201
|
S S, Ss A, S SB, Hk V, Pv M. Determination of the bioavailability of zinc oxide nanoparticles using ICP-AES and associated toxicity. Colloids Surf B Biointerfaces 2019; 188:110767. [PMID: 31923775 DOI: 10.1016/j.colsurfb.2019.110767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 01/14/2023]
Abstract
Advancement in nanotechnology has brought abundant number of products and materials in multiple fields including biomedicine owing to their unique physico-chemical properties. This further necessitates toxicity assessment of nanoparticles (NPs) before they are employed for product fabrication, medicinal, environmental or industrial purposes. Zinc oxide nanoparticles (ZnONPs) belong to the category of metal oxide NPs and hold quite a lot of possibilities to be applied in aforementioned scenarios. Present study addresses the probable outcomes of bio-nano interaction of ZnONPs with healthy adult Wistar rats. Sphere head shaped ZnONPs were synthesized via wet chemical method. Physico-chemical characterization was performed using number of sophisticated techniques including HR-TEM, Zeta potential analysis, TGA and XRD. Size of the particles was found to be 43 nm and ensured homogenous distribution with high purity. For in vivo studies, as synthesized NPs were administered into rats via intravenous (i.v.) and intraperitoneal (i.p.) routes. Animals were sacrificed on 3rd, 14th and 21st day of exposure. Metabolically relevant tissues like brain, liver, kidneys and spleen were isolated and analyzed for different parameters like gross pathology, haematology, neurotoxicity, target organ toxicity, immunotoxicity etc. Results suggests that ZnONPs did not elicit significant toxic responses in rat except a few anomalies with histology, ion content and antioxidant system within liver; thereby confirming potent hepatotoxicity. Hence the study recommends adopting surface functionalization strategies for reducing toxic response of ZnONPs during various application rationales.
Collapse
Affiliation(s)
- Sudhakaran S
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Athira Ss
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Suresh Babu S
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Varma Hk
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Mohanan Pv
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
202
|
Photocatalysis as a Tool for in Vitro Drug Metabolism Simulation: Multivariate Comparison of Twelve Metal Oxides on a Set of Twenty Model Drugs. Catalysts 2019. [DOI: 10.3390/catal10010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The constant development in the area of medicinal substances on the market and their subsequent progress in the field of drug analysis has become one of the reasons for the search for alternative, cheaper, and faster methods to determine the metabolism pathways of new molecular entities (NMEs). The simulation of transformation processes using photocatalysis is considered to be one of the promising methods. Although its effectiveness has been proven, the research has so far focused especially on titanium dioxide, while a more accurate comparison of the suitability of different photocatalysts in terms of their use in drug metabolism studies has not been performed. For this purpose, a set of twelve metal oxides was prepared and their photocatalytic efficiency in the direction of drug metabolism mimicking was checked on a model mixture of twenty medicinal substances differing both in chemical structure and pharmacological properties. Incubation with human liver microsomes (HLMs) was used as the reference method. The metabolic profiles obtained with the use of LC-MS analysis were compared using multidimensional chemometric techniques; and the graphic presentation of the results in the form of PCA plot and cluster dendrogram enabled their detailed interpretation and discussion. All tested photocatalysts confirmed their effectiveness. However, the exact outcome of the study indicate advantage of the WO3-assisted photocatalysis over other metal oxides.
Collapse
|
203
|
|
204
|
Asadi Dokht Lish R, Johari SA, Sarkheil M, Yu IJ. On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113358. [PMID: 31614246 DOI: 10.1016/j.envpol.2019.113358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 05/02/2023]
Abstract
The genus Artemia sp. has been accepted as a reliable model organism for aquatic toxicity and nanotoxicity experiments, as far as the ISO TS 20787 has recently been published to standardize nanotoxicity test with this organism. Experimental and environmental conditions may affect the toxicity of nanomaterials on aquatic organisms including Artemia sp. nauplii. In this study, acute toxicity effects of silver nanoparticles (AgNPs) on the nauplii of Artemia salina was investigated under various conditions (e.g. different lights, salinities, temperatures, volume and agitation of exposure media and instar stages of nauplii). The EC values were calculated using Probit program and all data were analyzed statistically by SPSS software. At all test conditions, the immobilization rate of Artemia nauplii increased in a concentration-dependent manner (P < 0.05). The sensitivity of instar stage II to different concentrations of AgNPs was significantly higher than instar I (P < 0.05). The toxicity effect of AgNPs was affected by alteration of environmental conditions, so that the effective concentration (EC) values for instar I of A. salina decreased with increasing water temperature, decreasing water salinity and in continuous darkness condition. The EC50 value of AgNPs was significantly lower in 100 mL beakers (21.35 ± 5.67 mg L-1) than 10 mL well plates (42.44 ± 11.30 mg L-1). Agitation of exposure media did not affect the toxicity of AgNPs. The results indicated that the experimental and environmental conditions influence on the toxicity of AgNPs in the nauplii of A. salina.
Collapse
Affiliation(s)
- Reyhaneh Asadi Dokht Lish
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Il Je Yu
- HCTm CO., LTD., Icheon, Republic of Korea
| |
Collapse
|
205
|
Ogunkunle CO, Bornmann B, Wagner R, Fatoba PO, Frahm R, Lützenkirchen-Hecht D. Copper uptake, tissue partitioning and biotransformation evidence by XANES in cowpea (Vigna unguiculata L) grown in soil amended with nano-sized copper particles. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
206
|
Moatamed ER, Hussein AA, El-Desoky MM, Khayat ZE. Comparative study of zinc oxide nanoparticles and its bulk form on liver function of Wistar rat. Toxicol Ind Health 2019; 35:627-637. [PMID: 31694480 DOI: 10.1177/0748233719878970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are produced in high tonnage each year; they are widely used in consumer and industrial products, also now finding applications in bioimaging and drug delivery. In the present study, comparison between ZnO NPs (39 nm) and its bulk/micron form (particle size = 5 µm) on liver function of rats was determined. In our study, liver enzymes biomarkers, serum lipid profile, zinc concentration, and histopathological examination in liver tissues were used to evaluate liver injury. Moreover, lipid peroxidation (malondialdehyde), nitric oxide, and reduced glutathione levels were determined to detect the oxidation-reduction process in liver tissue. The results showed dose-dependent toxicity of ZnO NPs. Three different dose levels (25, 50, and 100 mg/kg bw) were used, and the 100-mg/kg bw ZnO NPs group showed the most significant changes in liver enzymes and histopathological structure, as well as redox state. The dose of 100 mg/kg bw of ZnO bulk group showed no significant effects on liver function. The study concluded that ZnO NPs caused hepatic impairments.
Collapse
Affiliation(s)
| | | | | | - Zakaria El Khayat
- Department of Medical Biochemistry, National Research Center, Cairo, Egypt
| |
Collapse
|
207
|
CuO Nanoparticle-Protein Bioconjugate: Characterization of CuO Nanoparticles for the Study of the Interaction and Dynamic of Energy Transfer with Bovine Serum Albumin. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00687-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
208
|
Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Indexed: 05/25/2023]
Abstract
The marriage of nanotechnology and medicine offers new opportunities to fight against human diseases. Benefiting from their unique optical, thermal, magnetic, or redox properties, a wide range of nanomaterials have shown potential in applications such as diagnosis, drug delivery, or tissue repair and regeneration. Despite the considerable success achieved over the past decades, the newly emerging nanomedicines still suffer from an incomplete understanding of their safety risks, and of the relationships between their physicochemical characteristics and safety profiles. Herein, the most important categories of nanomaterials with clinical potential and their toxicological mechanisms are summarized, and then, based on this available information, an overview of the principles in developing safe-by-design nanomaterials for medical applications and of the recent progress in this field is provided. These principles may serve as a starting point to guide the development of more effective safe-by-design strategies and to help identify the major knowledge and skill gaps.
Collapse
Affiliation(s)
- Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|
209
|
Parsai T, Kumar A. Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles. CHEMOSPHERE 2019; 235:457-469. [PMID: 31272006 DOI: 10.1016/j.chemosphere.2019.06.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 05/24/2023]
Abstract
The reported presence of mixture of nanoparticles in environmental water warrants developing understanding on their aggregation and fate. This study tried to address this question and focused on understanding effects of pH (3,7 and 10), background electrolyte concentration (1 mM and 10 mM as NaCl) and nanoparticle (NP) concentration (1 and 10 mg/L) on stability of suspension containing mixture of two commonly-found metal oxide-based NP (i.e., ZnO and CuO NPs) in a 6-h study (output variables: aggregation rate constant, settling rate constant, difference in zeta potential, change of metal content in suspension and on aggregates). Two iso-electric point values were obtained: pH 3.08 and 8.33 for mixture suspension in DI (De-ionized) water and pH 5.69 and 8.65 for mixture suspension with 10 mM electrolyte concentration. Settling rate constant and aggregation rate constant values of suspension containing mixture of NPs varied between 0.02 and 0.23 NTU/(NTU-hour) and 0.0002 and 0.03 nm/s, respectively. At natural pH condition, settling rate constant and aggregation rate constant values were obtained to be 0.05 NTU/(NTU- hour) and 0.012 nm/s. The Derjaguin-Landau-Verway-Overbeek (DLVO) analyses indicated that aggregation of mixture of NPs might be happening due to combined effects of ionic layer compression, charge neutralization and van der Waals attraction. Dissolution of nanoparticles was found to be significantly affected by change in pH of suspension. Stability of mixture of nanoparticles was observed to decrease with increasing pH, ionic strength and nanoparticle concentration values. For ZnO and CuO nanoparticles, model equations were developed for predicting their (i) aggregation rate constant, (ii) settling rate constant, (iii) difference in zeta potential, (iv) percentage change of metal in suspension and (v) solid Zn fractions of mixture of nanoparticles as a function of pH, ionic strength and NP concentration. These information are useful in understanding fate of mixture of NPs in suspension as well as in settled solids in natural water bodies and in water treatment systems.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
210
|
Darder M, Karan A, Real GD, DeCoster MA. Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110369. [PMID: 31923961 DOI: 10.1016/j.msec.2019.110369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
Bionanocomposite materials were developed from the assembly of polymer-coated copper-cystine high-aspect ratio structures (CuHARS) and cellulose fibers. The coating of the metal-organic materials with polyallylamine hydrochloride (PAH) allows their covalent linkage to TEMPO-oxidized cellulose by means of EDC/NHS. The resulting materials can be processed as films or macroporous foams by solvent casting and lyophilization, respectively. The films show good mechanical behavior with Young's moduli around 1.5 GPa as well as resistance in water, while the obtained foams show an open network of interconnected macropores with average diameters around 130 μm, depending on the concentration of the initial suspension, and compression modulus values around 450 kPa, similar to other reported freeze-dried nanocellulose-based aerogels. Based on these characteristics, the cellulose/PAH-CuHARS composites are promising for potential biomedical applications as implants or wound dressing materials. They have proved to be effective in the decomposition of low molecular weight S-nitrosothiols (RSNOs), similar to those existing in blood, releasing nitric oxide (NO). This effect is attributed to the presence of copper in the crystalline structure of the CuHARS building unit, which can be gradually released in the presence of redox species like ascorbic acid, typically found in blood. The resulting biomaterials can offer the interesting properties associated with NO, like antimicrobial activity as preliminary tests showed here with Escherichia coli and Staphylococcus epidermidis. In the presence of physiological concentration of RSNOs the amount of generated NO (around 360 nM) is not enough to show bactericidal effect on the studied bacteria, but it could provide other properties inherent to NO even at low concentration in the nM range like anti-inflammatory and anti-thrombotic effects. The cytotoxic effect recorded of the films on rat brain endothelial cells (BMVECs) is least significant and proves them to be friendly enough for further biological studies.
Collapse
Affiliation(s)
- Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain.
| | - Anik Karan
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| | - Gustavo Del Real
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7,5, 28040, Madrid, Spain
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| |
Collapse
|
211
|
Maharramov AM, Hasanova UA, Suleymanova IA, Osmanova GE, Hajiyeva NE. The engineered nanoparticles in food chain: potential toxicity and effects. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1412-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
212
|
Ameh T, Sayes CM. The potential exposure and hazards of copper nanoparticles: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103220. [PMID: 31306862 DOI: 10.1016/j.etap.2019.103220] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 05/26/2023]
Abstract
Copper is an essential element for metabolism in plants and animals. In its nanoform, copper has found various applications, thus increasing potential environmental exposure. Released nanoparticles in the environment undergo various transformation processes while bioaccumulation and toxicity of copper nanoparticles have been demonstrated in plants and animals. This toxicity is thought to be a combined effect of intracellular particles and the release of dissolved copper ions. Oxidative stress responses have been studied in copper nanoparticle induced effects as well as other pathways to cytotoxicity. The antimicrobial potential of copper nanoparticles makes them excellent components for application in biomedicine and more recently, they have been investigated for applications as drug delivery agents in cancer therapy. These properties of copper nanoparticles necessitate a thorough review and understanding of toxic mechanisms of action and the associated implications of exposure to human and environmental health.
Collapse
Affiliation(s)
- Thelma Ameh
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
213
|
Jabeen N, Maqbool Q, Bibi T, Nazar M, Hussain SZ, Hussain T, Jan T, Ahmad I, Maaza M, Anwaar S. Optimised synthesis of ZnO-nano-fertiliser through green chemistry: boosted growth dynamics of economically important L. esculentum. IET Nanobiotechnol 2019; 12:405-411. [PMID: 29768221 DOI: 10.1049/iet-nbt.2017.0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.
Collapse
Affiliation(s)
- Nyla Jabeen
- Applied Biotechnology and Genetic Engineering Lab, Department of Bioinformatics and Biotechnology, International Islamic University Islamabad (IIUI), Islamabad 44000, Pakistan.
| | - Qaisar Maqbool
- National Institute of Vacuum Science and Technology (NINVAST), Islamabad 44000, Pakistan
| | - Tahira Bibi
- Applied Biotechnology and Genetic Engineering Lab, Department of Bioinformatics and Biotechnology, International Islamic University Islamabad (IIUI), Islamabad 44000, Pakistan
| | - Mudassar Nazar
- National Institute of Vacuum Science and Technology (NINVAST), Islamabad 44000, Pakistan
| | - Syed Z Hussain
- Department of Biological Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Talib Hussain
- National Institute of Vacuum Science and Technology (NINVAST), Islamabad 44000, Pakistan
| | - Tariq Jan
- Department of Applied Sciences, National Textile University (NTU), Faisalabad, Pakistan
| | - Ishaq Ahmad
- Experimental Physics Directorate (EPD), National Center for Physics, Islamabad 44000, Pakistan
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Sadaf Anwaar
- Applied Biotechnology and Genetic Engineering Lab, Department of Bioinformatics and Biotechnology, International Islamic University Islamabad (IIUI), Islamabad 44000, Pakistan
| |
Collapse
|
214
|
Forouhar Vajargah M, Mohamadi Yalsuyi A, Sattari M, Prokić MD, Faggio C. Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01664-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
215
|
Vijayakumar S, Malaikozhundan B, Saravanakumar K, Durán-Lara EF, Wang MH, Vaseeharan B. Garlic clove extract assisted silver nanoparticle – Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111558. [DOI: 10.1016/j.jphotobiol.2019.111558] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
|
216
|
Emmanuela de Andrade Vieira J, de Oliveira Ferreira R, Marcel Dos Reis Sampaio D, Pereira da Costa Araújo A, Malafaia G. An insight on the mutagenicity and cytotoxicity of zinc oxide nanoparticles in Gallus gallus domesticus (Phasianidae). CHEMOSPHERE 2019; 231:10-19. [PMID: 31128343 DOI: 10.1016/j.chemosphere.2019.05.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Although the toxicity of zinc oxide (ZnO) nanoparticles (NPs) is known in several experimental models, little is known about their effects on bird representatives. Therefore, the aim of the current study is to evaluate the mutagenic and cytotoxic potential of ZnO NPs in chicks belonging to species Gallus gallus domesticus, as well as to analyze the role played by nuclear and erythrocyte morphological changes as biomarkers of the toxicity of these nanopollutants. Two doses of ZnO NPs (0.245 mg k-1 and 245.26 mg kg-1) were herein tested; they were determined based on the predictive environmental concentration of these NPs (760 μg L-1), on the body biomass of the analyzed animals and on the mean daily water intake/bird. Birds were subjected to two intraperitoneal applications (one per day) of solution containing ZnO NPs; they were euthanized 48 h after the first application. The herein collected data have shown that NPs were capable of inducing the formation of different types of erythrocyte nuclear abnormalities, such as micronucleus, binucleate erythrocytes, blebbed, reniform and multilobulated nuclei, as well as symmetric and asymmetric constriction. In addition, changes in the size and shape of erythrocytes were observed in birds exposed to ZnO NPs. Zn bioaccumulation analysis conducted in brain tissues confirmed the association between these changes and animal exposure to ZnO NPs. Thus, besides confirming the toxicological potential of ZnO NPs, to the best of our knowledge, the current study is the first report on the mutagenic and cytotoxic effects of these NPs on bird representatives.
Collapse
Affiliation(s)
- Julya Emmanuela de Andrade Vieira
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Raíssa de Oliveira Ferreira
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Douglas Marcel Dos Reis Sampaio
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil.
| |
Collapse
|
217
|
Aksakal FI, Ciltas A. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:78-87. [PMID: 31158555 DOI: 10.1016/j.cbpc.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
CuO NPs are nanomaterials with catalytic activity and unique thermo-physical properties used in different fields such as sensors, catalysts, surfactants, batteries, antimicrobials and solar energy transformations. Because of its wide field of use, these nanoparticles accumulate in the aquatic environment and thus lead to toxic effects on aquatic organisms. The toxicological findings about CuO NPs are controversial and these effects of CuO NPs on aquatic organisms have not been elucidated in detail. Therefore, the aim of this study was to investigate the toxic effect of CuO NPs on zebrafish embryos using different parameters including molecular and morphologic. For this purpose, zebrafish embryos at 4 h after post fertilization (hpf) were exposed to different concentrations of CuO NPs (0.5, 1, 1.5 mg/L) until 96 hpf. Mortality, hatching, heartbeat, malformation rates were examined during the exposure period. In addition, Raman spectroscopy was used to determine whether CuO NPs entered into the tissues of zebrafish larvae or not. Moreover, the alterations in the expression of genes related to the antioxidant system and innate immune system were examined in the embryos exposed to CuO NPs during 96 h. The results showed that CuO NPs was not able to enter into the zebrafish embryos/larvae tissues but caused an increased the mortality rate, a delayed hatching, and a decreased heartbeat rate. Moreover, CuO NPs caused several types of abnormalities such as head and tail malformations, vertebral deformities, yolk sac edema, and pericardial edema. RT-PCR results showed that the transcription of mtf-1, hsp70, nfkb and il-1β, tlr-4, tlr-22, trf, cebp was changed by the application of CuO NPs. In conclusion, short-term exposure to CuO NPs has toxic effects on the development of zebrafish embryos.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey.
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
218
|
Nagvenkar A, Perelshtein I, Piunno Y, Mantecca P, Gedanken A. Sonochemical One-Step Synthesis of Polymer-Capped Metal Oxide Nanocolloids: Antibacterial Activity and Cytotoxicity. ACS OMEGA 2019; 4:13631-13639. [PMID: 31497680 PMCID: PMC6713988 DOI: 10.1021/acsomega.9b00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/21/2019] [Indexed: 06/10/2023]
Abstract
Most antibacterial agents demand their action in the form of a liquid for compatibility and ease of use in biosystems, which are mainly composed of biological fluids. Controlling the colloidal stability of metal oxide nanocolloids, in parallel with minimizing the effect of using a large amount of surfactant on their biocidal activity and cytotoxicity, remains a challenge. Here, we address the stability of nanocolloids of ZnO and CuO in the presence of polymer surfactants and the influence of the surface capping on their antibacterial activity and cytotoxicity. The metal oxide nanoparticles (NPs) were synthesized sonochemically in a single step and tested against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus to validate their biocidal efficacy. Cytotoxicity studies were performed on human alveolar epithelial cells. Polyethylene glycol- and polyvinyl alcohol-capped NPs are observed to show the minimum cytotoxicity whereas polyethylene imine-capped and pristine metal oxide NPs are toxic to the mammalian cells. The cytotoxic and antibacterial properties of the stable nanocolloids displayed an inverse relation, highlighting the role and significance of the polymer capping. The nontoxic biocidal nanocolloids showed an effective antibacterial efficacy of 99.9% in 2 h.
Collapse
Affiliation(s)
- Anjani
P. Nagvenkar
- Department
of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ilana Perelshtein
- Department
of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ylenia Piunno
- Department
of Earth and Environmental Sciences, Research Center POLARIS, University of Milano-Bicocca, Milan 20126, Italy
| | - Paride Mantecca
- Department
of Earth and Environmental Sciences, Research Center POLARIS, University of Milano-Bicocca, Milan 20126, Italy
| | - Aharon Gedanken
- Department
of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
219
|
Hassan D, Farghali M, Eldeek H, Gaber M, Elossily N, Ismail T. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. J Microbiol Methods 2019; 165:105698. [PMID: 31446036 DOI: 10.1016/j.mimet.2019.105698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Cryptosporidium is a protozoan of extremely medical and veterinary impact; whose oocysts donate a considerable resistant to the water treatment processes. Therefore, this study aimed to explore the impacts of silver nanoparticles (AgNPs) on count and viability of the Cryptosporidium parvum (CP) isolated from different tap water samples. The oocysts were exposed to AgNPs at different dosages of 0.05, 0.1 and 1 ppm for several contact times (30 min to 4 h). The results showed a significant decrease in oocyst count and viability in a dose-dependent manner. Additionally, AgNPs at a conc. of 1 ppm for 30 min and 0.1 ppm for 1 h reduced the oocysts by 97.2 and 94.4%, respectively. Comparatively, there was a noticeable increase in the oocyst's viability at 2 and 4 h, which emphasized that the time of contact between AgNPs and CP was not a major influencing factor for successful application of AgNPs in the nano-water treatment.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Mohamed Farghali
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt.
| | - Hanan Eldeek
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Mona Gaber
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Nahed Elossily
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Taghreed Ismail
- Public Health and Community Medicine Department, Assiut University, 71526, Egypt
| |
Collapse
|
220
|
Ishida N, Hosokawa Y, Imaeda T, Hatanaka T. Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide. Appl Biochem Biotechnol 2019; 190:645-659. [PMID: 31422560 DOI: 10.1007/s12010-019-03108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Copper (II) oxide nanoparticles (CuO-NPs) have been studied as potential antimicrobial agents, similar to silver or platinum nanoparticles. However, the use of excess NPs is limited by their safety and toxicity in beneficial microflora and human cells. In this study, we evaluated the cytotoxicity of CuO-NPs by coating with a novel cyclic peptide, CuO binding peptide 1 (CuBP1), cyclic-SCATPFSPQVCS, which binds to the surface of CuO-NPs. CuBP1 was identified using biopanning of a T7 phage display system and was found to promote the aggregation of CuO-NPs under mild conditions. The treated CuO-NPs with CuBP1 caused the reduction of the cytotoxicity against Escherichia coli, Lactobacillus helveticus, and five other microorganisms, including bacteria and eukaryotes. Similar effects were also demonstrated against human embryonic kidney (HEK293) cells in vitro. Our findings suggested that the CuO-NPs coated with a surface-binding peptide may have applications as a safe antimicrobial agent without excessive cytotoxic activity against beneficial microflora and human cells. Moreover, a similar tendency may be achieved with other metal particles, such as silver or platinum NPs, by using optimal metal binding peptides.
Collapse
Affiliation(s)
- Nobuhiro Ishida
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Yoichi Hosokawa
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takao Imaeda
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takaaki Hatanaka
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
221
|
Joshi A, Thiel K, Jog K, Dringen R. Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells. Neurochem Res 2019; 44:2156-2169. [DOI: 10.1007/s11064-019-02855-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/11/2023]
|
222
|
Sperdouli I, Moustaka J, Antonoglou O, Adamakis IDS, Dendrinou-Samara C, Moustakas M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2498. [PMID: 31390827 PMCID: PMC6695995 DOI: 10.3390/ma12152498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L-1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (ΦPSΙΙ) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool.. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased ΦPSΙΙ, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis-Dimosthenis S Adamakis
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
223
|
Synthesis and characterization of size-controlled nano-Cu2O deposited on alpha-zirconium phosphate with excellent antibacterial property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:499-504. [DOI: 10.1016/j.msec.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/16/2023]
|
224
|
Kim JH, Ma J, Lee S, Jo S, Kim CS. Effect of Ultraviolet-Ozone Treatment on the Properties and Antibacterial Activity of Zinc Oxide Sol-Gel Film. MATERIALS 2019; 12:ma12152422. [PMID: 31362464 PMCID: PMC6696467 DOI: 10.3390/ma12152422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022]
Abstract
To combat infectious diseases, zinc oxide (ZnO) has been identified as an effective antibacterial agent; however, its performance can be adversely affected by harsh application environments. The ozone impact on ZnO antibacterial film needs to be evaluated prior to its application in an ozone disinfection system. In this study, ZnO films synthesized via sol-gel/spin-coating were subjected to ultraviolet–ozone (UVO) treatment for different periods. Surface investigations using scanning electron microscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy revealed that the treatment-induced film changes. With longer UVO treatment, the surface porosity of the film gradually increased from 5% to 30%, causing the transmittance reduction and absorbance increase in visible-light range. Phase transformation of Zn(OH)2 to ZnO occurred during the first 10 min of UVO treatment, followed by oxygen uptake as a consequence of the reaction with reactive oxygen species generated during UVO treatment. However, despite these surface changes, the satisfactory antibacterial activity of the synthesized ZnO film against Staphylococcus aureus and Escherichia coli was sustained even after 120 min of UVO treatment. This indicates that the UVO-induced surface changes do not have a significant effect on the antibacterial performance and that the ZnO sol-gel film possesses good functional durability in ozone environments.
Collapse
Affiliation(s)
- Ji-Hyeon Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science, 797, Changwon-daero, Sungsan-gu, Changwon 51508, Korea
| | - Junfei Ma
- Advanced Nano-Surface Department, Korea Institute of Materials Science, 797, Changwon-daero, Sungsan-gu, Changwon 51508, Korea
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Seunghun Lee
- Advanced Nano-Surface Department, Korea Institute of Materials Science, 797, Changwon-daero, Sungsan-gu, Changwon 51508, Korea
| | - Sungjin Jo
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Chang Su Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science, 797, Changwon-daero, Sungsan-gu, Changwon 51508, Korea.
| |
Collapse
|
225
|
Esmaeili Govarchin Ghaleh H, Zarei L, Mansori Motlagh B, Jabbari N. Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: synergistic effect in cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1396-1403. [PMID: 30964344 DOI: 10.1080/21691401.2019.1600529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this paper was examining the combined impacts of CuO nanoparticles (CuO NPs), hyperthermia (H), and irradiation (R) on an increment of MCF-7 cells. The MTT assay was employed to assess the antiproliferative effects of CuO NPs (25, 50, and 100 μg/ml), hyperthermia (41 °C for 1 h), and irradiation (200 cGy). Moreover, the perniciousness was estimated through the survival capability of cells, and apoptosis, ROS production, and levels of caspase-3, -8 and -9 proteins were determined. A significant (p < .01) decrease in proliferation index (0.124 ± 0.021), a significant (p < .01) increase in apoptosis (42% ± 1.54) of MCF7 cells, a significant (p < .03) increase in ROS formation (32.16 ± 1.9) and a significant (p < .01) increase in LDH release (33.28 ± 1.56) were recorded in the adjacency of MCF-7 cells by a combination of CuO NPs (100 µg/ml) and R + H compared to control and other treatments. The activities of caspase-3 (0.33 ± 0.014) and caspase-9 (0.389 ± 0.019) also increased significantly (p < .05). However, caspase-8 showed no significant changes in its activity (p = .065). Based on these observations, a combination of CuO NPs, hyperthermia, and irradiation could suppress the growth of MCF-7 cells and evoke cell apoptosis via mitochondrial membrane potential.
Collapse
Affiliation(s)
| | - Leila Zarei
- b Solid Tumor Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | | | - Nasrollah Jabbari
- b Solid Tumor Research Center , Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
226
|
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 2019; 10:57. [PMID: 31321032 PMCID: PMC6615095 DOI: 10.1186/s40104-019-0368-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles (NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods. Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, non-toxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal's body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor’ Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
227
|
Zinc oxide nanoparticle induced neurotoxic potential upon interaction with primary astrocytes. Neurotoxicology 2019; 73:213-227. [DOI: 10.1016/j.neuro.2019.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
|
228
|
Aguş O, Abalı Y, Arslan O, Keskin NOS. Facile and controlled production of silver borate nanoparticles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0686-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
229
|
Malea P, Charitonidou K, Sperdouli I, Mylona Z, Moustakas M. Zinc Uptake, Photosynthetic Efficiency and Oxidative Stress in the Seagrass Cymodocea nodosa Exposed to ZnO Nanoparticles. MATERIALS 2019; 12:ma12132101. [PMID: 31261885 PMCID: PMC6651621 DOI: 10.3390/ma12132101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
We characterized zinc oxide nanoparticles (ZnO NPs) by dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM), while we evaluated photosystem II (PSII) responses, Zn uptake kinetics, and hydrogen peroxide (H2O2) accumulation, in C. nodosa exposed to 5 mg L−1 and 10 mg L−1 ZnO NPs for 4 h, 12 h, 24 h, 48 h and 72 h. Four h after exposure to 10 mg L−1 ZnO NPs, we noticed a disturbance of PSII functioning that became more severe after 12 h. However, after a 24 h exposure to 10 mg L−1 ZnO NPs, we observed a hormetic response, with both time and dose as the basal stress levels needed for induction of the adaptive response. This was achieved through the reduced plastoquinone (PQ) pool, at a 12 h exposure, which mediated the generation of chloroplastic H2O2; acting as a fast acclimation signaling molecule. Nevertheless, longer treatment (48 h and 72 h) resulted in decreasing the photoprotective mechanism to dissipate excess energy as heat (NPQ) and increasing the quantum yield of non-regulated energy loss (ΦNO). This increased the formation of singlet oxygen (1O2), and decreased the fraction of open reaction centers, mostly after a 72-h exposure at 10 mg L−1 ZnO NPs due to increased Zn uptake compared to 5 mg L−1.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katerina Charitonidou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- School of Agricultural Sciences, University of Thessaly, GR-38446 Volos, Greece
| | - Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Zoi Mylona
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
230
|
Hazeem LJ, Kuku G, Dewailly E, Slomianny C, Barras A, Hamdi A, Boukherroub R, Culha M, Bououdina M. Toxicity Effect of Silver Nanoparticles on Photosynthetic Pigment Content, Growth, ROS Production and Ultrastructural Changes of Microalgae Chlorella vulgaris. NANOMATERIALS 2019; 9:nano9070914. [PMID: 31247939 PMCID: PMC6669524 DOI: 10.3390/nano9070914] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (Ag NPs) exhibit antibacterial activity and are extensively used in numerous applications. The aim of this study was to examine the toxic effect of Ag NPs on the marine microalga, Chlorella vulgaris. The microalgae, at the exponential growth phase, were treated with different concentrations of Ag NPs (50 and 100 nm) for 96 h. X-Ray diffraction (XRD) results indicated that the used NPs are single and pure Ag phase with a mean crystallite size of 21 and 32 nm. Ag NPs were found to have a negative effect on viable cell concentration, a variable effect on chlorophyll a concentration, and increased ROS formation. Transmission electron microscopy (TEM) analysis revealed that Ag NPs were present inside the microalgae cells and formed large aggregates in the culture medium. Ag+ ions, in the form of AgNO3, were also assessed at higher concentrations and found to cause inhibitory effects.
Collapse
Affiliation(s)
- Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Zallaq 1054, Bahrain
| | - Gamze Kuku
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir 34755, Istanbul, Turkey.
| | - Etienne Dewailly
- Laboratoire de Physiologie Cellulaire, INSERM U.1003, Université de Lille, Rue Paul Langevin, 59655 Villeneuve d'Ascq, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U.1003, Université de Lille, Rue Paul Langevin, 59655 Villeneuve d'Ascq, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Abderrahmane Hamdi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir 34755, Istanbul, Turkey
| | - Mohamed Bououdina
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Zallaq 1054, Bahrain
| |
Collapse
|
231
|
Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc Chem Res 2019; 52:1632-1642. [PMID: 31181913 DOI: 10.1021/acs.accounts.9b00053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a surge of consumer products that incorporate nanoparticles, which are used to improve or impart new functionalities to the products based on their unique physicochemical properties. With such an increase in products containing nanomaterials, there is a need to understand their potential impacts on the environment. This is often done using various biological models that are abundant in the different environmental compartments where the nanomaterials may end up after use. Beyond studying whether nanomaterials simply kill an organism, the molecular mechanisms by which nanoparticles exhibit toxicity have been extensively studied. Some of the main mechanisms include (1) direct nanoparticle association with an organism's cell surface, where the membrane can be damaged or initiate internal signaling pathways that damage the cell, (2) dissolution of the material, releasing toxic ions that impact the organism, generally through impairing important enzyme functions or through direct interaction with a cell's DNA, and (3) the generation of reactive oxygen species and subsequent oxidative stress on an organism, which can also damage important enzymes or an organism's genetic material. This Account reviews these toxicity mechanisms, presenting examples for each with different types of nanomaterials. Understanding the mechanism of nanoparticle toxicity will inform efforts to redesign nanoparticles with reduced environmental impact. The redesign strategies will need to be chosen based on the major mode of toxicity, but also considering what changes can be made to the nanomaterial without impacting its ability to perform in its intended application. To reduce interactions with the cell surface, nanomaterials can be designed to have a negative surface charge, use ligands such as polyethylene glycol that reduce protein binding, or have a morphology that discourages binding with a cell surface. To reduce the nanoparticle dissolution to toxic ions, the toxic species can be replaced with less toxic elements that have similar properties, the nanoparticle can be capped with a shell material, the morphology of the nanoparticle can be chosen to minimize surface area and thus minimize dissolution, or a chelating agent can be co-introduced or functionalized onto the nanomaterial's surface. To reduce the production of reactive oxygen species, the band gap of the material can be tuned either by using different elements or by doping, a shell layer can be added to inhibit direct contact with the core, or antioxidant molecules can be tethered to the nanoparticle surface. When redesigning nanoparticles, it will be important to test that the redesign strategy actually reduces toxicity to organisms from relevant environmental compartments. It is also necessary to confirm that the nanomaterial still demonstrates the critical physicochemical properties that inspired its inclusion in a product or device.
Collapse
Affiliation(s)
- Joseph T. Buchman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalie V. Hudson-Smith
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kaitlin M. Landy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
232
|
Antibacterial Activity of TiO2- and ZnO-Decorated with Silver Nanoparticles. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020061] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work emphasizes the use of the silver decorative method to enhance the antibacterial activity of TiO2 and ZnO nanoparticles. These silver-decorated nanoparticles (hybrid nanoparticles) were synthesized using sodium borohydride as a reducing agent, with the weight ratio of Ag precursors/oxide nanoparticles = 1:30. The morphology and optical properties of these hybrid nanoparticles were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, and UV-Vis spectroscopy. The agar-well diffusion method was used to evaluate their antibacterial activity against both Staphylococcus aureus and Escherichia coli bacteria, with or without light irradiation. The TEM images indicated clearly that silver nanoparticles (AgNPs, 5–10 nm) were well deposited on the surface of nano-TiO2 particles (30–60 nm). In addition to this, bigger AgNPs (<20 nm) were dispersed on the surface of nano-ZnO particles (30–50 nm). XRD patterns confirmed the presence of AgNPs in both Ag-decorated TiO2 and Ag-decorated ZnO nanoparticles. UV-Vis spectra confirmed that the hybridization of Ag and oxide nanoparticles led to a shift in the absorption edge of oxide nanoparticles to the lower energy region (visible region). The antibacterial tests indicated that both oxide pure nanoparticles did not exhibit inhibitory effects against bacteria, with or without light irradiation. However, the presence of AgNPs in their hybrids, even at low content (<40 mg/mL), leads to a good antibacterial activity, and higher inhibition zones under light irradiation as compared to those in dark were observed.
Collapse
|
233
|
Chavez Soria NG, Aga DS, Atilla-Gokcumen GE. Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Mol Omics 2019; 15:30-38. [PMID: 30560257 DOI: 10.1039/c8mo00162f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engineered nanomaterials have unique properties compared to their bulk counterparts. Copper oxide nanoparticles (CuO NPs) are one example of nanomaterials used in a wide range of consumer products due to their conductivity and biocidal properties. While CuO NPs can induce toxicity in various organisms, their interactions with different organisms and how they affect cellular homeostasis is yet to be fully understood. In this work, the toxicity of CuO NPs was evaluated in different human cell lines (colorectal carcinoma, cervical cancer, embryonic kidney, and lung fibroblast), showing a dose-dependent toxicity. An untargeted lipidomics approach using liquid chromatography-quadrupole time of flight mass spectrometry was employed in a human colon carcinoma cell line to investigate the impact of CuO NP exposure at the cellular level. A 24 h CuO NP exposure at 2.5 and 5 μg mL-1 resulted in upregulation of different metabolites: triacylglycerols, phosphatidylcholines, and ceramides accumulated. The most profound increase in a dose-dependent manner was observed in ceramides, specifically in C18:0, C18:1, and C22:0 species, with up to ∼10 fold accumulations. Further experiments suggested that activation of autophagy and oxidative stress could be responsible for the toxicity observed in these cell lines. Increases in the level of glutathione oxide (∼7 fold) also supported the activation of oxidative stress upon CuO NP treatment. Based on the changes in different metabolites induced by CuO NP exposure and previous studies from our laboratory, we propose that autophagy and oxidative stress could play a role in CuO NP-induced toxicity.
Collapse
Affiliation(s)
- N G Chavez Soria
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
234
|
Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17499-17511. [PMID: 31016588 DOI: 10.1007/s11356-019-05130-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The toxic impacts of CuO nanoparticles (NPs) on the marine phytoplankton Nannochloropsis oculata were evaluated by measuring a number of biological parameters. Exposure to different concentrations of CuO-NPs (5-200 mg/L) significantly decreased the growth and content of chlorophyll a of N. oculata. The results showed that CuO-NPs were toxic to this microalga with a half maximal effective concentration (EC50) of 116.981 mg/L. Exposure to CuO-NPs increased the hydrogen peroxide (H2O2) content and induced the membrane damages. Moreover, the concentration of phenolic compounds was increased, while the levels of carotenoids were markedly decreased in comparison to the control sample. The activity of catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and lactate dehydrogenase (LDH) enzymes significantly was increased in response to CuO-NPs treatments. These results indicated that CuO-NPs stimulated the antioxidant defense system in N. oculata to protect the cells against the oxidative damages. The Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main functional groups (C=O and C-O-C) interacted with CuO-NPs. The images of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the cell membrane damage and the change of cell wall structure which may be contributed to the nanotoxicity. These findings may provide additional insights into the mechanisms of cytotoxicity induced by CuO-NPs.
Collapse
Affiliation(s)
- Nasrin Fazelian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Minab Road, Bandar Abbas, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Minab Road, Bandar Abbas, Iran.
| | - Mahsa Rahimzadeh
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
235
|
Melegari SP, Fuzinatto CF, Gonçalves RA, Oscar BV, Vicentini DS, Matias WG. Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials? CHEMOSPHERE 2019; 224:237-246. [PMID: 30822730 DOI: 10.1016/j.chemosphere.2019.02.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Among nanomaterials, zinc oxide (ZnO) is notable for its excellent biocidal properties. In particular, it can be incorporated in mortars to prevent biofouling. However, the morphology of these nanomaterials (NMs) and their impact on the action against biofouling are still unknown. This study aimed to assess how the morphology and surface modification can affect the ecotoxicology of ZnO NMs. The morphologies evaluated were nanoparticles (NPs) and nanorods (NRs), and the ZnO NMs were tested pure and with surface modification through amine functionalization (@AF). The toxic effects of these NMs were evaluated by acute and chronic ecotoxicity tests with the well-established model microcrustacean Daphnia magna. The ZnO NMs were characterized by transmission electron microscopy, X-ray diffraction and infrared spectroscopy. The EC5048h to D. magna indicated higher acute toxicity of ZnO@AF NRs compared to all tested NMs. Regarding the chronic test with D. magna, high toxic effects on reproduction and longevity were observed with ZnO@AF NRs and effects on growth were observed with ZnO NRs. In general, all tested ZnO NMs presented high toxicity when compared to the positive control, and the NRs presented higher toxicity than NPs in all tested parameters, regardless of the form tested (pure or with surface modification). Additionally, the pathways of ecotoxicity of the tested ZnO NMs was found to be related to combined factors of Zn ion release, effective diameter of particles and NM internalization in the organism.
Collapse
Affiliation(s)
- Silvia Pedroso Melegari
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil; Center for Marine Studies, Federal University of Paraná - UFPR, Campus Pontal do Paraná, Beira-mar Avenue, 83255-976, Pontal do Paraná, PR, Brazil
| | - Cristiane Funghetto Fuzinatto
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil; UFFS - Universidade Federal da Fronteira Sul - UFFS, Campus Erechim, CEP: 99700-970, Erechim, RS, Brazil
| | - Renata Amanda Gonçalves
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Bianca Vicente Oscar
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Denice Schulz Vicentini
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - William Gerson Matias
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
236
|
Icoglu Aksakal F, Ciltas A, Simsek Ozek N. A holistic study on potential toxic effects of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) on zebrafish (Danio rerio) embryos/larvae. CHEMOSPHERE 2019; 225:820-828. [PMID: 30904762 DOI: 10.1016/j.chemosphere.2019.03.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have widespread use in industrial and consumer products and great potential in biomedical applications. This leads to inevitably their release into the environment and the formation of their toxic effects on organisms. These effects can change depending on their physicochemical characteristics. Therefore, the toxicological findings of MWCNTs are inconsistent. Their toxicities related to surface modification have not been elucidated in a holistic manner. Hence, this study was conducted to clarify their potential toxic effects on zebrafish embryos/larvae in a comprehensive approach using morphologic, biochemical and molecular parameters. Zebrafish embryos were exposed to 5, 10, 20 mg/L doses of MWCNTs-COOH at 4 h after fertilization and grown until 96 hpf. Physiological findings demonstrated that they induced a concentration-dependent increase in the mortality rate, delayed hatching and decrease in the heartbeat rate. Moreover, it caused abnormalities including yolk sac edema, pericardial edema, head, tail malformations, and vertebral deformities. These effects may be due to the alterations in antioxidant and immune system related gene expressions after their entry into zebrafish embryo/larvae. The entry was confirmed from the evaluation of Raman spectra collected from the head, yolk sac, and tail of control and the nanotube treated groups. The gene expression analysis indicated the changes in the expression of oxidative stress (mtf-1, hsp70, and nfkb) and innate immune system (il-1β, tlr-4, tlr-22, trf, and cebp) related genes, especially an increased in the expression of the hsp70 and il-1β. These findings proved the developmental toxicities of MWCNTs-COOH on the zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey.
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey; East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
237
|
Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, Danquah MK. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:755-771. [PMID: 31098696 DOI: 10.1007/s00210-019-01666-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Jaison Jeevanandham
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Murugesan Muthalagu
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Manisha Vidyavathy
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | |
Collapse
|
238
|
Hoyo J, Ivanova K, Guaus E, Tzanov T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 2019; 543:114-121. [DOI: 10.1016/j.jcis.2019.02.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
|
239
|
Chen P, Wang H, He M, Chen B, Yang B, Hu B. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:337-346. [PMID: 30616150 DOI: 10.1016/j.ecoenv.2018.12.096] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are widely used in daily life. However, common utilization of ZnO NPs results in increases in environmental release, and their health hazards have attracted extensive attention. To investigate the cytotoxicity of ZnO NPs and their mechanism in HepG2 cells, a comprehensive analytical system was developed. The internalization, cytotoxic mechanism, death mechanism and elimination behavior of three sizes of ZnO NPs were studied by electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS), MTT assays, GSH measurements, ROS measurements and analyses of apoptosis and gene expression. The size-, dose- and time-dependent characteristics of ZnO NPs were determined, and the metabolism of ZnO NPs in cells was discussed. The cytotoxicity of ZnO NPs was confirmed to depend on both the size and concentration and was attributed to the release of Zn2+, induction of oxidative stress and inflammatory response; the death mode of HepG2 cells incubated with ZnO NPs was necrotic rather than programmed cell death.
Collapse
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
240
|
Wang T, Wu J, Xu S, Deng C, Wu L, Wu Y, Bian P. A potential involvement of plant systemic response in initiating genotoxicity of Ag-nanoparticles in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:324-330. [PMID: 30544092 DOI: 10.1016/j.ecoenv.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The extensive availability of engineered nanomaterials in global markets has led to the release of substantial amounts of nanoparticles (NP) into atmosphere, water body and soil, yielding both beneficial and harmful effects in plant systems. The NP are mainly aggregated onto the surface of plant roots and leaves exposed and only slightly transported into other tissues with a low rate of internalization. This raises a question of whether plant systemic response is involved in the induction of biological effects of NP. To address this, model plant Arabidopsis thaliana were root exposed to low concentrations of Ag-NP of two particle sizes (10-nm and 60-nm), and expressions of homologous recombination (HR)-related genes and the alleviation of transcriptional gene silencing (TGS) in aerial leafy tissues were examined as genotoxic endpoints. Results showed that exposure of roots to two sizes of Ag-NP up-regulated expressions of HR genes, and reactivated TGS-silenced repetitive elements in aerial tissues. These effects were blocked by the impairment in the salicylic acid signal pathway, indicating a potential involvement of plant systemic response in the induction of Ag-NP genotoxicity. This is further supported by ICP-MS analysis, in which the Ag content in aerial tissues was not significantly changed by root exposure to 10-nm Ag-NP. Although a significant increase in the Ag content in aerial tissues was observed after root exposure to 60-nm Ag-NP, its genotoxic effects had no obvious difference from that by 10-nm Ag-NP exposure, also suggesting that the genotoxicity might be mainly induced via plant systemic response, at least in the experiments of root exposure to Ag-NP.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Jingjing Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Shaoxin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Chenguang Deng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Po Bian
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China.
| |
Collapse
|
241
|
Li X, Xu H, Li C, Qiao G, Farooqi AA, Gedanken A, Liu X, Lin X. Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Pancreatic Cancer by Inducing Autophagy Through AMPK/mTOR Pathway. Front Pharmacol 2019; 10:319. [PMID: 31001120 PMCID: PMC6454023 DOI: 10.3389/fphar.2019.00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Zinc doped copper oxide nanocomposites (Zn-CuO NPs) is a novel doped metal nanomaterial synthesized by our group using the sonochemical method. Our previous studies have shown that Zn-CuO NPs could inhibit cancer cell proliferation by inducing apoptosis via ROS-mediated pathway. In the present study, we studied the anticancer effect of Zn-CuO NPs on human pancreatic cancer cells. MTS assay revealed that Zn-CuO NPs was able to inhibit cancer cell growth. TEM, flow cytometry and fluorescence microscope analysis showed that Zn-CuO NPs induced autophagy significantly; the number of autophagosomes increased obviously in cells treated with Zn-CuO NPs. Western blot analysis revealed that treatment with the NPs resulted in activation of AMPK/mTOR pathway in both AsPC-1 and MIA Paca-2 cells in dose dependent manners. Moreover, in the presence of AMPK activator AMPKinone, the protein level of p-AMPK, p-ULK1, Beclin-1 and LC3-II/LC3-I increased, while the protein expression of p-AMPK, p-ULK1, Beclin-1 and LC3-II/LC3-I decreased in the presence of AMPK inhibitor Compound C. In vivo study using xenograft mice revealed that Zn-CuO NPs significantly inhibited tumor growth with low toxicity. Our study confirms that Zn-CuO NPs inhibit the tumor growth both in vitro and in vivo for pancreatic cancer. AMPK/mTOR pathway plays an important role in the NPs induced inhibition of tumor growth.
Collapse
Affiliation(s)
- Xiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gan Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), Lahore, Pakistan
| | - Aharon Gedanken
- Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
242
|
Henson TE, Navratilova J, Tennant AH, Bradham KD, Rogers KR, Hughes MF. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 2019; 13:795-811. [PMID: 30938207 DOI: 10.1080/17435390.2019.1578428] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated. Both dose- and time-dependent decreases in viability of rat and human cells with CuO and Cu2O-PVP NPs and Cu2+ ions was observed. In the rat cells, CuO NPs had greater cytotoxicity. The rat cells were also more sensitive to CuO NPs than the human cells. Concentrations of H2O2 and glutathione increased and decreased, respectively, in IEC-6 cells after a 4-h exposure to CuO NPs, suggesting the formation of reactive oxygen species (ROS). These ROS may have damaged the mitochondrial membrane of the IEC-6 cells causing a depolarization, as a dose-related loss of a fluorescent mitochondrial marker was observed following a 4-h exposure to CuO NPs. Dissolution studies showed that Cu2O-PVP NPs formed soluble Cu whereas CuO NPs essentially remained intact. For GI fluid-treated CuO NPs, there was a slight increase in cytotoxicity at low doses relative to non-treated NPs. In summary, copper oxide NPs were cytotoxic to rat and human intestinal cells in a dose- and time-dependent manner. The data suggests Cu2O-PVP NPs are toxic due to their dissolution to Cu ions, whereas CuO NPs have inherent cytotoxicity, without dissolving to form Cu ions.
Collapse
Affiliation(s)
- Taylor E Henson
- a Student Services Contractor at the National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | | | - Alan H Tennant
- c National Health and Environmental Effects Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Karen D Bradham
- d National Exposure Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Kim R Rogers
- d National Exposure Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Michael F Hughes
- c National Health and Environmental Effects Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
243
|
Eco-friendly synthesized spherical ZnO materials: Effect of the core-shell to solid morphology transition on antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:438-450. [DOI: 10.1016/j.msec.2018.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 11/11/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022]
|
244
|
Velali E, Pantazaki A, Besis A, Choli-Papadopoulou T, Samara C. Oxidative stress, DNA damage, and mutagenicity induced by the extractable organic matter of airborne particulates on bacterial models. Regul Toxicol Pharmacol 2019; 104:59-73. [PMID: 30872015 DOI: 10.1016/j.yrtph.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/24/2023]
Abstract
The biological activity induced by the extractable organic matter (EOM) of size-segregated airborne Particulate Matter (PM) from two urban sites, urban traffic (UT) and urban background (UB), was assessed by using bacterial assays. The Gram-negative Escherichia coli (E. coli) coliform bacterium was used to measure the intracellular formation of Reactive Oxygen Species (ROS) by employing the Nitroblue tetrazolium (NBT) reduction assay and the lipid peroxidation by malondialdehyde (MDA) measurement. To the best of our knowledge, this is the first study using E. coli for assessing the bioactivity of ambient air in term of oxidative mechanism studies. E. coli BL21 cells were further used for DNA damage assessment by employing the reporter (β-galactosidase) gene expression assay. The bacterial strain S. typhimurium TA100 was used to assess the mutagenic potential of PM by employing the well-known mutation assay (Ames test). Four PM size fractions were assessed for bioactivity, specifically the quasi-ultrafine mode (<0.49 μm), the upper accumulation mode (0.49-0.97 μm), the upper fine mode (0.97-3 μm), and the coarse mode (>3.0 μm). The EOM of each PM sample included three organic fractions of successively increased polarity: the non-polar organic fraction (NPOF), the moderately polar organic fraction (MPOF), and the polar organic fraction (POF). The toxicological endpoints induced by each organic fraction were correlated with the concentrations of various organic chemical components determined in previous studies in an attempt to identify the chemical classes involved.
Collapse
Affiliation(s)
- Ekaterini Velali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
245
|
Sun Z, Xiong T, Zhang T, Wang N, Chen D, Li S. Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:175-188. [PMID: 30612257 DOI: 10.1007/s10646-018-2010-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are widely used in consumer products, which have raised concerns about their impact on the human health and environment. In this study, Allium cepa were treated with 5 and 50 μg/mL ZnO-NPs solutions for 12, 24, and 36 h, respectively. The cytotoxic and genotoxic effects of ZnO-NPs in root meristems of Allium cepa cells were characterized by cell membrane integrity, metabolic activity, reactive oxygen species (ROS) accumulation, DNA damage, chromosome aberration, and cell cycle progression. Substantially elevated Zn levels were observed in the cytoplasmic and nuclear fractions, and the accumulation of zinc in the nuclear fraction (up to 9764 μg/g) was one magnitude greater than that in the cytoplasm (up to 541 μg/g). The complexation of Zn2+ with diethylene triamine pentacetic acid (DTPA) was performed to explicate the respective contribution of insoluble particles or Zn2+ to ZnO-NPs toxicity. We found that the inhibition of root growth accounted for 24.2% or 36.1% when the plants were exposed to Zn2+ that released from 5 or 50 μg/mL of ZnO-NPs for 36 h, respectively, whereas the exposure to 5 or 50 μg/mL of insoluble particles resulted in 75.8% or 63.9% of inhibition, respectively. These findings demonstrated that adverse effects exerted not just by Zn2+ released from ZnO-NPs, but also directly from the nanoparticles. These findings contribute to a better understanding of ZnO-NPs cytotoxicity and genotoxicity in plant cells and provide valuable information for further research on the phytotoxic mechanisms of ZnO-NPs.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Ting Zhang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Nanfang Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, 510632, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
246
|
Srivastav AK, Dhiman N, Tiwari R, Arjaria N, Prakash J, Jagdale P, Ayanur A, Singh D, Patnaik S, Kumar M. Sub-acute oral exposure of zinc oxide nanoparticles causes alteration in iron homeostasis through acute phase response: A protective effect by surface modification. J Trace Elem Med Biol 2019; 52:270-287. [PMID: 30732893 DOI: 10.1016/j.jtemb.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanomaterials. Following oral exposure, these NPs can accumulate in various organs and induce the toxicity due to their physiochemical characteristics. In present study to reduce the toxicity, surface engineered ZnO NPs (c-ZnO NPs) were in-situ synthesized by using polyacrylamide grafted guar gum (PAm-g-GG) polymer in alkaline media. Further, the comparative effect of bared ZnO NPs (b-ZnO NPs) and c-ZnO NPs were assessed on secondary target organ liver and kidneys of Swiss mice at doses of 10, 50 and 300 mg/kg following 28 days repeated oral treatment. The b-ZnO NPs were incited severe damages in liver and kidney tissue than c-ZnO NPs as seen by transmission electron microscopy and histopathology. The increased levels of serum biomarkers (AST, ALT, ALP, creatinine, uric acid, and urea) were also observed, that remarking a disturbance in the function of liver and kidney. After sub-acute oral treatment of b-ZnO NPs, the hepatic pro-inflammatory cytokines (IL-6, TNF-α, and MMP-9) were up-regulated that causes the activation of acute phase response (APR). We also observed significantly increased in expression of hepatic acute phase proteins (hepcidin and haptoglobin) and altered interlinked iron (Fe) signaling biomarkers (hephaestin, TF, TFR-1, LDH, and ferroportin). This study emphasizes that exposure to ZnO NPs may cause inflammation mediated APR through ultra-structural damage of tissue that could escort the progression of anemia. Nevertheless, the capping with PAm-g-GG in c- ZnO NPs has reduced the toxicity by altering the surface reactive property of ZnO NPs.
Collapse
Affiliation(s)
- Anurag Kumar Srivastav
- Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, Lucknow 226001, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, Lucknow, India
| | - Jyoti Prakash
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
247
|
Anjuthaprabha N, Manimekalai R. Synthesis, textural and magnetic properties of doped and undoped CuO nanoparticles. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1562176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- N. Anjuthaprabha
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| | - R. Manimekalai
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| |
Collapse
|
248
|
Hamilton RF, Wu Z, Thakkar M, Holian A, Mitra S. Modification of nano-silver bioactivity by adsorption on carbon nanotubes and graphene oxide. Inhal Toxicol 2019; 30:429-438. [PMID: 30618316 DOI: 10.1080/08958378.2018.1547334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The toxicity of silver nanomaterials in various forms has been extensively evaluated, but the toxicity of silver nanocarbon composites is less well understood. Therefore, silver-carbon nanotube composites (Ag-MWCNT-COOH) and silver-graphene oxide composites (Ag-GO) were synthesized by microwave irradiation and evaluated in two in vitro cell models. MATERIALS/METHODS Toxicity of silver nanosphere (Ag), Ag-MWCNT-COOH and Ag-GO were analyzed by MTS assay and LDH assay in primary C57BL/6 murine alveolar macrophages and human THP-1 cells. Activation of NLRP3 inflammasome by particle variants in these models was done by proxy using LPS co-culture and IL-1β release. RESULTS The results depended on the model, as the amount of Ag on the modified carbon resulted in slightly increased toxicity for the murine cells, but did not appear to affect toxicity in the human cell model. IL-1β release from carbon particle-exposures was decreased by the presence of Ag in both cell models. Suspensions of Ag-MWCNT-COOH, Ag-GO and Ag in artificial lysosomal fluid were prepared and ICP-MS was used to detect Ag ions concentration in three silver suspension/solutions. The amount of Ag ions released from Ag-MWCNT-COOH and Ag-GO were similar, which were both lower than that of Ag nanospheres. CONCLUSIONS The results suggest the bioactivity of silver composites may be related to the amount of Ag ions released, which can be dependent on the cell model under investigation.
Collapse
Affiliation(s)
- Raymond F Hamilton
- a Center for Environmental Health Sciences, University of Montana , Missoula , MT , USA
| | - Zheqiong Wu
- b Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , NJ , USA
| | - Megha Thakkar
- b Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , NJ , USA
| | - Andrij Holian
- a Center for Environmental Health Sciences, University of Montana , Missoula , MT , USA
| | - Somenath Mitra
- b Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , NJ , USA
| |
Collapse
|
249
|
Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A. Nanoparticles and Nanomaterials as Plant Biostimulants. Int J Mol Sci 2019; 20:E162. [PMID: 30621162 PMCID: PMC6337539 DOI: 10.3390/ijms20010162] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Biostimulants are materials that when applied in small amounts are capable of promoting plant growth. Nanoparticles (NPs) and nanomaterials (NMs) can be considered as biostimulants since, in specific ranges of concentration, generally in small levels, they increase plant growth. Pristine NPs and NMs have a high density of surface charges capable of unspecific interactions with the surface charges of the cell walls and membranes of plant cells. In the same way, functionalized NPs and NMs, and the NPs and NMs with a corona formed after the exposition to natural fluids such as water, soil solution, or the interior of organisms, present a high density of surface charges that interact with specific charged groups in cell surfaces. The magnitude of the interaction will depend on the materials adhered to the corona, but high-density charges located in a small volume cause an intense interaction capable of disturbing the density of surface charges of cell walls and membranes. The electrostatic disturbance can have an impact on the electrical potentials of the outer and inner surfaces, as well as on the transmembrane electrical potential, modifying the activity of the integral proteins of the membranes. The extension of the cellular response can range from biostimulation to cell death and will depend on the concentration, size, and the characteristics of the corona.
Collapse
Affiliation(s)
| | - Hortensia Ortega-Ortíz
- Materiales Avanzados, Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico.
| | - América Berenice Morales-Díaz
- Robótica y Manufactura Avanzada, Centro de Investigación y de Estudios Avanzados Unidad Saltillo, Ramos Arizpe 25900, Mexico.
| | | | | | | | | | | | | |
Collapse
|
250
|
Zanoni I, Crosera M, Ortelli S, Blosi M, Adami G, Larese Filon F, Costa AL. CuO nanoparticle penetration through intact and damaged human skin. NEW J CHEM 2019. [DOI: 10.1039/c9nj03373d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Trans-dermal in vitro study of CuO nanoparticles in contact with intact and damaged human skin using a Franz cell model.
Collapse
Affiliation(s)
- Ilaria Zanoni
- CNR-ISTEC-National Research Council of Italy
- Institute of Science and Technology for Ceramics
- Faenza
- Italy
- Clinical Unit of Occupational Medicine
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Simona Ortelli
- CNR-ISTEC-National Research Council of Italy
- Institute of Science and Technology for Ceramics
- Faenza
- Italy
| | - Magda Blosi
- CNR-ISTEC-National Research Council of Italy
- Institute of Science and Technology for Ceramics
- Faenza
- Italy
| | - Gianpiero Adami
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Francesca Larese Filon
- Clinical Unit of Occupational Medicine
- Department of Medical and Surgical Sciences
- University of Trieste
- 34129 Trieste
- Italy
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy
- Institute of Science and Technology for Ceramics
- Faenza
- Italy
| |
Collapse
|