201
|
Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L, Wu D, Zhang G. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:319-330. [PMID: 29289898 DOI: 10.1016/j.plaphy.2017.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
In our previous study, Tibetan wild barley (Hordeum spontaneum L.) has been found to be rich in the elite accessions with strong abiotic stress tolerance, including salt stress tolerance. However, the molecular mechanism of salt tolerance underlying the wild barley remains to be elucidated. In this study, two Tibetan wild barley accessions, XZ26 (salt-tolerant) and XZ169 (salt-sensitive), were used to investigate ionomic, metabolomic and proteomic responses in roots when exposed to 0, 200 (moderate) and 400 mM (high) salinity. XZ26 showed stronger root growth and maintained higher K concentrations when compared with XZ169 under moderate salinity, while no significant difference was found between the two accessions under high salinity. A total of 574 salt-regulated proteins and 153 salt-regulated metabolites were identified in the roots of both accessions based on quantitative proteomic (iTRAQ methods) and metabolomic (GC-TOF/MS) analysis. XZ26 developed its root adaptive strategies mainly by accumulating more compatible solutes such as proline and inositol, acquiring greater antioxidant ability to cope with ROS, and consuming less energy under salt stress for producing biomass. These findings provide a better understanding of molecular responses of root adaptive strategies to salt stress in the wild barley.
Collapse
Affiliation(s)
- Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiahua Yu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liyuan Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
202
|
Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage. Sci Rep 2018; 8:2085. [PMID: 29391416 PMCID: PMC5794784 DOI: 10.1038/s41598-018-19984-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/11/2018] [Indexed: 11/08/2022] Open
Abstract
Abiotic stresses, such as salinity, greatly threaten the growth and productivity of plants. Rice (Oryza sativa L.) is one of the most important food crops, as well as a monocot model for genomic research. To obtain a global view of the molecular response to salinity stress, we conducted a leaf transcriptome analysis on rice seedlings. Two cultivars of rice subspecies indica, including the salt-tolerant genotype Xian156 and the salt-sensitive genotype IR28, were used in the present study. Eighteen RNA libraries were obtained from these two genotypes at three timepoints (0 h, 48 h and 72 h) after applying salinity stress. We obtained the reference-guided assembly of the rice transcriptome, which resulted in 1,375 novel genes, including 1,371 annotated genes. A comparative analysis between genotypes and time points showed 5,273 differentially expressed genes (DEGs), of which 286 DEGs were only found in the tolerant genotype. The Disease resistance response protein 206 and TIFY 10 A were differentially expressed, which were validated by quantitative real-time PCR. The differentially expressed genes identified through the mRNA transcriptome, along with the structure, provide a revealing insight into rice molecular response to salinity stress and underlie the salinity tolerance mechanism between genotypes.
Collapse
|
203
|
Deng F, Zhang X, Wang W, Yuan R, Shen F. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC PLANT BIOLOGY 2018; 18:23. [PMID: 29370759 PMCID: PMC5785843 DOI: 10.1186/s12870-018-1238-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/17/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) represent a class of riboregulators that either directly act in long form or are processed into shorter microRNAs (miRNAs) and small interfering RNAs. Long noncoding RNAs (lncRNAs) are arbitrarily defined as RNA genes larger than 200 nt in length that have no apparent coding potential. lncRNAs have emerged as playing important roles in various biological regulatory processes and are expressed in a more tissue-specific manner than mRNA. Emerging evidence shows that lncRNAs participate in stress-responsive regulation. RESULTS In this study, in order to develop a comprehensive catalogue of lncRNAs in upland cotton under salt stress, we performed whole-transcriptome strand-specific RNA sequencing for three-leaf stage cotton seedlings treated with salt stress (S_NaCl) and controls (S_CK). In total we identified 1117 unique lncRNAs in this study and 44 differentially expressed RNAs were identified as potential non-coding RNAs. For the differentially expressed lncRNAs that were identified as intergenic lncRNAs (lincRNA), we analysed the gene ontology enrichment of cis targets and found that cis target protein-coding genes were mainly enriched in stress-related categories. Real-time quantitative PCR confirmed that all selected lincRNAs responsive to salt stress. We found lnc_388 was likely as regulator of Gh_A09G1182. And lnc_883 may participate in regulating tolerance to salt stress by modulating the expression of Gh_D03G0339 MS_channel. We then predicted the target mimics for miRNA in Gossypium. six miRNAs were identified, and the result of RT-qPCR with lncRNA and miRNA suggested that lnc_973 and lnc_253 may regulate the expression of ghr-miR399 and ghr-156e as a target mimic under salt stress. CONCLUSIONS We identified 44 lincRNAs that were differentially expressed under salt stress. These lincRNAs may target protein-coding genes via cis-acting regulation. We also discovered that specifically-expressed lincRNAs under salt stress may act as endogenous target mimics for conserved miRNAs. These findings extend the current view on lincRNAs as ubiquitous regulators under stress stress.
Collapse
Affiliation(s)
- Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
204
|
Belgaroui N, Lacombe B, Rouached H, Hanin M. Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency. Sci Rep 2018; 8:1137. [PMID: 29348608 PMCID: PMC5773496 DOI: 10.1038/s41598-018-19493-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 12/28/2022] Open
Abstract
Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.
Collapse
Affiliation(s)
- Nibras Belgaroui
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia
| | - Benoit Lacombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Hatem Rouached
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia. .,Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
205
|
Prusty MR, Kim SR, Vinarao R, Entila F, Egdane J, Diaz MGQ, Jena KK. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf. FRONTIERS IN PLANT SCIENCE 2018; 9:417. [PMID: 29740456 PMCID: PMC5926390 DOI: 10.3389/fpls.2018.00417] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/15/2018] [Indexed: 05/02/2023]
Abstract
Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na+ sequestration in leaf might be occurring independent of tonoplast-localized OsNHX1. The newly isolated wild rice accessions will be valuable materials for both rice improvement to salinity stress and the study of salt tolerance mechanism in plants.
Collapse
Affiliation(s)
- Manas R. Prusty
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - Sung-Ryul Kim
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - Ricky Vinarao
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - Frederickson Entila
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - James Egdane
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - Maria G. Q. Diaz
- Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Kshirod K. Jena
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
- *Correspondence: Kshirod K. Jena,
| |
Collapse
|
206
|
Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC. A Growth-Promoting Bacteria, Paenibacillus yonginensis DCY84 T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:813. [PMID: 30083171 PMCID: PMC6065202 DOI: 10.3389/fpls.2018.00813] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Panax ginseng (C.A. Mayer) is a well-known medicinal plant used in traditional medicine in Korea that experiences serious salinity stress related to weather changes or incorrect fertilizer application. In ginseng, the use of Paenibacillus yonginensis DCY84T to improve salt stress tolerance has not been thoroughly explored. Therefore, we studied the role of P. yonginensis DCY84T under short-term and long-term salinity stress conditions in a controlled environment. In vitro testing of DCY84T revealed high indole acetic acid (IAA) production, siderophore formation, phosphate solubilization and anti-bacterial activity. We determined that 10-min dip in 1010 CFU/ml DCY84T was sufficient to protect ginseng against short-term salinity stress (osmotic stress) upon exposure to 300 mM NaCl treatment by enhancing nutrient availability, synthesizing hydrolyzing enzymes and inducing osmolyte production. Upon exposure to salinity stress (oxidative and ionic stress), strain DCY84T-primed ginseng seedlings were protected by the induction of defense-related systems such as ion transport, ROS scavenging enzymes, proline content, total sugars, and ABA biosynthetic genes, as well as genes involved in root hair formation. Additionally, ginseng primed with DCY84T and exposed to 300 mM NaCl showed the same metabolite profile as control ginseng plants, suggesting that DCY84T effectively reduced salt stress. These results indicated that DCY84T can be widely used as a microbial inoculant to protect ginseng plants against salinity stress conditions.
Collapse
Affiliation(s)
- Johan Sukweenadhi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Sri R. Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- *Correspondence: Yeon-Ju Kim
| | - Choong H. Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Sung C. Koh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Deok C. Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- Deok C. Yang
| |
Collapse
|
207
|
Omisun T, Sahoo S, Saha B, Panda SK. Relative salinity tolerance of rice cultivars native to North East India: a physiological, biochemical and molecular perspective. PROTOPLASMA 2018; 255:193-202. [PMID: 28718009 DOI: 10.1007/s00709-017-1142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/04/2017] [Indexed: 05/24/2023]
Abstract
Salinity is the second most prevalent abiotic stress faced by plants, and rice is not an exception. Through this study, it has been tried upon, to study the relative salinity tolerance of eight local varieties of North East India. Preliminary screening was based on their dose- and time-dependent physiological responses to salinity stress. Among the cultivars, Tampha was found to be relatively more tolerant, whereas MSE9 the most sensitive. To further ascertain their tolerance capacity, MDA and H2O2 content was determined, which also confirmed the tolerance level of the two cultivars. Histochemical assays for root plasma membrane integrity and leaf and root H2O2 and O2- content also showed more damage in Tampha in comparison to MSE9. Finally, gene expression analysis for Na+/K+ co-transporters, OsHKT2;1, OsHKT2;3 and OsHKT2;4, was performed to observe how the expression level of these transporters varies with the tolerance capacity of these two cultivars in leaves and roots under different time frames. The study reveals Tampha to be the most tolerant and MSE9 the most sensitive when compared to the other six screened cultivars for salinity stress.
Collapse
Affiliation(s)
- Takhellambam Omisun
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Smita Sahoo
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bedabrata Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
208
|
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
209
|
Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S. Melatonin Mitigates Salt Stress in Wheat Seedlings by Modulating Polyamine Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:914. [PMID: 30018628 PMCID: PMC6037824 DOI: 10.3389/fpls.2018.00914] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/08/2018] [Indexed: 05/20/2023]
Abstract
Melatonin, a small molecular weight indoleamine molecule, is involved in various biological processes and responses to environmental cues in plants. However, its function in abiotic stress response and the underlying mechanisms is less clear. In this study, we investigated the effect of melatonin on wheat seedlings growth under salt stress condition. Exogenous melatonin pretreatment partially mitigated the salt-induced inhibition of whole-plant growth as judged from shoot dry weight, IAA content, leaf photosynthesis rate, maximum photochemistry efficiency of photosystem II, and chlorophyll. The mitigation was also observed in reduced accumulation of H2O2 in melatonin-pretreated wheat seedlings exposed to salt stress. Exogenous melatonin increased endogenous melatonin content by evaluating the levels of TaSNAT transcript, which encodes a key regulatory enzyme in the melatonin biosynthetic pathway. Furthermore, melatonin increased polyamine contents by accelerating the metabolic flow from the precursor amino acids arginine and methionine to polyamines; melatonin also decreased the degradation of salt-induced polyamines. Taken together, these results provide the evidence that melatonin mitigates salt stress mainly through its regulation on polyamine metabolism of wheat seedlings.
Collapse
Affiliation(s)
- Qingbo Ke
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jun Ye
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Bomei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jianhong Ren
- College of Life Science, Northwest A&F University, Yangling, China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Life Science, Northwest A&F University, Yangling, China
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loss Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- *Correspondence: Shiwen Wang,
| |
Collapse
|
210
|
Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z. Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. BOTANICAL STUDIES 2017; 58:10. [PMID: 28510193 PMCID: PMC5432930 DOI: 10.1186/s40529-017-0163-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Abiotic stresses negatively affect plant growth and flower production. In plants, P5CS proteins are key enzymes that catalyzed the rate-limiting steps of proline synthesis, and proline is a well-known osmoprotectant that is closely related to abiotic stress tolerance. However, information about the P5CS genes, their effects on proline accumulation, and their role in abiotic stress tolerance in Lilium is still lacking. RESULTS We isolated and characterized a novel gene (LhSorP5CS) from Oriental hybrid lily cultivar Sorbonne. Phylogenetic analysis indicated that LhSorP5CS is a member of the P5CS family. The three-dimensional structure of LhSorP5CS predicted by homology modeling showed high similarity to its correspondant human P5CS template. Further gene expression analysis revealed that LhSorP5CS expression was up-regulated by NaCl, mannitol, and ABA, and that stress-exposed plants accumulated proline at a significantly higher level than in the control. CONCLUSIONS LhSorP5CS characterized in this study is involved in proline synthesis in lily, and that it might play an important role in abiotic stress tolerance. However, there should be other P5CS homologues in the lily genome, and some of them could be highly stress-induced and more important for proline accumulation. Future studies on P5CS family genes would be of great importance to proline-related stress tolerance in lily.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Guo Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Liu Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
211
|
Wang Y, Stevanato P, Yu L, Zhao H, Sun X, Sun F, Li J, Geng G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. JOURNAL OF PLANT RESEARCH 2017; 130:1079-1093. [PMID: 28711996 DOI: 10.1007/s10265-017-0964-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2017] [Indexed: 05/20/2023]
Abstract
Salinity stress is a major limitation to global crop production. Sugar beet, one of the world's leading sugar crops, has stronger salt tolerant characteristics than other crops. To investigate the response to different levels of salt stress, sugar beet was grown hydroponically under 3 (control), 70, 140, 210 and 280 mM NaCl conditions. We found no differences in dry weight of the aerial part and leaf area between 70 mM NaCl and control conditions, although dry weight of the root and whole plant treated with 70 mM NaCl was lower than control seedlings. As salt concentrations increased, degree of growth arrest became obvious In addition, under salt stress, the highest concentrations of Na+ and Cl- were detected in the tissue of petioles and old leaves. N and K contents in the tissue of leave, petiole and root decreased rapidly with the increase of NaCl concentrations. P content showed an increasing pattern in these tissues. The activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione peroxidase showed increasing patterns with increase in salt concentrations. Moreover, osmoprotectants such as free amino acids and betaine increased in concentration as the external salinity increased. Two organic acids (malate and citrate) involved in tricarboxylic acid (TCA)-cycle exhibited increasing contents under salt stress. Lastly, we found that Rubisco activity was inhibited under salt stress. The activity of NADP-malic enzyme, NADP-malate dehydrogenase and phosphoenolpyruvate carboxylase showed a trend that first increased and then decreased. Their activities were highest with salinity at 140 mM NaCl. Our study has contributed to the understanding of the sugar beet physiological and metabolic response mechanisms under different degrees of salt stress.
Collapse
Affiliation(s)
- Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Research Institute of Chinese Academy of Agricultural Sciences, Crop Academy of Heilongjiang University, Harbin, 150080, China
- The College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Viale dell'Università 16, Legnaro, Padova, 35020, Italy
| | - Lihua Yu
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Research Institute of Chinese Academy of Agricultural Sciences, Crop Academy of Heilongjiang University, Harbin, 150080, China
| | - Huijie Zhao
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China
| | - Xuewei Sun
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China
| | - Fei Sun
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China
| | - Jing Li
- The College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Gui Geng
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Research Institute of Chinese Academy of Agricultural Sciences, Crop Academy of Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
212
|
Khalil SRM, Ibrahim AS, Hussien BA, Hussien EA, Tawfik MS. Cloning of a functional mannose-6-phosphate reductase (M6PR) gene homolog from Egyptian celery plants ( Apium graveolens): overexpression in non-mannitol producing plants resulted in mannitol accumulation in transgenic individuals. 3 Biotech 2017; 7:341. [PMID: 28955638 PMCID: PMC5608648 DOI: 10.1007/s13205-017-0975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022] Open
Abstract
Salinity is a major limiting factor affecting crops production, survival and distribution worldwide. Engineering dehydration stress tolerance in commercial crops is a trait of economic importance, especially in saline-affected areas. In this work, we are reporting the cloning of the M6PR gene homolog (encoding a key enzyme, mannose-6-phosphate reductase, for mannitol biosynthesis in celery) from Egyptian celery plants. Using RACE technique, the full-length Egyptian-M6PR gene (1333 bp) was cloned into pRI-201AN plant expression vector. Analysis of the cloned gene revealed that both American and Egyptian clones had both start and stop codons in frame and was found to be 930 base long. The newly cloned EM6PR gene was found to be 126 base longer than its American counterpart at the non-coding region. Six differences at nucleotide level between the Egyptian and American sequences were observed, three of which in the coding region resulting in three polymorphic amino acids differences (tryptophan vs. leucine, glutamine vs. histidine and isoleucine vs. leucine). The newly cloned gene was introduced to tobacco via Agrobacterium and PCR analysis of T0 plants indicated the presence of the EM6PR gene into 10 out of 38 tobacco individuals. Moreover, RT-PCR analysis confirmed the presence of EM6PR transcripts in 9 out of the 10 PCR positive plants. GC/MS analysis of some RT positive individuals indicated the accumulation of mannitol in transgenics tobacco, while mannitol was absent in non-transgenic controls.
Collapse
Affiliation(s)
- Shaimaa R. M. Khalil
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619 Egypt
| | - Amr S. Ibrahim
- Plant Genomic Laboratory, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619 Egypt
| | - Basita A. Hussien
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ebtissam A. Hussien
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed S. Tawfik
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619 Egypt
| |
Collapse
|
213
|
Basu S, Giri RK, Benazir I, Kumar S, Rajwanshi R, Dwivedi SK, Kumar G. Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:837-850. [PMID: 29158633 PMCID: PMC5671459 DOI: 10.1007/s12298-017-0477-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
Rice being a staple cereal is extremely susceptible towards abiotic stresses. Drought and salinity are two vital factors limiting rice cultivation in Eastern Indo-Gangetic Plains (EIGP). Present study has intended to evaluate the consequences of salinity stress on selected drought tolerant rice genotypes at the most susceptible seedling stage with an aim to identify the potential multi-stress (drought and salt) tolerant rice genotype of this region. Genotypic variation was obvious in all traits related to drought and salt susceptibility. IR84895-B-127-CRA-5-1-1, one of the rice genotypes studied, exhibited exceptional drought and salinity tolerance. IR83373-B-B-25-3-B-B-25-3 also displayed enhanced drought and salt tolerance following IR84895-B-127-CRA-5-1-1. Variations were perceptible in different factors involving photosynthetic performance, proline content, lipid peroxidation, K+/Na+ ratio. Accumulation of reactive oxygen species (ROS) disintegrated cellular and sub-cellular membrane leading to decreased photosynthetic activities. Therefore, accumulation and detoxification of reactive oxygen species was also considered as a major determinant of salt tolerance. IR84895-B-127-CRA-5-1-1 showed improved ROS detoxification mediated by antioxidant enzymes. IR84895-B-127-CRA-5-1-1 seedlings also displayed significant recovery after removal of salt stress. The results established a direct association of ROS scavenging with improved physiological activities and salt tolerance. The study also recommended IR84895-B-127-CRA-5-1-1 for improved crop performance in both drought and saline environments of EIGP. These contrasting rice genotypes may assist in understanding the multiple stress associated factors in concurrent drought and salt tolerant rice genotypes.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | - Ranjan Kumar Giri
- Department of Life Science, Central University of South Bihar, Patna, 800014 India
| | - Ibtesham Benazir
- Department of Life Science, Central University of South Bihar, Patna, 800014 India
| | - Santosh Kumar
- ICAR Research Complex for Eastern Region, Patna, 800014 India
| | - Ravi Rajwanshi
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | | | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Patna, 800014 India
| |
Collapse
|
214
|
Botha AM, Kunert KJ, Cullis CA. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association. PLANT, CELL & ENVIRONMENT 2017; 40:1679-1690. [PMID: 28664627 DOI: 10.1111/pce.12998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 05/13/2023]
Abstract
Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Karl J Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Christopher A Cullis
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
215
|
Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Ge X, Zhang X, Li F. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC PLANT BIOLOGY 2017; 17:142. [PMID: 28830364 PMCID: PMC5568319 DOI: 10.1186/s12870-017-1078-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND MYB transcription factors (TFs) are one of the largest families of TFs in higher plants and are involved in diverse biological, functional, and structural processes. Previously, very few functional validation studies on R2R3 MYB have been conducted in cotton in response to abiotic stresses. In the current study, GaMYB85, a cotton R2R3 MYB TF, was ectopically expressed in Arabidopsis thaliana (Col-0) and was functionally characterized by overexpression in transgenic plants. RESULTS The in-silico analysis of GaMYB85 shows the presence of a SANT domain with a conserved R2R3 MYB imperfect repeat. The GaMYB85 protein has a 257-amino acid sequence, a molecular weight of 24.91 kD, and an isoelectric point of 5.58. Arabidopsis plants overexpressing GaMYB85 exhibited a higher seed germination rate in response to mannitol and salt stress, and higher drought avoidance efficiency than wild-type plants upon water deprivation. These plants had notably higher levels of free proline and chlorophyll with subsequent lower water loss rates and higher relative water content. Germination of GaMYB85 transgenics was more sensitive to abscisic acid (ABA) and extremely liable to ABA-induced inhibition of primary root elongation. Moreover, when subjected to treatment with different concentrations of ABA, transgenic plants with ectopically expressed GaMYB85 showed reduced stomatal density, with greater stomatal size and lower stomatal opening rates than those in wild-type plants. Ectopic expression of GaMYB85 led to enhanced transcript levels of stress-related marker genes such as RD22, ADH1, RD29A, P5CS, and ABI5. CONCLUSIONS Our results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway. These findings can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.
Collapse
Affiliation(s)
- Hamama Islam Butt
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Qian Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xioaqian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Ge Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China.
| |
Collapse
|
216
|
Xue W, Yan J, Zhao G, Jiang Y, Cheng J, Cattivelli L, Tondelli A. A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genet 2017; 18:79. [PMID: 28830338 PMCID: PMC5568257 DOI: 10.1186/s12863-017-0545-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Seedling establishment is a crucial and vulnerable stage in the crop life cycle which determines further plant growth. While many studies are available on salt tolerance at the vegetative stage, the mechanisms and genetic bases of salt tolerance during seedling establishment have been poorly investigated. Here, a novel and accurate phenotyping protocol was applied to characterize the response of seedlings to salt stress in two barley cultivars (Nure and Tremois) and their double-haploid population. Results The combined phenotypic data and existing genetic map led to the identification of a new major QTL for root elongation under salt stress on chromosome 7HS, with the parent Nure carrying the favourable allele. Gene-based markers were developed from the rice syntenic genomic region to restrict the QTL interval to Bin2.1 of barley chromosome 7HS. Furthermore, doubled haploid lines with contrasting responses to salt stress revealed different root morphological responses to stress, with the susceptible genotypes exhibiting an overall reduction in root length and volume but an increase in root diameter and root hair density. Conclusions Salt tolerance at the seedling stage was studied in barley through a comprehensive phenotyping protocol that allowed the detection of a new major QTL on chromosome 7HS. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0545-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Xue
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Jiang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Luigi Cattivelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy.
| |
Collapse
|
217
|
Molecular characterization of EcCIPK24 gene of finger millet ( Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech 2017; 7:267. [PMID: 28794922 DOI: 10.1007/s13205-017-0874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022] Open
Abstract
Finger millet grains contain exceptionally high levels of calcium which is much higher compared to other cereals and millets. Since calcium is an important macronutrient in human diet, it is necessary to explore the molecular basis of calcium accumulation in the seeds of finger millet. CIPK is a calcium sensor gene, having role in activating Ca2+ exchanger protein by interaction with CBL proteins. To know the role of EcCIPK24 gene in seed Ca2+ accumulation, sequence is retrieved from the transcriptome data of two finger millet genotypes GP1 (low Ca2+) and GP45 (high Ca2+), and the expression was determined through qRT-PCR. The higher expression was found in root, shoot, leaf and developing spike tissue of GP45 compared to GP1; structural analysis showed difference of nine SNPs and one extra beta sheet domain as well as differences in vacuolar localization was predicted; besides, the variation in amino acid composition among both the genotypes was also investigated. Molecular modeling and docking studies revealed that both EcCBL4 and EcCBL10 showed strong binding affinity with EcCIPK24 (GP1) compared to EcCIPK24 (GP45). It indicates a genotypic structural variation, which not only affects the affinity but also calcium transport efficiency after interaction of CIPK-CBL with calcium exchanger (EcCAX1b) to pull calcium in the vacuole. Based on the expression and in silico study, it can be suggested that by activating EcCAX1b protein, EcCIPK24 plays an important role in high seed Ca2+ accumulation.
Collapse
|
218
|
Kordrostami M, Rabiei B, Hassani Kumleh H. Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:529-544. [PMID: 28878492 PMCID: PMC5567701 DOI: 10.1007/s12298-017-0440-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 05/13/2023]
Abstract
Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H2O2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na+/K+ ratio, high proline accumulation, less membrane damage, lower H2O2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.
Collapse
Affiliation(s)
- Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Babak Rabiei
- Department of Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Hassan Hassani Kumleh
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| |
Collapse
|
219
|
Goswami K, Tripathi A, Sanan-Mishra N. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice. J Integr Bioinform 2017; 14:/j/jib.2017.14.issue-1/jib-2017-0002/jib-2017-0002.xml. [PMID: 28637931 PMCID: PMC6042804 DOI: 10.1515/jib-2017-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant's response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.
Collapse
Affiliation(s)
- Kavita Goswami
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Anita Tripathi
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
220
|
Campbell MT, Bandillo N, Al Shiblawi FRA, Sharma S, Liu K, Du Q, Schmitz AJ, Zhang C, Véry AA, Lorenz AJ, Walia H. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genet 2017; 13:e1006823. [PMID: 28582424 PMCID: PMC5476289 DOI: 10.1371/journal.pgen.1006823] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 06/19/2017] [Accepted: 05/16/2017] [Indexed: 01/25/2023] Open
Abstract
Salinity is a major factor limiting crop productivity. Rice (Oryza sativa), a staple crop for the majority of the world, is highly sensitive to salinity stress. To discover novel sources of genetic variation for salt tolerance-related traits in rice, we screened 390 diverse accessions under 14 days of moderate (9 dS·m-1) salinity. In this study, shoot growth responses to moderate levels of salinity were independent of tissue Na+ content. A significant difference in root Na+ content was observed between the major subpopulations of rice, with indica accessions displaying higher root Na+ and japonica accessions exhibiting lower root Na+ content. The genetic basis of the observed variation in phenotypes was elucidated through genome-wide association (GWA). The strongest associations were identified for root Na+:K+ ratio and root Na+ content in a region spanning ~575 Kb on chromosome 4, named Root Na+ Content 4 (RNC4). Two Na+ transporters, HKT1;1 and HKT1;4 were identified as candidates for RNC4. Reduced expression of both HKT1;1 and HKT1;4 through RNA interference indicated that HKT1;1 regulates shoot and root Na+ content, and is likely the causal gene underlying RNC4. Three non-synonymous mutations within HKT1;1 were present at higher frequency in the indica subpopulation. When expressed in Xenopus oocytes the indica-predominant isoform exhibited higher inward (negative) currents and a less negative voltage threshold of inward rectifying current activation compared to the japonica-predominant isoform. The introduction of a 4.5kb fragment containing the HKT1;1 promoter and CDS from an indica variety into a japonica background, resulted in a phenotype similar to the indica subpopulation, with higher root Na+ and Na+:K+. This study provides evidence that HKT1;1 regulates root Na+ content, and underlies the divergence in root Na+ content between the two major subspecies in rice.
Collapse
Affiliation(s)
- Malachy T. Campbell
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Nonoy Bandillo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Fouad Razzaq A. Al Shiblawi
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique (5004)/Institut National de la Recherche Agronomique (388)/SupAgro/Université Montpellier, Montpellier, France
| | - Sandeep Sharma
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Kan Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Qian Du
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Aaron J. Schmitz
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Anne-Aliénor Véry
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique (5004)/Institut National de la Recherche Agronomique (388)/SupAgro/Université Montpellier, Montpellier, France
| | - Aaron J. Lorenz
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
221
|
Wang Y, Gu W, Meng Y, Xie T, Li L, Li J, Wei S. γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants. Sci Rep 2017; 7:43609. [PMID: 28272438 PMCID: PMC5341084 DOI: 10.1038/srep43609] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/30/2017] [Indexed: 11/09/2022] Open
Abstract
γ-Aminobutyric acid (GABA) has high physiological activity in plant stress physiology. This study showed that the application of exogenous GABA by root drenching to moderately (MS, 150 mM salt concentration) and severely salt-stressed (SS, 300 mM salt concentration) plants significantly increased endogenous GABA concentration and improved maize seedling growth but decreased glutamate decarboxylase (GAD) activity compared with non-treated ones. Exogenous GABA alleviated damage to membranes, increased in proline and soluble sugar content in leaves, and reduced water loss. After the application of GABA, maize seedling leaves suffered less oxidative damage in terms of superoxide anion (O2·-) and malondialdehyde (MDA) content. GABA-treated MS and SS maize seedlings showed increased enzymatic antioxidant activity compared with that of untreated controls, and GABA-treated MS maize seedlings had a greater increase in enzymatic antioxidant activity than SS maize seedlings. Salt stress severely damaged cell function and inhibited photosynthesis, especially in SS maize seedlings. Exogenous GABA application could reduce the accumulation of harmful substances, help maintain cell morphology, and improve the function of cells during salt stress. These effects could reduce the damage to the photosynthetic system from salt stress and improve photosynthesis and chlorophyll fluorescence parameters. GABA enhanced the salt tolerance of maize seedlings.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,The Observation Experiment Station of Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin 150030, P.R. China
| | - Yao Meng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,Heilongjiang Academy of Land Reclamation Sciences, Harbin 100030, P.R. China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,The Observation Experiment Station of Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin 150030, P.R. China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,The Observation Experiment Station of Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin 150030, P.R. China
| |
Collapse
|
222
|
Li H, Li D, Chen A, Tang H, Li J, Huang S. RNA-seq for comparative transcript profiling of kenaf under salinity stress. JOURNAL OF PLANT RESEARCH 2017; 130:365-372. [PMID: 27999968 PMCID: PMC5318473 DOI: 10.1007/s10265-016-0898-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
Kenaf (Hibiscus cannabinus L.) is an economically important global natural fiber crop. As a consequence of the increased demand for food crops and the reduction of available arable land, kenaf cultivation has increasingly shifted to saline and alkaline land. To investigate the molecular mechanism of salinity tolerance in kenaf, we performed Illumina high-throughput RNA sequencing on shoot tips of kenaf and identified 71,318 unigenes, which were annotated using four different protein databases. In total, 2,384 differentially expressed genes (DEGs) were identified between the salt-stressed and the control plants, 1,702 of these transcripts were up-regulated and 683 transcripts were down-regulated. Thirty-seven transcripts belonging to 15 transcription-factor families that respond to salt stress were identified. Gene ontology function enrichment analysis revealed that the genes encoding antioxidant enzymes were up-regulated. The amino acid metabolism and carbohydrate metabolism pathways were highly enriched among these DEGs under salt stress conditions. In order to confirm the RNA-seq data, we randomly selected 20 unigenes for analysis using a quntitative real-time polymerase chain reaction. Our study not only provided the large-scale assessment of transcriptome resources of kenaf but also guidelines for understanding the mechanism underlying salt stress responses in kenaf.
Collapse
Affiliation(s)
- Hui Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China.
| | - Anguo Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Huijuan Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Jianjun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| |
Collapse
|
223
|
Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell'Aversana E, Piccolella S, Fuggi A, Carillo P. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2017; 159:290-312. [PMID: 27653956 DOI: 10.1111/ppl.12513] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 05/03/2023]
Abstract
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.
Collapse
Affiliation(s)
- Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Loredana F Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Federica Iannuzzi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Antonio Mirto
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Luisa D'Amelia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Emilia Dell'Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
224
|
Miranda RDS, Mesquita RO, Costa JH, Alvarez-Pizarro JC, Prisco JT, Gomes-Filho E. Integrative Control Between Proton Pumps and SOS1 Antiporters in Roots is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum bicolor. PLANT & CELL PHYSIOLOGY 2017; 58:522-536. [PMID: 28158828 DOI: 10.1093/pcp/pcw231] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/23/2016] [Indexed: 05/28/2023]
Abstract
An effective strategy for re-establishing K+ and Na+ homeostasis is a challenge for the improvement of plant performance in saline soil. Specifically, attempts to understand the mechanisms of Na+ extrusion from plant cells, the control of Na+ loading in the xylem and the partitioning of the accumulated Na+ between different plant organs are ongoing. Our goal was to provide insight into how an external nitrogen source affects Na+ accumulation in Sorghum bicolor under saline conditions. The NH4+ supply improved the salt tolerance of the plant by restricting Na+ accumulation and improving the K+/Na+ homeostasis in shoots, which was consistent with the high activity and expression of Na+/H+ antiporters and proton pumps in the plasma membrane and vacuoles in the roots, resulting in low Na+ loading in the xylem. Conversely, although NO3--grown plants had exclusion and sequestration mechanisms for Na+, these responses were not sufficient to reduce Na+ accumulation. In conclusion, NH4+ acts as an efficient signal to activate co-ordinately responses involved in the regulation of Na+ homeostasis in sorghum plants under salt stress, which leads to salt tolerance.
Collapse
Affiliation(s)
- Rafael de Souza Miranda
- Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, 60440-554, Fortaleza, Ceará, Brazil
| | | | - José Hélio Costa
- Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, 60440-554, Fortaleza, Ceará, Brazil
| | - Juan Carlos Alvarez-Pizarro
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, 63133-610, Crato, Ceará, Brazil
| | - José Tarquinio Prisco
- Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, 60440-554, Fortaleza, Ceará, Brazil
| | - Enéas Gomes-Filho
- Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, 60440-554, Fortaleza, Ceará, Brazil
| |
Collapse
|
225
|
Ma Y, Augé RM, Dong C, Cheng Z(M. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta-analysis. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:162-173. [PMID: 27383431 PMCID: PMC5258863 DOI: 10.1111/pbi.12599] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 05/05/2023]
Abstract
Cation/proton antiporter 1 (CPA1) genes encode cellular Na+ /H+ exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over-expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta-analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K+ , root K+ /Na+ , total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1-induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance.
Collapse
Affiliation(s)
- Yuan‐Chun Ma
- Institute of HorticultureJiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjingJiangsuChina
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Augé
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Chao Dong
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
| | - Zong‐Ming (Max) Cheng
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
226
|
Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis. PLoS One 2017; 12:e0170578. [PMID: 28125637 PMCID: PMC5268478 DOI: 10.1371/journal.pone.0170578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.
Collapse
|
227
|
Qaddoury A. Arbuscular Mycorrhizal Fungi Provide Complementary Characteristics that Improve Plant Tolerance to Drought and Salinity: Date Palm as Model. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
228
|
Bekele A, Besufekad Y, Adugna S, Yinur D. Screening of selected accessions of Ethiopian sesame (Sesame indicum L.) for salt tolerance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
229
|
Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R. Improvement of Salt Tolerance Using Wild Rice Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:2269. [PMID: 29387076 PMCID: PMC5776132 DOI: 10.3389/fpls.2017.02269] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Salt stress causes significant reductions in rice production worldwide; thus, improving salt tolerance is a promising approach to meet the increasing food demand. Wild rice germplasm is considered a valuable genetic resource for improving rice cultivars. However, information regarding the improvement of salt tolerance in cultivated rice using wild rice genes is limited. In this study, we identified a salt-tolerant line Dongxiang/Ningjing 15 (DJ15) under salt-stress field conditions from the population of a salt tolerant Dongxiang wild rice × a cultivated rice variety Ningjing16 (NJ16). Genomic resequencing analysis of NJ16, DJ15 and Dongxiang wild rice revealed that the introgressed genomic fragments were unevenly distributed over the 12 chromosomes (Chr.) and mainly identified on Chr. 6, 7, 10, and 11. Using quantitative trait locus (QTL) mapping, we found 9 QTL for salt tolerance (qST) at the seedling stage located on Chr. 1, 3, 4, 5, 6, 8, and 10. In addition, sequence variant analysis within the QTL regions demonstrated that SKC1/HKT8/HKT1;5 and HAK6 transporters along with numerous transcriptional factors were the candidate genes for the salt tolerant QTL. The DJ15/Koshihikari recombinant inbred lines that contained both qST1.2 and qST6, two QTL with the highest effect for salt tolerance, were more tolerant than the parental lines under salt-stress field conditions. Furthermore, the qST6 near-isogenic lines with IR29 background were more tolerant than IR29, indicating that qST1.2 and qST6 could improve salt tolerance in rice. Overall, our study indicates that wild rice genes could markedly improve the salt tolerance of cultivated rice.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Ruidang Quan
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jian Hui
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haibo Bai
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuelian Lyu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yongxing Zhu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Shuhua Li
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Shuhua Li
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- Rongfeng Huang
| |
Collapse
|
230
|
Wardhan V, Pandey A, Chakraborty S, Chakraborty N. Chickpea transcription factor CaTLP1 interacts with protein kinases, modulates ROS accumulation and promotes ABA-mediated stomatal closure. Sci Rep 2016; 6:38121. [PMID: 27934866 PMCID: PMC5146945 DOI: 10.1038/srep38121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/07/2016] [Indexed: 11/23/2022] Open
Abstract
Tubby and Tubby-like proteins (TLPs), in mammals, play critical roles in neural development, while its function in plants is largely unknown. We previously demonstrated that the chickpea TLP, CaTLP1, participates in osmotic stress response and might be associated with ABA-dependent network. However, how CaTLP1 is connected to ABA signaling remains unclear. The CaTLP1 was found to be engaged in ABA-mediated gene expression and stomatal closure. Complementation of the yeast yap1 mutant with CaTLP1 revealed its role in ROS scavenging. Furthermore, complementation of Arabidopsis attlp2 mutant displayed enhanced stress tolerance, indicating the functional conservation of TLPs across the species. The presence of ABA-responsive element along with other motifs in the proximal promoter regions of TLPs firmly established their involvement in stress signalling pathways. The CaTLP1 promoter driven GUS expression was restricted to the vegetative organs, especially stem and rosette leaves. Global protein expression profiling of wild-type, attlp2 and complemented Arabidopsis plants revealed 95 differentially expressed proteins, presumably involved in maintaining physiological and biological processes under dehydration. Immunoprecipitation assay revealed that protein kinases are most likely to interact with CaTLP1. This study provides the first demonstration that the TLPs act as module for ABA-mediated stomatal closure possibly via interaction with protein kinase.
Collapse
Affiliation(s)
- Vijay Wardhan
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Aarti Pandey
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
231
|
John R, Anjum NA, Sopory SK, Akram NA, Ashraf M. Some key physiological and molecular processes of cold acclimation. BIOLOGIA PLANTARUM 2016; 60:603-618. [PMID: 0 DOI: 10.1007/s10535-016-0648-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
232
|
Liu WG, Liu JX, Yao ML, Ma QF. Salt tolerance of a wild ecotype of vetiver grass (Vetiveria zizanioides L.) in southern China. BOTANICAL STUDIES 2016; 57:27. [PMID: 28597437 PMCID: PMC5430580 DOI: 10.1186/s40529-016-0142-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/02/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Vetiver grass (Vetiveria zizanioides L.) is widely used in more than 120 countries for land management (e.g. rehabilitation of saline lands). A wild ecotype of vetiver grass was found in southern China in the 1950s, but little is known about its adaptability to saline stress. For the purpose of understanding its tolerance to salinity as well as corresponding tolerance mechanisms, in a greenhouse with natural lighting, seedlings were grown in culture solutions and subjected to a range of NaCl concentrations for 18 days. RESULTS Compared to no NaCl treatment, 200 mM NaCl significantly reduced leaf water potential, leaf water content, leaf elongation rate, leaf photosynthetic rate and plant relative growth rate and increased leaf malondialdehyde (MDA) content, but the parameters showed only slight reduction at 150 mM NaCl. In addition, salinity caused an increase in the activity of antioxidant enzymes in leaves. Moreover, increasing NaCl levels significantly increased Na+ but decreased K+ concentrations in both roots and leaves. The leaves had higher K+ concentrations at all NaCl levels, but lower Na+ concentrations compared to the roots, thereby maintaining higher K+/Na+ ratio in leaves. CONCLUSIONS Our results showed that the salinity threshold of this wild vetiver grass is about 100 mM NaCl, i.e. highly tolerant to salt stress. This wild vetiver grass has a high ability to exclude Na+ and retain K+ in its leaves, which is a critical strategy for salt tolerance.
Collapse
Affiliation(s)
- Wan-gou Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 People’s Republic of China
| | - Jin-xiang Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 People’s Republic of China
| | - Mei-ling Yao
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 People’s Republic of China
| | - Qi-fu Ma
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| |
Collapse
|
233
|
Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics 2016; 17:69-83. [PMID: 27848097 DOI: 10.1007/s10142-016-0529-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/02/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Salinity is one of the major environmental factors affecting the growth and yield of rice crop. Salinity stress response is a multigenic trait and numerous approaches have been used to dissect out the key determinants of complex salt tolerance trait and their regulation in plant. In the current study, we have investigated expression dynamics of the genes encoding transcription factors (SalTFs) localized within a major salinity tolerance related QTL-'Saltol' in the contrasting cultivars of rice. SalTFs were found to be differentially regulated between the contrasting genotypes of rice, with higher constitutive expression in the salt tolerant landrace, Pokkali than the cultivar IR64. Moreover, SalTFs were found to exhibit inducibility in the salt sensitive cultivar at late duration (after 24 h) of salinity stress. Further, the transcript abundance analysis of these SalTFs at various developmental stages of rice revealed that low expressing genes may be involved in developmental responses, while high expressing genes can be linked with the salt stress response. Grouping of these genes was well supported by in silico protein-protein interaction studies and distribution of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) in the promoter and genic regions of these genes. Taken together, we propose that out of 14 SalTFs, eight members are strongly correlated with the salinity stress tolerance in rice and six are involved in plant growth and development.
Collapse
|
234
|
Pilahome W, Bunnag S, Suwanagul A. Two-Step Salt Stress Acclimatization Confers Marked Salt Tolerance Improvement in Four Rice Genotypes Differing in Salt Tolerance. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
235
|
Liu A, Hu Z, Bi A, Fan J, Gitau MM, Amombo E, Chen L, Fu J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1445-1457. [PMID: 27443677 DOI: 10.1007/s10646-016-1696-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
There is widespread distribution of salinized lands in northern China. Harnessing such land is essential to environmental health. Bermudagrass [Cynodon dactylon (L.) Pers.] has the potential to improve the salinized lands. However, low temperature remarkably limits the growth of bermudagrass in winter. Currently, there is no information about the interaction of cold and salt in this plant. Hence, the objectives of this study were to figure out the effects of combined cold and salinity stress on bermudagrass. In this study, 4 °C and 200 mM salt solution was used as cold and salt treatments respectively while 4 °C along with 200 mM salt solution were applied as combined stress. After 5 days treatment, bermudagrass displayed a dramatic decline in the turf quality and chlorophyll content, but higher malonaldehyde, electrolyte leakage, hydrogen peroxide content, antioxidant enzyme activity in the combined stress regime as compared to cold or salt treated alone. Analysis of chlorophyll a revealed that the combined stress aggravated stress-induced inhibition of photosystem II. In addition, the expressions of stress-related genes were up-regulated with a lower expression level when cold and salt applied together. In summary, the grass exposed to combined stress presented a relatively lower stress tolerance and suffered a more severe damage than grass grown in the other regimes. These findings are crucial for elucidating the molecular mechanisms of cold and salt combined stress in bermudagrass, and provide information for breeding programs to select and develop bermudagrass cultivars that are suitable for improvement of the northern China salinized land.
Collapse
Affiliation(s)
- Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Margaret Mukami Gitau
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
236
|
Lavagnolo MC, Malagoli M, Garbo F, Pivato A, Cossu R. Lab-scale phytotreatment of old landfill leachate using different energy crops. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 55:265-275. [PMID: 27349171 DOI: 10.1016/j.wasman.2016.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/01/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Old landfill leachate was treated in lab-scale phytotreatment units using three oleaginous species: sunflower (H), soybean (S) and rapeseed (R). The specific objectives of this study were to identify the effects of plant species combinations with two different soil textures on the reduction of COD, total N (nitrogen) and total P (phosphorous); to identify the correlation between biomass growth and removal efficiency; to assess the potential of oily seeds for the production of biodiesel. The experimental test was carried out using 20L volume pots installed in a greenhouse under different leachate percentages in the feeding and subsequent COD, N and P loads. Significant removal efficiencies were achieved: COD (ɳ>80%), total N (ɳ>70%) and total P (ɳ>95%). Better performances were displayed by the clayey soil. Plants irrigated with leachate, when compared to control units fed only with water and nutrient solution (Hoagland solution), developed a larger plant mass. Sunflower was the best performing species.
Collapse
Affiliation(s)
- Maria Cristina Lavagnolo
- Department of Industrial Engineering, University of Padova, via Lungargine Rovetta 8, 35127 Padova, Italy.
| | - Mario Malagoli
- DAFNAE, University of Padova, viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Francesco Garbo
- Department of Industrial Engineering, University of Padova, via Lungargine Rovetta 8, 35127 Padova, Italy
| | - Alberto Pivato
- Department of Industrial Engineering, University of Padova, via Lungargine Rovetta 8, 35127 Padova, Italy
| | - Raffaello Cossu
- Department of Industrial Engineering, University of Padova, via Lungargine Rovetta 8, 35127 Padova, Italy
| |
Collapse
|
237
|
Ma X, Liang W, Gu P, Huang Z. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:129-40. [PMID: 27156137 DOI: 10.1016/j.plaphy.2016.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 05/20/2023]
Abstract
The expression profile chip of the wheat salt-tolerant mutant RH8706-49 was investigated under salt stress in our laboratory. Results revealed a novel gene induced by salt stress with unknown functions. The gene was named as TaZNF (Triticum aestivum predicted Dof zinc finger protein) because it contains the zf-Dof superfamily and was deposited in GenBank (accession no. KF307327). Further analysis showed that TaZNF significantly improved the salt-tolerance of transgenic Arabidopsis. Various physiological indices of the transgenic plant were improved compared with those of the control after salt stress. Non-invasive micro-test (NMT) detection showed that the root tip of transgenic Arabidopsis significantly expressed Na(+) excretion. TaZNF is mainly localized in the nucleus and exhibited transcriptional activity. Hence, this protein was considered a transcription factor. The TaZNF upstream promoter was then cloned and was found to contain three salts, one jasmonic acid methyl ester (MeJA), and several ABA-responsive elements. The GUS staining and quantitative results of different tissues in the full-length promoter in the transgenic plants showed that the promoter was not tissue specific. The promoter activity in the root, leaf, and flower was enhanced after induction by salt stress. Moreover, GUS staining and quantitative measurement of GUS activity showed that the promoter sequence contained the positive regulatory element of salt and MeJA after their respective elements were mutated in the full-length promoter. RNA-Seq result showed that 2727 genes were differentially expressed; most of these genes were involved in the metabolic pathway and biosynthesis of secondary metabolite pathway.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| | - Wenji Liang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China; College of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, People's Republic of China.
| | - Peihan Gu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| | - Zhanjing Huang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| |
Collapse
|
238
|
Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ. Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. PLANT AND SOIL 2016; 411:319-332. [PMID: 32269390 PMCID: PMC7115016 DOI: 10.1007/s11104-016-3026-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS It remains uncertain whether a higher toxicity of either NaCl or Na2SO4 in plants is due to an altered toxicity of sodium or a different toxicity of the anions. The aim of this study was to determine the contributions of sodium and the two anions to the different toxicities of chloride and sulfate salinity. The effects of the different salts on physiological parameters, mineral nutrient composition and expression of genes of sulfate transport and assimilation were studied. METHODS Seedlings of Brassica rapa L. have been exposed to NaCl, Na2SO4, KCl and K2SO4 to assess the potential synergistic effect of the anions with the toxic cation sodium, as well as their separate toxicities if accompanied by the non-toxic cation potassium. Biomass production, stomatal resistance and Fv/fm were measured to determine differences in ionic and osmotic stress caused by the salts. Anion content (HPLC), mineral nutrient composition (ICP-AES) and gene expression of sulfate transporters and sulfur assimilatory enzymes (real-time qPCR) were analyzed. RESULTS Na2SO4 impeded growth to a higher extent than NaCl and was the only salt to decrease Fv/fm. K2SO4 reduced plant growth more than NaCl. Analysis of mineral nutrient contents of plant tissue revealed that differences in sodium accumulation could not explain the increased toxicity of sulfate over chloride salts. Shoot contents of calcium, manganese and phosphorus were decreased more strongly by exposure to Na2SO4 than by NaCl. The expression levels of genes encoding proteins for sulfate transport and assimilation were differently affected by the different salts. While gene expression of primary sulfate uptake at roots was down-regulated upon exposure to sulfate salts, presumably to prevent an excessive uptake, genes encoding for the vacuolar sulfate transporter Sultr4;1 were upregulated. Gene expression of ATP sulfurylase was hardly affected by salinity in shoot and roots, the transcript level of 5'-adenylylsulfate reductase (APR) was decreased upon exposure to sulfate salts in roots. Sulfite reductase was decreased in the shoot by all salts similarly and remained unaffected in roots. CONCLUSIONS The higher toxicity of Na2SO4 over NaCl in B. rapa seemed to be due to an increased toxicity of sulfate over chloride, as indicated by the higher toxicity of K2SO4 over KCl. Thus, toxicity of sodium was not promoted by sulfate. The observed stronger negative effect on the tissue contents of calcium, manganese and phosphorus could contribute to the increased toxicity of sulfate over chloride. The upregulation of Sultr4;1 and 4;2 under sulfate salinity might lead to a detrimental efflux of stored sulfate from the vacuole into the cytosol and the chloroplasts. It remains unclear why expression of Sultr4;1 and 4;2 was upregulated. A possible explanation is a control of the gene expression of these transporters by the sulfate gradient across the tonoplast.
Collapse
Affiliation(s)
- Martin Reich
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| | - Tahereh Aghajanzadeh
- Department of Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Juliane Helm
- Plant Biodiversity Group, Institute of Systematic Botany, Friedrich Schiller University, Philosophenweg 16, D-07743 Jena, Germany
| | - Saroj Parmar
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Malcolm J. Hawkesford
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Luit J. De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
239
|
Intraspecies variation in sodium partitioning, potassium and proline accumulation under salt stress in Casuarina equisetifolia Forst. Symbiosis 2016. [DOI: 10.1007/s13199-016-0424-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
240
|
Zhou H, Qi K, Liu X, Yin H, Wang P, Chen J, Wu J, Zhang S. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Mol Genet Genomics 2016; 291:1727-42. [DOI: 10.1007/s00438-016-1215-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
|
241
|
Ashraf MA, Ashraf M. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6227-43. [PMID: 26611626 DOI: 10.1007/s11356-015-5840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/18/2015] [Indexed: 05/16/2023]
Abstract
Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios decreased markedly due to salt stress in both wheat cultivars at different growth stages, and this salt-induced reduction was more prominent in cv. MH-97. Moreover, higher K(+)/Na(+) and Ca(2+)/Na(+) ratios were recorded at early growth stages in both wheat cultivars. It can be inferred from the results that wheat plants are more prone to adverse effects of salinity stress at early growth stages than that at the reproductive stage.
Collapse
|
242
|
Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 2016; 6:19199. [PMID: 26781337 PMCID: PMC4726057 DOI: 10.1038/srep19199] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/07/2015] [Indexed: 01/12/2023] Open
Abstract
Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na(+) accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars.
Collapse
Affiliation(s)
- Gunvant Patil
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Tuyen Do
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Tri D. Vuong
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Juhi Chaudhary
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - J. Grover Shannon
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
243
|
Amin USM, Biswas S, Elias SM, Razzaque S, Haque T, Malo R, Seraj ZI. Enhanced Salt Tolerance Conferred by the Complete 2.3 kb cDNA of the Rice Vacuolar Na(+)/H(+) Antiporter Gene Compared to 1.9 kb Coding Region with 5' UTR in Transgenic Lines of Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:14. [PMID: 26834778 PMCID: PMC4724728 DOI: 10.3389/fpls.2016.00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/07/2016] [Indexed: 05/23/2023]
Abstract
Soil salinity is one of the most challenging problems that restricts the normal growth and production of rice worldwide. It has therefore become very important to produce more saline tolerant rice varieties. This study shows constitutive over-expression of the vacuolar Na(+)/H(+) antiporter gene (OsNHX1) from the rice landrace (Pokkali) and attainment of enhanced level of salinity tolerance in transgenic rice plants. It also shows that inclusion of the complete un-translated regions (UTRs) of the alternatively spliced OsNHX1 gene provides a higher level of tolerance to the transgenic rice. Two separate transformation events of the OsNHX1 gene, one with 1.9 kb region containing the 5' UTR with CDS and the other of 2.3 kb, including 5' UTR, CDS, and the 3' UTR regions were performed. The transgenic plants with these two different constructs were advanced to the T3 generation and physiological and molecular screening of homozygous plants was conducted at seedling and reproductive stages under salinity (NaCl) stress. Both transgenic lines were observed to be tolerant compared to WT plants at both physiological stages. However, the transgenic lines containing the CDS with both the 5' and 3' UTR were significantly more tolerant compared to the transgenic lines containing OsNHX1 gene without the 3' UTR. At the seedling stage at 12 dS/m stress, the chlorophyll content was significantly higher (P < 0.05) and the electrolyte leakage significantly lower (P < 0.05) in the order 2.3 kb > 1.9 kb > and WT lines. Yield in g/plant in the best line from the 2.3 kb plants was significantly more (P < 0.01) compared, respectively, to the best 1.9 kb line and WT plants at stress of 6 dS/m. Transformation with the complete transcripts rather than the CDS may therefore provide more durable level of tolerance.
Collapse
|
244
|
Higashi T, Tanigaki Y, Takayama K, Nagano AJ, Honjo MN, Fukuda H. Detection of Diurnal Variation of Tomato Transcriptome through the Molecular Timetable Method in a Sunlight-Type Plant Factory. FRONTIERS IN PLANT SCIENCE 2016; 7:87. [PMID: 26904059 PMCID: PMC4744910 DOI: 10.3389/fpls.2016.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/17/2016] [Indexed: 05/19/2023]
Abstract
The timing of measurement during plant growth is important because many genes are expressed periodically and orchestrate physiological events. Their periodicity is generated by environmental fluctuations as external factors and the circadian clock as the internal factor. The circadian clock orchestrates physiological events such as photosynthesis or flowering and it enables enhanced growth and herbivory resistance. These characteristics have possible applications for agriculture. In this study, we demonstrated the diurnal variation of the transcriptome in tomato (Solanum lycopersicum) leaves through molecular timetable method in a sunlight-type plant factory. Molecular timetable methods have been developed to detect periodic genes and estimate individual internal body time from these expression profiles in mammals. We sampled tomato leaves every 2 h for 2 days and acquired time-course transcriptome data by RNA-Seq. Many genes were expressed periodically and these expressions were stable across the 1st and 2nd days of measurement. We selected 143 time-indicating genes whose expression indicated periodically, and estimated internal time in the plant from these expression profiles. The estimated internal time was generally the same as the external environment time; however, there was a difference of more than 1 h between the two for some sampling points. Furthermore, the stress-responsive genes also showed weakly periodic expression, implying that they were usually expressed periodically, regulated by light-dark cycles as an external factor or the circadian clock as the internal factor, and could be particularly expressed when the plant experiences some specific stress under agricultural situations. This study suggests that circadian clock mediate the optimization for fluctuating environments in the field and it has possibilities to enhance resistibility to stress and floral induction by controlling circadian clock through light supplement and temperature control.
Collapse
Affiliation(s)
- Takanobu Higashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan
| | - Yusuke Tanigaki
- Graduate School of Engineering, Osaka Prefecture UniversitySakai, Japan
| | | | - Atsushi J. Nagano
- Faculty of Agriculture, Ryukoku UniversityOtsu, Japan
- Center for Ecological Research, Kyoto UniversityOtsu, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| | - Mie N. Honjo
- Center for Ecological Research, Kyoto UniversityOtsu, Japan
| | - Hirokazu Fukuda
- Graduate School of Engineering, Osaka Prefecture UniversitySakai, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- *Correspondence: Hirokazu Fukuda
| |
Collapse
|
245
|
Ganie SA, Borgohain MJ, Kritika K, Talukdar A, Pani DR, Mondal TK. Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:107-14. [PMID: 27186024 PMCID: PMC4840144 DOI: 10.1007/s12298-016-0342-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 05/03/2023]
Abstract
Eight Saltol quantitative trait locus (QTL) linked simple sequence repeat (SSR) markers of rice (Oryza sativa L.) were used to study the polymorphism of this QTL in 142 diverse rice genotypes that comprised salt tolerant as well as sensitive genotypes. The SSR profiles of the eight markers generated 99 alleles including 20rare alleles and 16 null alleles. RM8094 showed the highest number (13) of alleles followed by RM3412 (12), RM562 (11), RM493 (9) and RM1287 (8) while as, RM10764 and RM10745 showed the lowest number (6) of alleles. Based on the highest number of alleles and PIC value (0.991), we identified RM8094 as suitable marker for discerning salt tolerant genotypes from the sensitive ones. Based upon the haplotype analysis using FL478 as a reference (salt tolerant genotypes containing Saltol QTL), we short listed 68 rice genotypes that may have at least one allele of FL478 haplotype. Further study may confirm that some of these genotypes might have Saltol QTL and can be used as alternative donors in salt tolerant rice breeding programmes.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- />Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Mrinmoi Jyoti Borgohain
- />Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Kashyap Kritika
- />Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Akshay Talukdar
- />Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | | | - Tapan Kumar Mondal
- />Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| |
Collapse
|
246
|
Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. BIOLOGIA PLANTARUM 2015; 59:609-619. [PMID: 0 DOI: 10.1007/s10535-015-0549-3] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
247
|
Dong X, Tian B, Dai S, Li T, Guo L, Tan Z, Jiao Z, Jin Q, Wang Y, Hua Y. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis. PLoS One 2015; 10:e0142918. [PMID: 26562776 PMCID: PMC4643010 DOI: 10.1371/journal.pone.0142918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022] Open
Abstract
PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.
Collapse
Affiliation(s)
- Xiangrong Dong
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Linna Guo
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongfang Tan
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhen Jiao
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Qingsheng Jin
- Institute of Crops and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanping Wang
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
- * E-mail: (YW); (YH)
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- * E-mail: (YW); (YH)
| |
Collapse
|
248
|
Khatri N, Mudgil Y. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization. FRONTIERS IN PLANT SCIENCE 2015; 6:947. [PMID: 26583023 PMCID: PMC4628123 DOI: 10.3389/fpls.2015.00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/17/2015] [Indexed: 05/29/2023]
Abstract
N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.
Collapse
|
249
|
Das P, Nutan KK, Singla-Pareek SL, Pareek A. Understanding salinity responses and adopting 'omics-based' approaches to generate salinity tolerant cultivars of rice. FRONTIERS IN PLANT SCIENCE 2015; 6:712. [PMID: 26442026 PMCID: PMC4563168 DOI: 10.3389/fpls.2015.00712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/25/2015] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using 'omics-based' tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary 'omics-based' approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various 'omics' approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice.
Collapse
Affiliation(s)
- Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kamlesh K. Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
250
|
Guo J, Shi G, Guo X, Zhang L, Xu W, Wang Y, Su Z, Hua J. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:33-45. [PMID: 26259172 DOI: 10.1016/j.plantsci.2015.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 05/20/2023]
Abstract
Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Jinyan Guo
- College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Gongyao Shi
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Xiaoyan Guo
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Liwei Zhang
- College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Wenying Xu
- College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Yumei Wang
- Research Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China.
| | - Zhen Su
- College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Jinping Hua
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|