201
|
Theofilis P, Oikonomou E, Tsioufis K, Tousoulis D. Diabetes Mellitus and Heart Failure: Epidemiology, Pathophysiologic Mechanisms, and the Role of SGLT2 Inhibitors. Life (Basel) 2023; 13:497. [PMID: 36836854 PMCID: PMC9968235 DOI: 10.3390/life13020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Diabetes mellitus (DM) and heart failure (HF) are frequently encountered afflictions that are linked by a common pathophysiologic background. According to landmark studies, those conditions frequently coexist, and this interaction represents a poor prognostic indicator. Based on mechanistic studies, HF can be propagated by multiple pathophysiologic pathways, such as inflammation, oxidative stress, endothelial dysfunction, fibrosis, cardiac autonomic neuropathy, and alterations in substrate utilization. In this regard, DM may augment myocardial inflammation, fibrosis, autonomic dysfunction, and lipotoxicity. As the interaction between DM and HF appears critical, the new cornerstone in DM and HF treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i), may be able to revert the pathophysiology of those conditions and lead to beneficial HF outcomes. In this review, we aim to highlight the deleterious pathophysiologic interaction between DM and HF, as well as demonstrate the beneficial role of SGLT2i in this field.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
202
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
203
|
Theofilis P, Oikonomou E, Sagris M, Papageorgiou N, Tsioufis K, Tousoulis D. Novel Concepts in the Management of Angina in Coronary Artery Disease. Curr Pharm Des 2023; 29:1825-1834. [PMID: 37183474 DOI: 10.2174/1381612829666230512152153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
Coronary artery disease remains a condition with high prevalence and detrimental effects on the quality of life of affected individuals. Its most frequent manifestation, stable angina pectoris, may be challenging to manage despite the available antianginal pharmacotherapy and adequate risk factor control, especially in subjects not amenable to revascularization. In the direction of refractory angina pectoris, several approaches have been developed over the years with varying degrees of success. Among the most recognized techniques in managing angina is enhanced external counterpulsation, which utilizes mechanical compression of the lower extremities to increase blood flow to the heart. Moving to coronary sinus reduction, it leads to an increase in coronary sinus backward pressure, ultimately augmenting myocardial blood flow redistribution to ischemic regions and ameliorating chronic angina. Clinical trial results of the above-mentioned techniques have been encouraging but are based on small sample sizes to justify their widespread application. Other interventional approaches, such as transmyocardial laser revascularization, extracorporeal shockwave myocardial revascularization, and spinal cord stimulation, have been met with either controversial or negative results, and their use is not recommended. Lastly, angiogenic therapy with targeted intramyocardial vascular endothelial growth factor injection or CD34+ cell therapy may be beneficial and warrants further investigation. In this review, we summarize the current knowledge in the field of angina management, highlighting the potential and the gaps in the existing evidence that ought to be addressed in future larger-scale, randomized studies before these techniques can be safely adapted in the clinical practice of patients with refractory angina pectoris.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
204
|
Papageorgiou N, Theofilis P, Oikonomou E, Lazaros G, Sagris M, Tousoulis D. Asymmetric Dimethylarginine as a Biomarker in Coronary Artery Disease. Curr Top Med Chem 2023; 23:470-480. [PMID: 36515020 DOI: 10.2174/1568026623666221213085917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
As atherosclerosis remains a leading cause of morbidity and mortality worldwide despite the advances in its medical and interventional management, the identification of markers associated with its incidence and prognosis constitutes an appealing prospect. In this regard, asymmetric dimethylarginine (ADMA), a well-studied endogenous endothelial nitric oxide synthase inhibitor, represents a core mediator of endothelial dysfunction in atherosclerotic diseases. Given the pathophysiologic background of this molecule, its importance in the most frequent atherosclerotic manifestation, coronary artery disease (CAD), has been extensively studied in the past decades. The available evidence suggests elevation of ADMA in the presence of common cardiovascular risk factors, namely diabetes mellitus, arterial hypertension, and hypertriglyceridemia, being related to endothelial dysfunction and incident major adverse cardiovascular events in these groups of patients. Moreover, ADMA is associated with CAD occurrence and severity, as well as its prognosis, especially in populations with renal impairment. Interestingly, even in the absence of obstructive CAD, increased ADMA may indicate coronary endothelial dysfunction and epicardial vasomotor dysfunction, which are prognostication markers for incident cardiovascular events. In the case of acute coronary syndromes, high ADMA levels signify an augmented risk of incomplete ST-segment elevation resolution and poorer prognosis. Abnormal ADMA elevations may indicate adverse outcomes following percutaneous or surgical coronary revascularization, such as in-stent restenosis, graft patency, and hard cardiovascular endpoints. Finally, since its association with inflammation is significant, chronic inflammatory conditions may present with coronary endothelial dysfunction and subclinical coronary atherosclerosis by means of increased coronary artery calcium, with augmented ADMA acting as a biomarker.
Collapse
Affiliation(s)
- Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, UK
| | - Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, Sotiria Regional Hospital for Chest Diseases, University of Athens Medical School, Athens, Greece
| | - George Lazaros
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
205
|
Dimitroglou Y, Aggeli C, Theofilis P, Tsioufis P, Oikonomou E, Tsioufis K, Tousoulis D. Lipoprotein(a) as a Predictive Biomarker and Therapeutic Target for Acute Coronary Syndromes. Curr Pharm Des 2023; 29:1835-1843. [PMID: 37264657 DOI: 10.2174/1381612829666230601155001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality in Western societies, despite the significant advances that have improved primary and secondary prevention. Hence, several novel biomarkers have been identified as potential diagnostic and therapeutic targets which could improve outcomes even when traditional risk factors are well-controlled. Lipoprotein (a) [Lp(a)] has pro-atherogenic, pro-thrombotic, and pro-inflammatory properties, and its levels are relatively constant and genetically predetermined. Several epidemiological studies have associated high Lp(a) with increased risk for acute coronary syndromes (ACS) even when other CAD risk factors are included in the multivariate analysis. However, until recently, specific therapeutic options targeting Lp(a) were not associated, and thus, Lp(a) is currently used as a risk and treatment modifying biomarker with guidelines suggesting the intensified treatment of low-density lipoprotein in intermediate- to-high-risk patients with increased Lp(a) levels. Lately, specific treatment options targeting Lp(a) have become available and include antisense oligonucleotides and small-interfering RNA, which induce a robust reduction of Lp(a). Results of ongoing phase-3 trials will answer whether Lp(a) will become a biomarker specifically treated to reduce the burden of cardiovascular mortality. The scope of this review article is to present the current evidence regarding the use of Lp(a) as a biomarker, predictive of increased CAD risk, and to discuss the future perspectives on pharmaceutical reduction of Lp(a) as a therapeutic target in high-risk patients.
Collapse
Affiliation(s)
- Yannis Dimitroglou
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantina Aggeli
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsioufis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
206
|
Wang C, Mao M, Han X, Hou T, Wang X, Han Q, Dong Y, Liu R, Cong L, Liu C, Imahori Y, Vetrano DL, Wang Y, Du Y, Qiu C. Associations of Cardiac Ventricular Repolarization with Serum Adhesion Molecules and Cognitive Function in Older Adults: The MIND-China Study. J Alzheimers Dis 2023; 92:273-283. [PMID: 36710676 DOI: 10.3233/jad-220874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Emerging evidence has linked electrocardiographic parameters with serum adhesion molecules and cognition; however, their interrelationship has not been explored. OBJECTIVE We sought to investigate the associations of ventricular depolarization and repolarization intervals with serum adhesion molecules and cognitive function among rural-dwelling older adults. METHODS This population-based study engaged 4,886 dementia-free participants (age ≥60 years, 56.2% women) in the baseline examination (March-September 2018) of MIND-China. Of these, serum intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) were measured in 1591 persons. We used a neuropsychological test battery to assess cognitive function. Resting heart rate, QT, JT intervals, and QRS duration were assessed with electrocardiogram. Data were analyzed using general linear models adjusting for multiple confounders. RESULTS Longer JT interval was significantly associated with lower z-scores of global cognition (multivariable-adjusted β= -0.035; 95% confidence interval = -0.055, -0.015), verbal fluency (-0.035; -0.063, -0.007), attention (-0.037; -0.065, -0.010), and executive function (-0.044; -0.072, -0.015), but not with memory function (-0.023; -0.054, 0.009). There were similar association patterns of QT interval with cognitive functions. In the serum biomarker subsample, longer JT and QT intervals remained significantly associated with poorer executive function and higher serum adhesion molecules. We detected statistical interactions of JT interval with adhesion molecules (pinteraction <0.05), such that longer JT interval was significantly associated with a lower executive function z-score only among individuals with higher serum ICAM-1 and VCAM-1. CONCLUSION Longer ventricular depolarization and repolarization intervals are associated with worse cognitive function in older adults and vascular endothelial dysfunction may play a part in the associations.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Ming Mao
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xiaojie Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Qi Han
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Yume Imahori
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden.,Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
207
|
Ruchika FNU, Shah S, Delawan M, Durga N, Lucke-Wold B. Cytokines and subarachnoid hemorrhage. IN VITRO DIAGNOSIS 2023; 1:55. [PMID: 37982005 PMCID: PMC10657139 DOI: 10.59400/ivd.v1i1.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Subarachnoid hemorrhage (SAH) remains a potentially devastating cerebrovascular disease with a high morbidity and mortality rate, irrespective of treatment. The disease still has a 40-50% mortality rate with a 70% rate of cerebral vasospasm in those patients. The release of cytokines has been implicated in the development and progression of SAH. In this paper, we will explore the role of cytokines in aneurysmal subarachnoid hemorrhage (aSAH), including their effects on the inflammatory response, cerebral vasospasm, blood-brain barrier disruption, and neuronal damage. We also identify the role of the glymphatic system in progression of aSAH. The review will also briefly touch upon current research on potential therapeutic targets aimed at modulating cytokine activity in patients with aSAH. This review aims to give an in-depth review of the cytokines involved in aSAH and serve as a catalyst to research directed towards treatment options for aSAH.
Collapse
Affiliation(s)
- FNU Ruchika
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Maliya Delawan
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Neupane Durga
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| |
Collapse
|
208
|
Metabolic Dysfunction-Associated Fatty Liver Disease in Newly Diagnosed, Treatment-Naive Hypertensive Patients and Its Association with Cardiorenal Risk Markers. High Blood Press Cardiovasc Prev 2023; 30:63-72. [PMID: 36626077 DOI: 10.1007/s40292-023-00558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Patients with arterial hypertension frequently present with comorbidities that are associated with increased cardiorenal risk, such as metabolic dysfunction-associated fatty liver disease (MAFLD). AIMS Our study aimed to assess the prevalence and the association of MAFLD with cardiorenal risk markers in newly diagnosed, treatment-naïve hypertensive patients. METHODS We recruited 281 individuals with new-onset hypertension who were not prescribed any medication. Medical history, clinical examination findings, and laboratory test results were recorded. Liver steatosis was assessed through fatty liver index (FLI) calculation. Patients with FLI ≥ 60 together with one main metabolic abnormality (type 2 diabetes mellitus or overweight/obesity) or at least two metabolic risk abnormalities (increased waist circumference, blood pressure, plasma triglycerides, presence of prediabetes or insulin resistance, decreased plasma high-density lipoprotein) fulfilled the diagnostic criteria for MAFLD. RESULTS The prevalence of MAFLD in our study population was 28.7%. Individuals with MAFLD were more frequently male and had increased body mass index. Systolic, diastolic, and pulse pressure values were significantly higher in this group of patients. Moreover, lipid, renal, glucose, and inflammatory markers were considerably deranged in patients with MAFLD. After multivariate regression analysis, uric acid, ferritin, and apoE emerged as independent predictors of MAFLD. Area under receiver operating characteristics curve revealed that uric acid had the greatest diagnostic accuracy, with the ideal cutoff being ≥ 5.2 mg/dl (sensitivity: 77.6%, specificity: 76.3%). CONCLUSION MAFLD represents a common comorbidity in hypertensive patients and is associated with markers of cardiorenal risk. Uric acid may be indicative of MAFLD in particular.
Collapse
|
209
|
Theofilis P, Oikonomou E, Vogiatzi G, Sagris M, Antonopoulos AS, Siasos G, Iliopoulos DC, Perrea D, Vavouranakis M, Tsioufis K, Tousoulis D. The Role of MicroRNA-126 in Atherosclerotic Cardiovascular Diseases. Curr Med Chem 2023; 30:1902-1921. [PMID: 36043750 DOI: 10.2174/0929867329666220830100530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022]
Abstract
Atherosclerotic cardiovascular diseases remain the leading cause of morbidity and mortality worldwide despite all efforts made towards their management. Other than targeting the traditional risk factors for their development, scientific interest has been shifted towards epigenetic regulation, with microRNAs (miRs) being at the forefront. MiR-126, in particular, has been extensively studied in the context of cardiovascular diseases. Downregulated expression of this miR has been associated with highly prevalent cardiovascular risk factors such as arterial hypertension and diabetes mellitus. At the same time, its diagnostic and prognostic capability concerning coronary artery disease is still under investigation, with up-to-date data pointing towards a dysregulated expression in a stable disease state and acute myocardial infarction. Moreover, a lower expression of miR-126 may indicate a higher disease complexity, as well as an increased risk for future major adverse cardiac and cerebrovascular events. Ultimately, overexpression of miR-126 may emerge as a novel therapeutic target in atherosclerotic cardiovascular diseases due to its potential in promoting therapeutic angiogenesis and anti-inflammatory effects. However, the existing challenges in miR therapeutics need to be resolved before translation to clinical practice.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Georgia Vogiatzi
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Manolis Vavouranakis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
210
|
Oikonomou E, Xenou M, Zakynthinos GE, Tsaplaris P, Lampsas S, Bletsa E, Gialamas I, Kalogeras K, Goliopoulou A, Gounaridi MI, Pesiridis T, Tsatsaragkou A, Vavouranakis M, Siasos G, Tousoulis D. Novel Approaches to the Management of Diabetes Mellitus in Patients with Coronary Artery Disease. Curr Pharm Des 2023; 29:1844-1862. [PMID: 37403390 DOI: 10.2174/1381612829666230703161058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in individuals with diabetes mellitus (DM). Although benefit has been attributed to the strict control of hyperglycemia with traditional antidiabetic treatments, novel antidiabetic medications have demonstrated cardiovascular (CV) safety and benefits by reducing major adverse cardiac events, improving heart failure (HF), and decreasing CVD-related mortality. Emerging data underline the interrelation between diabetes, as a metabolic disorder, and inflammation, endothelial dysfunction, and oxidative stress in the pathogenesis of microvascular and macrovascular complications. Conventional glucose-lowering medications demonstrate controversial CV effects. Dipeptidyl peptidase- 4 inhibitors have not only failed to prove to be beneficial in patients with coronary artery disease, but also their safety is questionable for the treatment of patients with CVD. However, metformin, as the first-line option for type 2 DM (T2DM), shows CVD protective properties for DM-induced atherosclerotic and macrovascular complications. Thiazolidinedione and sulfonylureas have questionable effects, as evidence from large studies shows a reduction in the risk of CV events and deaths, but with an increased rate of hospitalization for HF. Moreover, several studies have revealed that insulin monotherapy for T2DM treatment increases the risk of major CV events and deaths from HF, when compared to metformin, although it may reduce the risk of myocardial infarction. Finally, this review aimed to summarize the mechanisms of action of novel antidiabetic drugs acting as glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors that show favorable effects on blood pressure, lipid levels, and inflammation, leading to reduced CVD risk in T2DM patients.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George E Zakynthinos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Tsaplaris
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gialamas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria I Gounaridi
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Dimitris Tousoulis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Cardiology, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
211
|
Rood KM, Patel N, DeVengencie IM, Quinn JP, Gowdy KM, Costantine MM, Kniss DA. Aspirin modulates production of pro-inflammatory and pro-resolving mediators in endothelial cells. PLoS One 2023; 18:e0283163. [PMID: 37098090 PMCID: PMC10128936 DOI: 10.1371/journal.pone.0283163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/02/2023] [Indexed: 04/26/2023] Open
Abstract
Endothelial cells synthesize biochemical signals to coordinate a response to insults, resolve inflammation and restore barrier integrity. Vascular cells release a variety of vasoactive bioactive lipid metabolites during the inflammatory response and produce pro-resolving mediators (e.g., Lipoxin A4, LXA4) in cooperation with leukocytes and platelets to bring a halt to inflammation. Aspirin, used in a variety of cardiovascular and pro-thrombotic disorders (e.g., atherosclerosis, angina, preeclampsia), potently inhibits proinflammatory eicosanoid formation. Moreover, aspirin stimulates the synthesis of pro-resolving lipid mediators (SPM), so-called Aspirin-Triggered Lipoxins (ATL). We demonstrate that cytokines stimulated a time- and dose-dependent increase in PGI2 (6-ketoPGF1α) and PGE2 formation that is blocked by aspirin. Eicosanoid production was caused by cytokine-induced expression of cyclooxygenase-2 (COX-2). We also detected increased production of pro-resolving LXA4 in cytokine-stimulated endothelial cells. The R-enantiomer of LXA4, 15-epi-LXA4, was enhanced by aspirin, but only in the presence of cytokine challenge, indicating dependence on COX-2 expression. In contrast to previous reports, we detected arachidonate 5-lipoxygenase (ALOX5) mRNA expression and its cognate protein (5-lipoxygenase, 5-LOX), suggesting that endothelial cells possess the enzymatic machinery necessary to synthesize both pro-inflammatory and pro-resolving lipid mediators independent of added leukocytes or platelets. Finally, we observed that, endothelial cells produced LTB4 in the absence of leukocytes. These results indicate that endothelial cells produce both pro-inflammatory and pro-resolving lipid mediators in the absence of other cell types and aspirin exerts pleiotropic actions influencing both COX and LOX pathways.
Collapse
Affiliation(s)
- Kara M Rood
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Niharika Patel
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Laboratory of Perinatal Research, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ivana M DeVengencie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Laboratory of Perinatal Research, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - John P Quinn
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Laboratory of Perinatal Research, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine and Wexner Medical Center, Columbus, Ohio, United States of America
- Dorothy Davis Heart and Lung Institute, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Douglas A Kniss
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Laboratory of Perinatal Research, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Engineering, College of Engineering, Fontana Labs, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
212
|
Chan JSK, Satti DI, Lee YHA, Bin Waleed K, Tang P, Mahalwar G, Minhas AMK, Roever L, Biondi-Zoccai G, Leung FP, Wong WT, Liu T, Zhou J, Tse G. Association Between Visit-to-Visit Lipid Variability and Incident Cancer: A Population-based Cohort Study. Curr Probl Cardiol 2023; 48:101421. [PMID: 36167221 DOI: 10.1016/j.cpcardiol.2022.101421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Dyslipidemia is associated with increased cancer risk. However, the prognostic value of visit-to-visit lipid variability (VVLV) is unexplored in this regard. To investigate the associations between the VVLV and the risk of incident cancer, we conducted a retrospective cohort study on adult patients attending a family medicine clinic in Hong Kong during 2000-2003, excluding those with <3 tests for low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, and total cholesterol (TC) each, those with prior cancer diagnosis, and those with <1 year of follow-up. Visit-to-visit LDL-C, HDL-C, TC, and triglycerides variabilities were measured by the coefficient of variation (CV). Patients were followed up until 31st December 2019 for the primary outcome of incident cancer. Altogether, 69,186 patients were included (26,679 males (38.6%); mean age 60 ± 13 years; mean follow-up 16 ± 3 years); 7958 patients (11.5%) had incident cancer. Higher variability of LDL-C, HDL-C, TC, and TG was associated with higher risk of incident cancer. Patients in the third tercile of the CV of LDL-C (adjusted hazard ratio (aHR) against first tercile 1.06 [1.00, 1.12], P = 0.049), HDL-C (aHR 1.37 [1.29, 1.44], P< 0.001), TC (aHR 1.10 [1.04, 1.17], P = 0.001), and TG (aHR 1.11 [1.06, 1.18], P < 0.001) had the highest risks of incident cancer. Among these, only HDL-C variability remained associated with the risk of incident cancer in users of statins/fibrates. To conclude, higher VVLV was associated with significantly higher long-term risks of incident cancer. VVLV may be a clinically useful tool for cancer risk stratification.
Collapse
Affiliation(s)
- Jeffrey Shi Kai Chan
- Family Medicine Research Unit, Cardiovascular Analytics Group, China-UK collaboration, Hong Kong, China
| | - Danish Iltaf Satti
- Family Medicine Research Unit, Cardiovascular Analytics Group, China-UK collaboration, Hong Kong, China
| | - Yan Hiu Athena Lee
- Family Medicine Research Unit, Cardiovascular Analytics Group, China-UK collaboration, Hong Kong, China
| | - Khalid Bin Waleed
- Department of Cardiology, St George's University Hospital NHS Foundation Trust, London
| | - Pias Tang
- Family Medicine Research Unit, Cardiovascular Analytics Group, China-UK collaboration, Hong Kong, China
| | - Gauranga Mahalwar
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH
| | | | - Leonardo Roever
- Departamento de Pesquisa Clinica, Universidade Federal de Uberlandia, Uberlandia, MG, Brazil
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin , China
| | - Jiandong Zhou
- Nuffield Department of Medicine, University of Oxford, Oxford.
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin , China; Kent and Medway Medical School, Canterbury, Kent; Epidemiology Research Unit, Cardiovascular Analytics Group, China-UK collaboration, Hong Kong, China.
| |
Collapse
|
213
|
Combined effects of nitric oxide synthase 3 genetic variant and childhood emotional abuse on earlier onset of suicidal behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110617. [PMID: 35988847 DOI: 10.1016/j.pnpbp.2022.110617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022]
Abstract
Marked heterogeneity in suicide attempters has been observed, with earlier onset being linked to stronger heritability, more childhood maltreatment. Nitric oxide signalling system might be implicated in this relationship through its role in the stress response/adaptation. This study examined how NOS genetic variants and childhood maltreatment were associated with age at first suicide attempt (SA). Adult patients with SA history (N = 414) filled in the Childhood Trauma Questionnaire, and six functionally relevant NOS2 and NOS3 polymorphisms were genotyped. Analyses included χ2, Mann-Whitney U tests, Kendall's regression, multivariate linear and Cox survival regressions, and a moderation analysis. The NOS3 promotor 27-bp variable number tandem repeat (VNTR) bb homozygous state and childhood emotional abuse were independently associated with earlier age at first SA, which was robust after controlling for confounders [regression coefficient - 3.975, 95% CI -6.980 - (-0.970), p = 0.010, and - 1.088, 95% CI -2.172 - (-0.004), p = 0.049]. No interaction was observed. In the Cox proportional hazards model for age at first SA, the hazard ratio for patients with childhood emotional abuse and NOS3 27-bp VNTR bb was 0.533 (95% CI 0.394-0.720, p < 0.001) compared to patients without. Intermediate scores were observed with either only the risk genotype or only childhood emotional abuse. A graded relationship was also observed for repeated SA, family history of SA, and severe SA history. These results are preliminary due to a low statistical power and call for replication and further characterization of the role of nitric oxide system in the susceptibility to early-onset SB.
Collapse
|
214
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:15937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
Affiliation(s)
| | | | | | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
215
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
216
|
Citri Reticulatae Pericarpium (Chenpi) Protects against Endothelial Dysfunction and Vascular Inflammation in Diabetic Rats. Nutrients 2022; 14:nu14245221. [PMID: 36558380 PMCID: PMC9783663 DOI: 10.3390/nu14245221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dried tangerine peel (Citri reticulatae Pericarpium, CRP; Chenpi in Chinese) possesses medicine and food homology with hypolipidemic, anti-inflammatory and antioxidant activities. This study aimed to explore the protective effect of CRP extract on endothelial function and inflammation in type 2 diabetic rats and the related mechanisms. Type 2 diabetes mellitus was induced by high-fat diet (HFD)/streptozotocin (STZ) in male Sprague Dawley rats, and CRP extract was orally administered at 400 mg/kg/day for 4 weeks. Rat and mouse aortas were treated with high glucose and CRP extract ex vivo. The data showed that the ethanolic extract of CRP normalized blood pressure and the plasma lipid profile as well as the plasma levels of liver enzymes in diabetic rats. Impaired endothelium-dependent relaxations in aortas, carotid arteries and renal arteries were improved. CRP extract suppressed vascular inflammatory markers and induced AMPK activation in aortas of diabetic rats. Exposure to high glucose impaired vasodilation in aortas of rats and mice, and this impairment was prevented by co-incubation with CRP extract. In conclusion, our findings suggest that CRP extract protects endothelial function by inhibiting the vascular inflammatory state on activation of AMPK in diabetic rats.
Collapse
|
217
|
Kantarcioglu B, Mehrotra S, Papineni C, Siddiqui F, Kouta A, Hoppensteadt D, Bansal V, Darki A, Van Thiel DH, Fareed J. Endogenous Glycosaminoglycans in Various Pathologic Plasma Samples as Measured by a Fluorescent Quenching Method. Clin Appl Thromb Hemost 2022; 28:10760296221144047. [PMID: 36474353 PMCID: PMC9732799 DOI: 10.1177/10760296221144047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endogenous glycosaminoglycans (GAGs) with a similar structure to heparin are widely distributed in various tissues. A fluorescence probe, namely Heparin Red, can detect polyanionic GAGs in plasma samples. The purpose of this study is to measure endogenous GAGs in various plasma samples obtained from different pathologic states in comparison to healthy controls utilizing this method. Plasma samples were obtained from patient groups including atrial fibrillation (AF), end-stage-renal-disease (ESRD), diabetes mellitus (DM), sepsis, cancer, liver disease (LD), and pulmonary embolism (PE). Normal human plasma (NHP) was used as healthy controls. The Heparin Red kit from Red Probes (Münster, Germany) was used for the quantification of endogenous GAGs in each sample before and after heparinase I degradation. All results were compiled as group means ± SD for comparison. NHP was found to have relatively low levels of endogenous GAGs with a mean concentration of 0.06 μg/mL. The AF, ESRD, DM, and sepsis patient samples had a mean endogenous GAG concentration of 0.55, 0.72, 0.92, and 0.94 μg/mL, respectively. The levels of endogenous GAGs were highest in cancer, LD, and PE patient plasma samples with a mean concentration of 1.95, 2.78, and 2.83 μg/mL, respectively. Heparinase I degradation resulted in a decline in GAG levels in plasma samples. These results clearly show that detectable Heparin Red sensitive endogenous GAGs are present in circulating plasma at varying levels in various patient groups. Additional studies are necessary to understand this complex pathophysiology.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Bulent Kantarcioglu, Department of
Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola
University Chicago, Health Sciences Division, Maywood, IL 60153, USA.
| | - Siddharth Mehrotra
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA
| | - Charulatha Papineni
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Department of Molecular Pharmacology and Neuroscience,
Loyola
University Chicago, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Program in Health Sciences, UCAM - Universidad Católica San Antonio de
Murcia, Murcia, Spain
| | - Ahmed Kouta
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Department of Molecular Pharmacology and Neuroscience,
Loyola
University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA
| | - Vinod Bansal
- Department of Internal Medicine, Nephrology,
Loyola
University Medical Center, Maywood, IL,
USA
| | - Amir Darki
- Cardiology Department, Loyola University Medical
Center, Maywood, IL, USA
| | - David H. Van Thiel
- Division of Gastroenterology and Hepatology,
Rush Oak Park
Hospital, Oak Park, Illinois and Rush
University Medical Center, Chicago, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA
| |
Collapse
|
218
|
Zauška Ľ, Beňová E, Urbanová M, Brus J, Zeleňák V, Hornebecq V, Almáši M. Adsorption and Release Properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and pH. J Funct Biomater 2022; 13:jfb13040275. [PMID: 36547535 PMCID: PMC9781637 DOI: 10.3390/jfb13040275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mesoporous silica SBA-15 was prepared via sol-gel synthesis and functionalized with different types of organosilanes containing various organic functional groups: (3-aminopropyl)triethoxysilane (SBA-15-NH2), (3-mercaptopropyl)triethoxysilane (SBA-15-SH), triethoxymethylsilane (SBA-15-CH3), triethoxyphenylsilane (SBA-15-Ph), and (3-isocynatopropyl)triethoxysilane (SBA-15-NCO). The prepared materials were investigated as drug delivery systems for naproxen. As model drugs, naproxen acid (HNAP) and its sodium salt (NaNAP) were used. Mentioned medicaments belong to the group of non-steroidal anti-inflammatory drugs (NSAIDs). The prepared materials were characterized by different analytical methods such as transmission electron microscopy (TEM), infrared spectroscopy (IR), nitrogen adsorption/desorption analysis (N2), thermogravimetric analysis (TG), 1H, 13C and 23Na solid-state nuclear magnetic resonance spectroscopy (1H, 13C and 23Na ss-NMR). The abovementioned analytical techniques confirmed the successful grafting of functional groups to the SBA-15 surface and the adsorption of drugs after the impregnation process. The BET area values decreased from 927 m2 g-1 for SBA-15 to 408 m2 g-1 for SBA-15-NCO. After drug encapsulation, a more significant decrease in surface area was observed due to the filling of pores with drug molecules, while the most significant decrease was observed for the SBA-15-NH2 material (115 m2 g-1 for NaNAP and 101 m2 g-1 for HNAP). By combining TG and nitrogen adsorption results, the occurrence of functional groups and the affinity of drugs to the carriers' surface were calculated. The dominant factor was the volume of functional groups and intermolecular interactions. The highest drug affinity values were observed for phenyl and amine-modified materials (SBA-15-Ph = 1.379 μmol m-2 mmol-1 for NaNAP, 1.761 μmol m-2 mmol-1 for HNAP and SBA-15-NH2 = 1.343 μmol m-2 mmol-1 for NaNAP, 1.302 μmol m-2 mmol-1 for HNAP) due to the formation of hydrogen bonds and π-π interactions, respectively. Drug release properties and kinetic studies were performed at t = 37 °C (normal human body temperature) in different media with pH = 2 as simulated human gastric fluid and pH = 7.4, which simulated a physiological environment. Determination of drug release quantity was performed with UV-VIS spectroscopy. The surface polarity, pH and naproxen form influenced the total released amount of drug. In general, naproxen sodium salt has a higher solubility than its acid form, thus significantly affecting drug release from surface-modified SBA-15 materials. Different pH conditions involved surface protonation and formation/disruption of intermolecular interactions, influencing both the release rate and the total released amount of naproxen. Different kinetic models, zero-order, first-order, Higuchi and Hixson-Crowell models, were used to fit the drug release data. According to the obtained experimental results, the drug release rates and mechanisms were determined.
Collapse
Affiliation(s)
- Ľuboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovakia
| | - Eva Beňová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovakia
| | - Martina Urbanová
- Department of NMR Spectroscopy, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, CZ-162 06 Prague, Czech Republic
| | - Jiří Brus
- Department of NMR Spectroscopy, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, CZ-162 06 Prague, Czech Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovakia
| | | | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovakia
- Correspondence:
| |
Collapse
|
219
|
Chamsuwan S, Buranakarl C, Angkanaporn K, Dissayabutra T, Chuaypen N, Pisitkun T, Kalpongnukul N. A urinary proteomic study in hypercalciuric dogs with and without calcium oxalate urolithiasis. Vet World 2022; 15:2937-2944. [PMID: 36718335 PMCID: PMC9880843 DOI: 10.14202/vetworld.2022.2937-2944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/04/2022] [Indexed: 12/28/2022] Open
Abstract
Background and Aims Hypercalciuria is an important predisposing factor commonly found in humans and dogs with calcium oxalate (CaOx) urolithiasis. Calcium oxalate crystals can induce an inflammatory reaction that subsequently produces several proteins that have an inhibitory or stimulatory effect on stone formation. This study aimed to evaluate the differences in urinary proteomic profiles between hypercalciuric CaOx stone dogs and hypercalciuric stone-free dogs (CaOx stone and control groups, respectively). Materials and Methods Seven dogs with hypercalciuric CaOx urolithiasis and breed-, sex-, and aged-matched controls with hypercalciuria were included in the study. Serum and urine samples were obtained from all dogs to analyze electrolytes. Urinary proteomic profiles were analyzed using liquid chromatography-mass spectrometry. Student's t-test was used to compare the differences between groups. Results Forty-nine urinary proteins were identified in the stone-free and CaOx stone groups, whereas 19 and 6 proteins were unique in the CaOx stone and stone-free groups, respectively. The urinary thrombomodulin level was significantly higher in the CaOx stone group (relative ratio = 1.8, p < 0.01) than in the stone-free group. Conclusion This study demonstrated that urinary proteomic profiles may be used as a candidate biomarker for urinary tract injury in CaOx urolithiasis in dogs.
Collapse
Affiliation(s)
- Sumonwan Chamsuwan
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chollada Buranakarl
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Corresponding author: Chollada Buranakarl, e-mail: Co-authors: SC: , KA: , TD: , NC: , TP: , NK:
| | - Kris Angkanaporn
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gut and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Metabolic Disease in Gut and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
220
|
Yu H, Liao K, Hu Y, Lv D, Luo M, Liu Q, Huang L, Luo S. Role of the cGAS-STING Pathway in Aging-related Endothelial Dysfunction. Aging Dis 2022; 13:1901-1918. [PMID: 36465181 PMCID: PMC9662267 DOI: 10.14336/ad.2022.0316] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/16/2022] [Indexed: 07/30/2023] Open
Abstract
Endothelial dysfunction develops gradually with age, and is the foundation of many age-related diseases in the elderly. The purpose of this study was to investigate the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in aging-related endothelial dysfunction. Endothelial functional parameters and biochemical indices of vascular function were examined in 2-, 6-, 12- and 24-month-old mice. Then, 6-month-old mice were administered RU.521, a specific inhibitor of cGAS, for 6 months, and endothelial functional parameters and biochemical indices of vascular function were re-examined. An in vitro model of cell senescence was established by treating human aortic endothelial cells (HAECs) with D-Galactose (D-GAL). Using inhibitors or siRNA interference, cGAS and STING were suppressed or silenced in senescent HAECs, and changes in the expression of eNOS, the senescence markers, p53, p21 and p16, components of the cGAS-STING pathway and Senescence-Associated β-galactosidase (SA-β-gal) staining were examined. Finally, cGAS, STING and p-IRF3 levels were measured in aorta tissue sections from eight patients. A decline in endothelial function, up-regulation of p53, p21 and p16 expression, and activation of the cGAS-STING pathway were observed in aging mice. Inhibition of cGAS was found to improve endothelial function and reverse the increased expression of aging markers. Our in vitro data demonstrated that D-GAL induced a decrease in eNOS expression and cell senescence, which could be partly reversed by cGAS inhibitor, STING inhibitor, siRNA-cGAS and siRNA-STING treatment. Higher expression levels of cGAS, STING and p-IRF3 were observed in aged human aortic intima tissue compared to young aortic intima tissue. Our study demonstrated that activation of the cGAS-STING pathway played a vital role in aging-related endothelial dysfunction. Thus, the cGAS-STING pathway may be a potential target for the prevention of cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yu Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Qian Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
221
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
222
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
223
|
Cerebral Blood Flow in Predator Stress-Resilient and -Susceptible Rats and Mechanisms of Resilience. Int J Mol Sci 2022; 23:ijms232314729. [PMID: 36499055 PMCID: PMC9738343 DOI: 10.3390/ijms232314729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Stress-induced conditions are associated with impaired cerebral blood flow (CBF) and increased risk of dementia and stroke. However, these conditions do not develop in resilient humans and animals. Here the effects of predator stress (PS, cat urine scent, ten days) on CBF and mechanisms of CBF regulation were compared in PS-susceptible (PSs) and PS-resilient (PSr) rats. Fourteen days post-stress, the rats were segregated into PSs and PSr groups based on a behavior-related anxiety index (AI). CBF and its endothelium-dependent changes were measured in the parietal cortex by laser Doppler flowmetry. The major findings are: (1) PS susceptibility was associated with reduced basal CBF and endothelial dysfunction. In PSr rats, the basal CBF was higher, and endothelial dysfunction was attenuated. (2) CBF was inversely correlated with the AI of PS-exposed rats. (3) Endothelial dysfunction was associated with a decrease in eNOS mRNA in PSs rats compared to the PSr and control rats. (4) Brain dopamine was reduced in PSs rats and increased in PSr rats. (5) Plasma corticosterone of PSs was reduced compared to PSr and control rats. (6) A hypercoagulation state was present in PSs rats but not in PSr rats. Thus, potential stress resilience mechanisms that are protective for CBF were identified.
Collapse
|
224
|
Avtaar Singh SS, Nappi F. Pathophysiology and Outcomes of Endothelium Function in Coronary Microvascular Diseases: A Systematic Review of Randomized Controlled Trials and Multicenter Study. Biomedicines 2022; 10:3010. [PMID: 36551766 PMCID: PMC9775403 DOI: 10.3390/biomedicines10123010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Coronary macrovascular disease is a concept that has been well-studied within the literature and has long been the subject of debates surrounding coronary artery bypass grafting (CABG) vs. Percutaneous Coronary Intervention (PCI). ISCHEMIA trial reported no statistical difference in the primary clinical endpoint between initial invasive management and initial conservative management, while in the ORBITA trial PCI did not improve angina frequency score significantly more than placebo, albeit PCI resulted in more patient-reported freedom from angina than placebo. However, these results did not prove the superiority of the PCI against OMT, therefore do not indicate the benefit of PCI vs. the OMT. Please rephrase the sentence. We reviewed the role of different factors responsible for endothelial dysfunction from recent randomized clinical trials (RCTs) and multicentre studies. METHODS A detailed search strategy was performed using a dataset that has previously been published. Data of pooled analysis include research articles (human and animal models), CABG, and PCI randomized controlled trials (RCTs). Details of the search strategy and the methods used for data pooling have been published previously and registered with Open-Source Framework. RESULTS The roles of nitric oxide (NO), endothelium-derived contracting factors (EDCFs), and vasodilator prostaglandins (e.g., prostacyclin), as well as endothelium-dependent hyperpolarization (EDH) factors, are crucial for the maintenance of vasomotor tone within the coronary vasculature. These homeostatic mechanisms are affected by sheer forces and other several factors that are currently being studied, such as vaping. The role of intracoronary testing is crucial when determining the effects of therapeutic medications with further studies on the horizon. CONCLUSION The true impact of coronary microvascular dysfunction (CMD) is perhaps underappreciated, which supports the role of medical therapy in determining outcomes. Ongoing trials are underway to further investigate the role of therapeutic agents in secondary prevention.
Collapse
Affiliation(s)
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord of Saint-Denis, 93200 Saint-Denis, France
| |
Collapse
|
225
|
da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TGD, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol 2022; 13:978378. [PMID: 36467706 PMCID: PMC9714775 DOI: 10.3389/fphys.2022.978378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
The vascular endothelium plays a pivotal role in the maintenance of vascular homeostasis, mediated by vasoactive molecules produced by endothelial cells. The balance between vasoconstrictor and vasodilator biomolecules is what guarantees this equilibrium. Therefore, an increase in the bioavailability of vasoconstrictors along with a reduction in vasodilators may indicate a condition known as endothelial dysfunction. Endothelial dysfunction is marked by an inflammatory process and reduced activity of vasoprotective enzymes, being characterized by some factors like the reduction of the bioavailability of nitric oxide (NO) and increase in the production of reactive oxygen species (ROS), pro-inflammatory and vasoconstrictor molecules. This condition is a predictive marker of several cardiovascular diseases (e.g., atherosclerosis, hypertension, and diabetes). Research is affected by the scarcity of suitable in vitro models that simulate endothelial dysfunction. The goal of this study was to induce an in vitro condition to mimic endothelial dysfunction by inhibiting NO synthesis in cells. Thymus-derived endothelial cells (tEnd.1) were treated with different concentrations of L-NAME (from 1 to 1,000 μM) for different times (12, 24, 48, 72, 96, and 120 h without and with retreatment every 24 h). Cell viability, nitrite concentration, p22phox, NOX2, NOX4, IL-6, and ACE genes expression and lipid peroxidation were evaluated. The results indicate that the treatment with 100 μM L-NAME for 72 h without retreatment reduced NO concentration and NOX4 gene expression while increasing ACE expression, thus mimicking reduced vascular protection and possibly increased vasoconstriction. On the other hand, treatment with 100 μM L-NAME for 96 h with retreatment reduced the concentration of NO and the expression of the p22phox gene while increasing the expression of the IL-6 and ACE genes, mimicking the increase in inflammation and vasoconstriction parameters. Based on these results, we thus propose that both 100 μM L-NAME for 72 h without retreatment and 100 μM L-NAME for 96 h with retreatment may be used as models for in vitro endothelial dysfunction according to the purpose of the study to be conducted.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruna Juber de Araújo
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Carina Santos Cordeiro
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Vinícius Marques Arruda
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Bruno Quintanilha Faria
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Joyce Ferreira Da Costa Guerra
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Thaise Gonçalves De Araújo
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Cristina Ribas Fürstenau
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
226
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel) 2022; 12:1829. [PMID: 36362984 PMCID: PMC9696750 DOI: 10.3390/life12111829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
The incidence of type 2 diabetes (T2DM) has been increasing worldwide and remains one of the leading causes of atherosclerotic disease. Several antidiabetic agents have been introduced in trying to regulate glucose control levels with different mechanisms of action. These agents, and sodium-glucose cotransporter-2 inhibitors in particular, have been endorsed by contemporary guidelines in patients with or without T2DM. Their widespread usage during the last three decades has raised awareness in the scientific community concerning their pleiotropic mechanisms of action, including their putative anti-inflammatory effect. In this review, we delve into the anti-inflammatory role and mechanism of the existing antidiabetic agents in the cardiovascular system and their potential use in other chronic sterile inflammatory conditions.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
227
|
Theofilis P, Vordoni A, Kalaitzidis RG. Metabolic Dysfunction-Associated Fatty Liver Disease in the National Health and Nutrition Examination Survey 2017-2020: Epidemiology, Clinical Correlates, and the Role of Diagnostic Scores. Metabolites 2022; 12:1070. [PMID: 36355156 PMCID: PMC9697527 DOI: 10.3390/metabo12111070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/10/2023] Open
Abstract
The recent establishment of metabolic dysfunction-associated fatty liver disease (MAFLD) has led to a reevaluation of its epidemiology, diagnosis, and clinical implications. In this study, we aimed to evaluate MAFLD's epidemiology and its association with other pathologic states and biomarkers, as well as to assess the prevalence of the different fibrosis stages in the MAFLD population, together with the importance of diagnostic scores in the preliminary determination of significant fibrosis. After analyzing the National Health and Nutrition Examination Survey (NHANES) 2017-2020, we found a high prevalence of MAFLD, at 58.6% of the studied population. MAFLD was accompanied by numerous comorbidities, which were increasingly common in individuals with higher grades of liver fibrosis. Fatty liver index emerged as a reliable indicator of MAFLD, as well as significant fibrosis. The estimation of fatty liver index could be a reasonable addition to the evaluation of patients with metabolic risk factors and could lead a diagnosis in the absence of liver elastography or biopsy. Further studies are needed to enhance our knowledge regarding its prognosis, as well as the role of novel therapies in its prevention or regression.
Collapse
|
228
|
da Costa Salomé D, de Freitas RHCN, Fraga CAM, Fernandes PD. Novel Regioisomeric Analogues of Naphthyl- N-Acylhydrazone Derivatives and Their Anti-Inflammatory Effects. Int J Mol Sci 2022; 23:13562. [PMID: 36362349 PMCID: PMC9657883 DOI: 10.3390/ijms232113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND When homeostasis is disturbed it can result in a pathological event named inflammation. The main drugs used in the treatment consist of non-steroidal and steroidal anti-inflammatory drugs. However, the side effects remain an obstacle during the treatments. In this study, we aimed to evaluate three new regioisomers analogues of naphthyl-N-acylhydrazone derivatives. METHODS Acute models of inflammation in vivo (formalin-induced licking and carrageenan-induced inflammation) as well as in vitro were used to evaluate the effects of LASSBio-2039, LASSBio-2040, and LASSBio-2041. RESULTS All three substances (at 1, 10 or 30 µmol/kg) presented significant effects in the in vivo model reducing leukocyte migration, nitric oxide (NO) and interleukin-1β production. It was observed that only LASSBio-2039 significantly reduced cell migration in vitro. None of the LASSBios affected inducible nitric oxide synthase activity nor presented nitric oxide (NO) scavenger effect. No toxic effect was observed, either in vivo or in vitro. The new regioisomers analogues of naphthyl-N-acylhydrazone derivatives presented significant anti-inflammatory activity, suggesting LASSBio-2039 has a direct effect in leukocytes migratory capacity. CONCLUSIONS Taken together, the data indicate that these substances present promising effects for the development of a prototype for new drugs.
Collapse
Affiliation(s)
- Dayana da Costa Salomé
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Rosana Helena Coimbra Nogueira de Freitas
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Patricia Dias Fernandes
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
229
|
Is It All about Endothelial Dysfunction? Focusing on the Alteration in Endothelial Integrity as a Key Determinant of Different Pathological Mechanisms. Biomedicines 2022; 10:biomedicines10112757. [PMID: 36359277 PMCID: PMC9687329 DOI: 10.3390/biomedicines10112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
230
|
Theofilis P, Vordoni A, Kalaitzidis RG. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J Gastroenterol 2022; 28:5691-5706. [PMID: 36338895 PMCID: PMC9627426 DOI: 10.3748/wjg.v28.i39.5691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
The recently proposed nomenclature change from non-alcoholic fatty liver disease to metabolic dysfunction-associated fatty liver disease (MAFLD) has resulted in the reappraisal of epidemiological trends and associations with other chronic diseases. In this context, MAFLD appears to be tightly linked to incident chronic kidney disease (CKD). This association may be attributed to multiple shared risk factors including type 2 diabetes mellitus, arterial hypertension, obesity, dyslipidemia, and insulin resistance. Moreover, similarities in their molecular pathophysiologic mechanisms can be detected, since inflammation, oxidative stress, fibrosis, and gut dysbiosis are highly prevalent in these pathologic states. At the same time, lines of evidence suggest a genetic predisposition to MAFLD due to gene polymorphisms, such as the PNPLA3 rs738409 G allele polymorphism, which may also propagate renal dysfunction. Concerning their management, available treatment considerations for obesity (bariatric surgery) and novel antidiabetic agents (glucagon-like peptide 1 receptor agonists, sodium-glucose co-transporter 2 inhibitors) appear beneficial in preclinical and clinical studies of MAFLD and CKD modeling. Moreover, alternative approaches such as melatonin supplementation, farnesoid X receptor agonists, and gut microbiota modulation may represent attractive options in the future. With a look to the future, additional adequately sized studies are required, focusing on preventing renal complications in patients with MAFLD and the appropriate management of individuals with concomitant MAFLD and CKD.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Aikaterini Vordoni
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| |
Collapse
|
231
|
Theofilis P, Vordoni A, Kalaitzidis RG. Oxidative Stress Management in Cardiorenal Diseases: Focus on Novel Antidiabetic Agents, Finerenone, and Melatonin. Life (Basel) 2022; 12:1663. [PMID: 36295098 PMCID: PMC9605243 DOI: 10.3390/life12101663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is characterized by excessive production of reactive oxygen species together with exhausted antioxidant defenses. This constitutes a main pathophysiologic process that is implicated in cardiovascular and renal diseases. In particular, enhanced oxidative stress may lead to low-density lipoprotein accumulation and oxidation, endothelial cell activation, adhesion molecule overexpression, macrophage activation, and foam cell formation, promoting the development and progression of atherosclerosis. The deleterious kidney effects of oxidative stress are numerous, including podocytopathy, mesangial enlargement, renal hypertrophy, tubulointerstitial fibrosis, and glomerulosclerosis. The prominent role of oxidative mechanisms in cardiorenal diseases may be counteracted by recently developed pharmacotherapies such as novel antidiabetic agents and finerenone. These agents have demonstrated significant antioxidant activity in preclinical and clinical studies. Moreover, the use of melatonin as a treatment in this field has been experimentally investigated, with large-scale clinical studies being awaited. Finally, clinical implications and future directions in this field are presented.
Collapse
Affiliation(s)
| | | | - Rigas G. Kalaitzidis
- Center for Nephrology “G. Papadakis”, General Hospital of Nikaia-Piraeus Agios Panteleimon, 18454 Piraeus, Greece
| |
Collapse
|
232
|
da Silva MC, dos Santos VM, da Silva MVB, Prazeres TCMM, Cartágenes MDSS, Calzerra NTM, de Queiroz TM. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front Mol Biosci 2022; 9:1032177. [PMID: 36310604 PMCID: PMC9614329 DOI: 10.3389/fmolb.2022.1032177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ (TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension, especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation, induction of renal damage and cardiac hypertrophy. Activation of Mas receptor (MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous molecule, which is an essential factor of vascular homeostasis and blood pressure control. On the other hand, TNF-ɑ has demonstrated to stimulate a decrease in nitric oxide bioavailability, triggering a disrupt in endothelium-dependent vasorelaxation. In spite of the previous studies, little knowledge is available about the involvement of the metalloprotease 17 and the NO pathways. Here we will provide an overview of the role of ADAM17 and Its mechanisms implicated with the NO formation.
Collapse
Affiliation(s)
- Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Vanessa Maria dos Santos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Matheus Vinícius B. da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | | | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- *Correspondence: Thyago Moreira de Queiroz,
| |
Collapse
|
233
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int Immunopharmacol 2022; 111:109080. [PMID: 35908505 DOI: 10.1016/j.intimp.2022.109080] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inhibition of sodium-glucose cotransporter-2 (SGLT2) has received remarkable attention due to the beneficial effects observed in diabetes mellitus, heart failure, and kidney disease. Several mechanisms have been proposed for these pleiotropic effects, including anti-inflammatory ones. Our systematic review and meta-analysis aimed to assess the effect of SGLT2 inhibition on inflammatory markers in experimental models. METHODS A literature search was conducted to detect studies examining the effect of SGLT2 inhibitors on inflammatory markers [interleukin-6 (IL-6), C reactive protein (CRP), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1)]. Consequently, a meta-analysis of the included studies was performed, assessing the differences in the levels of the inflammatory markers between the treatment groups as its primary outcome. Moreover, risk of bias, sensitivity analysis and publication bias were evaluated. RESULTS The systematic literature review yielded 30 studies whose meta-analysis suggested that treatment with an SGLT2 inhibitor resulted in decreases of IL-6 [standardized mean difference (SMD): -1.56, 95% CI -2.06 to -1.05), CRP (SMD: -2.17, 95% CI -2.80 to -1.53), TNF-α (SMD: -1.75, 95% CI -2.14 to -1.37), and MCP-1 (SMD: -2.04, 95% CI -2.91 to -1.17). The effect on CRP and TNF-α was of lesser magnitude in cases of empagliflozin use. Moderate-to-substantial heterogeneity and possible publication bias were noted. The findings remained largely unaffected after the sensitivity analyses, the exclusion of outlying studies, and trim-and-fill analyses. CONCLUSION The present meta-analysis suggests that SGLT2 inhibition results in reduction of inflammatory markers in animal models, further validating the suggested anti-inflammatory mechanism of action.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
234
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
235
|
Ponticelli C, Reggiani F, Moroni G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J Pers Med 2022; 12:jpm12101557. [PMID: 36294695 PMCID: PMC9605016 DOI: 10.3390/jpm12101557] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background. Delayed graft function is a frequent complication of kidney transplantation that requires dialysis in the first week posttransplant. Materials and Methods. We searched for the most relevant articles in the National Institutes of Health library of medicine, as well as in transplantation, pharmacologic, and nephrological journals. Results. The main factors that may influence the development of delayed graft function (DGF) are ischemia–reperfusion injury, the source and the quality of the donated kidney, and the clinical management of the recipient. The pathophysiology of ischemia–reperfusion injury is complex and involves kidney hypoxia related to the duration of warm and cold ischemia, as well as the harmful effects of blood reperfusion on tubular epithelial cells and endothelial cells. Ischemia–reperfusion injury is more frequent and severe in kidneys from deceased donors than in those from living donors. Of great importance is the quality and function of the donated kidney. Kidneys from living donors and those with normal function can provide better results. In the peri-operative management of the recipient, great attention should be paid to hemodynamic stability and blood pressure; nephrotoxic medicaments should be avoided. Over time, patients with DGF may present lower graft function and survival compared to transplant recipients without DGF. Maladaptation repair, mitochondrial dysfunction, and acute rejection may explain the worse long-term outcome in patients with DGF. Many different strategies meant to prevent DGF have been evaluated, but only prolonged perfusion of dopamine and hypothermic machine perfusion have proven to be of some benefit. Whenever possible, a preemptive transplant from living donor should be preferred.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Correspondence:
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
236
|
Valatsou A, Theofilis P, Simantiris S, Vogiatzi G, Briasoulis A, Sagris M, Oikonomou E, Antonopoulos AS, Pantopoulou A, Nasiri-Ansari N, Fragopoulou E, Perrea D, Tsioufis K, Tousoulis D. Granulocyte Colony-Stimulating Factor Ameliorates Endothelial Activation and Thrombotic Diathesis Biomarkers in a Murine Model of Hind Limb Ischemia. Biomedicines 2022; 10:2303. [PMID: 36140404 PMCID: PMC9496113 DOI: 10.3390/biomedicines10092303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Novel therapies in peripheral arterial disease, such as granulocyte colony-stimulating factor (GCSF) administration, might result in anti-atherosclerotic effects. In this study, we used 10-week-old male ApoE-/- mice, which were fed an atherosclerosis-inducing diet for four weeks. At the end of the four weeks, hind limb ischemia was induced through left femoral artery ligation, the atherosclerosis-inducing diet was discontinued, and a normal diet was initiated. Mice were then randomized into a control group (intramuscular 0.4 mL normal saline 0.9% for 7 days) and a group in which GCSF was administrated intramuscularly in the left hind limb for 7 days (100 mg/kg). In the GCSF group, but not in the control group, we observed significant reductions in the soluble adhesion molecules (vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1)), sE-Selectin, and plasminogen activator inhibitor (PAI)-1 when they were measured through ELISA on the 1st and the 28th days after hind limb ischemia induction. Therefore, GCSF administration in an atherosclerotic mouse model of hind limb ischemia led to decreases in the biomarkers associated with endothelial activation and thrombosis. These findings warrant further validation in future preclinical studies.
Collapse
Affiliation(s)
- Angeliki Valatsou
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Panagiotis Theofilis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Spyridon Simantiris
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Georgia Vogiatzi
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- Third Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexandros Briasoulis
- Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Marios Sagris
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- Third Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Alkistis Pantopoulou
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, University of Athens Medical School, 11527 Athens, Greece
| | - Narjes Nasiri-Ansari
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, University of Athens Medical School, 11527 Athens, Greece
| | - Elizabeth Fragopoulou
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, University of Athens Medical School, 11527 Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
237
|
Shi W, Liu H, Cao L, He Y, Su P, Chen J, Wang M, Li X, Bai S, Tang D. Acute effect of high-intensity interval exercise on vascular endothelial function and possible mechanisms of wall shear stress in young obese males. Front Physiol 2022; 13:966561. [PMID: 36187796 PMCID: PMC9523906 DOI: 10.3389/fphys.2022.966561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Objective: To investigate the mechanisms of wall shear stress (WSS) responsible for the effects of high-intensity interval exercise (HIIE) on vascular endothelial function in young obese males. Methods: A within-subject study design was used. We examined the response of the reactive hyperemia index (RHI) to acute HIIE in young obese males (n = 20, age = 20.38 ± 1.40 years, body mass index [BMI] = 31.22 ± 3.57, body fat percentage [BF (%)] = 31.76 ± 3.57). WSS was manipulated using 100, 80, or 60 mmHg cuff inflation during the HIIE to determine the proper inflation capable of maintaining WSS near baseline levels. One-way repeated measures analysis of variance and LSD post hoc tests were performed to compare changes in WSS and vascular endothelial function at baseline HIIE and following HIIE using different cuff inflations. Results: There were no significant differences in RHI and WSS between the three cuff inflation values (p > 0.05). WSS was significantly higher in obese male individuals after HIIE and HIIE with 100 mmHg cuff inflation (p = 0.018, p = 0.005) than that at baseline, with no significant differences observed comparing HIIE and HIIE with 100 mmHg inflation (p = 0.23). The RHI after HIIE was significantly higher (p = 0.012) than that at baseline, while no significant differences were detected after HIIE at 100 mmHg (p = 0.91). The RHI was significantly lower after HIIE with 100 mmHg than that after HIIE (p = 0.007). WSS (p = 0.004) and RHI (p = 0.017) were significantly higher after HIIE than that at baseline, while no significant differences were observed after HIIE with either 80 or 60 mmHg cuff inflation (baseline vs. HIIE + 80 mmHg: WSS: p = 0.33, RHI: p = 0.38; baseline vs. HIIE + 60 mmHg: WSS: p = 0.58, RHI: p = 0.45). WSS was similar to HIIE, after HIIE with either 80 or 60 mmHg inflation (p = 0.36, p = 0.40). However, RHI was significantly higher for HIIE than for HIIE with both 80 and 60 mmHg inflation (p = 0.011, p = 0.006). Conclusion: HIIE could significantly improve WSS and vascular endothelial function. HIIE intervention with 60 or 80 mmHg inflation might enhance WSS near the baseline level. HIIE-induced acute changes in WSS may provide the primary physiological stimulus for vascular endothelial adaptation to HIIE in young obese males.
Collapse
Affiliation(s)
- Wenxia Shi
- College of P.E. and Sport, Beijing Normal University, Beijing, China
| | - Haibin Liu
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian, China
| | - Ling Cao
- Sinopec Research Institute of Petroleum Processing, Beijing, China
| | - Yufeng He
- College of P.E. and Sport, Beijing Normal University, Beijing, China
| | - Pei Su
- College of P.E. and Sport, Beijing Normal University, Beijing, China
| | - Jiangang Chen
- College of P.E. and Sport, Beijing Normal University, Beijing, China
| | - Mengyue Wang
- College of P.E. and Sport, Beijing Normal University, Beijing, China
| | - Xulong Li
- Department of P.E., Qingdao University of Technology, Qingdao, China
| | - Shuang Bai
- Capital Institute of Physical Education and Sports, Beijing, China
| | - Donghui Tang
- College of P.E. and Sport, Beijing Normal University, Beijing, China
- *Correspondence: Donghui Tang,
| |
Collapse
|
238
|
Zhu X, Cheang I, Xu F, Gao R, Liao S, Yao W, Zhou Y, Zhang H, Li X. Long-term prognostic value of inflammatory biomarkers for patients with acute heart failure: Construction of an inflammatory prognostic scoring system. Front Immunol 2022; 13:1005697. [PMID: 36189198 PMCID: PMC9520349 DOI: 10.3389/fimmu.2022.1005697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/01/2022] [Indexed: 02/05/2023] Open
Abstract
Objective Systemic inflammation is associated with a poor prognosis in acute heart failure (AHF). This study was to assess the long-term prognostic value of combining the accessible inflammatory markers in relation to all-cause mortality in patients with AHF. Methods Consecutive patients with AHF who were hospitalized between March 2012 and April 2016 at the Department of Cardiology of the First Affiliated Hospital of Nanjing Medical University were enrolled in this prospective study. The LASSO regression model was used to select the most valuable inflammatory biomarkers to develop an inflammatory prognostic scoring (IPS) system. Kaplan-Meier method, multivariate COX regression and time-dependent ROC analysis were used to assess the relationship between inflammatory markers and AHF prognosis. A randomized survival forest model was used to estimate the relative importance of each inflammatory marker in the prognostic risks of AHF. Results A total of 538 patients with AHF were included in the analysis (mean age, 61.1 ± 16.0 years; 357 [66.4%] men). During a median follow-up of 34 months, there were 227 all-cause deaths (42.2%). C-reactive protein (CRP), red blood cell distribution width (RDW) and neutrophil-to-lymphocyte ratio (NLR) were incorporated into the IPS system (IPS = 0.301×CRP + 0.263×RDW + 0.091×NLR). A higher IPS meant a significantly worse long-term prognosis in Kaplan-Meier analysis, with 0.301 points as the optimal cut-off value (P log-rank <0.001). IPS remained an independent prognostic factor associated with an increased risk of all-cause mortality among patients with AHF in multivariate Cox regression models with a full adjustment of the other significant covariables. Random forest variable importance and minimal depth analysis further validated that the IPS system was the most predictive for all-cause mortality in patients with AHF. Conclusions Inflammatory biomarkers were associated with the risk of all-cause mortality in patients with AHF, while IPS significantly improved the predictive power of the model and could be used as a practical tool for individualized risk stratification of patients with AHF.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Fang Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
239
|
Regulation of Atherosclerosis by Toll-Like Receptor 4 Induced by Serum Amyloid 1: A Systematic In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4887593. [PMID: 36158875 PMCID: PMC9499805 DOI: 10.1155/2022/4887593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the effects of serum amyloid 1 (SAA1) on activation of endothelial cells, formation of foam cells, platelet aggregation, and monocyte/platelet adhesion to endothelial cells. The effect of SAA1 on the inflammatory activation of endothelial cells was investigated by detecting the expression of inflammatory factors and adhesion molecules. The role of SAA1 in formation of foam cells was verified by detecting lipid deposition and expression of molecules related to the formation of foam cells. After platelets were stimulated by SAA1, the aggregation rate was evaluated to determine the effect of SAA1 on platelet aggregation. Monocytes/platelets were cocultured with human umbilical vein endothelial cells (HUVECs) pretreated with or without SAA1 to determine whether SAA1 affected monocyte/platelet adhesion to endothelial cells. By inhibiting toll-like receptor 4 (TLR4) function, we further identified the role of TLR4 signaling in SAA1-mediated endothelial inflammatory activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs. SAA1 significantly increased the expression of adhesion molecules and inflammatory factors in HUVECs. Moreover, SAA1 also promoted lipid deposition and the expression of inflammatory factors and low-density lipoprotein receptor-1 (LOX-1) in THP-1-derived macrophages. In addition, SAA1 induced platelet aggregation and enhanced monocyte/platelet adhesion to HUVECs. However, the TLR4 antagonist significantly inhibited SAA1-induced endothelial cell activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs and downregulated the expression of myeloid differentiation factor 88 (MyD88), phosphor-inhibitor of nuclear factor κB kinase subunit α/β (P-IKKα/β), phospho-inhibitor of nuclear factor κB subunit α (P-IKBα), and phosphorylation of nuclear transcription factor-κB p65 (P-p65) in SAA1-induced HUVECs and THP-1 cells. Conclusively, it is speculated that SAA1 promotes atherosclerosis through enhancing endothelial cell activation, platelet aggregation, foam-cell formation, and monocyte/platelet adhesion to endothelial cells. These biological functions of SAA1 may depend on the activation of TLR4-related nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
240
|
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and Endothelial Cells: Vascular Changes, Intussusceptive Microvascular Growth and Novel Therapeutic Windows. Biomedicines 2022; 10:2242. [PMID: 36140343 PMCID: PMC9496230 DOI: 10.3390/biomedicines10092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial activation in infectious diseases plays a crucial role in understanding and predicting the outcomes and future treatments of several clinical conditions. COVID-19 is no exception. Moving from basic principles to novel approaches, an evolving view of endothelial activation provides insights into a better knowledge of the upstream actors in COVID-19 as a crucial future direction for managing SARS-CoV-2 and other infections. Assessing the function of resting and damaged endothelial cells in infection, particularly in COVID-19, five critical processes emerged controlling thrombo-resistance: vascular integrity, blood flow regulation, immune cell trafficking, angiogenesis and intussusceptive microvascular growth. Endothelial cell injury is associated with thrombosis, increased vessel contraction and a crucial phenomenon identified as intussusceptive microvascular growth, an unprecedented event of vessel splitting into two lumens through the integration of circulating pro-angiogenic cells. An essential awareness of endothelial cells and their phenotypic changes in COVID-19 inflammation is pivotal to understanding the vascular biology of infections and may offer crucial new therapeutic windows.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Donatello Marziliano
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
241
|
Wang S, Zhou Q, Tian Y, Hu X. The Lung Microbiota Affects Pulmonary Inflammation and Oxidative Stress Induced by PM 2.5 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12368-12379. [PMID: 35984995 DOI: 10.1021/acs.est.1c08888] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes respiratory diseases by inducing inflammation and oxidative stress. However, the correlation between the pulmonary microbiota and the progression of pulmonary inflammation and oxidative stress caused by PM2.5 is poorly understood. This study tested the hypothesis that the lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Mice were exposed to PM2.5 intranasally for 12 days. Then, pulmonary microbiota transfer and antibiotic intervention were performed. Histological examinations, biomarker index detection, and transcriptome analyses were conducted. Characterization of the pulmonary microbiota using 16S rRNA gene sequencing showed that its diversity decreased by 75.2% in PM2.5-exposed mice, with increased abundance of Proteobacteria and decreased abundance of Bacteroidota. The altered composition of the microbiota was significantly correlated with pulmonary inflammation and oxidative stress-related indicators. Intranasal transfer of the pulmonary microbiota from PM2.5-exposed mice affected pulmonary inflammation and oxidative stress caused by PM2.5, as shown by increased proinflammatory cytokine levels and dysregulated oxidative damage-related biomarkers. Antibiotic intervention during PM2.5 exposure alleviated pulmonary inflammation and oxidative damage in mice. The pulmonary microbiota also showed substantial changes after antibiotic treatment, as reflected by the increased microbiota diversity, decreased abundance of Proteobacteria and increased abundance of Bacteroidota. These results suggest that pulmonary microbial dysbiosis can promote and affect pulmonary inflammation and oxidative stress during PM2.5 exposure.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
242
|
Baratta F, D'Erasmo L, Bini S, Pastori D, Angelico F, Del Ben M, Arca M, Di Costanzo A. Heterogeneity of non-alcoholic fatty liver disease (NAFLD): Implication for cardiovascular risk stratification. Atherosclerosis 2022; 357:51-59. [PMID: 36058083 DOI: 10.1016/j.atherosclerosis.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
NAFLD is currently considered the most common liver disease worldwide and mounting data support its strong link with atherosclerotic cardiovascular disease (ASCVD). This association is important as cardiovascular disease (CVD) is generally recognized as the leading cause of death in individuals with NAFLD. However, NAFLD represents a heterogeneous condition showing a wide spectrum of clinical and pathophysiological sub-phenotypes with different adverse outcomes ranging from ASCVD to liver damage progression. The contribution to NAFLD pathogenesis of different environmental, metabolic, and genetic factors underlies this heterogeneity. The more frequent phenotype of NAFLD patients is associated with metabolic dysfunctions such as obesity and insulin-resistant syndrome and this has been recently named as Metabolic Associated Fatty Liver disease (MAFLD). However, NAFLD is encountered also in subjects without insulin resistance and metabolic alterations and in whom genetic factors play a major role. It has been suggested that these individuals are at risk of liver disease progression but not of cardiovascular complications. Separating metabolic from genetic factors could be useful in disentangling the intricate relationship between NAFLD and atherosclerosis. In the present review, we aim to address the epidemic of NAFLD, its epidemiologically association with ASCVD complications and the overall mechanisms involved in the pathophysiology of atherosclerotic vascular damage in NAFLD patients. Finally, we will revise the potential role of genetics in identifying disease subtyping and predicting individualised CVD risk.
Collapse
Affiliation(s)
- Francesco Baratta
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Del Ben
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
243
|
Wittkopp S, Wu F, Windheim J, Robinson M, Kannan K, Katz SD, Chen Y, Newman JD. Vascular endothelium as a target for perfluroalkyl substances (PFAs). ENVIRONMENTAL RESEARCH 2022; 212:113339. [PMID: 35447152 PMCID: PMC9233033 DOI: 10.1016/j.envres.2022.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Perfluoroalkyl substances (PFAs) are ubiquitous, anthropogenic organic compounds that have been linked with cardiovascular disease and cardiovascular risk factors. Older, long-chain PFAs have been phased out due to adverse cardiometabolic health effect and replaced by newer short-chain PFAs. However, emerging research suggests that short-chain PFAs may also have adverse cardiovascular effects. Non-invasive measures of vascular function can detect preclinical cardiovascular disease and serve as a useful surrogate for early CVD risk. We hypothesized that serum concentrations of PFAs would be associated with noninvasive measures of vascular function, carotid-femoral pulse wave velocity (PWV) and brachial artery reactivity testing (BART), in adults with non-occupational exposure to PFAs. METHODS We measured serum concentrations of 14 PFAs with hybrid solid-phase extraction and ultrahigh-performance liquid chromatography-tandem mass spectrometry in 94 adult outpatients with no known cardiovascular disease. We collected clinical and demographic data; and measured vascular function, PWV and BART, using standard protocols. We assessed associations of individual PFAs with log-transformed BART and PWV using linear regression. We used weighted quantile sum regression to assess effects of correlated PFA mixtures on BART and PWV. RESULTS Ten PFAs were measured above the limit of detection in >50% of participants. Each standard deviation increase in concentration of perfluoroheptanoic acid (PFHpA) was associated with 15% decrease in BART (95% CI: -28.5, -0.17). The weighted index of a mixture of PFAs with correlated concentrations was inversely associated with BART: each tertile increase in the weighted PFA mixture was associated with 25% lower BART, with 73% of the effect driven by PFHpA. In contrast, no PFAs or mixtures were associated with PWV. CONCLUSIONS Serum concentration of PFHpA, a new, short-chain PFA, was associated with impaired vascular function among outpatients without CVD. Our findings support a potential adverse cardiovascular effect of newer, short-chain PFAs.
Collapse
Affiliation(s)
- Sharine Wittkopp
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 550 First Avenue New York, NY, 10016, USA
| | - Fen Wu
- Department of Population Health, New York University School of Medicine, 180 Madison Avenue, New York, NY, 10016, USA
| | - Joseph Windheim
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Morgan Robinson
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA; Department of Pediatrics, New York University School of Medicine, 145 East 32 Street, 14th floor, New York, NY, 10016, USA
| | - Kurunthachalam Kannan
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA; Department of Pediatrics, New York University School of Medicine, 145 East 32 Street, 14th floor, New York, NY, 10016, USA
| | - Stuart D Katz
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 550 First Avenue New York, NY, 10016, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, 180 Madison Avenue, New York, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Jonathan D Newman
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 550 First Avenue New York, NY, 10016, USA.
| |
Collapse
|
244
|
To KI, Zhu ZX, Wang YN, Li GA, Sun YM, Li Y, Jin YH. Integrative network pharmacology and experimental verification to reveal the anti-inflammatory mechanism of ginsenoside Rh4. Front Pharmacol 2022; 13:953871. [PMID: 36120306 PMCID: PMC9471259 DOI: 10.3389/fphar.2022.953871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is an innate immune response to infection, and it is the main factor causing bodily injury and other complications in the pathological process. Ginsenoside Rh4 (G-Rh4), a minor ginsenoside of Panax ginseng C. A. Meyer and Panax notoginseng, has excellent pharmacological properties. However, many of its major pharmacological mechanisms, including anti-inflammatory actions, remain unrevealed. In this study, network pharmacology and an experimental approach were employed to elucidate the drug target and pathways of G-Rh4 in treating inflammation. The potential targets of G-Rh4 were selected from the multi-source databases, and 58 overlapping gene symbols related to G-Rh4 and inflammation were obtained for generating a protein–protein interaction (PPI) network. Molecular docking revealed the high affinities between key proteins and G-Rh4. Gene ontology (GO) and pathway enrichment analyses were used to analyze the screened core targets and explore the target–pathway networks. It was found that the JAK-STAT signaling pathway, TNF signaling pathway, NF-κB signaling pathway, and PI3K-Akt signaling pathway may be the key and main pathways of G-Rh4 to treat inflammation. Additionally, the potential molecular mechanisms of G-Rh4 predicted from network pharmacology analysis were validated in RAW264.7 cells. RT-PCR, Western blot, and ELISA analysis indicated that G-Rh4 significantly inhibited the production of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as well as inflammation-related enzymes in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Moreover, in vitro experiments evaluated that Ginsenoside Rh4 exerts anti-inflammatory effects via the NF-κB and STAT3 signaling pathways. It is believed that our study will provide the basic scientific evidence that G-Rh4 has potential anti-inflammatory effects for further clinical studies.
Collapse
|
245
|
Yu M, Hong K, Adili R, Mei L, Liu L, He H, Guo Y, Chen YE, Holinstat M, Schwendeman A. Development of activated endothelial targeted high-density lipoprotein nanoparticles. Front Pharmacol 2022; 13:902269. [PMID: 36105190 PMCID: PMC9464908 DOI: 10.3389/fphar.2022.902269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
Endothelial inflammation is an important pathophysiological driving force in various acute and chronic inflammatory diseases. High-density lipoproteins (HDLs) play critical roles in regulating endothelial functions and resolving endothelial inflammation. In the present study, we developed synthetic HDLs (sHDLs) which actively target inflamed endothelium through conjugating vascular cell adhesion protein 1 (VCAM-1) specific VHPK peptide. The active targeting of VHPK-sHDLs was confirmed in vitro on TNF-α activated endothelial cells. VHPK-sHDLs presented potent anti-inflammatory efficacies in vitro through the reduction of proinflammatory cytokine production and inhibition of leukocyte adhesion to activated endothelium. VHPK-sHDLs showed increased binding on inflamed vessels and alleviated LPS-induced lung inflammation in vivo. The activated endothelium-targeted sHDLs may be further optimized to resolve endothelial inflammation in various inflammatory diseases.
Collapse
Affiliation(s)
- Minzhi Yu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kristen Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Lisha Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongliang He
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
246
|
Pablo-Moreno JAD, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 2022; 23:ijms23158283. [PMID: 35955419 PMCID: PMC9425441 DOI: 10.3390/ijms23158283] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.
Collapse
Affiliation(s)
- Juan A. De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Javier Serrano
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Revuelta
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, 41013 Sevilla, Spain;
| | - Antonio Liras
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
- Correspondence:
| |
Collapse
|
247
|
González-Rámila S, Mateos R, García-Cordero J, Seguido MA, Bravo-Clemente L, Sarriá B. Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans. Foods 2022; 11:foods11152186. [PMID: 35892771 PMCID: PMC9331821 DOI: 10.3390/foods11152186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Olive pomace oil (OPO) is mainly a source of monounsaturated fat together with a wide variety of bioactive compounds, such as triterpenic acids and dialcohols, squalene, tocopherols, sterols and aliphatic fatty alcohols. To date, two long-term intervention studies have evaluated OPO’s health effects in comparison with high oleic sunflower oil (HOSO, study-1) and sunflower oil (SO, study-2) in healthy and cardiovascular risk subjects. The present study integrates the health effects observed with the three oils. Two randomized, blinded, cross-over controlled clinical trials were carried out in 65 normocholesterolemic and 67 moderately hypercholesterolemic subjects. Each study lasted fourteen weeks, with two four-week intervention phases (OPO versus HOSO or SO), each preceded by a three-week run-in or washout period. Regular OPO consumption reduced total cholesterol (p = 0.017) and LDL cholesterol (p = 0.018) levels as well as waist circumference (p = 0.026), and only within the healthy group did malondialdehyde (p = 0.004) levels decrease after OPO intake versus HOSO. Contrarily, after the SO intervention, apolipoprotein (Apo) B (p < 0.001) and Apo B/Apo A ratio (p < 0.001) increased, and to a lower extent Apo B increased with OPO. There were no differences between the study groups. OPO intake may improve cardiometabolic risk, particularly through reducing cholesterol-related parameters and waist circumference in healthy and hypercholesterolemic subjects.
Collapse
|
248
|
Theofilis P, Sagris M, Antonopoulos AS, Oikonomou E, Tsioufis K, Tousoulis D. Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques. Tomography 2022; 8:1742-1758. [PMID: 35894012 PMCID: PMC9326642 DOI: 10.3390/tomography8040147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Marios Sagris
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| |
Collapse
|
249
|
Theofilis P, Vordoni A, Kalaitzidis RG. COVID-19 and Kidney Disease: A Clinical Perspective. Curr Vasc Pharmacol 2022; 20:321-325. [PMID: 35570566 DOI: 10.2174/1570161120666220513103007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome Coronavirus- 2 (SARS-CoV-2), has caused a global pandemic with high morbidity and mortality. The presence of several comorbidities has been associated with a worse prognosis, with chronic kidney disease being a critical risk factor. Regarding COVID-19 complications, other than classical pneumonia and thromboembolism, acute kidney injury (AKI) is highly prevalent and represents a poor prognostic indicator linked to increased disease severity and mortality. Its pathophysiology is multifactorial, revolving around inflammation, endothelial dysfunction, and activation of coagulation, while the direct viral insult of the kidney remains a matter of controversy. Indirectly, COVID-19 AKI may stem from sepsis, volume depletion, and administration of nephrotoxic agents, among others. Several markers have been proposed for the early detection of COVID-19 AKI, including blood and urinary inflammatory and kidney injury biomarkers, while urinary SARS-CoV-2 load may also be an early prognostic sign. Concerning renal replacement therapy (RRT), general principles apply to COVID-19 AKI, but sudden RRT surges may mandate adjustments in resources. Following an episode of COVID-19 AKI, there is a gradual recovery of kidney function, with pre-existing renal impairment and high serum creatinine at discharge being associated with kidney disease progression and long-term dialysis dependence. Finally, kidney transplant recipients represent a special patient category with increased susceptibility to COVID- 19 and subsequent high risk of severe disease progression. Rates of mortality, AKI, and graft rejection are significantly elevated in the presence of COVID-19, highlighting the need for prevention and careful management of the disease in this subgroup.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Department of Nephrology, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454, Greece
| | - Aikaterini Vordoni
- Department of Nephrology, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454, Greece
| | - Rigas G Kalaitzidis
- Department of Nephrology, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454, Greece
| |
Collapse
|
250
|
Sagris M, Katsaros I, Giannopoulos S, Rosenberg RD, Altin SE, Rallidis L, Mena-Hurtado C, Armstrong EJ, Kokkinidis DG. Statins and statin intensity in peripheral artery disease. VASA 2022; 51:198-211. [PMID: 35673949 DOI: 10.1024/0301-1526/a001012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Peripheral artery disease (PAD) affects more than 202 million people worldwide. Several studies have shown that patients with PAD are often undertreated, and that statin utilization is suboptimal. European and American guidelines highlight statins as the first-line lipid-lowering therapy to treat patients with PAD. Our objective with this meta-analysis was to further explore the impact of statins on lower extremities PAD endpoints and examine whether statin dose (high vs. low intensity) impacts outcomes. Patients and methods: We performed a systematic review and meta-analysis according to the PRISMA guidelines. Any study that presented a comparison of use of statins vs. no statins for PAD patients or studies comparing high vs. low intensity statins were considered to be potentially eligible. We excluded studies with only critical limb threatening ischemia (CLTI) patients. The Medline (PubMed) database was searched up to January 31, 2021. A random effects meta-analysis was performed. Results: In total, 39 studies and 275,670 patients were included in this meta-analysis. In total, 136,025 (49.34%) patients were on statins vs. 139,645 (50.66%) who were not on statins. Statin use was associated with a reduction in all cause-mortality by 42% (HR: 0.58, 95% CI: 0.49-0.67, p<0.01) and cardiovascular death by 43% (HR: 0.57, 95% CI: 0.40-0.74, p<0.01). Statin use was associated with an increase in amputation-free survival by 56% (HR: 0.44, 95% CI: 0.30-0.58, p<0.01). The risk of amputation and loss of patency were reduced by 35% (HR: 0.65, 95% CI: 0.41-0.89, p<0.01) and 46% (HR: 0.54, 95% CI: 0.34-0.74, p<0.01), respectively. Statin use was also associated with a reduction in the risk of major adverse cardiovascular events (MACE) by 35% (HR: 0.65, 95% CI: 0.51-0.80, p<0.01) and myocardial infarction rates by 41% (HR: 0.59, 95% CI: 0.33-0.86, p<0.01). Among patients treated with statins, the high-intensity treatment group was associated with a reduction in all cause-mortality by 36% (HR: 0.64, 95% CI: 0.54-0.74, p<0.01) compared to patients treated with low intensity statins. Conclusions: Statin treatment among patients with PAD was associated with a statistically significant reduction in all-cause mortality, cardiovascular mortality, MACE, risk for amputation, or loss of patency. Higher statin dose seems to be associated with improved outcomes.
Collapse
Affiliation(s)
- Marios Sagris
- Department of Internal Medicine, General Hospital of Nikaia, Piraeus, Athens, Greece
| | | | - Stefanos Giannopoulos
- Division of Vascular and Endovascular Surgery, Department of Surgery, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Russell D Rosenberg
- Section of Cardiovascular Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA.,Vascular Medicine Outcomes Program, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - S Elissa Altin
- Section of Cardiovascular Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA
| | - Loukianos Rallidis
- Department of Cardiology, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Greece
| | - Carlos Mena-Hurtado
- Vascular Medicine Outcomes Program, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ehrin J Armstrong
- Adventist Heart & Vascular Institute, Adventist Health St. Helena, CA, USA
| | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|