201
|
Jin Y, Cao J, Hu X, Cheng H. Long noncoding RNA TUG1 upregulates VEGFA to enhance malignant behaviors in stomach adenocarcinoma by sponging miR-29c-3p. J Clin Lab Anal 2021; 35:e24106. [PMID: 34762771 PMCID: PMC8649340 DOI: 10.1002/jcla.24106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) TUG1 has been reported to display a pivotal role in the tumorigenesis and malignant progression of various types of cancers, including stomach adenocarcinoma (STAD). However, the contribution of aberrant expression of TUG1 and the mechanism by which it serves as a competing endogenous RNA (ceRNA) in STAD remains largely obscure. METHODS The human STAD cell lines (MGC-803 and AGS), human normal gastric epithelial cell line (GES-1), human umbilical vein endothelial cells (HUVECs), and human embryonic kidney cells (HEK293T) were purchased and cultured to investigate the roles of TUG1 in STAD. Twenty BALB/c nude mice were purchased to establish a xenograft model to explore the roles of TUG1 in vivo. RESULTS Bioinformatics analysis revealed that TUG1 was upregulated in STAD, of which expression was negatively and positively correlated with miR-29c-3p and VEGFA, respectively. Functional analyses indicated that TUG1 functioned as an oncogene to promote malignant behaviors (proliferation, migration, and angiogenesis) of STAD cells; whereas miR-29c-3p exerted the opposite role. Mechanistically, the interaction between miR-29c-3p with TUG1 and VEGFA was demonstrated. It was observed that miR-29c-3p could reverse the TUG1-induced promotion effect on cell proliferation, migration, and angiogenesis in STAD. Furthermore, TUG1 overexpression promoted STAD cell proliferation, metastasis, and angiogenesis, whereas VEGFA silence restored these effects, both in vitro and in vivo. CONCLUSION This finding confirmed that lncRNA TUG1 acts as a ceRNA for miR-29c-3p to promote tumor progression and angiogenesis by upregulating VEGFA, indicating TUG1 as a therapeutic target in STAD management.
Collapse
Affiliation(s)
- Yanzhao Jin
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jiaqing Cao
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoyun Hu
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hua Cheng
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
202
|
Wang CC, Chiu LC, Tung PH, Kuo SCH, Chu CH, Huang ACC, Wang CL, Chen CH, Yang CT, Hsu PC. A Real-World Analysis of Patients with Untreated Metastatic Epidermal Growth Factor Receptor (EGFR)-Mutated Lung Adenocarcinoma Receiving First-Line Erlotinib and Bevacizumab Combination Therapy. Oncol Ther 2021; 9:489-503. [PMID: 33990928 PMCID: PMC8593121 DOI: 10.1007/s40487-021-00152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The clinical features of patients with metastatic epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving first-line therapy based on erlotinib combined with bevacizumab are unclear. Here, we sought to analyze the clinical features of this patient group. METHODS Data were analyzed for the period from January 2015 to August 2019 for 49 patients with metastatic EGFR-mutated lung adenocarcinoma receiving first-line erlotinib-and-bevacizumab combination therapy from the Linkou and Kaohsiung Chang Gung Memorial Hospitals. RESULTS The combination of erlotinib and bevacizumab showed an 83.7% objective response rate and a 97.9% disease control rate. The median progression-free survival (PFS) and overall survival (OS) were 22.0 [95% CI (19.7-22.33)] and 47.6 [95% CI (38.87-56.37)] months, respectively, for all patients. The secondary EGFR-T790M mutation rate in the patients with acquired resistance to the combination was 72.4%. No predictive factor associated with the appearance of secondary EGFR-T790M mutations was found. The most frequent adverse event (AE) caused by the combination therapy was dermatitis (100%), and most of the AEs were manageable and grades 1 and 2. CONCLUSION Erlotinib combined with bevacizumab is an effective and safe therapy for untreated metastatic EGFR-mutated lung adenocarcinoma. The combination does not alter secondary EGFR-T790M mutations in patients with acquired resistance and is feasible in real-world clinical practice.
Collapse
Affiliation(s)
- Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, 83301, Taiwan
| | - Li-Chung Chiu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, 23652, Taiwan
| | - Pi-Hung Tung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
| | - Scott Chih-Hsi Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
| | - Chia-Hsun Chu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
| | - Allen Chung-Cheng Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
| | - Chih-Liang Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, 83301, Taiwan
| | - Chih-Hung Chen
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan City, 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing 1st Rd., Guishan Dist., Taoyuan City, 333005, Taiwan.
- Department of Thoracic Medicine, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, 23652, Taiwan.
| |
Collapse
|
203
|
Varghese JE, Balasubramanian B, Velayuthaprabhu S, Thirunavukkarasu V, Rengarajan RL, Murugesh E, Manikandan P, Arun M, Anand AV. Therapeutic effects of vitamin D and cancer: An overview. FOOD FRONTIERS 2021; 2:417-425. [DOI: 10.1002/fft2.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
AbstractSince vitamin D's discovery, strenuous efforts to investigate its physiological exploit and deficiency on human health were done. Our body synthesizes fat‐soluble vitamin D when get exposed to sunlight. In recent years, experimental data indicate that sunlight exposure and an adequate level of circulating vitamin D can reduce the incidence of cancer. Several in vitro and in vivo studies also suggest vitamin D as a potentially valuable supplement for cancer treatment and prevention. Nevertheless, there need to be adequate clinical studies performed to substantiate the suppressive ability of vitamin D concerning cancer incidence. Thus, understanding the cellular mechanisms of vitamin D can be advantageous for preventing several chronic diseases. Consequently, this review concentrates on different studies that have been conducted to characterize the outcome of vitamin D in reducing cancer incidence and its medication by cellular progression mechanism.
Collapse
Affiliation(s)
- Jisha Elsa Varghese
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| | | | | | | | | | - Easwaran Murugesh
- Nutritional Improvement of Crops International Centre for Genetic Engineering and Biotechnology New Delhi India
| | | | - Meyyazhagan Arun
- Department of Life Sciences CHRIST (Deemed to be University) Karnataka India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| |
Collapse
|
204
|
Antiangiogenic Therapy in Clear Cell Renal Carcinoma (CCRC): Pharmacological Basis and Clinical Results. Cancers (Basel) 2021; 13:cancers13235896. [PMID: 34885006 PMCID: PMC8656563 DOI: 10.3390/cancers13235896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary In the last 15 years, a deep improvement in the knowledge regarding the biological mechanisms responsible for neoplastic cell development and progression has led to a dramatic change in the treatment landscape of metastatic clear cell renal carcinoma. Nowadays, it is known that neo-angiogenesis is a key player in tumor growth and metastatic spread. In particular, the crucial role of the mutation of the von Hippel–Lindau (VHL) tumor suppressor gene, leading to angiogenesis through the transcription of multiple pro-angiogenic factors, is clearly recognized. On the basis of this biological evidence, three classes of targeted therapies with antiangiogenetic activity have received approval for the treatment of advanced disease: tyrosine kinase inhibitors (TKIs); a monoclonal antibody that interferes with vascular endothelial growth factor (VEGF); and two mammalian target of rapamycin (mTOR) inhibitors. These drugs showed impressive results in terms of progression-free survival and objective response rate. In addition, a “second therapeutic revolution” has recently started, due to the latest information on the immunogenic characteristics of renal cell carcinoma and the interplay between angiogenesis and immune surveillance systems. Consequently, immune checkpoint inhibitors, alone or in combination with TKIs, have been approved. In this review, we analyze the pharmacological characteristics and activity of antiangiogenic drugs approved for the treatment of metastatic clear cell renal carcinoma. Abstract Angiogenesis has a direct stimulatory effect on tumor growth, duplication, invasion and metastatic development. A significant portion of conventional renal cell carcinomas are angiogenesis-dependent tumors and the pathways supporting this process have been thoroughly investigated over the last 20 years. As a consequence, many tyrosine kinase inhibitors (TKIs) (sunitinib, sorafenib, pazopanib, axitinib, and cabozantinib), one monoclonal antibody (bevacizumab), and two mammalian target of rapamycin (mTOR) inhibitors (temsirolimus and everolimus) have been investigated and approved for the treatment of advanced or metastatic clear cell renal carcinoma (metastatic CCRC) in first-line, as well as second-line, therapy, with impressive results in progression-free survival and in the objective response rate compared with previously available therapies or placebo. Recently, a new type of drug has been approved for metastatic CCRC: immunomodulatory checkpoint inhibitors (ICIs), alone or in combination with TKIs. However, many questions and areas to be explored still remain with regard to clear cell renal carcinoma (CCRC) treatment: research on predictive biomarkers, the best patient selection, how to overcome the mechanisms of resistance, and the best sequence of therapies in daily clinical practice. This review focuses on the pharmacological properties and anticancer activities of these drugs. The toxicity profile and clinical limitations of these therapies are also discussed.
Collapse
|
205
|
Hassan RA, Emam SH, Hwang D, Kim GD, Hassanin SO, Khalil MG, Abdou AM, Sonousi A. Design, synthesis and evaluation of anticancer activity of new pyrazoline derivatives by down-regulation of VEGF: Molecular docking and apoptosis inducing activity. Bioorg Chem 2021; 118:105487. [PMID: 34798455 DOI: 10.1016/j.bioorg.2021.105487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
Two series of pyrazoline compounds were designed and synthesized as antiproliferative agents by VEGFR pathway inhibition. All synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines. Compound 3f exhibited the highest anticancer activity on the ovarian cell line (OVCAR-4) with IC50 = 0.29 μM and on the breast cell line (MDA-MB-468) with IC50 = 0.35 μM. It also exhibited the highest selectivity index (SI = 74). Compound 3f caused cell cycle arrest in OVCAR-4 cell line at the S phase which consequently inhibited cell proliferation and induced apoptosis. Moreover, 3f showed potent down-regulation of VEGF and p-VEGFR-2. Docking studies showed that compound 3f interacts in a similar pattern to axitinib on the VEGFR-2 receptor. The same compound was also able to fit into the gorge of STAT3 binding site, the transcription factor for VEGF, which explains the VEGF down-regulation.
Collapse
Affiliation(s)
- Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Dukhyun Hwang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
| |
Collapse
|
206
|
Ishikawa M, Osaki M, Uno N, Ohira T, Kugoh H, Okada F. MTA1, a metastasis‑associated protein, in endothelial cells is an essential molecule for angiogenesis. Mol Med Rep 2021; 25:11. [PMID: 34779499 PMCID: PMC8600423 DOI: 10.3892/mmr.2021.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Our previous study revealed that metastasis-associated protein 1 (MTA1), which is expressed in vascular endothelial cells, acts as a tube formation promoting factor. The present study aimed to clarify the importance of MTA1 expression in tube formation using MTA1-knockout (KO) endothelial cells (MTA1-KO MSS31 cells). Tube formation was significantly suppressed in MTA1-KO MSS31 cells, whereas MTA1-overexpression MTA1-KO MSS31 cells regained the ability to form tube-like structures. In addition, western blotting analysis revealed that MTA1-KO MSS31 cells showed significantly higher levels of phosphorylation of non-muscle myosin heavy chain IIa, which resulted in suppression of tube formation. This effect was attributed to a decrease of MTA1/S100 calcium-binding protein A4 complex formation. Moreover, inhibition of tube formation in MTA1-KO MSS31 cells could not be rescued by stimulation with vascular endothelial growth factor (VEGF). These results demonstrated that MTA1 may serve as an essential molecule for angiogenesis in endothelial cells and be involved in different steps of the angiogenic process compared with the VEGF/VEGF receptor 2 pathway. The findings showed that endothelial MTA1 and its pathway may serve as promising targets for inhibiting tumor angiogenesis, further supporting the development of MTA1-based antiangiogenic therapies.
Collapse
Affiliation(s)
- Mizuho Ishikawa
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Narumi Uno
- Chromosome Engineering Research Center, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Takahito Ohira
- Chromosome Engineering Research Center, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Hiroyuki Kugoh
- Chromosome Engineering Research Center, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| |
Collapse
|
207
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
208
|
Fu C, Xin J, Zhang W, Lai J, Huang Z. LINC00992 exerts oncogenic activities in prostate cancer via regulation of SOX4. Exp Cell Res 2021; 408:112855. [PMID: 34599930 DOI: 10.1016/j.yexcr.2021.112855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The critical role of long non-coding RNAs (lncRNAs) has been implicated in prostate cancer (PCa). As one of them, LINC00992 (LNC992) has been revealed by bioinformatics prediction to be significantly overexpressed in PCa. However, the underlying mechanism of LNC992 in PCa has not been well investigated. METHODS First, gene expression microarrays of prostate adenocarcinoma (PRAD) were downloaded from the GEO database, and differentially expressed genes were analyzed. Subsequently, we assessed the LNC992 expression in PCa patients. PCa cells with overexpression or low expression of LNC992 were generated, followed by the examination of proliferation, invasion and migration in vitro and in vivo. The differentially expressed genes were analyzed by microarrays after altering LNC992 expression in PCa cells, and the downstream regulatory mechanisms of LNC992 were analyzed by bioinformatics analysis and validated by RIP and RNA pull-down assays. RESULTS LNC992 was highly expressed in the PRAD database and in cancer tissues from PCa patients, serving as a poor prognostic factor for PCa patients. Knockdown of LNC992 significantly inhibited PCa cell growth, metastasis, and angiogenesis in vitro and in vivo. Moreover, we found that knockdown of LNC992 significantly suppressed SOX4 expression in cells and that LNC992 could bind to EIF4A3 and promote the translation of SOX4. Inhibition of either EIF4A3 or SOX4 significantly suppressed the growth and metastasis of PCa cells. CONCLUSIONS LNC992 elevates SOX4 expression by binding to SOX4 mRNA and recruiting translation initiation factor EIF4A3, thereby promoting the growth and metastasis of PCa cells in vitro and in vivo.
Collapse
Affiliation(s)
- Changde Fu
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Jun Xin
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Wei Zhang
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Jinjin Lai
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Zhiyang Huang
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China.
| |
Collapse
|
209
|
Tsakogiannis D, Nikolakopoulou A, Zagouri F, Stratakos G, Syrigos K, Zografos E, Koulouris N, Bletsa G. Update Overview of the Role of Angiopoietins in Lung Cancer. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111191. [PMID: 34833409 PMCID: PMC8625006 DOI: 10.3390/medicina57111191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Angiogenesis is a biological process that involves the formation of new blood vessels from the existing vasculature, and it plays a fundamental role in the development and progression of several types of cancer, including lung cancer. The angiopoietin/Tie2 ligand/receptor system orchestrates vascular integrity. In particular, Angiopoietin-1 activates the endothelial cell (EC)-specific receptor tyrosine kinase, Tie2, which is essential for preserving endothelial quiescence. On the other hand, Angiopoietin-2 acts as an inhibitor of the Angiopoietin-1/Tie2 signaling pathways, thus facilitating the destabilization of quiescent endothelium in cases of inflammation and cancer. Clinical studies have proven that high levels of Angiopoietin-2 indicate the development of non-small-cell lung carcinomas (NSCLC), while high levels of Angiopoietin-2 are strongly related to tumor angiogenesis, lymphangiogenesis, metastasis, and poor prognosis. Interestingly, the association of Angiopoietin-2 levels with the type of surgical approach makes Angiopoietin-2 a valuable factor in selecting the most suitable therapeutic strategy for lung cancer patients. The role of the Angiopoietin-1 and Angiopoietin-4 levels in NSCLC development requires further investigation. The present review focuses on the clinical impact of the Angiopoietin-1, Angiopoietin-2, and Angiopoietin-4 levels in patients diagnosed with NSCLC, emphasizing the interaction between them, and how they affect the development, progression, and metastasis of lung disease. Finally, it estimates the role of angiopoietins levels in the effective therapy of lung cancer patients.
Collapse
Affiliation(s)
| | - Asimina Nikolakopoulou
- Intensive Care Unit, 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.); (G.S.); (N.K.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (E.Z.)
| | - Grigorios Stratakos
- Intensive Care Unit, 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.); (G.S.); (N.K.)
| | - Konstantinos Syrigos
- Third Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eleni Zografos
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (E.Z.)
| | - Nikolaos Koulouris
- Intensive Care Unit, 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.); (G.S.); (N.K.)
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece;
- Correspondence: or ; Tel./Fax: +30-21-03643723
| |
Collapse
|
210
|
Zapp C, Mundinger P, Boehm H. Natural Presentation of Glycosaminoglycans in Synthetic Matrices for 3D Angiogenesis Models. Front Cell Dev Biol 2021; 9:729670. [PMID: 34671601 PMCID: PMC8521059 DOI: 10.3389/fcell.2021.729670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that occur in the extracellular matrix of higher organisms and are either covalently attached to protein cores, as proteoglycans or in free form. Dependent on their chemical composition and structure, GAGs orchestrate a wide range of essential functions in tissue homeostasis. Accordingly, GAG-based biomaterials play a major role in tissue engineering. Current biomaterials exploit crosslinks between chemically modified GAG chains. Due to modifications along the GAG chains, they are limited in their GAG-protein interactions and accessibility to dissect the biochemical and biophysical properties that govern GAG functions. Herein, a natural presentation of GAGs is achieved by a terminal immobilization of GAGs to a polyethylene glycol (PEG) hydrogel. A physicochemical characterization showed that different end-thiolated GAGs can be incorporated within physiological concentration ranges, while the mechanical properties of the hydrogel are exclusively tunable by the PEG polymer concentration. The functional utility of this approach was illustrated in a 3D cell culture application. Immobilization of end-thiolated hyaluronan enhanced the formation of capillary-like sprouts originating from embedded endothelial cell spheroids. Taken together, the presented PEG/GAG hydrogels create a native microenvironment with fine-tunable mechanobiochemical properties and are an effective tool for studying and employing the bioactivity of GAGs.
Collapse
Affiliation(s)
- Cornelia Zapp
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Patricia Mundinger
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Heike Boehm
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
211
|
Pu Y, Jin P, Liu L, Pu Q, Wu F. Dysosma versipellis Extract Inhibits Esophageal Cancer Progression through the Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1221899. [PMID: 34729077 PMCID: PMC8557981 DOI: 10.1155/2021/1221899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In this study, we aim to investigate the effect of Dysosma versipellis extract on biological behavior of esophageal cancer cells and its underlying mechanisms. METHODS A total of 30 BALB/C nude mice (class SPF) were equally and randomly divided into the control group, model group, and Dysosma versipellis group. CP-C cell of esophageal cancer was subcutaneously injected into the model group as well as the Dysosma versipellis group, and the same amount of normal saline into the control group, in order to compare the tumorigenesis of nude mice of three groups. Wnt, β-catenin, and p-GSK3β/GSK3β expression in tumor tissues was detected using Western blot. CP-C cells in logarithmic growth were selected and divided into 4 groups, including the control group, podophyllotoxin group, Wnt activator group, and combined group (mixture of podophyllotoxin and Wnt activator). The cell viability, apoptosis, and invasion ability, Wnt, β-catenin, and p-GSK3β/GSK3β expression level of CP-C cells in each group were detected via MTT assay, flow cytometry, transwell, and Western blot, respectively. RESULTS The tumorigenesis rates of the control group, model group, and Dysosma versipellis group were 0%, 90% (1 tumor-free mouse), and 80% (2 tumor-free mice), respectively. The tumor mass in the Dysosma versipellis group was significant less than that in the model group. Based on the results of Western blot, Wnt, ß-catenin, and p-GSK3β/GSK3β expression of the Dysosma versipellis group was lower than that of the control group. The in vitro viability test indicated that there was a significant difference in cell viability exhibited among four groups. Cell viability level in the 3 groups, including the combined group, blank group, and Wnt activator group, was higher than the podophyllotoxin group at each time point. In vitro apoptosis assay revealed that significant differences in cell apoptosis exhibited among four groups. Cell apoptosis rate was higher in the podophyllotoxin group compared to the remaining three groups. The Wnt activator group showed the lowest cell apoptosis rate. The in vitro invasion assay demonstrated that numbers of transmembrane cell in the 3 groups, involving the combined group, blank group, and Wnt activator group, showed a higher level than the podophyllotoxin group. The results of Western blot manifested that the podophyllotoxin group showed lower level of Wnt, ß-catenin, and p-GSK3β/GSK3β expression compared to the other 3 groups. CONCLUSION Podophyllotoxin in Dysosma versipellis has an excellent antiesophageal cancer effect and is able to inhibit cell viability as well as invasion ability and promote apoptosis of esophageal cancer cells by inhibiting the Wnt signaling pathway, which could be potentially used in future clinical treatment of esophageal cancer.
Collapse
Affiliation(s)
- Yanchun Pu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Ping Jin
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Qinlin Pu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Fangping Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| |
Collapse
|
212
|
Dombroski JA, Hope JM, Sarna NS, King MR. Channeling the Force: Piezo1 Mechanotransduction in Cancer Metastasis. Cells 2021; 10:2815. [PMID: 34831037 PMCID: PMC8616475 DOI: 10.3390/cells10112815] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis is one of the leading causes of death worldwide, motivating research into identifying new methods of preventing cancer metastasis. Recently there has been increasing interest in understanding how cancer cells transduce mechanical forces into biochemical signals, as metastasis is a process that consists of a wide range of physical forces. For instance, the circulatory system through which disseminating cancer cells must transit is an environment characterized by variable fluid shear stress due to blood flow. Cancer cells and other cells can transduce physical stimuli into biochemical responses using the mechanosensitive ion channel Piezo1, which is activated by membrane deformations that occur when cells are exposed to physical forces. When active, Piezo1 opens, allowing for calcium flux into the cell. Calcium, as a ubiquitous second-messenger cation, is associated with many signaling pathways involved in cancer metastasis, such as angiogenesis, cell migration, intravasation, and proliferation. In this review, we discuss the roles of Piezo1 in each stage of cancer metastasis in addition to its roles in immune cell activation and cancer cell death.
Collapse
Affiliation(s)
| | | | | | - Michael R. King
- King Lab, Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA; (J.A.D.); (J.M.H.); (N.S.S.)
| |
Collapse
|
213
|
The Chemokine-Based Peptide, CXCL9(74-103), Inhibits Angiogenesis by Blocking Heparan Sulfate Proteoglycan-Mediated Signaling of Multiple Endothelial Growth Factors. Cancers (Basel) 2021; 13:cancers13205090. [PMID: 34680238 PMCID: PMC8534003 DOI: 10.3390/cancers13205090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Major angiogenic growth factors activate downstream signaling cascades by interacting with both receptor tyrosine kinases (RTKs) and cell surface proteoglycans, such as heparan sulfate proteoglycans (HSPGs). As current anti-angiogenesis regimens in cancer are often faced with resistance, alternative therapeutic strategies are highly needed. The aim of our study was to investigate the impact on angiogenic signaling when we interfered with growth factor-HSPG interactions using a CXCL9 chemokine-derived peptide with high affinity for HS. Abstract Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.
Collapse
|
214
|
Lilburn DM, Groves AM. The role of PET in imaging of the tumour microenvironment and response to immunotherapy. Clin Radiol 2021; 76:784.e1-784.e15. [DOI: 10.1016/j.crad.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
215
|
Zhu J, Yang Q, Xu W. Iterative Upgrading of Small Molecular Tyrosine Kinase Inhibitors for EGFR Mutation in NSCLC: Necessity and Perspective. Pharmaceutics 2021; 13:1500. [PMID: 34575576 PMCID: PMC8468657 DOI: 10.3390/pharmaceutics13091500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapy has been reported to have fewer adverse effects, and offer a more convenient route of administration, compared with conventional chemotherapy. With the development of sequencing technology, and research on the molecular biology of lung cancer, especially whole-genome information on non-small cell lung cancer (NSCLC), various therapeutic targets have been unveiled. Among the NSCLC-driving gene mutations, epidermal growth factor receptor (EGFR) mutations are the most common, and approximately 10% of Caucasian, and more than 50% of Asian, NSCLC patients have been found to have sensitive EGFR mutations. A variety of targeted therapeutic agents for EGFR mutations have been approved for clinical applications, or are undergoing clinical trials around the world. This review focuses on: the indications of approved small molecular kinase inhibitors for EGFR mutation-positive NSCLC; the mechanisms of drug resistance and the corresponding therapeutic strategies; the principles of reasonable and precision molecular structure; and the drug development discoveries of next-generation inhibitors for EGFR.
Collapse
Affiliation(s)
- Jing Zhu
- Respiratory and Critical Care Medicine, Mianyang Central Hospital, Mianyang 621000, China;
- School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Qian Yang
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
| | - Weiguo Xu
- Respiratory and Critical Care Medicine, Mianyang Central Hospital, Mianyang 621000, China;
- School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| |
Collapse
|
216
|
Lai CC, Chen TJ, Chan TC, Li WS, He HL. Prognostic significance of OXR1 in urothelial carcinoma: low OXR1 expression is associated with worse survival. Future Oncol 2021; 17:4145-4156. [PMID: 34467778 DOI: 10.2217/fon-2021-0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Bioinformatic analysis has revealed that OXR1 is significantly downregulated in muscle-invasive bladder cancer. Patients & methods: The expression of OXR1 in patients with urothelial carcinoma was evaluated by immunohistochemistry, including 340 cases with urothelial carcinoma in the upper urinary tract and 295 in the urinary bladder. Results: Low expression of OXR1 was significantly correlated with adverse pathological parameters including high primary tumor (pT) stage, high node stage, high histological grade, high mitotic activity and increased vascular or perineural invasion (all p < 0.05). Low expression of OXR1 independently predicted worse metastasis-free survival (p = 0.033) in urothelial carcinoma of the upper urinary tract and worse disease-specific survival (p = 0.022) and metastasis-free survival (p < 0.001) in urothelial carcinoma of the urinary bladder. Conclusion: Low expression of OXR1 is an adverse prognostic factor in urothelial carcinoma.
Collapse
Affiliation(s)
- Chien-Cheng Lai
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ti-Chun Chan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan 704016, Taiwan
| | - Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Department of Pathology, E-DA Hospital & E-DA Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
217
|
Prabhu A. Anti-angiogenic, apoptotic and matrix metalloproteinase inhibitory activity of Withania somnifera (ashwagandha) on lung adenocarcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153639. [PMID: 34280829 DOI: 10.1016/j.phymed.2021.153639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Withania somnifera belongs to the family Solanaceae, known as Queen of medicinal plants for its enormous use in the medicinal field. Traditionally ashwagandha is used to treat several neurological disorders. This study evaluates the cytotoxic, apoptotic, antiangiogenic and matrix metalloproteinase (MMP) inhibitory activity of W. somnifera on lung adenocarcinoma. METHODOLOGY Aqueous and ethanolic extracts were prepared from the roots of the W. somnifera. Qualitative and quantitative phytochemical analyses were performed using the standard protocols. Cytotoxicity was assessed using MTT assay. Further experiments were carried out with IC50 concentration of the extract. Apoptosis and DNA damage were evaluated using AO-EB dual staining, Hoechst staining and Comet assay. Effect of the extract on cell migration was evaluated using scratch assay. Angiogenesis inhibition was evaluated using in ovo CAM assay and angiogenic pathway alterations were evaluated using qRT-PCR and western blotting. Autophagy induction was studied via western blotting. RESULTS In this study, we found antioxidant activity and the presence of certain secondary metabolites in the ethanolic extracts. The extract showed cytotoxic activity on lung adenocarcinoma cells with an IC50 of 99.7 μg/ml. The extract showed significant anti-angiogenic, apoptotic and autophagy induction activity. W. somnifera extract induced significant decrease in the cell migration at lower concentrations indicating the anti-migratory potential. CONCLUSION Our investigation revealed ethanolic extract of W. somnifera possess significant anti-angiogenic and MMP inhibitory activity and helps in inhibiting the lung adenocarcinoma cells proliferation. Further, our study revealed that the enhanced autophagy induction and apoptotic effects of W. somnifera are responsible for the potential anticancer activity of the extract.
Collapse
Affiliation(s)
- Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India.
| |
Collapse
|
218
|
Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021; 54:e13115. [PMID: 34464477 PMCID: PMC8488570 DOI: 10.1111/cpr.13115] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2-CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2- CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2-CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2-CCR2 targeted therapy, focusing on preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
219
|
Esteghlal S, Mokhtari MJ, Beyzaei Z. Quercetin Can Inhibit Angiogenesis via the Down Regulation of MALAT1 and MIAT LncRNAs in Human Umbilical Vein Endothelial Cells. Int J Prev Med 2021; 12:59. [PMID: 34447501 PMCID: PMC8356977 DOI: 10.4103/ijpvm.ijpvm_103_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Angiogenesis is an important step in cancer metastasis since it enables the growing tumor to receive nutrients and oxygen. Quercetin is a generic flavonoid and has been investigated for its ability to inhibit angiogenesis in different types of cancers. MALAT1 and MIAT lncRNAs are associated with the angiogenesis process. MALAT1 induces hypoxia-driven angiogenesis via the overexpression of angiogenic genes. Down regulation of MIAT1 could inhibit the proliferation of endothelial cells, tube formation, and migration. In this study, we assessed the anti-angiogenic activity of quercetin on human umbilical vein endothelial cells (HUVEC) via the expression of MALAT1 and MIAT genes. Methods: In the present study, HUVEC cells were incubated with various concentrations of quercetin for 24, 48, and 72 h. Cell proliferation was then evaluated by MTT assay. RNA was extracted by TRIzol and cDNA synthesis. The expression levels of MALAT1 and MIAT genes relative to the GAPDH gene were quantified using the highly sensitive real-time PCR method. Results: Our results demonstrated that quercetin has an inhibitory impact on the cell viability of HUVEC cells. The IC50 values of quercetin after 24, 48, and 72 h were 282.05 μM, 228.25 μM, and 131.65 μM, respectively. The MALAT1/GAPDH ratio was computed as 0.21 for 24h, 0.18 for 48h, and 0.29 for 72 h. The MIAT/GAPDH ratio was computed as 0.82 for 24h, 0.84 for 48h, and 0.78 for 72 h. Conclusions: In conclusion, quercetin treatment had an anti-angiogenic effect on HUVEC cells, at least partially via the down regulation of MALAT1 and MIAT LncRNAs gene expression.
Collapse
Affiliation(s)
- Somayeh Esteghlal
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | | | - Zahra Beyzaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
220
|
Oh IH, Pyo JS, Son BK. Prognostic Impact of YKL-40 Immunohistochemical Expression in Patients with Colorectal Cancer. Curr Oncol 2021; 28:3139-3149. [PMID: 34436040 PMCID: PMC8395453 DOI: 10.3390/curroncol28040274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
This study aims to examine the clinicopathological and prognostic significance of the YKL-40 immunohistochemical expression of tumor and immune cells through human colorectal cancer (CRC) tissue. We performed immunohistochemistry for YKL-40 and investigated the clinicopathological and prognostic impact of the YKL-40 expression of tumor (T-YKL-40) and immune cells (I-YKL-40) in CRC. We also evaluated the correlation between YKL-40 and PD-L1 expression and the immunoscore. YKL-40 was expressed in 22.6% and 64.2% of T-YKL-40 and I-YKL-40, respectively, out of the 265 CRC tissues. The I-YKL-40 expression significantly correlated with well and moderately differentiated tumors. The PD-L1 expression in immune cells significantly correlated with the I-YKL-40 expression, but not T-YKL-40 expression (p = 0.020 and p = 0.846, respectively). The I-YKL-40 expression significantly correlated with a worse overall survival rate but not recurrence-free survival (p = 0.047 and p = 0.080, respectively). However, there was no significant correlation between the T-YKL-40 expression and survival. In CRCs with a high immunoscore, patients with I-YKL-40 expression demonstrated worse overall and recurrence-free survival than those without I-YKL-40 expression. Our results demonstrated that I-YKL-40 expression significantly correlated with tumor differentiation and PD-L1 expression in immune cells. I-YKL-40 expression can be useful for the prognostic stratification of CRC patients.
Collapse
Affiliation(s)
- Il Hwan Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Jung-Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| |
Collapse
|
221
|
Charoenkwan P, Chiangjong W, Hasan MM, Nantasenamat C, Shoombuatong W. Review and comparative analysis of machine learning-based predictors for predicting and analyzing of anti-angiogenic peptides. Curr Med Chem 2021; 29:849-864. [PMID: 34375178 DOI: 10.2174/0929867328666210810145806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
Cancer is one of the leading causes of death worldwide and underlying this is angiogenesis that represents one of the hallmarks of cancer. Ongoing effort is already under way in the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route by tackling the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to its high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represents an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
222
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
223
|
Watson N, Al-Samkari H. Thrombotic and bleeding risk of angiogenesis inhibitors in patients with and without malignancy. J Thromb Haemost 2021; 19:1852-1863. [PMID: 33928747 DOI: 10.1111/jth.15354] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
Over the past two decades, therapies targeting angiogenesis have developed into a major class of cancer therapeutics. The vascular endothelial growth factor (VEGF) family of signaling proteins, a group of potent angiogenic growth factors, and their receptors represent the main targets of this therapeutic class. To date, 16 antiangiogenic agents have been approved in the United States for the treatment of cancer and several more are in development. An important consideration with antiangiogenic therapy is toxicity, in particular thrombotic and bleeding risks. These complications have emerged as a major clinical concern that may affect the use of these agents in patients both with and without cancer who may already have an elevated risk of thrombosis and bleeding. Although these agents are frequently considered together as a class when contemplating their bleeding and thrombotic risks, in fact the risks for venous thromboembolism, arterial thrombosis, and bleeding vary significantly between different classes of antiangiogenic agents and even among different agents within a class. In this narrative review, we describe the literature investigating the venous and arterial thrombotic and bleeding risks associated with the currently available antiangiogenic drugs. In addition, we discuss these specific complications in the context of both cancer therapy as well as the management of nonmalignant disorders now managed with antiangiogenic agents, including hereditary hemorrhagic telangiectasia and neovascular age-related macular degeneration.
Collapse
Affiliation(s)
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, MA, USA
- Division of Hematology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
224
|
Anticancer Activity of Propolis and Its Compounds. Nutrients 2021; 13:nu13082594. [PMID: 34444754 PMCID: PMC8399583 DOI: 10.3390/nu13082594] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Propolis is a natural material that honey bees (Apis mellifera) produce from various botanical sources. The therapeutic activity of propolis, including antibacterial, antifungal, and anti-inflammatory effects, have been known since antiquity. Cancer is one of the major burdens of disease worldwide, therefore, numerous studies are being conducted to develop new chemotherapeutic agents and treatments for cancer. Propolis is a rich source of biologically active compounds, which affect numerous signaling pathways regulating crucial cellular processes. The results of the latest research show that propolis can inhibit proliferation, angiogenesis, and metastasis of cancer cells and stimulate apoptosis. Moreover, it may influence the tumor microenvironment and multidrug resistance of cancers. This review briefly summarizes the molecular mechanisms of anticancer activity of propolis and its compounds and highlights the potential benefits of propolis to reduce the side effects of chemotherapy and radiotherapy.
Collapse
|
225
|
Kuai J, Han C, Wei W. Potential Regulatory Roles of GRK2 in Endothelial Cell Activity and Pathological Angiogenesis. Front Immunol 2021; 12:698424. [PMID: 34335610 PMCID: PMC8320431 DOI: 10.3389/fimmu.2021.698424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) is an integrative node in many signaling network cascades. Emerging evidence indicates that GRK2 can interact with a large number of GPCRs and non-GPCR substrates in both kinase-dependent and -independent modes. Some of these pathways are associated with endothelial cell (EC) activity. The active state of ECs is a pivotal factor in angiogenesis. The occurrence and development of some inflammation-related diseases are accompanied by pathological angiogenesis, but there remains a lack of effective targeted treatments. Alterations in the expression and/or localization of GRK2 have been identified in several types of diseases and have been demonstrated to regulate the angiogenesis process in these diseases. GRK2 as a target may be a promising candidate for anti-angiogenesis therapy.
Collapse
Affiliation(s)
| | | | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
226
|
Gong L, Zhou X, Sun J. Circular RNAs Interaction with MiRNAs: Emerging Roles in Breast Cancer. Int J Med Sci 2021; 18:3182-3196. [PMID: 34400888 PMCID: PMC8364445 DOI: 10.7150/ijms.62219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Despite significant advances in cancer therapy strategies, breast cancer is one of the most common and lethal malignancies worldwide. Characterization of a new class of RNAs using next-generation sequencing opened new doors toward uncovering etiopathogenesis mechanisms of breast cancer as well as prognostic and diagnostic biomarkers. Circular RNAs (circRNAs) are a novel class of RNA with covalently closed and highly stable structures generated primarily from the back-splicing of precursor mRNAs. Although circRNAs exert their function through various mechanisms, acting as a sponge for miRNAs is their primary mechanism of function. Furthermore, growing evidence has shown that aberrant expression of circRNAs is involved in the various hallmarks of cancers. This paper reviews the biogenesis, characteristics, and mechanism of functions of circRNAs and their deregulation in various cancers. Finally, we focused on the circRNAs roles as a sponge for miRNAs in the development, metastasis, angiogenesis, drug resistance, apoptosis, and immune responses of breast cancer.
Collapse
Affiliation(s)
- Liu Gong
- Department of Medical Oncology, Hangzhou Xiasha Hospital, Hangzhou, Zhejiang Province, China
| | | | | |
Collapse
|
227
|
Hu M, Varier KM, Li Z, Qin X, Rao Q, Song J, Hu A, Hang Y, Yuan C, Gajendran B, Shu L, Wen M, Li Y, Liu H. A natural acylphloroglucinol triggered antiproliferative possessions in HEL cells by impeding STAT3 signaling and attenuating angiogenesis in transgenic zebrafish model. Biomed Pharmacother 2021; 141:111877. [PMID: 34323693 DOI: 10.1016/j.biopha.2021.111877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
Leukemia is responsible for a reason of death, globally. Even though there are several treatment regimens available in the clinics against this disease, a perfect chemotherapeutic agent for the same is still under investigation. Natural plant-derived secondary metabolites are used in clinics to treat leukemia for better benefits with reduced side-effects. Likely, several bioactive compounds from Callistemon sp. were reported for their bioactive benefits. Furthermore, acylphloroglucinol derivatives from Callistemon salignus, showed both antimicrobial and cytotoxic activities in various adherent human cancer cell lines. Thus, in the present study, a natural acylphloroglucinol (2,6-dihydroxy-4-methoxyisobutyrophenone, L72) was tested for its antiproliferative efficacy in HEL cells. The MTT and the cell cycle analysis study revealed that L72 treatment can offer antiproliferative effects, both time and dose-dependent manner, causing G2/M cell cycle arrest. The western blot analysis revealed that L72 treatment triggered intrinsic apoptotic machinery and activated p21. Likewise, L72 could downregulate the gene expressions of XIAP, FLT3, IDH2, and SOD2, which was demonstrated by qPCR analysis, thus promoting its antiproliferative action. The L72 could impede STAT3 expression, which was evidenced by insilico autodock analysis and western blot analysis using STAT3 inhibitor, Pimozide. The treatment of transgenic (Flk-1+/egfr+) zebrafish embryos resulted in the STAT3 gene inhibition, proving its anti-angiogenic effect, as well. Thus, the study revealed that L72 could act as an antiproliferative agent, by triggering caspase-dependent intrinsic apoptosis, reducing cell proliferation by attenuating STAT3, and activating an anti-angiogenic pathway via Flk-1inhibition.
Collapse
Affiliation(s)
- Mi Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Zhicao Li
- Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xujie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Yubing Hang
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liping Shu
- Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Min Wen
- Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China.
| |
Collapse
|
228
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
229
|
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov 2021; 20:551-569. [PMID: 34002056 PMCID: PMC8127496 DOI: 10.1038/s41573-021-00195-4] [Citation(s) in RCA: 603] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non-cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | | | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
230
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
231
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
232
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
233
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
234
|
Gong G, Zheng Y, Kong X, Wen Z. Anti-angiogenesis Function of Ononin via Suppressing the MEK/Erk Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2021; 84:1755-1762. [PMID: 34029083 DOI: 10.1021/acs.jnatprod.1c00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Angiogenesis is a complicated pathological process and plays an important role in modulating tumor development. Flavonoids, sharing the basic functional group with estrogen, have been utilized as chemopreventive agents to inhibit endothelial cell angiogenesis and also suppress tumor cell proliferation. Ononin, also referred to as formononetin-7-O-β-d-glucoside, is one of the bioactive chemicals found within many functional food or plants. The anticancer functions of ononin have been reported both in vitro and in vivo. However, the anti-angiogenetic properties of ononin have not been reported. The possible efficacies of ononin against angiogenesis was verified in cultured endothelial cells. Ononin suppressed vascular endothelial growth factor (VEGF)-induced HUVEC migration, invasion. and tube formation activity after 48 h. The apoptosis rate and specific markers, i.e., Bax/Bc-2 ratio, cleaved caspase 3/9 (Cl-caspase 3/9), and cytochrome c (Cyto c), were enhanced in the ononin-treated group. On the other hand, the protein expressions levels of hypoxia-inducible factor 1α (HIF-1α), mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), and vascular endothelial growth factor receptor 2 (VEGFR2) were restricted after ononin treatment for 2 days in VEGF-pretreated endothelial cells. In summary, ononin acts as a candidate for angiogenetic-related disease prevention and treatment.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yuzhong Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Xiangpeng Kong
- Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang shimin, Shanxi University of Chinese Medicine, Shanxi 030619, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
235
|
Nkune NW, Kruger CA, Abrahamse H. Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol. Anticancer Agents Med Chem 2021; 21:137-148. [PMID: 32294046 DOI: 10.2174/1871520620666200415102321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/23/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
Colorectal Cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiationand immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate alternative combination therapies. Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen, and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death. Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which has shown to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibiting tumour metastasis and secondary spread. This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.
Collapse
Affiliation(s)
- Nkune W Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Cherie A Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
236
|
Ho YJ, Chang J, Yeh KT, Gong Z, Lin YM, Lu JW. Prognostic and Clinical Implications of WNK Lysine Deficient Protein Kinase 1 Expression in Patients With Hepatocellular Carcinoma. In Vivo 2021; 34:2631-2640. [PMID: 32871793 DOI: 10.21873/invivo.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is a particularly malignant form of cancer prevalent throughout the world; however, there is a pressing need for HCC biomarkers to facilitate prognosis and risk assessment. PATIENTS AND METHODS This paper reports on the potential prognostic value of WNK lysine deficient protein kinase 1 (WNK1) in cases of HCC. We analyzed the expression of WNK1 at the mRNA level using omics data from the UALCAN database. We then verified our findings through the immunohistochemical (IHC) staining of various human cancer tissue as well as 59 HCC samples paired with corresponding normal tissues. The prognostic value of mRNA or protein expression by WNK1 was evaluated using the Kaplan-Meier method. RESULTS Initial screening results revealed significantly higher WNK1 expression levels in HCC tissue compared to normal tissue. Verification using the paired HCC samples confirmed that the expression of WNK1 was indeed significantly higher in HCC tissue samples than in adjacent normal tissues. High WNK1 expression levels were significantly correlated with clinicopathological variables, including gender and histologic grade. Kaplan-Meier survival analysis revealed that high WNK1 expression levels were associated with poor HCC prognosis. Finally, univariate and multivariate analysis identified WNK1 as a prognostic factor for TNM stage in cases of HCC. CONCLUSION In summary, WNK1 is overexpressed at the mRNA and protein levels, and correlated with poor prognosis. Thus, WNK1 expression could potentially be used as a biomarker in HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
237
|
Li SJ, Chen JX, Sun ZJ. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Commun (Lond) 2021; 41:830-850. [PMID: 34137513 PMCID: PMC8441058 DOI: 10.1002/cac2.12183] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy, especially immune checkpoint blockade (ICB), has revolutionized oncology. However, only a limited number of patients benefit from immunotherapy, and some cancers that initially respond to immunotherapy can ultimately relapse and progress. Thus, some studies have investigated combining immunotherapy with other therapies to overcome resistance to monotherapy. Recently, multiple preclinical and clinical studies have shown that tumor vasculature is a determinant of whether immunotherapy will elicit an antitumor response; thus, vascular targeting may be a promising strategy to improve cancer immunotherapy outcomes. A successful antitumor immune response requires an intact "Cancer-Immunity Cycle," including T cell priming and activation, immune cell recruitment, and recognition and killing of cancer cells. Angiogenic inducers, especially vascular endothelial growth factor (VEGF), can interfere with activation, infiltration, and function of T cells, thus breaking the "Cancer-Immunity Cycle." Together with immunostimulation-regulated tumor vessel remodeling, VEGF-mediated immunosuppression provides a solid therapeutic rationale for combining immunotherapy with antiangiogenic agents to treat solid tumors. Following the successes of recent landmark phase III clinical trials, therapies combining immune checkpoint inhibitors (ICIs) with antiangiogenic agents have become first-line treatments for multiple solid tumors, whereas the efficacy of such combinations in other solid tumors remains to be validated in ongoing studies. In this review, we discussed synergies between antiangiogenic agents and cancer immunotherapy based on results from preclinical and translational studies. Then, we discussed recent progress in randomized clinical trials. ICI-containing combinations were the focus of this review because of their recent successes, but combinations containing other immunotherapies were also discussed. Finally, we attempted to define critical challenges in combining ICIs with antiangiogenic agents to promote coordination and stimulate collaboration within the research community.
Collapse
Affiliation(s)
- Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China
| | - Jia-Xian Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, P. R. China
| |
Collapse
|
238
|
Kras P, Talkowski K, Grabarek BO, Skalska-Dziobek N, Boroń D, Oplawski M. Evaluation of Variances in VEGF-A-D and VEGFR-1-3 Expression in the Ishikawa Endometrial Cancer Cell Line Treated with Salinomycin and Anti-Angiogenic/Lymphangiogenic Effect. Curr Pharm Biotechnol 2021; 22:697-705. [PMID: 32648839 DOI: 10.2174/1389201021666200710093519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In cancer, an excessive and uncontrolled process of creating new blood and lymphatic vessels that play a key role in the metastasis process can be observed. The Vascular Endothelial Growth Factor (VEGF-A,-B,-C,-D) family together with their specific receptors (VEGFR-1,-2,- 3) plays a key role in these processes, therefore, it would be reasonable to determine the correct pattern of their expression. OBJECTIVES The study aimed to assess the use of salinomycin as an anti-angiogenic and anti-lymphangiogenic drug during endometrial cancer by examining changes in the expression pattern of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3 depending on the treatment period of the Ishikawa endometrial cancer cells with salinomycin in comparison to the control culture. MATERIALS AND METHODS To determine how influential salinomycin was on the expression of both mRNAs, 1 μM of the drug was added to the cell culture and then it was cultured all together for 12, 24 and 48 hour periods. The cells that made up the control culture were not treated with salinomycin. To determine the changes in the expression profile of the selected genes, we used the microarray, techniques: RTqPCR and ELISA (p<0.05). RESULTS For all isoforms of VEGF-A-D as well as receptors of VEGFR-1-3, a decrease in expression under the influence of salinomycin was noted. For VEGF-A and VEGFR-1, the difference in the expression between the culture treated with salinomycin in comparison to the control was statistically significant (p=0.0004). In turn, for VEGF-B, the difference between the culture exposed for 24 hours in comparison to the control (p=0.00000) as well as the comparison between H48 vs. C (p=0.00000) was statistically significant. In reference to VEGF-C, VEGFR-2 and VEGFR-3, the statistical analysis showed the significant difference in expression between the culture incubated with the drug for 12, 24 and 48 hours in comparison to the control as well as between the selected times. For all of these comparisons, p=0.00000 was utilized. CONCLUSION Salinomycin changes the expression pattern of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2, and VEGFR-3 in endometrial cancer cells. The obtained results suggest that salinomycin might exert the effect via VEGF signaling pathways.
Collapse
Affiliation(s)
- Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Karol Talkowski
- Department of Psychiatry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | - Nina Skalska-Dziobek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| |
Collapse
|
239
|
Xin Y, Roh K, Cho E, Park D, Whang W, Jung E. Isookanin Inhibits PGE 2-Mediated Angiogenesis by Inducing Cell Arrest through Inhibiting the Phosphorylation of ERK1/2 and CREB in HMEC-1 Cells. Int J Mol Sci 2021; 22:ijms22126466. [PMID: 34208772 PMCID: PMC8234715 DOI: 10.3390/ijms22126466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Yingji Xin
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
- Department of Global Innovative Drug, Graduate School, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156756, Korea
| | - Kyungbaeg Roh
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
| | - Eunae Cho
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
| | - Wankyunn Whang
- Department of Global Innovative Drug, Graduate School, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156756, Korea
- Correspondence: (W.W.); (E.J.); Tel.: +82-70-5117-0043 (E.J.)
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
- Correspondence: (W.W.); (E.J.); Tel.: +82-70-5117-0043 (E.J.)
| |
Collapse
|
240
|
Is Vitamin D Deficiency Related to Increased Cancer Risk in Patients with Type 2 Diabetes Mellitus? Int J Mol Sci 2021; 22:ijms22126444. [PMID: 34208589 PMCID: PMC8233804 DOI: 10.3390/ijms22126444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
There is mounting evidence that type 2 diabetes mellitus (T2DM) is related with increased risk for the development of cancer. Apart from shared common risk factors typical for both diseases, diabetes driven factors including hyperinsulinemia, insulin resistance, hyperglycemia and low grade chronic inflammation are of great importance. Recently, vitamin D deficiency was reported to be associated with the pathogenesis of numerous diseases, including T2DM and cancer. However, little is known whether vitamin D deficiency may be responsible for elevated cancer risk development in T2DM patients. Therefore, the aim of the current review is to identify the molecular mechanisms by which vitamin D deficiency may contribute to cancer development in T2DM patients. Vitamin D via alleviation of insulin resistance, hyperglycemia, oxidative stress and inflammation reduces diabetes driven cancer risk factors. Moreover, vitamin D strengthens the DNA repair process, and regulates apoptosis and autophagy of cancer cells as well as signaling pathways involved in tumorigenesis i.e., tumor growth factor β (TGFβ), insulin-like growth factor (IGF) and Wnt-β-Cathenin. It should also be underlined that many types of cancer cells present alterations in vitamin D metabolism and action as a result of Vitamin D Receptor (VDR) and CYP27B1 expression dysregulation. Although, numerous studies revealed that adequate vitamin D concentration prevents or delays T2DM and cancer development, little is known how the vitamin affects cancer risk among T2DM patients. There is a pressing need for randomized clinical trials to clarify whether vitamin D deficiency may be a factor responsible for increased risk of cancer in T2DM patients, and whether the use of the vitamin by patients with diabetes and cancer may improve cancer prognosis and metabolic control of diabetes.
Collapse
|
241
|
Nikmaneshi MR, Firoozabadi B, Mozafari A. Chemo-mechanistic multi-scale model of a three-dimensional tumor microenvironment to quantify the chemotherapy response of cancer. Biotechnol Bioeng 2021; 118:3871-3887. [PMID: 34133020 DOI: 10.1002/bit.27863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Exploring efficient chemotherapy would benefit from a deeper understanding of the tumor microenvironment (TME) and its role in tumor progression. As in vivo experimental methods are unable to isolate or control individual factors of the TME, and in vitro models often cannot include all the contributing factors, some questions are best addressed with mathematical models of systems biology. In this study, we establish a multi-scale mathematical model of the TME to simulate three-dimensional tumor growth and angiogenesis and then implement the model for an array of chemotherapy approaches to elucidate the effect of TME conditions and drug scheduling on controlling tumor progression. The hyperglycemic condition as the most common disorder for cancer patients is considered to evaluate its impact on cancer response to chemotherapy. We show that combining antiangiogenic and anticancer drugs improves the outcome of treatment and can decrease accumulation of the drug in normal tissue and enhance drug delivery to the tumor. Our results demonstrate that although both concurrent and neoadjuvant combination therapies can increase intratumoral drug exposure and therapeutic accuracy, neoadjuvant therapy surpasses this, especially against hyperglycemia. Our model provides mechanistic explanations for clinical observations of tumor progression and response to treatment and establishes a computational framework for exploring better treatment strategies.
Collapse
Affiliation(s)
| | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aliasghar Mozafari
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
242
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
243
|
Zerbib E, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. VDAC1 Silencing in Cancer Cells Leads to Metabolic Reprogramming That Modulates Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13112850. [PMID: 34200480 PMCID: PMC8201394 DOI: 10.3390/cancers13112850] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Tumors are comprised of proliferating cancer cells, and their microenvironment consists of the extracellular matrix, blood vessels, and a variety of tissue cells. The tumor microenvironment functions in cell growth, proliferation, migration, immunity, malignant transformation, and apoptosis. Understanding the molecular interactions between cancer cells and their microenvironment would facilitate the development of therapeutic strategies to disrupt these interactions and fight cancer. Here, we demonstrate that depleting the mitochondrial gatekeeper VDAC1 in human cancer cells in tumors led to metabolic reprogramming, inhibited tumor growth, and disrupted tumor–host interactions. A next-generation sequencing analysis of human lung cell-derived tumors expressing or depleted of VDAC1 allows distinguishing genes of human or murine origin, thus enabling the separation of the bidirectional cross-talk between malignant cells and the tumor microenvironment. A battery of human cancer cell and mouse genes associated with tumor microenvironment formation and remodeling were altered. The results point to VDAC1 as a novel target for both inhibiting tumor growth and modulating the tumor microenvironment, thus influencing cancer progression, migration, and invasion. Abstract The tumor microenvironment (TME) plays an important role in cell growth, proliferation, migration, immunity, malignant transformation, and apoptosis. Thus, better insight into tumor–host interactions is required. Most of these processes involve the metabolic reprogramming of cells. Here, we focused on this reprogramming in cancerous cells and its effect on the TME. A major limitation in the study of tumor–host interactions is the difficulty in separating cancerous from non-cancerous signaling pathways within a tumor. Our strategy involved specifically silencing the expression of VDAC1 in the mitochondria of human-derived A549 lung cancer xenografts in mice, but not in the mouse-derived cells of the TME. Next-generation sequencing (NGS) analysis allows distinguishing the human or mouse origin of genes, thus enabling the separation of the bidirectional cross-talk between the TME and malignant cells. We demonstrate that depleting VDAC1 in cancer cells led to metabolic reprogramming, tumor regression, and the disruption of tumor–host interactions. This was reflected in the altered expression of a battery of genes associated with TME, including those involved in extracellular matrix organization and structure, matrix-related peptidases, angiogenesis, intercellular interacting proteins, integrins, and growth factors associated with stromal activities. We show that metabolic rewiring upon mitochondrial VDAC1 silencing in cancer cells affected several components of the TME, such as structural protein matrix metalloproteinases and Lox, and elicited a stromal response resembling the reaction to a foreign body in wound healing. As tumor progression requires a cooperative interplay between the host and cancer cells, and the ECM is intensively remodeled during cancer progression, VDAC1 depletion induced metabolic reprogramming that targeted both tumor cells and resulted in the alteration of the whole spectrum of TME-related genes, affecting the reciprocal feedback between ECM molecules, host cells, and cancer cells. Thus, VDAC1 depletion using si-VDAC1 represents therapeutic potential, inhibiting cancer cell proliferation and also inducing the modulation of TME components, which influences cancer progression, migration, and invasion.
Collapse
Affiliation(s)
- Erez Zerbib
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (E.Z.); (T.A.)
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (E.Z.); (T.A.)
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine, Mount Sinai, NY 10029, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (E.Z.); (T.A.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence:
| |
Collapse
|
244
|
Aziz MNM, Rahim NFC, Hussin Y, Yeap SK, Masarudin MJ, Mohamad NE, Akhtar MN, Osman MA, Cheah YK, Alitheen NB. Anti-Metastatic and Anti-Angiogenic Effects of Curcumin Analog DK1 on Human Osteosarcoma Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14060532. [PMID: 34204873 PMCID: PMC8228595 DOI: 10.3390/ph14060532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.
Collapse
Affiliation(s)
- Muhammad Nazirul Mubin Aziz
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Nurul Fattin Che Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-9769-7471
| |
Collapse
|
245
|
Fang T, Xiao J, Zhang Y, Hu H, Zhu Y, Cheng Y. Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quant Imaging Med Surg 2021; 11:2837-2860. [PMID: 34079746 PMCID: PMC8107298 DOI: 10.21037/qims-20-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in immunotherapy provides hope of a complete cure to cancer patients. However, recent studies have reported that only a limited number of cancer patients with a specific immune status, known as "cold tumor", can benefit from a single immune agent. Although the combination of immune agents with different mechanisms can partially increase the low response rate and improve efficacy, it can also result in more side effects. Therefore, discovering therapies that can improve tumors' response rate to immunotherapy without increasing toxicity for patients is urgently needed. Tumor interventional therapy is promising. It mainly includes transcatheter arterial chemoembolization, ablation, radioactive particle internal irradiation, and photodynamic interventional therapy based on a luminal stent. Interventional therapy can directly kill tumor cells by targeted drug delivery in situ, thus reducing drug dosage and systemic toxicity like cytokine release syndrome. More importantly, interventional therapy can regulate the immune system through numerous mechanisms, making it a suitable choice for immunotherapy to combine with. In this review, we provide a brief description of immunotherapies (and their side effects) on tumors of different immune types and preliminarily elaborate on interventional therapy mechanisms to improve immune efficacy. We also discuss the progress and challenges of the combination of interventional therapy and immunotherapy.
Collapse
Affiliation(s)
- Tonglei Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junyuan Xiao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
246
|
Jia B, Yang H, Zhang Z, Qu X, Jia X, Wu Q, Han Y, Zheng Y, Dai K. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioact Mater 2021; 6:1588-1604. [PMID: 33294736 PMCID: PMC7691683 DOI: 10.1016/j.bioactmat.2020.11.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects are commonly caused by severe trauma, malignant tumors, or congenital diseases and remain among the toughest clinical problems faced by orthopedic surgeons, especially when of critical size. Biodegradable zinc-based metals have recently gained popularity for their desirable biocompatibility, suitable degradation rate, and favorable osteogenesis-promoting properties. The biphasic activity of Sr promotes osteogenesis and inhibits osteoclastogenesis, which imparts Zn-Sr alloys with the ideal theoretical osteogenic properties. Herein, a biodegradable Zn-Sr binary alloy system was fabricated. The cytocompatibility and osteogenesis of the Zn-Sr alloys were significantly better than those of pure Zn in MC3T3-E1 cells. RNA-sequencing illustrated that the Zn-0.8Sr alloy promoted osteogenesis by activating the wnt/β-catenin, PI3K/Akt, and MAPK/Erk signaling pathways. Furthermore, rat femoral condyle defects were repaired using Zn-0.8Sr alloy scaffolds, with pure Ti as a control. The scaffold-bone integration and bone ingrowth confirmed the favorable in vivo repair properties of the Zn-Sr alloy, which was verified to offer satisfactory biosafety based on the hematoxylin-eosin (H&E) staining and ion concentration testing of important organs. The Zn-0.8Sr alloy was identified as an ideal bone repair material candidate, especially for application in critical-sized defects on load-bearing sites due to its favorable biocompatibility and osteogenic properties in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Jia
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hongtao Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Zechuan Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiufeng Jia
- Department of Orthopaedic Surgery, Wudi People's Hospital, Binzhou, 251900, China
| | - Qiang Wu
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| |
Collapse
|
247
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 793] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
248
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
249
|
Quercetin Inhibits Colorectal Cancer Cells Induced-Angiogenesis in Both Colorectal Cancer Cell and Endothelial Cell through Downregulation of VEGF-A/VEGFR2. Sci Pharm 2021. [DOI: 10.3390/scipharm89020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) aggressiveness is caused by cancer angiogenesis which promotes the cancer growth and metastasis associated with poor prognosis and poor survival. The vascular endothelial growth factor-A (VEGF-A) and its receptor (VEGFR-2) form the major signaling pathway in cancer angiogenesis. This study aimed to investigate the anti-angiogenesis activity of quercetin in both colorectal cancer cells and endothelial cells. The tube formation of human vein endothelial cells (HUVECs) was determined by using conditioned media of HT-29 cells treated with quercetin co-cultured with HUVECs. The VEGF-A and NF-κB p65 protein expressions in the quercetin-treated HT-29 cells were determined by fluorescence assay and Western blot analysis. The VEGFR-2 protein expression in HUVECs was determined after they were co-cultured with the quercetin-treated HT-29 cells. Quercetin markedly decreased the HT-29 cell-induced angiogenesis in HUVECs. NF-κB p65 and VEGF-A protein expression were also inhibited by quercetin. Moreover, quercetin significantly inhibited VEGFR-2 expression and translocation in HUVECs after they were co-cultured with high dose quercetin-treated HT-29 cells. Taken together, quercetin had an anti-angiogenesis effect on VEGF-A inhibition related to the NF-κB signaling pathway in the HT-29 cells and reduced VEGFR-2 expression and translocation in HUVECs.
Collapse
|
250
|
Anti-angiogenic, antibacterial, and antioxidant activities of nanoemulsions synthesized by Cuminum cyminum L. tinctures. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00947-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|