201
|
Lee S, Jung JW, Park SB, Roh K, Lee SY, Kim JH, Kang SK, Kang KS. Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 2010; 68:325-36. [PMID: 20652617 PMCID: PMC3016490 DOI: 10.1007/s00018-010-0457-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/01/2010] [Accepted: 07/05/2010] [Indexed: 12/31/2022]
Abstract
Cellular senescence involves a reduction in adult stem cell self-renewal, and epigenetic regulation of gene expression is one of the main underlying mechanisms. Here, we observed that the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) caused by inhibition of histone deacetylase (HDAC) activity leads to down-regulation of high mobility group A2 (HMGA2) and, on the contrary, to up-regulation of p16INK4A, p21CIP1/WAF1 and p27KIP1. We found that let-7a1, let-7d, let-7f1, miR-23a, miR-26a and miR-30a were increased during replicative and HDAC inhibitor-mediated senescence of hUCB-MSCs by microRNA microarray and real-time quantitative PCR. Furthermore, the configurations of chromatins beading on these miRNAs were prone to transcriptional activation during HDAC inhibitor-mediated senescence. We confirmed that miR-23a, miR-26a and miR-30a inhibit HMGA2 to accelerate the progress of senescence. These findings suggest that HDACs may play important roles in cellular senescence by regulating the expression of miRNAs that target HMGA2 through histone modification.
Collapse
Affiliation(s)
- Seunghee Lee
- Adult Stem Cell Research Center, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Sevli S, Uzumcu A, Solak M, Ittmann M, Ozen M. The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer Prostatic Dis 2010; 13:208-17. [PMID: 20585343 DOI: 10.1038/pcan.2010.21] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is one of the most significant cancers of men all over the world. The microRNAs (miRNAs) possess crucial functions in pathogenesis of the disease and its gain of androgen independency. The miRNAs are small, approximately 18-24 nucleotides, non-coding, endogenously synthesized RNAs that regulate gene expression post-transcriptionally. They are found in viruses, plants, and animal cells. The miRNAs have critical functions in gene expression and their dysregulation may cause tumor formation and progression of several diseases. Here, we have reviewed the most current literature to elucidate the function of miRNAs in human prostate cancer. We believe that this will help investigators not only working in prostate cancer, but also studying the miRNAs in other diseases to delineate the functions of miRNAs implicated in human prostate cancer development and progression.
Collapse
Affiliation(s)
- S Sevli
- Department of Medical Genetics, Faculty of Medicine and Yeditepe University Hospital, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
203
|
Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P, Bechara FG. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest 2010; 28:649-53. [PMID: 20210522 DOI: 10.3109/07357901003630918] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Dysregulation of microRNA (miRNA) metabolism has been observed in a variety of human cancers. In this pilot study, we investigated expression profiles of the two most important enzymes of the miRNA machinery, Drosha and Dicer, in relation to epithelial skin cancer and its premalignant stage. METHODS Patients with premalignant actinic keratoses (AK, n = 6), basal cell carcinomas (BCC, n = 15), and squamous cell carcinomas (SCC, n = 7) were included in the study. Punch biopsies were harvested from the center of the tumors (lesional) as well as from sites of healthy skin (intraindividual controls). Skin samples (n = 14) were also obtained from healthy subjects for additional controls. Dicer and Drosha mRNA levels were detected by quantitative real-time reverse transcriptase polymerase chain reaction. RESULTS Drosha expression levels were significantly upregulated in both the BCC and SCC groups compared to those in the healthy controls (p < .01), while Dicer expression levels in the BCC group were significantly lower (p < .05). Dicer expression in the SCC group was significantly higher compared to intraindividual controls (p < .05), while Dicer expression levels in both the SCC and AK groups were not significantly different from healthy control samples (p > .05). In the premalignant AK group, we could not observe any significant difference in Drosha or Dicer expression levels compared to either healthy or intraindividual controls (p > .05). CONCLUSIONS We observed dysregulation of Drosha and Dicer expression in epithelial tumors when compared to healthy control samples. Therefore, we favor the hypothesis that miRNAs are involved in the carcinogenesis of epithelial skin cancer.
Collapse
Affiliation(s)
- Michael Sand
- Department of Dermatology and Allergology, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding, single-stranded RNAs that negatively regulate gene expression by mainly binding to 30 untranslated region (UTR) of target mRNAs at the post-transcriptional level. Recent studies have demonstrated that aberrant expressions of miRNAs are closely associated with the development, invasion, metastasis and prognosis of various cancers including prostate cancer (PCa). The proposed molecular mechanisms that underlie the aberrant expression of miRNAs result from gene changes, epigenetic modification and alteration of Dicer abundance. Although up to 50 miRNAs have been reported to be significantly expressed in human PCa, only a small number of them were experimentally shown to make contribution to the pathogenesis of PCa. The aim of this review is to describe the mechanisms of several known miRNAs, summarize recent studies on the relevance of altered expression of oncogenic miRNAs (e.g. miR-221/-222, miR-21, and miR-125b) and tumor suppressor miRNAs (e.g. miR-101, miR-126*, miR-146a, miR-330, miR-34 cluster, and miR-200 family) for PCa. Additionally, their potential clinical applications and prospects in PCa, such as biomarkers and clinical therapies, are also briefly discussed.
Collapse
Affiliation(s)
- Yingxin Pang
- Institute of Biochemistry and Molecular Biology, Shandong University, Jinan, China
| | | | | |
Collapse
|
205
|
Watashi K, Yeung ML, Starost MF, Hosmane RS, Jeang KT. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J Biol Chem 2010; 285:24707-16. [PMID: 20529860 DOI: 10.1074/jbc.m109.062976] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) act in post-transcriptional gene silencing and are proposed to function in a wide spectrum of pathologies, including cancers and viral diseases. Currently, to our knowledge, no detailed mechanistic characterization of small molecules that interrupt miRNA pathways have been reported. In screening a small chemical library, we identified compounds that suppress RNA interference activity in cultured cells. Two compounds were characterized; one impaired Dicer activity while the other blocked small RNA-loading into an Argonaute 2 (AGO2) complex. We developed a cell-based model of miRNA-dependent tumorigenesis, and using this model, we observed that treatment of cells with either of the two compounds effectively neutralized tumor growth. These findings indicate that miRNA pathway-suppressing small molecules could potentially reverse tumorigenesis.
Collapse
Affiliation(s)
- Koichi Watashi
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
206
|
Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, Cohen DM, Chan EKL. Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer 2010; 49:549-59. [PMID: 20232482 PMCID: PMC2859695 DOI: 10.1002/gcc.20765] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent reports have demonstrated that Dicer, an RNase III endonuclease required for microRNA (miRNA) maturation, is aberrantly expressed in different types of cancer. Furthermore, Dicer has been reported to be regulated by the let-7 family of miRNA genes. We hypothesize that Dicer is aberrantly expressed in oral cancer cells due to altered expressions of let-7 and that Dicer contributes to the development and progression of the disease. Western blot examination of Dicer protein levels in four head and neck squamous cell carcinoma (HNSCC) cell lines, including two oral cancer cell lines, demonstrated that Dicer had between 4- and 24-fold higher expression levels when compared to normal human primary gingival epithelial cells. Furthermore, five of six oral cancer tissues analyzed by indirect immunofluorescence had increased Dicer protein expression, compared to normal gingival epithelial tissue. The Dicer mRNA levels were not found to correlate well with protein expression in the HNSCC cell lines, suggesting that Dicer protein expression was post-transcriptionally regulated. Analysis of let-7a and let-7b levels in HNSCC cell lines by real-time PCR demonstrated that let-7b, but not let-7a, was significantly reduced in the HNSCC cell lines compared to control cells. Lastly, transfection of oral cancer cells with chemically synthesized let-7b and small interfering RNAs targeting Dicer significantly inhibited cell proliferation up to 83% and >100%, respectively, as early as 3 days post-transfection. Together, these data demonstrate that elevated expression levels of Dicer in oral cancer cells correlate with downregulation of let-7b and increased cell proliferation.
Collapse
Affiliation(s)
- Andrew Jakymiw
- Department of Oral Biology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0424, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
Many studies have highlighted the role that microRNAs have in physiological processes and how their deregulation can lead to cancer. More recently, it has been proposed that the presence of single nucleotide polymorphisms in microRNA genes, their processing machinery and target binding sites affects cancer risk, treatment efficacy and patient prognosis. In reviewing this new field of cancer biology, we describe the methodological approaches of these studies and make recommendations for which strategies will be most informative in the future.
Collapse
Affiliation(s)
- Bríd M Ryan
- Cancer Prevention Fellowship Program, Center for Cancer Training, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 3068A, Bethesda, MD 20892-4258, USA
| | | | | |
Collapse
|
208
|
Yoo NJ, Hur SY, Kim MS, Lee JY, Lee SH. Immunohistochemical analysis of RNA-induced silencing complex-related proteins AGO2 and TNRC6A in prostate and esophageal cancers. APMIS 2010; 118:271-6. [PMID: 20402672 DOI: 10.1111/j.1600-0463.2010.02588.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence exists that microRNA (miRNA), which regulates gene expression, is frequently deregulated in cancers. A mature miRNA directs a RNA-induced silencing complex (RISC) to its target messenger RNA, and causes inhibition of gene transcription. Ago proteins and TNRC proteins are main components of the RISC and participate in miRNA-induced gene silencing. However, expression status of Ago and TNRC proteins has not yet been studied in human cancer tissues. In this study, we attempted to explore whether expressions of Ago2 and TNRC6A are altered in prostate carcinomas (PCA) and esophageal squamous cell carcinomas (ESCC). We analyzed the expression of Ago2 and TNRC6A in 107 PCA and 58 ESCC tissues by immunohistochemistry using a tissue microarray (TMA) method. In the prostate, Ago2 was not expressed in normal glandular cells, while it was expressed in 50.0% of prostate intraepithelial neoplasia (PIN) and 57.0% of the PCA. TNRC6A was not expressed in normal prostate cells, while it was expressed in 55.0% of the PIN and 63.6% of the PCA in cytoplasm and nucleus. In the esophagus, neither Ago2 nor TNRC6A was expressed in normal squamous cells, while Ago2 and TNRC6A were expressed in 58.6% and 62.1% of the ESCC, respectively. However, neither the expression of Ago2 or TNRC6A was associated with pathologic characteristics of the cancers, including age, sex, Gleason score (PCA) and stage. The increased expressions of Ago2 and TNRC6A in both PCA and ESCC compared with their normal cells suggested that over-expression of these proteins may be related to miRNA functions and might play a role in tumorigenesis of PCA and ESCC.
Collapse
Affiliation(s)
- Nam Jin Yoo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
209
|
Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One 2010; 5:e10615. [PMID: 20485546 PMCID: PMC2868896 DOI: 10.1371/journal.pone.0010615] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/18/2010] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressors p53, p73, and p63 are known to function as transcription factors. They promote either growth arrest or apoptosis, depending upon the DNA damage. A number of microRNAs (miRNAs) have been shown to function as transcriptional targets of p53 and they appear to aid p53 in promoting growth arrest and apoptosis. However, the question of p53/p63/p73 regulating the miRNA processing complex has not been addressed in depth so far. Comparative/computational genomic analysis was performed using Target scan, Mami, and Diana software to identify miRNAs that regulate the miRNA processing complex. Here, I present evidence for the first time that the tumor suppressors p53, p63, and p73 function as both positive and negative regulators of the miRNA processing components. Curated p53-dependent miRNA expression data was used to identify p53-miRs that target the components of the miRNA-processing complex. This analysis suggests that most of the components (mRNAs' 3'UTR) of the miRNA processing complex are targeted by p53-miRs. Remarkably, this data revealed the conserved nature of p53-miRs in targeting a number of components of the miRNA processing complex. p53/p73/p63 appears to regulate the major components of the miRNA processing, such as Drosha-DGCR8, Dicer-TRBP2, and Argonaute proteins. In particular, p53/p73/p63 appears to regulate the processing of miRNAs, such as let-7, miR-200c, miR-143, miR-107, miR-16, miR-145, miR-134, miR-449a, miR-503, and miR-21. Interestingly, there seems to be a phenotypic similarity between p63(-/-) and dicer(-/-) mice, suggesting that p63 and dicer could regulate each other. In addition, p63, p73, and the DGCR8 proteins contain a conserved interaction domain. Further, promoters of a number of components of the miRNA processing machinery, including dicer and P2P-R, contain p53-REs, suggesting that they could be direct transcriptional targets of p63/p73/p53. Together, this study provides mechanistic insights into how p53, p63, and p73 regulate the components of the miRNA processing; and how p53, TA-p63, and TA-p73 regulated miRNAs inhibit tumorigenesis, EMT, metastasis, and cancer stem cell proliferation.
Collapse
|
210
|
Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics 2010; 11:288. [PMID: 20459673 PMCID: PMC2885365 DOI: 10.1186/1471-2164-11-288] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 05/07/2010] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs are a class of small non-coding RNAs that regulate mRNA expression at the post - transcriptional level and thereby many fundamental biological processes. A number of methods, such as multiplex polymerase chain reaction, microarrays have been developed for profiling levels of known miRNAs. These methods lack the ability to identify novel miRNAs and accurately determine expression at a range of concentrations. Deep or massively parallel sequencing methods are providing suitable platforms for genome wide transcriptome analysis and have the ability to identify novel transcripts. Results The results of analysis of small RNA sequences obtained by Solexa technology of normal peripheral blood mononuclear cells, tumor cell lines K562 and HL60 are presented. In general K562 cells displayed overall low level of miRNA population and also low levels of DICER. Some of the highly expressed miRNAs in the leukocytes include several members of the let-7 family, miR-21, 103, 185, 191 and 320a. Comparison of the miRNA profiles of normal versus K562 or HL60 cells revealed a specific set of differentially expressed molecules. Correlation of the miRNA with that of mRNA expression profiles, obtained by microarray, revealed a set of target genes showing inverse correlation with miRNA levels. Relative expression levels of individual miRNAs belonging to a cluster were found to be highly variable. Our computational pipeline also predicted a number of novel miRNAs. Some of the predictions were validated by Real-time RT-PCR and or RNase protection assay. Organization of some of the novel miRNAs in human genome suggests that these may also be part of existing clusters or form new clusters. Conclusions We conclude that about 904 miRNAs are expressed in human leukocytes. Out of these 370 are novel miRNAs. We have identified miRNAs that are differentially regulated in normal PBMC with respect to cancer cells, K562 and HL60. Our results suggest that post - transcriptional processes may play a significant role in regulating levels of miRNAs in tumor cells. The study also provides a customized automated computation pipeline for miRNA profiling and identification of novel miRNAs; even those that are missed out by other existing pipelines. The Computational Pipeline is available at the website: http://mirna.jnu.ac.in/deep_sequencing/deep_sequencing.html
Collapse
Affiliation(s)
- Candida Vaz
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
211
|
Li M, Li J, Ding X, He M, Cheng SY. microRNA and cancer. AAPS JOURNAL 2010; 12:309-17. [PMID: 20422339 DOI: 10.1208/s12248-010-9194-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs), a class of small, regulatory, non-coding RNA molecules, display aberrant expression patterns and functional abnormalities in human diseases including cancers. This review summarizes the abnormally expressed miRNAs in various types of human cancers, possible mechanisms underlying such abnormalities, and miRNA-modulated molecular pathways critical for cancer development. Practical implications of miRNAs as biomarkers, novel drug targets and therapeutic tools for diagnosis, prognosis, and treatments of human cancers are also discussed.
Collapse
Affiliation(s)
- Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, 74 Zhongshan Road II, Guangzhou 510080, China.
| | | | | | | | | |
Collapse
|
212
|
Mining mammalian transcript data for functional long non-coding RNAs. PLoS One 2010; 5:e10316. [PMID: 20428234 PMCID: PMC2859052 DOI: 10.1371/journal.pone.0010316] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/30/2010] [Indexed: 12/11/2022] Open
Abstract
Background The role of long non-coding RNAs (lncRNAs) in controlling gene expression has garnered increased interest in recent years. Sequencing projects, such as Fantom3 for mouse and H-InvDB for human, have generated abundant data on transcribed components of mammalian cells, the majority of which appear not to be protein-coding. However, much of the non-protein-coding transcriptome could merely be a consequence of ‘transcription noise’. It is therefore essential to use bioinformatic approaches to identify the likely functional candidates in a high throughput manner. Principal Findings We derived a scheme for classifying and annotating likely functional lncRNAs in mammals. Using the available experimental full-length cDNA data sets for human and mouse, we identified 78 lncRNAs that are either syntenically conserved between human and mouse, or that originate from the same protein-coding genes. Of these, 11 have significant sequence homology. We found that these lncRNAs exhibit: (i) patterns of codon substitution typical of non-coding transcripts; (ii) preservation of sequences in distant mammals such as dog and cow, (iii) significant sequence conservation relative to their corresponding flanking regions (in 50% cases, flanking regions do not have homology at all; and in the remaining, the degree of conservation is significantly less); (iv) existence mostly as single-exon forms (8/11); and, (v) presence of conserved and stable secondary structure motifs within them. We further identified orthologous protein-coding genes that are contributing to the pool of lncRNAs; of which, genes implicated in carcinogenesis are significantly over-represented. Conclusion Our comparative mammalian genomics approach coupled with evolutionary analysis identified a small population of conserved long non-protein-coding RNAs (lncRNAs) that are potentially functional across Mammalia. Additionally, our analysis indicates that amongst the orthologous protein-coding genes that produce lncRNAs, those implicated in cancer pathogenesis are significantly over-represented, suggesting that these lncRNAs could play an important role in cancer pathomechanisms.
Collapse
|
213
|
Wu JF, Shen W, Liu NZ, Zeng GL, Yang M, Zuo GQ, Gan XN, Ren H, Tang KF. Down-regulation of Dicer in hepatocellular carcinoma. Med Oncol 2010; 28:804-9. [PMID: 20405249 DOI: 10.1007/s12032-010-9520-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 01/04/2023]
Abstract
Dicer, the key enzyme in the RNAi pathway, is misregulated in tumor tissues. The altered expression of Dicer is associated with clinical characteristics in patients with cancer. Liver carcinoma and adjacent non-neoplastic tissues were obtained from 36 patients with hepatocellular carcinoma (HCC) undergoing surgery. Expressions of Dicer mRNA were evaluated using the Real-time reverse transcription-PCR in 36 liver carcinoma tissues and 36 adjacent histologically non-cancerous liver tissues. Dicer mRNA levels were evaluated in relation to age, sex, tumor number, tumor size, tumor stage, and distant metastasis. Dicer mRNA level was significantly lower in malignant tissues than in the corresponding non-neoplastic tissues in 34 of the 36 patients with HCC (94.4%). The Dicer expression level was not associated with clinical characteristics, including age, sex, tumor number, tumor size, tumor stage, or distant metastasis in HCC cases. These results demonstrate that Dicer is significantly down-regulated in HCC, suggesting that reduced expression of Dicer may play an important role during the process of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jin-Feng Wu
- Key Laboratory of Molecular Biology for Infectious Diseases of the State Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 74# Linjiang Road, 400010, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, Rameh L, Loda M, Pandolfi PP. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010; 3:ra29. [PMID: 20388916 PMCID: PMC2982149 DOI: 10.1126/scisignal.2000594] [Citation(s) in RCA: 349] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor that antagonizes signaling through the phosphatidylinositol 3-kinase-Akt pathway. We have demonstrated that subtle decreases in PTEN abundance can have critical consequences for tumorigenesis. Here, we used a computational approach to identify miR-22, miR-25, and miR-302 as three PTEN-targeting microRNA (miRNA) families found within nine genomic loci. We showed that miR-22 and the miR-106b~25 cluster are aberrantly overexpressed in human prostate cancer, correlate with abundance of the miRNA processing enzyme DICER, and potentiate cellular transformation both in vitro and in vivo. We demonstrated that the intronic miR-106b~25 cluster cooperates with its host gene MCM7 in cellular transformation both in vitro and in vivo, so that the concomitant overexpression of MCM7 and the miRNA cluster triggers prostatic intraepithelial neoplasia in transgenic mice. Therefore, the MCM7 gene locus delivers two simultaneous oncogenic insults when amplified or overexpressed in human cancer. Thus, we have uncovered a proto-oncogenic miRNA-dependent network for PTEN regulation and defined the MCM7 locus as a critical factor in initiating prostate tumorigenesis.
Collapse
Affiliation(s)
- Laura Poliseno
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
The dynamic properties of RNA interference (RNAi) in cancer biology have led investigators to pursue with significant interest its role in tumorigenesis and cancer therapy. We recently reported that decreased expression of key RNAi enzymes, Dicer and Drosha, in epithelial ovarian cancers was associated with poor clinical outcome in patients. Dicer expression was also functionally relevant in that targeted silencing was limited with RNAi fragments that require Dicer function compared with those that do not. Together, this and other studies suggest that RNAi machinery expression may affect key pathways in tumorigenesis and cancer biology. Understanding alterations in the functional RNAi machinery is of fundamental importance as we strive to develop novel therapies using RNAi strategies.
Collapse
Affiliation(s)
- William M. Merritt
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, Texas
| | - Menashe Bar-Eli
- Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, Texas
| | - Anil K. Sood
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, Texas
- Center for RNAi and Non-Coding RNA, M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
216
|
Torres A, Torres K, Maciejewski R, Harvey WH. MicroRNAs and their role in gynecological tumors. Med Res Rev 2010; 31:895-923. [PMID: 20358579 DOI: 10.1002/med.20205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There have been only few events in the history of molecular biology that could be compared to the discovery of microRNAs and their role in cell physiology and pathology. MicroRNAs are small, single-stranded, noncoding RNAs composed of 19-25 nucleotides (∼22 nt), which have been proven to regulate gene expression at the posttranscriptional level. The regulatory function of microRNAs was demonstrated in normal and diseased conditions. In particular, it has been linked to cell cycle regulation, cell proliferation and differentiation, inflammatory response, and apoptosis. Altered expression profiles of microRNA have been observed in many pathologies, including diabetes, rheumatoid arthritis, and several cancers. To date, more than 700 human microRNAs have been identified and in silico-based analyses estimate at least 500 more to be identified. The purpose of this review is to present the current perspective on microRNAs structure and biogenesis as well as their contribution to the etiopathogenesis of gynecological tumors. We discuss results of the recent publications that indicate possibilities of microRNAs use as novel markers for tumors screening, early diagnosis, and treatment monitoring. The possible utilization of microRNAs as prognostic factors and specific therapy targets is also reviewed.
Collapse
Affiliation(s)
- Anna Torres
- Laboratory of Biostructure, Human Anatomy Department, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
217
|
Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 2010; 9:923-9. [PMID: 20160498 DOI: 10.4161/cc.9.5.10930] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a natural part of the most recently discovered and global regulatory pathway known as RNA interference. Functional studies have shown how specific miRNAs can function as tumor suppressors or oncogenes and, correspondingly, deregulated miRNA profiles have been observed in prostate and other cancers. However, the upstream pathways which regulate miRNA expression are only currently being uncovered. The Androgen Receptor (AR) is a nuclear hormone receptor and transcription factor which plays a paramount role in prostate cancer (PCa) pathobiology. We performed high throughput miRNA microarray analysis on two AR-responsive cell lines to identified 16 candidate AR-regulated miRNAs.(1) One of the most androgen-induced candidates was a known oncogenic miRNA, miR-21. In a small study of early grade PCa samples we found that miR-21 levels were frequently elevated in comparison to adjacent normal tissue. This observation was supported in the literature(2,3) and suggests clinical relevance. We found that the activated AR directly interacts with miR-21 regulatory regions, indicating direct transcriptional induction. Furthermore, we provide new reporter studies supporting AR-regulation. Importantly, in functional studies, we found that a modest overexpression of miR-21 enhanced tumor xenograft growth and was sufficient to support androgen-independent proliferation following surgical castration. Thus, our studies suggest a model where miR-21 contributes to androgen-dependent and androgen-independent PCa growth. However, the AR is only one of many reported transcriptional regulators of miR-21. Here we review our recent discoveries and further analyze the reported miR-21 regulatory regions, inhibitory and stimulatory signaling pathways, and primary transcripts.
Collapse
Affiliation(s)
- Judit Ribas
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
218
|
Tran N, O'Brien CJ, Clark J, Rose B. Potential role of micro-RNAs in head and neck tumorigenesis. Head Neck 2010; 32:1099-111. [DOI: 10.1002/hed.21356] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
219
|
Sørensen KD, Ørntoft TF. Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn 2010; 10:49-64. [PMID: 20014922 DOI: 10.1586/erm.09.74] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy in males in the Western world. This review focuses on advances in biomarker discovery for prostate cancer by microarray profiling of mRNA and microRNA expression. Novel biomarkers are strongly needed to enable more accurate detection of prostate cancer, improve prediction of tumor aggressiveness and facilitate discovery of new therapeutic targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include AMACR, EZH2, TMPRSS2-ERG, miR-221 and miR-141, which are described in more detail. In addition, a compilation of prognostic gene expression signatures for prediction of prostate cancer patient outcome is provided, and their possible clinical utility is discussed. Furthermore, limitations in the application of microarray-based expression profiling for identification of prostate cancer biomarkers are addressed.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark.
| | | |
Collapse
|
220
|
Zhang L, Zhao W, Valdez JM, Creighton CJ, Xin L. Low-density Taqman miRNA array reveals miRNAs differentially expressed in prostatic stem cells and luminal cells. Prostate 2010; 70:297-304. [PMID: 19827049 PMCID: PMC3031866 DOI: 10.1002/pros.21064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND miRNAs are a class of naturally occurring small RNAs that generally repress gene expression. They have been shown to actively control diverse biological processes including stem cell differentiation and lineage commitment. METHODS Fluorescence-activated cell sorting was utilized to isolate murine prostate stem cells and differentiated luminal cells. The expression levels of Drosha and Dicer1, the two key RNAseIII enzymes for miRNA maturation, were evaluated by quantitative RT-PCR. Low-density Taqman miRNA array analyses were also performed to identify miRNAs that are differentially expressed in individual lineages. RESULTS Drosha and Dicer1 are expressed at comparable transcriptional levels in murine prostate stem cells and differentiated luminal cells. Twenty-nine miRNAs were discovered to be differentially expressed in prostate stem cells and luminal cells. Many of these miRNAs are coded in clusters, suggesting a cell-specific transcriptional regulation. Some of these differentially expressed miRNAs have been reported to regulate genes relevant to the molecular and phenotypic features of each lineage. CONCLUSIONS miRNAs may play a potentially critical role in fine regulation of prostatic lineage identity.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Wenping Zhao
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Joseph M. Valdez
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Chad J. Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Li Xin
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Baylor College of Medicine, Houston, Texas
- Center of Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, Texas
- Correspondence to: Li Xin, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.
| |
Collapse
|
221
|
Wang WX, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA (NEW YORK, N.Y.) 2010; 16:394-404. [PMID: 20042474 PMCID: PMC2811668 DOI: 10.1261/rna.1905910] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the "RIP-Chip" assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify miRNA targets. As expected, the miRNA transfections altered the mRNA content of the miRNPs. Specific mRNA species recruited to miRNPs after miRNA transfections were moderately in agreement with computational target predictions. In addition to recruiting mRNA targets into miRNPs, miR-107 and to a lesser extent miR-128, but not miR-124 or miR-320, caused apparent exclusion of some mRNAs that are normally associated with miRNPs. MiR-107 and miR-128 transfections also result in decreased AGO mRNA and protein levels. However, AGO mRNAs were not recruited to miRNPs after either miR-107 or miR-128 transfection, confirming that miRNAs may alter gene expression without stable association between particular mRNAs and miRNPs. In summary, RIP-Chip assays constitute an optimized, validated, direct, and high-throughput biochemical assay that provides data about specific miRNA:mRNA interactions, as well as global patterns of regulation by miRNAs.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, Lexington, Kentucky,40506-9983, USA
| | | | | | | | | |
Collapse
|
222
|
Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 2010; 9:16. [PMID: 20102618 PMCID: PMC2835654 DOI: 10.1186/1476-4598-9-16] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 01/26/2010] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a new class of naturally occurring, small, non-coding RNAs that regulate protein-coding mRNAs by causing mRNA degradation or repressing translation. The roles of miRNAs in lineage determination and proliferation, as well as the localization of several miRNA genes at sites of translocation breakpoints or deletions, have led to speculation that miRNAs could be important factors in the development or maintenance of the neoplastic state. Results We showed that miR-9 was downregulated in human gastric adenocarcinoma. Overexpression of miR-9 suppressed the growth of human gastric adenocarcinoma cell line MGC803 cell as well as xenograft tumors derived from them in SCID mice. Bioinformatics analysis indicated a putative miR-9 binding site in the 3'-untranslated region (3'UTR) of the tumor-related gene NF-κB1 mRNA. In an EGFP reporter system, overexpression of miR-9 downregulated EGFP intensity, and mutation of the miR-9 binding site abolished the effect of miR-9 on EGFP intensity. Furthermore, both the NF-κB1 mRNA and protein levels were affected by miR-9. Finally, knockdown of NF-κB1 inhibited MGC803 cell growth in a time-dependent manner, while ectopic expression of NF-κB1 could rescue MGC803 cell from growth inhibition caused by miR-9. Conclusion These findings indicate that miR-9 targets NF-κB1 and regulates gastric cancer cell growth, suggesting that miR-9 shows tumor suppressive activity in human gastric cancer pathogenesis.
Collapse
Affiliation(s)
- Hai-Ying Wan
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin 300070, PR China
| | | | | | | | | | | |
Collapse
|
223
|
Rozenchan PB, Carraro DM, Brentani H, de Carvalho Mota LD, Bastos EP, e Ferreira EN, Torres CH, Katayama MLH, Roela RA, Lyra EC, Soares FA, Folgueira MAAK, Góes JCGS, Brentani MM. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer 2009; 125:2767-77. [PMID: 19530251 DOI: 10.1002/ijc.24646] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of epithelial-stroma interaction in normal breast development and tumor progression has been recognized. To identify genes that were regulated by these reciprocal interactions, we cocultured a nonmalignant (MCF10A) and a breast cancer derived (MDA-MB231) basal cell lines, with fibroblasts isolated from breast benign-disease adjacent tissues (NAF) or with carcinoma-associated fibroblasts (CAF), in a transwell system. Gene expression profiles of each coculture pair were compared with the correspondent monocultures, using a customized microarray. Contrariwise to large alterations in epithelial cells genomic profiles, fibroblasts were less affected. In MDA-MB231 highly represented genes downregulated by CAF derived factors coded for proteins important for the specificity of vectorial transport between ER and golgi, possibly affecting cell polarity whereas the response of MCF10A comprised an induction of genes coding for stress responsive proteins, representing a prosurvival effect. While NAF downregulated genes encoding proteins associated to glycolipid and fatty acid biosynthesis in MDA-MB231, potentially affecting membrane biogenesis, in MCF10A, genes critical for growth control and adhesion were altered. NAFs responded to coculture with MDA-MB231 by a decrease in the expression of genes induced by TGFbeta1 and associated to motility. However, there was little change in NAFs gene expression profile influenced by MCF10A. CAFs responded to the presence of both epithelial cells inducing genes implicated in cell proliferation. Our data indicate that interactions between breast fibroblasts and basal epithelial cells resulted in alterations in the genomic profiles of both cell types which may help to clarify some aspects of this heterotypic signaling.
Collapse
Affiliation(s)
- Patricia Bortman Rozenchan
- Disciplina de Oncologia, Departamento de Radiologia, Faculdade de Medicina da Universidade de São Paulo, Hospital A.C. Camargo, Av. Dr. Arnaldo, 455, Sala 4112, São Paulo, SP CEP 01246-903, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Catto JWF, Miah S, Owen HC, Bryant H, Myers K, Dudziec E, Larré S, Milo M, Rehman I, Rosario DJ, Di Martino E, Knowles MA, Meuth M, Harris AL, Hamdy FC. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 2009; 69:8472-81. [PMID: 19843843 DOI: 10.1158/0008-5472.can-09-0744] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urothelial carcinoma of the bladder (UCC) is a common disease that arises by at least two different molecular pathways. The biology of UCC is incompletely understood, making the management of this disease difficult. Recent evidence implicates a regulatory role for microRNA in cancer. We hypothesized that altered microRNA expression contributes to UCC carcinogenesis. To test this hypothesis, we examined the expression of 322 microRNAs and their processing machinery in 78 normal and malignant urothelial samples using real-time rtPCR. Genes targeted by differentially expressed microRNA were investigated using real-time quantification and microRNA knockdown. We also examined the role of aberrant DNA hypermethylation in microRNA downregulation. We found that altered microRNA expression is common in UCC and occurs early in tumorogenesis. In normal urothelium from patients with UCC, 11% of microRNAs had altered expression when compared with disease-free controls. This was associated with upregulation of Dicer, Drosha, and Exportin 5. In UCC, microRNA alterations occur in a tumor phenotype-specific manner and can predict disease progression. High-grade UCC were characterized by microRNA upregulation, including microRNA-21 that suppresses p53 function. In low-grade UCC, there was downregulation of many microRNA molecules. In particular, loss of microRNAs-99a/100 leads to upregulation of FGFR3 before its mutation. Promoter hypermethylation is partly responsible for microRNA downregulation. In conclusion, distinct microRNA alterations characterize UCC and target genes in a pathway-specific manner. These data reveal new insights into the disease biology and have implications regarding tumor diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- James W F Catto
- Academic Urology Unit, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Pampalakis G, Diamandis EP, Katsaros D, Sotiropoulou G. Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem 2009; 43:324-7. [PMID: 19782670 DOI: 10.1016/j.clinbiochem.2009.09.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/09/2009] [Accepted: 09/19/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Although numerous recent studies have focused on analyses of microRNA expression profiles in cancer cells, the expression patterns of the enzymes responsible for the generation of miRNAs remains largely unexplored. The purpose of this study was to investigate whether Dicer mRNA expression is altered during progression of ovarian cancer. DESIGN AND METHODS Total RNA was extracted from ovarian tissue specimens (normal, benign and malignant tumors). The expression of Dicer was analyzed by semi-quantitative RT-PCR. RESULTS We analyzed a total of 34 ovarian tissue samples and found that Dicer mRNA expression is down-regulated in the majority of ovarian tumors when compared to normal tissues. CONCLUSIONS Our results suggest that the levels of Dicer mRNA should be evaluated as a potential new candidate biomarker for ovarian cancer.
Collapse
|
226
|
Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 2009; 26:965-79. [PMID: 19771525 DOI: 10.1007/s10585-009-9287-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/04/2009] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) are a novel class of RNAs with important roles in regulating gene expression. To identify miRs controlling prostate tumor progression, we utilized unique human prostate sublines derived from the parental P69 cell line, which differ in their tumorigenic properties in vivo. Grown embedded in laminin-rich extracellular matrix (lrECM) gels these genetically-related sublines displayed drastically different morphologies correlating with their behaviour in vivo. The non-tumorigenic P69 subline grew as multicellular acini with a defined lumen and basal/polar expression of relevant marker proteins. M12, a highly tumorigenic, metastatic derivative, grew as a disorganized mass of cells with no polarization, whereas the F6 subline, a weakly tumorigenic, non-metastatic M12 variant, reverted to acini formation akin to the P69 cell line. These sublines also differed in expression of vimentin, which was high in M12, but low in F6 and P69 sublines. Analysis of vimentin's conserved 3'-UTR suggested several miRs that could regulate vimentin expression. The lack of miR-17-3p expression correlated with an increase in vimentin synthesis and tumorigenicity. Stable expression of miR-17-3p in the M12 subline reduced vimentin levels 85% and reverted growth to organized, polarized acini in lrECM gels. In vitro motility and invasion assays suggested a decrease in tumorigenic behaviour, confirmed by reduced tumor growth in male athymic, nude mice dependent on miR-17-3p expression. Analysis of LCM-purified clinical human prostatectomy specimens confirmed that miR-17-3p levels were reduced in tumor cells. These results suggest that miR-17-3p functions as a tumor suppressor, representing a novel target to block prostate tumor progression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry & Molecular Biology and The Massey Cancer Center, School of Medicine, VCU Medical Center, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
227
|
Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8. PLoS One 2009; 4:e6971. [PMID: 19759829 PMCID: PMC2736397 DOI: 10.1371/journal.pone.0006971] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/11/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. METHODOLOGY/PRINCIPAL FINDINGS To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. CONCLUSION/SIGNIFICANCE We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.
Collapse
|
228
|
Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol Med 2009; 15:381-90. [DOI: 10.1016/j.molmed.2009.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 12/19/2022]
|
229
|
Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I, Léon-Goddard S, Rimokh R, Mikaelian I, Venoux C, Puisieux A, Lasset C, Moyret-Lalle C. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 2009; 101:673-83. [PMID: 19672267 PMCID: PMC2736830 DOI: 10.1038/sj.bjc.6605193] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/21/2009] [Accepted: 06/30/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dicer, a ribonuclease, is the key enzyme required for the biogenesis of microRNAs and small interfering RNAs and is essential for both mammalian development and cell differentiation. Recent evidence indicates that Dicer may also be involved in tumourigenesis. However, no studies have examined the clinical significance of Dicer at both the RNA and the protein levels in breast cancer. METHODS In this study, the biological and prognostic value of Dicer expression was assessed in breast cancer cell lines, breast cancer progression cellular models, and in two well-characterised sets of breast carcinoma samples obtained from patients with long-term follow-up using tissue microarrays and quantitative reverse transcription-PCR. RESULTS We have found that Dicer protein expression is significantly associated with hormone receptor status and cancer subtype in breast tumours (ER P=0.008; PR P=0.019; cancer subtype P=0.023, luminal A P=0.0174). Dicer mRNA expression appeared to have an independent prognostic impact in metastatic disease (hazard ratio=3.36, P=0.0032). In the breast cancer cell lines, lower Dicer expression was found in cells harbouring a mesenchymal phenotype and in metastatic bone derivatives of a breast cancer cell line. These findings suggest that the downregulation of Dicer expression may be related to the metastatic spread of tumours. CONCLUSION Assessment of Dicer expression may facilitate prediction of distant metastases for patients suffering from breast cancer.
Collapse
Affiliation(s)
- G Grelier
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - N Voirin
- Université de Lyon, Université Lyon 1, Faculté Grange Blanche, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d’Hygiène, Epidémiologie et Prévention, Lyon, F-69437, France
| | - A-S Ay
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - D G Cox
- Inserm, U590, Lyon, F-69008, France
| | - S Chabaud
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France
| | - I Treilleux
- Centre Léon Bérard, Service d’Anatomopathologie, Lyon, F-69008, France
| | - S Léon-Goddard
- Centre Léon Bérard, Service d’Anatomopathologie, Lyon, F-69008, France
| | - R Rimokh
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - I Mikaelian
- Université de Lyon, université Lyon 1, Faculté Grange Blanche, CNRS, UMR5201, Laboratoire de Génétique Moléculaire, Signalisation et Cancer, Lyon, F-69008, France
| | - C Venoux
- Université de Lyon, université Lyon 1, Faculté Grange Blanche, CNRS, UMR5201, Laboratoire de Génétique Moléculaire, Signalisation et Cancer, Lyon, F-69008, France
| | - A Puisieux
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - C Lasset
- Université de Lyon, Université Lyon 1, Faculté Grange Blanche, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France
| | - C Moyret-Lalle
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| |
Collapse
|
230
|
Davis BN, Hata A. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun Signal 2009; 7:18. [PMID: 19664273 PMCID: PMC3224893 DOI: 10.1186/1478-811x-7-18] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/10/2009] [Indexed: 01/08/2023] Open
Abstract
microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Brandi N Davis
- Department of Biochemistry, Tufts University School of Medicine, Boston MA 02111, USA.
| | | |
Collapse
|
231
|
Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA (NEW YORK, N.Y.) 2009; 15:1443-1461. [PMID: 19561119 PMCID: PMC2714746 DOI: 10.1261/rna.1534709] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras 26500, Greece.
| | | | | | | |
Collapse
|
232
|
Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 2009; 61:746-59. [PMID: 19389436 DOI: 10.1016/j.addr.2009.04.004] [Citation(s) in RCA: 433] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/13/2009] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a natural process through which expression of a targeted gene can be knocked down with high specificity and selectivity. Using available technology and bioinformatics investigators will soon be able to identify relevant bio molecular tumor network hubs as potential key targets for knockdown approaches. Methods of mediating the RNAi effect involve small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA. The simplicity of siRNA manufacturing and transient nature of the effect per dose are optimally suited for certain medical disorders (i.e. viral injections). However, using the endogenous processing machinery, optimized shRNA constructs allow for high potency and sustainable effects using low copy numbers resulting in less off-target effects, particularly if embedded in a miRNA scaffold. Bi-functional design may further enhance potency and safety of RNAi-based therapeutics. Remaining challenges include tumor selective delivery vehicles and more complete evaluation of the scope and scale of off-target effects. This review will compare siRNA, shRNA and bi-functional shRNA.
Collapse
|
233
|
Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, Nie N, Liu B, Wu X. Down-regulated miR-9 and miR-433 in human gastric carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:82. [PMID: 19531230 PMCID: PMC2739520 DOI: 10.1186/1756-9966-28-82] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/16/2009] [Indexed: 12/13/2022]
Abstract
Background MircoRNAs(miRNAs) are short, endogenously non-coding RNAs. The abnormal expression of miRNAs may be valuable for the diagnosis and treatment of tumors. Methods To screening the special miRNAs in gastric carcinoma, expression level of miRNAs in gastric carcinoma and normal gaster samples were detected by miRNA gene chip. Then, the expressions of miR-9 and miR-433 in gastric carcinoma tissue and SGC7901 cell line were validated by qRT-PCR. GRB2 and RAB34, targets of miR-433 and miR-9 respectively, were detected by Western blot. Results We found 19 miRNAs and 7 miRNAs were down-regulated and up-regulated respectively. Compared with normal gaster samples, our data showed that miR-9 and miR-433 were down-regulated in gastric carcinoma. Meanwhile, we also found that miR-433 and miR-9 regulated the expression levels of GRB2 and RAB34 respectively. Conclusion Our data show miR-9 and miR-433 was down-regulated in gastric carcinoma. The targets of miR-433 and miR-9 were tumor-associated proteins GRB2 and RAB34 respectively. This result provided the related information of miRNAs in gastric carcinoma.
Collapse
Affiliation(s)
- Hongchun Luo
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Zhang X, Cairns M, Rose B, O'Brien C, Shannon K, Clark J, Gamble J, Tran N. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 2009; 124:2855-63. [DOI: 10.1002/ijc.24298] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
235
|
Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A 2009; 106:10746-51. [PMID: 19520829 DOI: 10.1073/pnas.0811817106] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The RNase III endonuclease Dicer plays a key role in generation of microRNAs (miRs). We hypothesized that Dicer regulates cancer cell susceptibility to immune surveillance through miR processing. Indeed, Dicer disruption up-regulated intercellular cell adhesion molecule (ICAM)-1 and enhanced the susceptibility of tumor cells to antigen-specific lysis by cytotoxic T-lymphocytes (CTLs), while expression of other immunoregulatory proteins examined was not affected. Blockade of ICAM-1 inhibited the specific lysis of CTLs against Dicer-disrupted cells, indicating a pivotal role of ICAM-1 in the interaction between tumor cells and CTL. Both miR-222 and -339 are down-regulated in Dicer-disrupted cells and directly interacted with the 3' untranslated region (UTR) of ICAM-1 mRNA. Modulation of Dicer or these miRs inversely correlated with ICAM-1 protein expression and susceptibility of U87 glioma cells to CTL-mediated cytolysis while ICAM-1 mRNA levels remained stable. Immunohistochemical and in situ hybridization analyses of 30 primary glioblastoma tissues demonstrated that expression of Dicer, miR-222, or miR-339 was inversely associated with ICAM-1 expression. Taken together, Dicer is responsible for the generation of the mature miR-222 and -339, which suppress ICAM-1 expression on tumor cells, thereby down-regulating the susceptibility of tumor cells to CTL-mediated cytolysis. This study suggests development of novel miR-targeted therapy to promote cytolysis of tumor cells.
Collapse
|
236
|
Abstract
This review is focused on current findings implicating miRNAs in the polycystic liver diseases, which we categorized as cholangiociliopathies. Our recent data suggest that deregulation of miRNA pathways is emerging as a novel mechanism in the development of cholangiociliopathies. Experimental evidence demonstrates that miRNAs (i.e., miR-15a) influence hepatic cyst growth by affecting the expression of the cell cycle regulator, Cdc25A. Given that abnormalities in many cellular processes (i.e., cell cycle regulation, cell proliferation, cAMP and calcium signaling, the EGF-stimulated mitogen-activated protein kinase (MAPK) pathway and fluid secretion) contribute to the hepatic cystogenesis, the potential role of miRNAs in regulation of these processes is discussed.
Collapse
Affiliation(s)
- Tatyana Masyuk
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
237
|
Kim WC, Lee CH. The role of mammalian ribonucleases (RNases) in cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:99-113. [PMID: 19463900 DOI: 10.1016/j.bbcan.2009.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Ribonucleases (RNases) are a group of enzymes that cleave RNAs at phosphodiester bonds resulting in remarkably diverse biological consequences. This review focuses on mammalian RNases that are capable of, or potentially capable of, cleaving messenger RNA (mRNA) as well as other RNAs in cells and play roles in the development of human cancers. The aims of this review are to provide an overview of the roles of currently known mammalian RNases, and the evidence that associate them as regulators of tumor development. The roles of these RNases as oncoproteins and/or tumor suppressors in influencing cell growth, apoptosis, angiogenesis, and other cellular hallmarks of cancer will be presented and discussed. The RNases under discussion include RNases from the conventional mRNA decay pathways, RNases that are activated under cellular stress, RNases from the miRNA pathway, and RNases with multifunctional activity.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | |
Collapse
|
238
|
Kuruma H, Kamata Y, Takahashi H, Igarashi K, Kimura T, Miki K, Miki J, Sasaki H, Hayashi N, Egawa S. Staphylococcal nuclease domain-containing protein 1 as a potential tissue marker for prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2044-50. [PMID: 19435788 DOI: 10.2353/ajpath.2009.080776] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using high molecular-weight proteomic analysis, we previously showed that Staphylococcal nuclease domain-containing protein 1 (SND1) is highly expressed in recurrent androgen-insensitive prostate cancer tissues. SND1 is a component of the RNA-induced splicing complex that mediates RNA interference, leading to degradation of specific mRNAs. The objective of this study was to further characterize SND1 expression and to investigate its biological potential in prostate cancer. Radical prostatectomy specimens were obtained from 62 prostate cancer patients. SND1 immunohistochemical staining patterns were evaluated using an in-house polyclonal antibody. We confirmed SND1 mRNA expression in prostate cancer cells using an in situ hybridization technique. To determine the importance of SND1 mRNA, we knocked down SND1 in vitro with small interfering RNA and observed a significant decrease in cell growth. SND1 was expressed in 60 of 62 prostate cancers (97%), appearing in the cytoplasm as small, granular structures; it was also present at high levels in prostate cancer specimens, while in hyperplasia specimens and normal epithelium, it was weakly or negatively expressed. SND1 expression intensity increased with increasing grade and aggressiveness of the cancer. As SND1 mRNA was overexpressed in cancer cells, the growth of these cells was suppressed following SND1 knockdown in vitro, thus representing a promising prostate cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Hidetoshi Kuruma
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
PENG JJ. Progress of studies on Dicer structure and function. YI CHUAN = HEREDITAS 2009; 30:1550-6. [DOI: 10.3724/sp.j.1005.2008.01550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
240
|
Luo HC, Zhang ZZ, Zhang X, Ning B, Guo JJ, Nie N, Liu B, Wu XL. MicroRNA expression signature in gastric cancer. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0074-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
241
|
Abstract
MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases.
Collapse
Affiliation(s)
- Marjorie P. Perron
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada, and Faculty of Medicine, Université Laval, Quebec, QC, G1K 7P4, Canada
| | - Patrick Provost
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada, and Faculty of Medicine, Université Laval, Quebec, QC, G1K 7P4, Canada
| |
Collapse
|
242
|
Abstract
MicroRNAs (miRNAs) constitute a recently identified class of small endogenous noncoding RNAs that act as negative regulators of the protein-coding gene expression and may impact cell differentiation, proliferation and survival, i.e., all fundamental cellular processes implicated in carcinogenesis. miRNA expression is deregulated in many types of human cancers, including thyroid cancer. The purpose of this review is to summarize the existing findings of miRNA deregulation in thyroid tumors and its potential role in thyroid cancer biology and molecular diagnostics.
Collapse
Affiliation(s)
- Marina N Nikiforova
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
243
|
Deng S, Lang J, Coukos G, Zhang L. Expression profile of microRNA in epithelial cancer: diagnosis, classification and prediction. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:25-36. [PMID: 23495961 DOI: 10.1517/17530050802651553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs), the small non-coding RNAs, regulate gene expression in a sequence-specific manner. Up to one-third of human messenger RNAs (mRNAs) appear to be miRNA targets. Each miRNA can target hundreds of mRNA transcripts and production of proteins directly or indirectly, while more than one miRNA can converge on a single transcript target. Therefore, potential regulatory circuitries afforded by miRNAs are enormous. Recent studies indicate that miRNAs act as key regulators of various fundamental biological processes, in which common pathways are shared with cancer. OBJECTIVE/METHODS To provide an overview of the potential application of miRNA profile in human epithelial cancer diagnosis, more than 180 miRNA-related publications have been reviewed. CONCLUSION Increasing evidence shows that the expression of miRNAs is remarkably deregulated in human cancer owing to multiple epigenetic and genomic alterations, and several miRNAs have been demonstrated to serve as tumor suppressor genes or oncogenes in cancer. The deregulated miRNA expression profile in human cancer may prove a powerful tool for cancer detection, diagnosis, classification and prognosis.
Collapse
Affiliation(s)
- Shan Deng
- University of Pennsylvania, Center for Research on Early Detection and Cure of Ovarian Cancer, Rm 1209 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA +1 215 5734780 ; +1 215 573 7627 ;
| | | | | | | |
Collapse
|
244
|
Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, Nguyen LT, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol 2008; 216:418-27. [PMID: 18925646 DOI: 10.1002/path.2437] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated expression profiles of microRNA (miRNA) in renal cell carcinoma [clear cell carcinomas (CCC) and chromophobe renal cell carcinomas (ChCC)] and in normal kidneys by using a miRNA microarray platform which covers a total of 470 human miRNAs (Sanger miRBase release 9.1). Unsupervised hierarchical cluster analysis revealed that CCC and ChCC were separable and that no subgroups were identified in CCCs. We found that 43 miRNAs were differentially expressed between CCC and normal kidney, of which 37 were significantly down-regulated in CCC and the other 6 were up-regulated. We also found that 57 miRNAs were differentially expressed between ChCC and normal kidney, of which 51 were significantly down-regulated in ChCC and the other 6 were up-regulated. Together, these observations indicate that expression of miRNAs tends to be down-regulated in both CCC and ChCC compared with normal kidney. We observed that miR-141 and miR-200c were the most significantly down-regulated miRNAs in CCCs. Indeed, in all cases of CCC analysed, both miR-141 and miR-200c were down-regulated in comparison with normal kidney. Microarray data and quantitative RT-PCR showed that these two miRNAs were expressed concordantly. TargetScan algorithm revealed that ZFHX1B mRNA is a hypothetical target of both miR-141 and -200c. We established by quantitative RT-PCR that, in CCCs in which miR-141 and miR-200c were down-regulated, ZFHX1B, a transcriptional repressor for CDH1/E-cadherin, tended to be up-regulated. Furthermore, we found that overexpression of miR-141 and miR-200c caused down-regulation of ZFHX1B and up-regulation of E-cadherin in two renal carcinoma cell lines, ACHN and 786-O. On the basis of these findings, we suggest that down-regulation of miR-141 and miR-200c in CCCs might be involved in suppression of CDH1/E-cadherin transcription via up-regulation of ZFHX1B.
Collapse
Affiliation(s)
- C Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359:2641-50. [PMID: 19092150 PMCID: PMC2710981 DOI: 10.1056/nejmoa0803785] [Citation(s) in RCA: 542] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We studied Dicer and Drosha, components of the RNA-interference machinery, in ovarian cancer. METHODS We measured messenger RNA (mRNA) levels of Dicer and Drosha in specimens of invasive epithelial ovarian cancer from 111 patients, using a quantitative reverse-transcriptase-polymerase-chain-reaction assay, and compared the results with clinical outcomes. Validation was performed with the use of published microarray data from cohorts of patients with ovarian, breast, and lung cancer. Mutational analyses of genomic DNA from the Dicer and Drosha genes were performed in a subgroup of ovarian-cancer specimens. Dicer-dependent functional assays were performed by means of in vitro transfection with small interfering RNA (siRNA) and short hairpin RNA (shRNA). RESULTS Levels of Dicer and Drosha mRNA correlated with the levels of expression of the corresponding protein and were decreased in 60% and 51% of ovarian-cancer specimens, respectively. Low Dicer expression was significantly associated with advanced tumor stage (P=0.007), and low Drosha expression with suboptimal surgical cytoreduction (P=0.02). Cancer specimens with both high Dicer expression and high Drosha expression were associated with increased median survival (>11 years, vs. 2.66 years for other subgroups; P<0.001). We found three independent predictors of reduced disease-specific survival in multivariate analyses: low Dicer expression (hazard ratio, 2.10; P=0.02), high-grade histologic features (hazard ratio, 2.46; P=0.03), and poor response to chemotherapy (hazard ratio, 3.95; P<0.001). Poor clinical outcomes among patients with low Dicer expression were validated in additional cohorts of patients. Rare missense mutations were found in the Dicer and Drosha genes, but their presence or absence did not correlate with the level of expression. Functional assays indicated that gene silencing with shRNA, but not siRNA, may be impaired in cells with low Dicer expression. CONCLUSIONS Our findings indicate that levels of Dicer and Drosha mRNA in ovarian-cancer cells have associations with outcomes in patients with ovarian cancer.
Collapse
Affiliation(s)
- William M Merritt
- University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Liu Y, Perdreau SA, Chatterjee P, Wang L, Kuan SF, Duensing A. Imatinib mesylate induces quiescence in gastrointestinal stromal tumor cells through the CDH1-SKP2-p27Kip1 signaling axis. Cancer Res 2008; 68:9015-23. [PMID: 18974147 DOI: 10.1158/0008-5472.can-08-1935] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumors (GIST) are caused by activating mutations in the KIT or platelet-derived growth factor receptor alpha receptor tyrosine kinase genes. Approximately 85% of GIST patients treated with imatinib mesylate achieve disease stabilization, however, often in the presence of residual tumor masses. Complete remissions are rare and a substantial proportion of patients develop resistance to imatinib. Our study was designed to determine whether imatinib-associated responses may account for these clinical findings. We report here that imatinib stimulates cellular quiescence in a proportion of GIST cells as evidenced by up-regulation of the CDK inhibitor p27(Kip1), loss of cyclin A, and reduced BrdUrd incorporation. Mechanistically, these events are associated with an imatinib-induced modulation of the APC/CDH1 signaling axis. Specifically, we provide evidence that imatinib down-regulates SKP2 and that this event is associated with increased nuclear CDH1, an activator of the APC that has been shown to regulate SKP2 stability. We also show that those GIST cells that do not undergo apoptosis in response to imatinib overexpress nuclear p27(Kip1), indicating that they have withdrawn from the cell cycle and are quiescent. Lastly, we provide evidence that a fraction of primary GISTs with high SKP2 expression levels may have an increased risk of disease progression. Taken together, our results support a model in which GIST cells that do not respond to imatinib by apoptosis are removed from the proliferative pool by entering quiescence through modulation of the APC/CDH1-SKP2-p27(Kip1) signaling axis. These results encourage further studies to explore compounds that modulate this pathway as antitumor agents in GISTs.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania15213, USA
| | | | | | | | | | | |
Collapse
|
247
|
Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, Lin J, Habuchi T, Wu X. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 2008; 14:7956-62. [PMID: 19047128 PMCID: PMC2650498 DOI: 10.1158/1078-0432.ccr-08-1199] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE MicroRNAs (miRNA) are a class of small noncoding RNA molecules that have been implicated in a wide variety of basic cellular functions through posttranscriptional regulations on their target genes. Compelling evidence has shown that miRNAs are involved in cancer initiation and progression. We hypothesized that genetic variations of the miRNA machinery genes could be associated with the risk of renal cell carcinoma. EXPERIMENTAL DESIGN We genotyped 40 single nucleotide polymorphisms (SNP) from 11 miRNA processing genes (DROSHA, DGCR8, XPO5, RAN, DICER1, TARBP2, AGO1, AGO2, GEMIN3, GEMIN4, HIWI) and 15 miRNA genes in 279 Caucasian patients with renal cell carcinoma and 278 matched controls. RESULTS We found that two SNPs in the GEMIN4 gene were significantly associated with altered renal cell carcinoma risks. The variant-containing genotypes of Asn929Asp and Cys1033Arg exhibited significantly reduced risks, with odds ratios (OR) of 0.67 [95% confidence interval (95% CI), 0.47-0.96] and 0.68 (95% CI, 0.47-0.98), respectively. Haplotype analysis showed that a common haplotype of GEMIN4 was associated with a significant reduction in the risk of renal cell carcinoma (OR, 0.66; 95% CI, 0.45-0.97). We also conducted a combined unfavorable genotype analysis including five promising SNPs showing at least a borderline significant risk association. Compared with the low-risk reference group with one unfavorable genotype, the median-risk and high-risk groups exhibited a 1.55-fold (95% CI, 0.96-2.50) and a 2.49-fold (95% CI, 1.58-3.91) increased risk of renal cell carcinoma, respectively (P for trend < 0.001). CONCLUSIONS Our results suggested that genetic polymorphisms of the miRNA-machinery genes may affect renal cell carcinoma susceptibility individually and jointly.
Collapse
Affiliation(s)
- Yohei Horikawa
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
- Department of Urology, Akita University School of Medicine, Akita, Japan
| | - Christopher G. Wood
- Department of Urology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Hushan Yang
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Hua Zhao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NewYork 14263
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jian Gu
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jie Lin
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita, Japan
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, 77030
| |
Collapse
|
248
|
Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2008; 2:361-369. [PMID: 19158933 PMCID: PMC2615593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 05/27/2023]
Abstract
Prostate cancer (PCa), like most human cancers, features dysregulated CD44 expression. It loses expression of CD44 standard (CD44s), present in benign epithelium, and overexpresses a less abundant splice isoform, CD44v7-10. MicroRNAs 373 and 520c putatively regulate CD44. The levels of these two microRNAs were measured in matched benign and malignant patient tissues and in prostate cell lines. The effects of their transfection on CD44 mRNA and protein were documented. Whether these miRNAs act on CD44 promoter, or its 3' untranslated region (UTR), was studied with luciferase reporter constructs and their influences on migration and invasion were determined in PC-3M cells. miR-373 and miR-520c expression were decreased in PCa cell lines and tissues, in proportion to their decreases in total CD44 mRNA. Exogenous miR-373 caused a dose-dependent increase in total CD44 RNA, but a decrease in CD44v7-10 RNA, with an optimal dose at 6 nM. At the protein level, however, both microRNAs suppressed CD44. Both migration and invasion were stimulated by miR-373 and miR-520c. The microRNAs had no effect on the CD44 promoter, but did exhibit 3'UTR binding. In conclusion, miR-373 and miR-520c exert their effect in PCa by preventing the translation of CD44 RNA, rather than by degrading the RNA. Despite this observation, they exert pro-invasive functional effects, as previously described in breast cancer cells. Their effects are mediated by binding CD44 3'UTR.
Collapse
Affiliation(s)
- Kui Yang
- Department of Pathology, University of Colorado Health Science Center Aurora, Colorado, USA
| | | | | |
Collapse
|
249
|
Havelange V, Heaphy CEA, Garzon R. MicroRNAs in the diagnosis, prognosis and treatment of cancer. Oncol Rev 2008. [DOI: 10.1007/s12156-008-0076-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
250
|
Asada S, Takahashi T, Isodono K, Adachi A, Imoto H, Ogata T, Ueyama T, Matsubara H, Oh H. Downregulation of Dicer expression by serum withdrawal sensitizes human endothelial cells to apoptosis. Am J Physiol Heart Circ Physiol 2008; 295:H2512-21. [PMID: 18978195 DOI: 10.1152/ajpheart.00233.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the modulated expression of Dicer is documented upon neoplastic transformation, little is known of the regulation of Dicer expression by environmental stimuli and its roles in the regulation of cellular functions in primary cells. In this study, we found that Dicer expression was downregulated upon serum withdrawal in human umbilical vein endothelial cells (HUVECs). Serum withdrawal induced a time-dependent repression of Dicer expression, which was specifically rescued by vascular endothelial cell growth factor or sphingosine-1-phosphate. When Dicer expression was silenced by short-hairpin RNA against Dicer, the cells were more prone to apoptosis under serum withdrawal, whereas the rate of apoptosis was comparable with control cells in the serum-containing condition. Real-time PCR-based gene expression profiling identified several genes, the expression of which was modulated by Dicer silencing, including adhesion and matrix-related molecules, caspase-3, and nitric oxide synthase 3 (NOS3). Dicer silencing markedly impaired migratory functions without affecting cell adhesion and repressed phosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 in adherent HUVECs. Dicer knockdown upregulated caspase-3 and downregulated NOS3 expression, and serum withdrawal indeed increased caspase-3 and decreased NOS3 expression. Furthermore, the overexpression of Dicer in HUVECs resulted in a marked reduction in apoptosis upon serum withdrawal and a decreased caspase-3 and increased NOS3 expression. The inhibition of NOS activity by Nomega-nitro-L-arginine methyl ester abrogated the effect of Dicer overexpression to rescue the cells from serum withdrawal-induced apoptosis. These results indicated that serum withdrawal decreases Dicer expression, leading to an increased susceptibility to apoptosis through the regulation of caspase-3 and NOS3 expression.
Collapse
Affiliation(s)
- Satoshi Asada
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, and Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|