral and cognitive impairments in AD mouse models via oral administration of bexarotene, a drug used to treat some types of skin cancer. Moreover, these authors demonstrated that bexarotene, a retinoid X receptor (RXR) agonist, exerts major effects on Aβ levels, mainly through increased apolipoprotein E (ApoE) expression. Apart from the valid questions addressed in Cramer's work, only a few attempts have been made to explain the effects of bexarotene. Most of these explanations have been solely based on the ability of bexarotene to reduce Aβ levels and not on the mechanisms that lead to such a reduction. Although it is well known that an imbalance in the Aβ production/excretion rate is the basis of increased Aβ levels in AD, no further explanations have been proposed to address the potential involvement of the blood-brain barrier (BBB), a critical Aβ-clearance structure, in the bexarotene-mediated effects. Moreover, no attempt has been made to explain how the different effects observed after bexarotene administration are connected to each other. Based on current information and on our own experience with nuclear receptors (NR), we offer new perspectives on the mechanisms of bexarotene action, which should help to improve our knowledge of NRs.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Gral. Velásquez, 1775, Arica, Chile
| | | |
Collapse
|
234
|
|
235
|
Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Soleimani Asl S. Effect of Amyloid β- Peptide on Passive Avoidance Learning in Rats: A Behavioral Study. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/ajnpp-18664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
236
|
Verkhratsky A, Marutle A, Rodríguez-Arellano JJ, Nordberg A. Glial Asthenia and Functional Paralysis: A New Perspective on Neurodegeneration and Alzheimer's Disease. Neuroscientist 2014; 21:552-568. [PMID: 25125026 DOI: 10.1177/1073858414547132] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuroglia are represented by several population of cells heterogeneous in structure and function that provide for the homeostasis of the brain and the spinal cord. Neuroglial cells are also central for neuroprotection and defence of the central nervous system against exo- and endogenous insults. At the early stages of neurodegenerative diseases including Alzheimer's disease neuroglial cells become asthenic and lose some of their homeostatic, neuroprotective, and defensive capabilities. Astroglial reactivity, for example, correlates with preservation of cognitive function in patients with mild cognitive impairment and prodromal Alzheimer's disease. Here, we overview the experimental data indicating glial paralysis in neurodegeneration and argue that loss of glial function is fundamental for defining the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Amelia Marutle
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Novum, Huddinge, Sweden
| | - J J Rodríguez-Arellano
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Agneta Nordberg
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Novum, Huddinge, Sweden Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
237
|
Zolezzi JM, Bastías-Candia S, Santos MJ, Inestrosa NC. Alzheimer's disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Front Aging Neurosci 2014; 6:176. [PMID: 25120477 PMCID: PMC4112937 DOI: 10.3389/fnagi.2014.00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/03/2014] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of age-related dementia. With the expected aging of the human population, the estimated morbidity of AD suggests a critical upcoming health problem. Several lines of research are focused on understanding AD pathophysiology, and although the etiology of the disease remains a matter of intense debate, increased brain levels of amyloid-β (Aβ) appear to be a critical event in triggering a wide range of molecular alterations leading to AD. It has become evident in recent years that an altered balance between production and clearance is responsible for the accumulation of brain Aβ. Moreover, Aβ clearance is a complex event that involves more than neurons and microglia. The status of the blood-brain barrier (BBB) and choroid plexus, along with hepatic functionality, should be considered when Aβ balance is addressed. Furthermore, it has been proposed that exposure to sub-toxic concentrations of metals, such as copper, could both directly affect these secondary structures and act as a seeding or nucleation core that facilitates Aβ aggregation. Recently, we have addressed peroxisomal proliferator-activated receptors (PPARs)-related mechanisms, including the direct modulation of mitochondrial dynamics through the PPARγ-coactivator-1α (PGC-1α) axis and the crosstalk with critical aging- and neurodegenerative-related cellular pathways. In the present review, we revise the current knowledge regarding the molecular aspects of Aβ production and clearance and provide a physiological context that gives a more complete view of this issue. Additionally, we consider the different structures involved in AD-altered Aβ brain balance, which could be directly or indirectly affected by a nuclear receptor (NR)/PPAR-related mechanism.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá Arica, Chile
| | - Sussy Bastías-Candia
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá Arica, Chile
| | - Manuel J Santos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes Punta Arenas, Chile
| |
Collapse
|
238
|
Shi C, Zhu X, Wang J, Long D. Intromitochondrial IκB/NF-κB signaling pathway is involved in amyloid β peptide-induced mitochondrial dysfunction. J Bioenerg Biomembr 2014; 46:371-6. [PMID: 25052843 DOI: 10.1007/s10863-014-9567-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/10/2014] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid β peptide (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism (s) of Aβ-induced mitochondrial dysfunction is still not fully understood. There is evidence that nuclear factor-κB (NF-κB) is involved in Aβ-induced neurotoxicity and is present in mitochondria. Using HT22 murine hippocampal neuronal cells and isolated mitochondria, the present study investigated whether intramitochondrial inhibitor of NF-κB (IκB)/NF-κB signaling pathway was involved in mitochondrial dysfunction induced by Aβ. It was found that Aβ impaired mitochondrial function through a NF-κB-dependent signaling pathway. Intramitochondrial IκBα/NF-κB pathway, induced by Aβ, decreased the expression of cytochrome c oxidase subunit (COXIII) and inhibited COX activity. These results provide new insights into the mechanism underlying the neurotoxic effect of Aβ and open up new therapeutic perspectives for AD.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China,
| | | | | | | |
Collapse
|
239
|
Ghahremanitamadon F, Shahidi S, Zargooshnia S, Nikkhah A, Ranjbar A, Soleimani Asl S. Protective effects of Borago officinalis extract on amyloid β-peptide(25-35)-induced memory impairment in male rats: a behavioral study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:798535. [PMID: 25013802 PMCID: PMC4071970 DOI: 10.1155/2014/798535] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and most common form of dementia that leads to memory impairment. In the present study we have examined the protective effects of Borago officinalis (borage) extract on Amyloid β (A β)-Induced memory impairment. Wistar male rats received intrahippocampal (IHP) injection of the A β (25-35) and borage extract throughout gestation (100 mg/kg). Learning and memory functions in the rats were examined by the passive avoidance and the Morris water maze (MWM) tasks. Finally, the antioxidant capacity of hippocampus was measured using ferric ion reducing antioxidant power (FRAP) assay. The results showed that A β (25-35) impaired step-through latency and time in dark compartment in passive avoidance task. In the MWM, A β (25-35) significantly increased escape latency and traveled distance. Borage administration attenuated the A β-induced memory impairment in both the passive avoidance and the MWM tasks. A β induced a remarkable decrease in antioxidant power (FRAP value) of hippocampus and borage prevented the decrease of the hippocampal antioxidant status. This data suggests that borage could improve the learning impairment and oxidative damage in the hippocampal tissue following A β treatment and that borage consumption may lead to an improvement of AD-induced cognitive dysfunction.
Collapse
Affiliation(s)
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Somayeh Zargooshnia
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Ali Nikkhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| |
Collapse
|
240
|
Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 2014; 5:164. [PMID: 24936207 PMCID: PMC4047558 DOI: 10.3389/fgene.2014.00164] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 01/17/2023] Open
Abstract
Comprehensive analysis of the mammalian transcriptome has revealed that long non-coding RNAs (lncRNAs) may make up a large fraction of cellular transcripts. Recent years have seen a surge of studies aimed at functionally characterizing the role of lncRNAs in development and disease. In this review, we discuss new findings implicating lncRNAs in controlling development of the central nervous system (CNS). The evolution of the higher vertebrate brain has been accompanied by an increase in the levels and complexities of lncRNAs expressed within the developing nervous system. Although a limited number of CNS-expressed lncRNAs are now known to modulate the activity of proteins important for neuronal differentiation, the function of the vast majority of neuronal-expressed lncRNAs is still unknown. Topics of intense current interest include the mechanism by which CNS-expressed lncRNAs might function in epigenetic and transcriptional regulation during neuronal development, and how gain and loss of function of individual lncRNAs contribute to neurological diseases.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
241
|
Lipocalin 2 modulates the cellular response to amyloid beta. Cell Death Differ 2014; 21:1588-99. [PMID: 24853299 DOI: 10.1038/cdd.2014.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
The production, accumulation and aggregation of amyloid beta (Aβ) peptides in Alzheimer's disease (AD) are influenced by different modulators. Among these are iron and iron-related proteins, given their ability to modulate the expression of the amyloid precursor protein and to drive Aβ aggregation. Herein, we describe that lipocalin 2 (LCN2), a mammalian acute-phase protein involved in iron homeostasis, is highly produced in response to Aβ1-42 by choroid plexus epithelial cells and astrocytes, but not by microglia or neurons. Although Aβ1-42 stimulation decreases the dehydrogenase activity and survival of wild-type astrocytes, astrocytes lacking the expression of Lcn2 are not affected. This protection results from a lower expression of the proapoptotic gene Bim and a decreased inflammatory response. Altogether, these findings show that Aβ toxicity to astrocytes requires LCN2, which represents a novel mechanism to target when addressing AD.
Collapse
|
242
|
Deas E, Piipari K, Machhada A, Li A, Gutierrez-del-Arroyo A, Withers DJ, Wood NW, Abramov AY. PINK1 deficiency in β-cells increases basal insulin secretion and improves glucose tolerance in mice. Open Biol 2014; 4:140051. [PMID: 24806840 PMCID: PMC4042854 DOI: 10.1098/rsob.140051] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Parkinson's disease (PD) gene, PARK6, encodes the PTEN-induced putative kinase 1 (PINK1) mitochondrial kinase, which provides protection against oxidative stress-induced apoptosis. Given the link between glucose metabolism, mitochondrial function and insulin secretion in β-cells, and the reported association of PD with type 2 diabetes, we investigated the response of PINK1-deficient β-cells to glucose stimuli to determine whether loss of PINK1 affected their function. We find that loss of PINK1 significantly impairs the ability of mouse pancreatic β-cells (MIN6 cells) and primary intact islets to take up glucose. This was accompanied by higher basal levels of intracellular calcium leading to increased basal levels of insulin secretion under low glucose conditions. Finally, we investigated the effect of PINK1 deficiency in vivo and find that PINK1 knockout mice have improved glucose tolerance. For the first time, these combined results demonstrate that loss of PINK1 function appears to disrupt glucose-sensing leading to enhanced insulin release, which is uncoupled from glucose uptake, and suggest a key role for PINK1 in β-cell function.
Collapse
Affiliation(s)
- Emma Deas
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Kukreja L, Kujoth GC, Prolla TA, Van Leuven F, Vassar R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease. Mol Neurodegener 2014; 9:16. [PMID: 24885175 PMCID: PMC4028006 DOI: 10.1186/1750-1326-9-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/14/2022] Open
Abstract
Background The role of mitochondrial dysfunction has long been implicated in age-related brain pathology, including Alzheimer’s disease (AD). However, the mechanism by which mitochondrial dysfunction may cause neurodegeneration in AD is unclear. To model mitochondrial dysfunction in vivo, we utilized mice that harbor a knockin mutation that inactivates the proofreading function of mitochondrial DNA polymerase γ (PolgA D257A), so that these mice accumulate mitochondrial DNA mutations with age. PolgA D257A mice develop a myriad of mitochondrial bioenergetic defects and physical phenotypes that mimic premature ageing, with subsequent death around one year of age. Results We crossed the D257A mice with a well-established transgenic AD mouse model (APP/Ld) that develops amyloid plaques. We hypothesized that mitochondrial dysfunction would affect Aβ synthesis and/or clearance, thus contributing to amyloidogenesis and triggering neurodegeneration. Initially, we discovered that Aβ42 levels along with Aβ42 plaque density were increased in D257A; APP/Ld bigenic mice compared to APP/Ld monogenic mice. Elevated Aβ production was not responsible for increased amyloid pathology, as levels of BACE1, PS1, C99, and C83 were unchanged in D257A; APP/Ld compared to APP/Ld mice. However, the levels of a major Aβ clearance enzyme, insulin degrading enzyme (IDE), were reduced in mice with the D257A mutation, suggesting this as mechanism for increased amyloid load. In the presence of the APP transgene, D257A mice also exhibited significant brain atrophy with apparent cortical thinning but no frank neuron loss. D257A; APP/Ld mice had increased levels of 17 kDa cleaved caspase-3 and p25, both indicative of neurodegeneration. Moreover, D257A; APP/Ld neurons appeared morphologically disrupted, with swollen and vacuolated nuclei. Conclusions Overall, our results implicate synergism between the effects of the PolgA D257A mutation and Aβ in causing neurodegeneration. These findings provide insight into mechanisms of mitochondrial dysfunction that may contribute to the pathogenesis of AD via decreased clearance of Aβ.
Collapse
Affiliation(s)
| | | | | | | | - Robert Vassar
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
244
|
Fu Q, Gao N, Yu J, Ma G, Du Y, Wang F, Su Q, Che F. Diazoxide pretreatment prevents Aβ1-42 induced oxidative stress in cholinergic neurons via alleviating NOX2 expression. Neurochem Res 2014; 39:1313-21. [PMID: 24771316 DOI: 10.1007/s11064-014-1313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
The aggregation and accumulation of amyloid-β (Aβ) plays a significant role in the pathogenesis of Alzheimer's disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Diazoxide (DZ), a highly selective drug capable of opening mitochondrial ATP-sensitive potassium channels, has neuroprotective effects against neuronal cell death. However, the mechanism through which DZ protects cholinergic neurons against Aβ-induced oxidative injury is still unclear. The present study was designed to investigate the effects of DZ pretreatment against Aβ1-42 induced oxidative damage and cytotoxicity. Through measures of DZ effects on Aβ1-42 induced cellular damage, reactive oxygen species (ROS) and MDA generation and expressions of gp91phox and p47phox in cholinergic neurons, new insights into the neuroprotective mechanisms can be derived. Aβ1-42 significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide levels and increased ROS and MDA production; all effects were attenuated by pretreatment with DZ or diphenyleneiodonium chloride (a NOX2 inhibitor). Pretreatment with DZ also attenuated the upregulation of NOX2 subunits (gp91phox and p47phox) induced by Aβ1-42. Since NOX2 is one of the main sources of free radicals, these results suggest that DZ can counteract Aβ1-42 induced oxidative stress and associated cell death by reducing the level of ROS and MDA, in part, by alleviating NOX2 expression.
Collapse
Affiliation(s)
- Qingxi Fu
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Cataract may be a non-memory feature of Alzheimer’s disease in older people. Eur J Epidemiol 2014; 29:405-9. [DOI: 10.1007/s10654-014-9903-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/11/2014] [Indexed: 01/05/2023]
|
246
|
Narayan P, Holmström KM, Kim DH, Whitcomb DJ, Wilson MR, St George-Hyslop P, Wood NW, Dobson CM, Cho K, Abramov AY, Klenerman D. Rare individual amyloid-β oligomers act on astrocytes to initiate neuronal damage. Biochemistry 2014; 53:2442-53. [PMID: 24717093 PMCID: PMC4004235 DOI: 10.1021/bi401606f] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oligomers of the amyloid-β (Aβ) peptide have been implicated in the neurotoxicity associated with Alzheimer's disease. We have used single-molecule techniques to examine quantitatively the cellular effects of adding well characterized Aβ oligomers to primary hippocampal cells and hence determine the initial pathway of damage. We found that even picomolar concentrations of Aβ (1-40) and Aβ (1-42) oligomers can, within minutes of addition, increase the levels of intracellular calcium in astrocytes but not in neurons, and this effect is saturated at a concentration of about 10 nM of oligomers. Both Aβ (1-40) and Aβ (1-42) oligomers have comparable effects. The rise in intracellular calcium is followed by an increase in the rate of ROS production by NADPH oxidase in both neurons and astrocytes. The increase in ROS production then triggers caspase-3 activation resulting in the inhibition of long-term potentiation. Our quantitative approach also reveals that only a small fraction of the oligomers are damaging and that an individual rare oligomer binding to an astrocyte can initiate the aforementioned cascade of responses, making it unlikely to be due to any specific interaction. Preincubating the Aβ oligomers with an extracellular chaperone, clusterin, sequesters the oligomers in long-lived complexes and inhibits all of the physiological damage, even at a ratio of 100:1, total Aβ to clusterin. To explain how Aβ oligomers are so damaging but that it takes decades to develop Alzheimer's disease, we suggest a model for disease progression where small amounts of neuronal damage from individual unsequestered oligomers can accumulate over time leading to widespread tissue-level dysfunction.
Collapse
Affiliation(s)
- Priyanka Narayan
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Role of methylglyoxal in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238485. [PMID: 24734229 PMCID: PMC3966409 DOI: 10.1155/2014/238485] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.
Collapse
|
248
|
Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 2014; 41:154-66. [PMID: 24560992 DOI: 10.1016/j.neuro.2014.02.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/30/2022]
Abstract
Aluminium is light weight and toxic metal present ubiquitously on earth which has gained considerable attention due to its neurotoxic effects. The widespread use of products made from or containing aluminium is ensuring its presence in our body. There is prolonged retention of a fraction of aluminium that enters the brain, suggesting its potential for accumulation with repeated exposures. There is no known biological role for aluminium within the body but adverse physiological effects of this metal have been observed in mammals. The generation of oxidative stress may be attributed to its toxic consequences in animals and humans. The oxidative stress has been implicated in pathogenesis of various neurodegenerative conditions including Alzheimer's disease and Parkinson's disease. Though it remains unclear whether oxidative stress is a major cause or merely a consequence of cellular dysfunction associated with neurodegenerative diseases, an accumulating body of evidence implicates that impaired mitochondrial energy production and increased mitochondrial oxidative damage is associated with the pathogenesis of neurodegenerative disorders. Being involved in the production of reactive oxygen species, aluminium may impair mitochondrial bioenergetics and may lead to the generation of oxidative stress. In this review, we have discussed the oxidative stress and mitochondrial dysfunctions occurring in Al neurotoxicity. In addition, the ameliorative measures undertaken in aluminium induced oxidative stress and mitochondrial dysfunctions have also been highlighted.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Kiran Dip Gill
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India; Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
249
|
McCarthy RC, Kosman DJ. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS One 2014; 9:e89003. [PMID: 24533165 PMCID: PMC3923066 DOI: 10.1371/journal.pone.0089003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/13/2014] [Indexed: 11/18/2022] Open
Abstract
We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.
Collapse
Affiliation(s)
- Ryan C McCarthy
- Department of Biochemistry, University at Buffalo, School of Medicine and Biomedical Scienes, Buffalo, New York, United States of America
| | - Daniel J Kosman
- Department of Biochemistry, University at Buffalo, School of Medicine and Biomedical Scienes, Buffalo, New York, United States of America
| |
Collapse
|
250
|
Cervellati C, Romani A, Seripa D, Cremonini E, Bosi C, Magon S, Passaro A, Bergamini CM, Pilotto A, Zuliani G. Oxidative balance, homocysteine, and uric acid levels in older patients with Late Onset Alzheimer's Disease or Vascular Dementia. J Neurol Sci 2014; 337:156-61. [DOI: 10.1016/j.jns.2013.11.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023]
|