201
|
Gaskell SK, Taylor B, Muir J, Costa RJ. Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Appl Physiol Nutr Metab 2020; 45:569-580. [DOI: 10.1139/apnm-2019-0187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study aimed to determine the effects of 24-h high (HFOD) and low (LFOD) fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diets before exertional heat stress on gastrointestinal integrity, function, and symptoms. Eighteen endurance runners consumed a HFOD and a LFOD (double-blind crossover design) before completing 2 h of running at 60% maximal oxygen uptake in 35 °C ambient temperature. Blood samples were collected before and after exercise to determine plasma cortisol and intestinal fatty acid binding protein (I-FABP) concentrations, and bacterial endotoxin and cytokine profiles. Breath hydrogen (H2) and gastrointestinal symptoms (GIS) were determined pre-exercise, every 15 min during, and in recovery. No differences were observed for plasma cortisol concentration between diets. Plasma I-FABP concentration was lower on HFOD compared with LFOD (p = 0.033). A trend for lower lipopolysaccharide binding protein (p = 0.088), but not plasma soluble CD14 (p = 0.478) and cytokine profile (p > 0.05), responses on HFOD was observed. A greater area under the curve breath H2 concentration (p = 0.031) was observed throughout HFOD (mean and 95% confidence interval: HFOD 2525 (1452–3597) ppm·4 h−1) compared with LFOD (1505 (1031–1978) ppm·4 h−1). HFOD resulted in greater severity of GIS compared with LFOD (pre-exercise, p = 0.017; during, p = 0.035; and total, p = 0.014). A 24-h HFOD before exertional heat stress ameliorates disturbances to epithelial integrity but exacerbates carbohydrate malabsorption and GIS severity in comparison with a LFOD. Novelty Twenty-four-hour high FODMAP diet ameliorated disturbances to gastrointestinal integrity. Twenty-four-hour high FODMAP diet results in greater carbohydrate malabsorption compared with low FODMAP diet. Incidence of GIS during exertional heat stress were pronounced on both low and high FODMAP diets, but greater GIS severity was observed with high FODMAP diet.
Collapse
Affiliation(s)
- Stephanie K. Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| | - Bonnie Taylor
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| | - Jane Muir
- Department of Gastroenterology - The Alfred Hospital, Monash University, Melbourne, Victoria 3004, Australia
| | - Ricardo J.S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| |
Collapse
|
202
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
203
|
Patil Y, Gooneratne R, Ju XH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes 2020; 11:310-334. [PMID: 31760878 PMCID: PMC7524349 DOI: 10.1080/19490976.2019.1690363] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials - some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.
Collapse
Affiliation(s)
- Yadnyavalkya Patil
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Xiang-Hong Ju
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
204
|
Lee KH, Song Y, Wu W, Yu K, Zhang G. The gut microbiota, environmental factors, and links to the development of food allergy. Clin Mol Allergy 2020; 18:5. [PMID: 32265597 PMCID: PMC7119288 DOI: 10.1186/s12948-020-00120-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Food allergy appears to have its roots in an insufficient exposure to a diverse range of environmental microbiota during early life. Microbial exposure ensures the colonization of the gastrointestinal tract with commensal microbes, which is necessary for the induction of a balanced and tolerogenic immune function. High-throughput sequencing technology has facilitated in-depth studies of the gut microbiota as well as bacterial-derived metabolites. Although the role of the microbiota in allergies is now widely studied, its importance for food allergy was only recently noted. Studies in human cohorts have shown that there is an association of dysbiosis and pathogenesis of food allergy, while studies from animal models have demonstrated the capacity of specific species in the gut microbiota to alter immune response, which may lead to the desensitization of food allergy. This article reviews the role of the gut microbiota in food allergy, and discusses the influence of environmental factors as well as prevention and management strategies relating to such regulatory mechanism.
Collapse
Affiliation(s)
- Khui Hung Lee
- 1School of Public Health, Curtin University of Technology, Bentley, WA Australia.,2Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102 Australia
| | - Yong Song
- 1School of Public Health, Curtin University of Technology, Bentley, WA Australia
| | - Weidong Wu
- 3School of Public Health, Xinxiang Medical University, 601 Jinsui street, Xinxiang, Henan China
| | - Kan Yu
- 4School of Science, Edith Cowan University, Joondalup, WA Australia
| | - Guicheng Zhang
- 1School of Public Health, Curtin University of Technology, Bentley, WA Australia.,2Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102 Australia
| |
Collapse
|
205
|
The Link between Gut Dysbiosis and Neuroinflammation in Parkinson’s Disease. Neuroscience 2020; 432:160-173. [DOI: 10.1016/j.neuroscience.2020.02.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
206
|
Ji Y, Yin W, Liang Y, Sun L, Yin Y, Zhang W. Anti-Inflammatory and Anti-Oxidative Activity of Indole-3-Acetic Acid Involves Induction of HO-1 and Neutralization of Free Radicals in RAW264.7 Cells. Int J Mol Sci 2020; 21:ijms21051579. [PMID: 32106625 PMCID: PMC7084870 DOI: 10.3390/ijms21051579] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
The cellular and molecular mechanisms by which indole-3-acetic acid (IAA), a tryptophan-derived metabolite from gut microbiota, attenuates inflammation and oxidative stress has not been fully elucidated. The present study was to unearth the protective effect and underlying mechanism of IAA against lipopolysaccharide (LPS)-induced inflammatory response and free radical generation in RAW264.7 macrophages. IAA significantly ameliorated LPS-induced expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) as well as generation of reactive oxidative species (ROS) and nitric oxide (NO). LPS-triggered nuclear translocation of nuclear factor kappa B (NF-κB) p65 was mitigated by IAA treatment. Further, an up-regulation of heme oxygenase-1 (HO-1) was observed in IAA-treated cells in dose-dependent manner under both normal and LPS-stimulated condition. Interference of HO-1 activity by tin protoporphyrin IX (SnPP) impeded the alleviative effects of IAA on expression of IL-1β and IL-6 induced by LPS, whereas demonstrated no effect on its suppression of ROS and NO production. This result suggests a HO-1-dependent anti-inflammatory effect of IAA and its direct scavenging action on free radicals. Treatment with CH-223191, a specific antagonist of aryl hydrocarbon receptor (AhR), showed no significant effects on the beneficial role of IAA against inflammation and free radical generation. In summary, our findings indicate that IAA alleviates LPS-elicited inflammatory response and free radical generation in RAW264.7 macrophages by induction of HO-1 and direct neutralization of free radicals, a mechanism independent of AhR.
Collapse
Affiliation(s)
| | | | | | | | - Yue Yin
- Correspondence: ; Tel./Fax: +86-10-82802183
| | | |
Collapse
|
207
|
Vafa S, Haghighat S, Janani L, Totmaj AS, Navaei M, Amirinejad A, Emamat H, Salehi Z, Zarrati M. The effects of synbiotic supplementation on serum inflammatory markers and edema volume in breast cancer survivors with lymphedema. EXCLI JOURNAL 2020; 19:1-15. [PMID: 32038113 PMCID: PMC7003637 DOI: 10.17179/excli2019-1876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer-related lymphedema (BCRL) is one of the most common complications of breast cancer treatments, which may be exacerbated by obesity. Dysbiosis may negatively impact the management of obesity and lymphedema by increasing inflammation. The objective of this study was to assess the effects of supplementation with synbiotics on inflammatory markers, serum leptin concentration and edema volume in overweight and obese BCRL women following a low-calorie diet (LCD). In a randomized double-blind controlled clinical trial, 88 breast cancer survivors with lymphedema were supplemented once a day for 10 weeks with either a synbiotic or a placebo capsule. Both groups were under a low-calorie diet (LCD). At the end of the study, synbiotic supplementation resulted in a significant reduction in leptin (P=0.003) and TNF-α (P=0.039) between the study groups. Besides, edema volume was significantly reduced within the synbiotic group after the intervention. We did not observe any significant effects of the synbiotic supplementation in hs-CRP, and IL-1β between the study groups (P=0.550, P=0.118 respectively). Conclusively, synbiotic supplementation along with an LCD program in breast cancer survivors with lymphedema had beneficial effects on the concentration of serum inflammatory markers and edema volume.
Collapse
Affiliation(s)
- Saeideh Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shahpar Haghighat
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Saneei Totmaj
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehraban Navaei
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amirinejad
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Emamat
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
208
|
Chen HL, Zhao XY, Zhao GX, Huang HB, Li HR, Shi CW, Yang WT, Jiang YL, Wang JZ, Ye LP, Zhao Q, Wang CF, Yang GL. Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasit Vectors 2020; 13:56. [PMID: 32046772 PMCID: PMC7014781 DOI: 10.1186/s13071-020-3897-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background Eimeria spp. are responsible for chicken coccidiosis which is the most important enteric protozoan disease resulting in tremendous economic losses in the poultry industry. Understanding the interaction between the avian cecal microbiota and coccidia is of interest in the development of alternative treatments that do not rely on chemotherapeutics and do not lead to drug resistance. Methods We utilized 16S rRNA gene sequencing to detect the dynamics of the cecal microbial community in AA broilers challenged with Eimeria tenella. Histopathological analysis of the cecum was also conducted. Results We found that microbial shifts occur during the infection. Lactobacillus, Faecalibacterium, Ruminococcaceae UCG-013, Romboutsia and Shuttleworthia decreased in abundance. However, the opportunistic pathogens Enterococcus and Streptococcus increased in abundance over time in response to the infection. Conclusions Eimeria tenella disrupts the integrity of the cecal microbiota and could promote the establishment and growth of potentially pathogenic bacteria. Defining bacterial populations affected by coccidial infection might help identify bacterial markers for intestinal disease as well as populations or species that could be beneficial in maintaining and restoring gut homeostasis during and after infection with E. tenella.
Collapse
Affiliation(s)
- Hong-Liang Chen
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin-Yu Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guang-Xun Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hao-Rui Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Quan Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
209
|
Shalapour S, Karin M. Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Cancers. Annu Rev Immunol 2020; 38:649-671. [PMID: 32040356 DOI: 10.1146/annurev-immunol-082019-081656] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
210
|
Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH model. Physiol Behav 2020; 214:112762. [DOI: 10.1016/j.physbeh.2019.112762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
|
211
|
Rezazadeh L, Alipour B, Jafarabadi MA, Gargari BP. Evaluation of the effects of probiotic yoghurt on inflammation and cardiometabolic risk factors in subjects with metabolic syndrome: A randomised controlled trial. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
212
|
Díaz-Rizzolo DA, Kostov B, López-Siles M, Serra A, Colungo C, González-de-Paz L, Martinez-Medina M, Sisó-Almirall A, Gomis R. Healthy dietary pattern and their corresponding gut microbiota profile are linked to a lower risk of type 2 diabetes, independent of the presence of obesity. Clin Nutr 2020; 39:524-532. [PMID: 30876826 DOI: 10.1016/j.clnu.2019.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/21/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Prediabetes and old age are both high risk factors for developing Type 2 Diabetes (T2D), while obesity is one of the most important factors triggering the disease. Nutritional interventions are the most effective tool for preventing T2D, as they improve different biochemical and anthropometric outcomes and growth-promoting/inhibiting gut microbiota populations. However, to date there are no specific dietary recommendations to stop the development of T2D in elderly groups, for whom hypocaloric diets and other commonly used weight-loss programs could be considered dangerous. The objective of our study, thus, was to understand the impact of dietary patterns on T2D risk as related to gut microbiota profile in obese and non-obese elderly prediabetic subjects. METHODS A cross-sectional study was performed in 182 subjects ≥65 years old with prediabetes, divided into obese (OB) or non-obese (NOB) subgroups, and their risk of developing T2D was measured according to FINDRISK score and biochemical parameters. Also, clusters into different dietary patterns in each group by PCA analysis was related with gut microbiota, which was analyzed from stool samples by qPCR. The creation of clusters was used to re-evaluate T2D risk. RESULTS OB was at higher risk of developing T2D and showed worse metabolic outcomes. Unhealthier and healthier dietary pattern clusters were observed for both OB (OB-6 and OB-5 respectively) and NOB (NOB-2 and NOB-3 respectively) groups. Results obtained from the gut microbiota showed that only Prevotella was higher in NOB, but when comparisons were made between clusters, a clear relation with dietary pattern was observed; showing in healthier dietary clusters a decrease in Prevotella, an increase of Faecalibacterium prausnitzii and an increase in lactic acid bacteria. T2D risk was greater in the obese group between unhealthier dietary clusters. No difference between healthier dietary clusters was observed. CONCLUSION A healthy dietary pattern and the growth-promoting beneficial and growth-inhibiting disadvantageous gut microbiota populations linked to it provide protection against the development of T2D in an obese population with advanced age and preDM.
Collapse
Affiliation(s)
- D A Díaz-Rizzolo
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
| | - B Kostov
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain
| | - M López-Siles
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - A Serra
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
| | - C Colungo
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain
| | - L González-de-Paz
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain
| | - M Martinez-Medina
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - A Sisó-Almirall
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - R Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain; University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, Barcelona, Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
213
|
Pellegrini M, Ippolito M, Monge T, Violi R, Cappello P, Ferrocino I, Cocolin LS, De Francesco A, Bo S, Finocchiaro C. Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: a randomized open-label pilot intervention trial. Nutrition 2020; 74:110749. [PMID: 32234652 DOI: 10.1016/j.nut.2020.110749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/15/2019] [Accepted: 01/19/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Breast cancer (BC) is the most diagnosed cancer in women. Increasing survival rates shift attention to preventive strategies. Obesity and intestinal microbiota composition may be associated with BC. A Mediterranean diet (MD) proved to be protective. The aim of this study was to assess the efficacy of probiotics in addition to an MD versus diet alone in influencing gut microbiota and metabolic profile in overweight BC survivors. METHODS A total of 34 BC survivors were randomly assigned to an MD for 4 mo plus 1 sachet/d of probiotics (Bifidobacterium longum BB536, Lactobacillus rhamnosus HN001) for the first 2 mo (intervention group, n = 16) or an MD alone for 4 mo (control group, n = 18). Anthropometric and nutritional assessments, adherence to the MD, compliance with physical activity, and metabolic parameters dosage were performed at baseline (T0), at 2 mo (T2), and at 4 mo (T4). Intestinal microbiota analysis was performed at T0 and T2. RESULTS After 2 mo of probiotic administration the number of bacterial species (P = 0.01) and the bacterial diversity assessed with the Chao1 index (P = 0.004) significantly increased; no significant variations were detected after diet alone. The Bacteroidetes-to-Firmicutes ratio significantly decreased in the intervention group and increased in controls (P = 0.004). Significant reductions of body weight, body mass index, fasting glucose, and homeostasis model assessment of insulin resistance were identified at T4 in both groups; in the intervention group waist circumference (P = 0.012), waist-to-hip ratio (P = 0.045), and fasting insulin (P = 0.017) also significantly decreased. CONCLUSIONS Probiotics in addition to an MD positively influence gut microbiota and improve metabolic and anthropometric parameters compared with an MD alone.
Collapse
Affiliation(s)
- Marianna Pellegrini
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Mirko Ippolito
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Taira Monge
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Rossella Violi
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Paola Cappello
- CeRMS Labortory of Tumor Immunology, University of Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Luca Simone Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | | | - Simona Bo
- Department of Medical Science, University of Turin, Italy
| | - Concetta Finocchiaro
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy.
| |
Collapse
|
214
|
González-Mercado VJ, Lim J, Berk L, Esele M, Rodríguez CS, Colón-Otero G. Gut microbiota differences in Island Hispanic Puerto Ricans and mainland non-Hispanic whites during chemoradiation for rectal cancer: A pilot study. Curr Probl Cancer 2020; 44:100551. [PMID: 32057462 DOI: 10.1016/j.currproblcancer.2020.100551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate whether there are differences in diversity, taxonomic composition, and predicted functional pathways of the gut microbiome between Island Hispanic Puerto Ricans (HPR) and mainland non-Hispanic whites (NHW) measured before and at the end of chemo-radiation (CRT) for Rectal Cancer. METHODS Fifty-six stool samples of newly diagnosed rectal cancer patients (25 HPR and 31 NHW) were amplicon-sequenced during chemo-radiotherapy. 16S rRNA gene data was analyzed using QIIME2, phyloseq, and LEfSe. RESULTS We observed similar within-sample alpha diversity for HPR and NHW participants during CRT. However, at the end of CRT, several taxa were present at significantly different abundances across both groups. Taxa enriched in the gut of HPR compared to NHW included Muribaculaceae, Prevotella 2 and 7, Gemella, Bacillales Family XI, Catenibacterium, Sutterella, Pasteurellales, and Pasteurellaceae genera, whereas over-represented taxa in NHW participants were Turicibacter and Eubacteriaceae. Significant differences in predicted HPR microbiota functions included pathways for synthesis of L-methionine and degradation of phenylethylamine and phenylacetate. CONCLUSION In this pilot study, taxonomic analyses and functional predictions of the gut microbiomes suggest greater inflammatory potential in gut microbial functions among HPR rectal cancer patients undergoing CRT compared to that of NHW participants.
Collapse
Affiliation(s)
| | - Jean Lim
- College of Nursing, University of South Florida, Tampa, Florida
| | - Lawrence Berk
- Radiation Oncology, College of Medicine Radiology, University of South Florida, Tampa, Florida
| | - Mary Esele
- School of Nursing, South University, Tampa, Florida
| | | | - Gerardo Colón-Otero
- Division of Hematology-Oncology, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Jacksonville, Florida
| |
Collapse
|
215
|
Abstract
The bacterial communities that live within the human gut have been linked to health and disease. However, we are still just beginning to understand how those bacteria interact and what potential interventions to our gut microbiome can make us healthier. Here, we present a mathematical modeling framework (named MICOM) that can recapitulate the growth rates of diverse bacterial species in the gut and can simulate metabolic interactions within microbial communities. We show that MICOM can unravel the ecological rules that shape the microbial landscape in our gut and that a given dietary or probiotic intervention can have widely different effects in different people. Compositional changes in the gut microbiota have been associated with a variety of medical conditions such as obesity, Crohn’s disease, and diabetes. However, connecting microbial community composition to ecosystem function remains a challenge. Here, we introduce MICOM, a customizable metabolic model of the human gut microbiome. By using a heuristic optimization approach based on L2 regularization, we were able to obtain a unique set of realistic growth rates that corresponded well with observed replication rates. We integrated adjustable dietary and taxon abundance constraints to generate personalized metabolic models for individual metagenomic samples. We applied MICOM to a balanced cohort of metagenomes from 186 people, including a metabolically healthy population and individuals with type 1 and type 2 diabetes. Model results showed that individual bacterial genera maintained conserved niche structures across humans, while the community-level production of short-chain fatty acids (SCFAs) was heterogeneous and highly individual specific. Model output revealed complex cross-feeding interactions that would be difficult to measure in vivo. Metabolic interaction networks differed somewhat consistently between healthy and diabetic subjects. In particular, MICOM predicted reduced butyrate and propionate production in a diabetic cohort, with restoration of SCFA production profiles found in healthy subjects following metformin treatment. Overall, we found that changes in diet or taxon abundances have highly personalized effects. We believe MICOM can serve as a useful tool for generating mechanistic hypotheses for how diet and microbiome composition influence community function. All methods are implemented in an open-source Python package, which is available at https://github.com/micom-dev/micom. IMPORTANCE The bacterial communities that live within the human gut have been linked to health and disease. However, we are still just beginning to understand how those bacteria interact and what potential interventions to our gut microbiome can make us healthier. Here, we present a mathematical modeling framework (named MICOM) that can recapitulate the growth rates of diverse bacterial species in the gut and can simulate metabolic interactions within microbial communities. We show that MICOM can unravel the ecological rules that shape the microbial landscape in our gut and that a given dietary or probiotic intervention can have widely different effects in different people.
Collapse
|
216
|
Sfera A, Osorio C, Diaz EL, Maguire G, Cummings M. The Other Obesity Epidemic-Of Drugs and Bugs. Front Endocrinol (Lausanne) 2020; 11:488. [PMID: 32849279 PMCID: PMC7411001 DOI: 10.3389/fendo.2020.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic psychiatric patients with schizophrenia and related disorders are frequently treatment-resistant and may require higher doses of psychotropic drugs to remain stable. Prolonged exposure to these agents increases the risk of weight gain and cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is well-established that obesity has reached epidemic proportions throughout the world, however it is less known that its rates are two to three times higher in mentally ill patients compared to the general population. Psychotropic drugs have emerged as a major cause of weight gain, pointing to an urgent need for novel interventions to attenuate this unintended consequence. Recently, the gut microbial community has been linked to psychotropic drugs-induced obesity as these agents were found to possess antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum. Since germ-free animals exposed to psychotropics have not demonstrated weight gain, altered commensal flora composition is believed to be necessary and sufficient to induce dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut microbiota but the later alter the metabolism of the former. Here we review the role of gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
- *Correspondence: Adonis Sfera
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Eddie Lee Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Gerald Maguire
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
217
|
Naseer M, Poola S, Ali S, Samiullah S, Tahan V. Prebiotics and Probiotics in Inflammatory Bowel Disease: Where are we now and where are we going? CURRENT CLINICAL PHARMACOLOGY 2020; 15:216-233. [PMID: 32164516 DOI: 10.2174/1574884715666200312100237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
The incidence, prevalence, and cost of care associated with diagnosis and management of inflammatory bowel disease are on the rise. The role of gut microbiota in the causation of Crohn's disease and ulcerative colitis has not been established yet. Nevertheless, several animal models and human studies point towards the association. Targeting intestinal dysbiosis for remission induction, maintenance, and relapse prevention is an attractive treatment approach with minimal adverse effects. However, the data is still conflicting. The purpose of this article is to provide the most comprehensive and updated review on the utility of prebiotics and probiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis and their role in the remission induction, maintenance, and relapse prevention. A thorough literature review was performed on PubMed, Ovid Medline, and EMBASE using the terms "prebiotics AND ulcerative colitis", "probiotics AND ulcerative colitis", "prebiotics AND Crohn's disease", "probiotics AND Crohn's disease", "probiotics AND acute pouchitis", "probiotics AND chronic pouchitis" and "prebiotics AND pouchitis". Observational studies and clinical trials conducted on humans and published in the English language were included. A total of 71 clinical trials evaluating the utility of prebiotics and probiotics in the management of inflammatory bowel disease were reviewed and the findings were summarized. Most of these studies on probiotics evaluated lactobacillus, De Simone Formulation or Escherichia coli Nissle 1917 and there is some evidence supporting these agents for induction and maintenance of remission in ulcerative colitis and prevention of pouchitis relapse with minimal adverse effects. The efficacy of prebiotics such as fructooligosaccharides and Plantago ovata seeds in ulcerative colitis are inconclusive and the data regarding the utility of prebiotics in pouchitis is limited. The results of the clinical trials for remission induction and maintenance in active Crohn's disease or post-operative relapse with probiotics and prebiotics are inadequate and not very convincing. Prebiotics and probiotics are safe, effective and have great therapeutic potential. However, better designed clinical trials in the multicenter setting with a large sample and long duration of intervention are needed to identify the specific strain or combination of probiotics and prebiotics which will be more beneficial and effective in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Maliha Naseer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shiva Poola
- Department of Internal and Pediatric Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Syed Ali
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Sami Samiullah
- Assistant Professor of Clinical Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| | - Veysel Tahan
- Assistant Professor of Clinical Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| |
Collapse
|
218
|
Guo K, Ruan G, Fan W, Fang L, Wang Q, Luo M, Yi T. The effect of nitrite and sulfide on the antioxidant capacity and microbial composition of the intestines of red swamp crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 96:290-296. [PMID: 31765791 DOI: 10.1016/j.fsi.2019.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Nitrite and sulfide are harmful pollutants in water ecosystems that negatively influence the survival and growth of crayfish. It is currently known that the intestine of crustaceans acts as a significant immune organ, serving as the front line of defense against diseases. In this study, we investigated how the oxidative damage parameters, antioxidant status and microbial composition of the intestine of Procambarus clarkii were influenced under acute nitrite (60 mg/L) and sulfide (18 mg/L) stress for 72 h. Compared with the control, after exposure to nitrite and sulfide stress, the production of reactive oxygen species, and the lipid peroxide and malondialdehyde contents increased in the intestines and were significantly higher after 72 h of exposure. The superoxide dismutase, catalase and glutathione peroxidase activities increased to maximum levels at 6, 24 and 12 h, respectively. These activities then decreased gradually and were significantly lower than those of the control after 48 or 72 h of exposure. In the crayfish exposed to stress, the expression of antioxidant genes including heat shock protein 70, ferritin and metallothionein increased to their maximum values at 12, 48 and 12 h, respectively. The expression levels then decreased gradually, and after 72 h, were lower than, or lacked significant differences with, the expression levels in the control. Additionally, nitrite and sulfide exposure restructured the intestinal microbial community of P. clarkii. This led to decreases in the abundance of some genera such as Citrobacter. However, the abundance of other genera, such as Shewanella and Acinetobacter, increased. Therefore, the health of P. clarkii was seriously impaired when exposed to nitrite and sulfide stress.
Collapse
Affiliation(s)
- Kun Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China
| | - Guoliang Ruan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China; Hubei Research Institute of Aquatic Industry Technology, Jingzhou, 434000, PR China.
| | - Wenhao Fan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China
| | - Liu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China; Hubei Research Institute of Aquatic Industry Technology, Jingzhou, 434000, PR China
| | - Qian Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China
| | - Mingzhong Luo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China
| | - Tilin Yi
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434000, PR China; Hubei Research Institute of Aquatic Industry Technology, Jingzhou, 434000, PR China
| |
Collapse
|
219
|
Tiderencel KA, Hutcheon DA, Ziegler J. Probiotics for the treatment of type 2 diabetes: A review of randomized controlled trials. Diabetes Metab Res Rev 2020; 36:e3213. [PMID: 31465625 DOI: 10.1002/dmrr.3213] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is increased interest in probiotic supplementation for improving glycaemic control. This review evaluates nine randomized controlled trials that tested the effects of probiotics on glycaemic outcomes including fasting plasma glucose, fasting plasma insulin, haemoglobin A1c, and homeostatic model assessment of insulin resistance among adults with T2DM. Based on the evidence reviewed, multistrain probiotics that contain seven million to 100 billion colony forming units of Lactobacillus acidophilus, Streptococcus thermophilus, Lactobacillus bulgaricus, and/or Bifidobacterium lactis administered for 6 to 12 weeks may be efficacious for improving glycaemic control in adults with T2DM. Further research is needed to understand the role of the gut microbiota and the probiotic dose, medium, and duration of exposure that is most effective for disease management.
Collapse
Affiliation(s)
- Kelly A Tiderencel
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey
| | - Deborah A Hutcheon
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey
| | - Jane Ziegler
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey
| |
Collapse
|
220
|
Khat‐udomkiri N, Toejing P, Sirilun S, Chaiyasut C, Lailerd N. Antihyperglycemic effect of rice husk derived xylooligosaccharides in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rat model. Food Sci Nutr 2020; 8:428-444. [PMID: 31993169 PMCID: PMC6977422 DOI: 10.1002/fsn3.1327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Rice husk (RH) is an agricultural waste obtained from rice milling process. Our previous study demonstrated the optimized process of extracting xylooligosaccharides (XOS), a prebiotic that can support the growth and activity of beneficial gut microbiota, from RH. Accumulated evidences indicate that the composition of gut microbiota is involved in the progression of insulin resistance and diabetes. This study aims to evaluate the antihyperglycemic effect and putative mechanisms of RH-XOS using a diabetic rat model induced by high-fat diet and streptozotocin injection. Diabetic rats were randomly assigned to receive vehicle (DMC), XOS (DM-XOS), metformin (DMM), and a combination of XOS and metformin (DMM-XOS). An additional group of rats were fed with normal diet plus vehicle (NDC) and normal diet plus XOS (ND-XOS). Supplementation with RH-XOS for 12 weeks successfully decreased the fasting plasma glucose, insulin, leptin, and LPS levels in DM-XOS compared with DMC. Likewise, the insulin-stimulated glucose uptake assessed by in vitro study was significantly enhanced in DM-XOS, DMM, and DMM-XOS. The diminished protein expressions of GLUT4 and pAktSer473 as well as pAMPKThr172 were significantly modulated in DM-XOS, DMM, and DMM-XOS groups. Interestingly, RH-XOS supplementation reversed the changed gut permeability, elevated the number of beneficial bacteria, both Lactobacillus and Bifidobacterium spp., and increased SCFAs production. Taken together, the results confirm the efficacy of RH-XOS in achieving good glycemic control in diabetes by maintenance of gut microbiota and attenuation of endotoxemia. The findings reveal the benefits of RH-XOS and open an opportunity to improve its value by its development as a nutraceutical for diabetes.
Collapse
Affiliation(s)
- Nuntawat Khat‐udomkiri
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| | - Parichart Toejing
- Department of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
| | - Narissara Lailerd
- Innovation Center for Holistic Health, Nutraceuticals and CosmeceuticalsFaculty of PharmacyChiang Mai UniversityChiang MaiThailand
- Department of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
221
|
Busnelli M, Manzini S, Chiesa G. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients 2019; 12:E79. [PMID: 31892152 PMCID: PMC7019666 DOI: 10.3390/nu12010079] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
It is widely recognized that the microorganisms inhabiting our gastrointestinal tract-the gut microbiota-deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.
Collapse
Affiliation(s)
| | | | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
222
|
Polkowska‐Pruszyńska B, Gerkowicz A, Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases – an update. J Eur Acad Dermatol Venereol 2019; 34:455-464. [PMID: 31520544 DOI: 10.1111/jdv.15951] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Affiliation(s)
- B. Polkowska‐Pruszyńska
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| | - A. Gerkowicz
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| | - D. Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| |
Collapse
|
223
|
Hasebe K, Rivera LR, Smith CM, Allnutt T, Crowley T, Nelson TM, Dean OM, McGee SL, Walder K, Gray L. Modulation of high fat diet-induced microbiome changes, but not behaviour, by minocycline. Brain Behav Immun 2019; 82:309-318. [PMID: 31493447 DOI: 10.1016/j.bbi.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
An emerging novel therapeutic agent for major depressive disorder, minocycline, has the potential to influence both gut microbiome and inflammatory status. The present study showed that chronic high fat diet feeding led to changes in both behaviour and the gut microbiome in male mice, without an overt inflammatory response. The diet-induced behavioural changes were characterised as increased immobility in the forced swim test and changes in locomotor activities in the open field test. Minocycline significantly altered the gut microbiome, rendering a community distinctly different to both untreated healthy and diet-affected states. In contrast, minocycline did not reverse high fat diet-induced changes in behaviour.
Collapse
Affiliation(s)
- Kyoko Hasebe
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Leni R Rivera
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Craig M Smith
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | - Tamsyn Crowley
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Tiffanie M Nelson
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia; Deakin University, Geelong, Victoria 3220, Australia
| | - Olivia M Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia; School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| | - Sean L McGee
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Ken Walder
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Laura Gray
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| |
Collapse
|
224
|
Ramin S, Mysz MA, Meyer K, Capistrant B, Lazovich D, Prizment A. A prospective analysis of dietary fiber intake and mental health quality of life in the Iowa Women's Health Study. Maturitas 2019; 131:1-7. [PMID: 31787141 DOI: 10.1016/j.maturitas.2019.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Recent studies have reported associations between dietary intake and mental health. Dietary fiber is one nutrient that may modulate mental health, specifically depression risk, through the gut microbiome. We prospectively examined the association between dietary fiber intake and mental health-related quality of life (QOL) scores, a proxy for depressive symptoms, in a cohort of 14,129 post-menopausal women in the Iowa Women's Health Study. METHODS Dietary intake was assessed at baseline [1986] using a 127-item food frequency questionnaire. Mental health-related QOL scores were assessed at the follow-up questionnaire [2004] using the Mental Health (MH) component and Mental Health Composite (MCS) scales derived from the SF-36 Health Survey. The association between dietary fiber intake and mean QOL scores was examined using linear regression, with adjustment for age, alcohol intake, energy intake, waist-to-hip ratio, physical activity, smoking status, and education. RESULTS The median dietary fiber intake was 19.0 g/day, ranging from 1.1 to 89.4 g/day. Multivariable-adjusted mean MH scores were higher among those with higher fiber intake (P for trend = 0.02). For MCS score, the association with fiber intake observed in a model adjusted for age and energy intake became insignificant after multivariable adjustment. CONCLUSIONS Our study is one of the first prospective analyses of the association between higher dietary fiber intake and increased MH QOL scores later in life. Given a plausible biological mechanism underlying the association between fiber intake and mental health, additional studies are warranted.
Collapse
Affiliation(s)
- Seth Ramin
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, United States
| | - Margaret A Mysz
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, United States
| | - Katie Meyer
- University of North Carolina, Department of Nutrition and Nutrition Research Institute, Chapel Hill, NC, United States
| | - Benjamin Capistrant
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, United States; Universty of Minnesota, Minnesota Population Center, Minneapolis, MN, United States; Smith College, School of Social Work, Northampton, MA, United States
| | - DeAnn Lazovich
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, United States; University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Anna Prizment
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, United States; University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States.
| |
Collapse
|
225
|
Martínez Leo EE, Segura Campos MR. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 2019; 71:110609. [PMID: 31837645 DOI: 10.1016/j.nut.2019.110609] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The current dietary pattern is characterized by high consumption of ultra-processed foods and lower consumption of fiber and vegetables, environmental factors that are associated directly with the current incidence of chronic metabolic diseases. Diet is an environmental factor that influences the diversity and functionality of the gut microbiota, where dietary changes have a direct action on their homeostasis. The environment created in the gut by ultra-processed foods, a hallmark of the Western diet that are recognized as trigger factors for low-grade systemic inflammatory and oxidative changes, favor the development of neurodegenerative diseases (NDs). From a systematic search, the present review analyzes the relationship and effect of the current feeding pattern, with the dysregulation of the microbiota and its influence on the development of cognitive decline. Because diagnosis of NDs is usually at late stages, this review highlights the importance of a search for stricter public health strategies regarding access to and development of ultra-processed foods.
Collapse
Affiliation(s)
- Edwin E Martínez Leo
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Yucatán, México
| | - Maira R Segura Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Yucatán, México.
| |
Collapse
|
226
|
Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Sci Rep 2019; 9:14463. [PMID: 31595010 PMCID: PMC6783455 DOI: 10.1038/s41598-019-51058-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota acts as a barrier against intestinal pathogens, but species-specific protection of the host from infection remains relatively unexplored. Although lactobacilli and bifidobacteria produce beneficial lactic and short-chain fatty acids in the mammalian gut, the significance of intestinal Escherichia coli producing these acids is debatable. Taking a Koch’s postulates approach in reverse, we define Escherichia coli as health-promoting for naturally colonizing the gut of healthy mice and protecting them against intestinal colonization and concomitant mortality by Pseudomonas aeruginosa. Reintroduction of faecal bacteria and E. coli in antibiotic-treated mice establishes a high titre of E. coli in the host intestine and increases defence against P. aeruginosa colonization and mortality. Strikingly, high sugar concentration favours E. coli fermentation to lactic and acetic acid and inhibits P. aeruginosa growth and virulence in aerobic cultures and in a model of aerobic metabolism in flies, while dietary vegetable fats - not carbohydrates or proteins - favour E. coli fermentation and protect the host in the anaerobic mouse gut. Thus E. coli metabolic output is an important indicator of resistance to infection. Our work may also suggest that the lack of antimicrobial bacterial metabolites in mammalian lungs and wounds allows P. aeruginosa to be a formidable microbe at these sites.
Collapse
|
227
|
Cabello-Olmo M, Araña M, Radichev I, Smith P, Huarte E, Barajas M. New Insights into Immunotherapy Strategies for Treating Autoimmune Diabetes. Int J Mol Sci 2019; 20:ijms20194789. [PMID: 31561568 PMCID: PMC6801436 DOI: 10.3390/ijms20194789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune illness that affects millions of patients worldwide. The main characteristic of this disease is the destruction of pancreatic insulin-producing beta cells that occurs due to the aberrant activation of different immune effector cells. Currently, T1D is treated by lifelong administration of novel versions of insulin that have been developed recently; however, new approaches that could address the underlying mechanisms responsible for beta cell destruction have been extensively investigated. The strategies based on immunotherapies have recently been incorporated into a panel of existing treatments for T1D, in order to block T-cell responses against beta cell antigens that are very common during the onset and development of T1D. However, a complete preservation of beta cell mass as well as insulin independency is still elusive. As a result, there is no existing T1D targeted immunotherapy able to replace standard insulin administration. Presently, a number of novel therapy strategies are pursuing the goals of beta cell protection and normoglycemia. In the present review we explore the current state of immunotherapy in T1D by highlighting the most important studies in this field, and envision novel strategies that could be used to treat T1D in the future.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain.
| | - Miriam Araña
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain.
| | - Ilian Radichev
- Diabetes research group at Sanford Research, Sioux Falls, SD 57104, USA.
| | - Paul Smith
- Incyte Corporation, Wilmington, DE 19803, USA.
| | | | - Miguel Barajas
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
228
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplant 2019; 28:1507-1527. [PMID: 31512505 PMCID: PMC6923550 DOI: 10.1177/0963689719873890] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and
degenerative disease that affects the central nervous system. A recent study
showed that interaction between the immune system and the gut microbiota plays a
crucial role in the development of MS. This review reports the clinical studies
carried out in recent years that aimed to evaluate the composition of the
microbiota in patients with relapsing–remitting MS (RR-MS). We also report what
is available in the literature regarding the effectiveness of fecal microbiota
transplantation and the role of the diet in restoring the intestinal bacterial
population. Studies report that patients with RR-MS have a microbiota that,
compared with healthy controls, has higher amounts of
Pedobacteria, Flavobacterium,
Pseudomonas, Mycoplana,
Acinetobacter, Eggerthella,
Dorea, Blautia,
Streptococcus and Akkermansia. In
contrast, MS patients have a microbiota with impoverished microbial populations
of Prevotella, Bacteroides,
Parabacteroides, Haemophilus,
Sutterella, Adlercreutzia,
Coprobacillus, Lactobacillus,
Clostridium, Anaerostipes and
Faecalibacterium. In conclusion, the restoration of the
microbial population in patients with RR-MS appears to reduce inflammatory
events and the reactivation of the immune system.
Collapse
Affiliation(s)
- Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Both the authors contributed equally to this article
| | - Serena Silvestro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Both the authors contributed equally to this article
| | | | | |
Collapse
|
229
|
Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019; 2019:3730519. [PMID: 31582898 PMCID: PMC6754933 DOI: 10.1155/2019/3730519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
230
|
Risk Factors for the Development of Psoriasis. Int J Mol Sci 2019; 20:ijms20184347. [PMID: 31491865 PMCID: PMC6769762 DOI: 10.3390/ijms20184347] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is an immune-mediated genetic skin disease. The underlying pathomechanisms involve complex interaction between the innate and adaptive immune system. T cells interact with dendritic cells, macrophages, and keratinocytes, which can be mediated by their secreted cytokines. In the past decade, biologics targeting tumor necrosis factor-α, interleukin (IL)-23, and IL-17 have been developed and approved for the treatment of psoriasis. These biologics have dramatically changed the treatment and management of psoriasis. In contrast, various triggering factors can elicit the disease in genetically predisposed individuals. Recent studies suggest that the exacerbation of psoriasis can lead to systemic inflammation and cardiovascular comorbidity. In addition, psoriasis may be associated with other auto-inflammatory and auto-immune diseases. In this review, we summarize the risk factors, which can be divided into two groups (namely, extrinsic and intrinsic risk factors), responsible for the onset and exacerbation of psoriasis in order to facilitate its prevention.
Collapse
|
231
|
Abstract
Aging is a natural process of organismal decay that underpins the development of myriad diseases and disorders. Extensive efforts have been made to understand the biology of aging and its regulation, but most studies focus solely on the host organism. Considering the pivotal role of the microbiota in host health and metabolism, we propose viewing the host and its microbiota as a single biological entity whose aging phenotype is influenced by the complex interplay between host and bacterial genetics. In this review we present how the microbiota changes as the host ages, but also how the intricate relationship between host and indigenous bacteria impacts organismal aging and life span. In addition, we highlight other microbiota-dependent mechanisms that potentially regulate aging, and present experimental animal models for addressing these questions. Importantly, we propose microbiome dysbiosis as an additional hallmark and biomarker of aging.
Collapse
Affiliation(s)
- Bianca Bana
- Institute of Structural and Molecular Biology, University College London and Birkbeck, University of London, London WC1E 6BT, United Kingdom
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
232
|
Xiang Q, Zhu D, Chen QL, Delgado-Baquerizo M, Su JQ, Qiao M, Yang XR, Zhu YG. Effects of diet on gut microbiota of soil collembolans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:197-205. [PMID: 31048151 DOI: 10.1016/j.scitotenv.2019.04.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The importance of diet in regulating the gut microbiome of globally distributed and functionally important soil generalist invertebrates such as collembolans remain poorly understood. Here, we studied a model collembolan (Folsomia candida) and found that diet (bacteria, plant litters, yeast, mixed food) is a critical factor in regulating the microbial diversity and community composition of this important soil organism. Collembolans fed with litter exhibited the lowest bacterial diversity and were dominated by Ochrobactrum. Conversely, collembolans fed with mixed diets resulted in the highest bacterial diversity. Our findings further suggest that microbial communities associated with different diets are linked to different levels of collembolan fitness. For example, the relative abundance of the genera of unclassified Thermogemmatisporaceae, Brevibacillus, and Novosphingobium were positively correlated with growth of the collembolans. Together, our work provides evidence that diet is a major force controlling the gut microbiome of collembolans, and is a good environmental predictor for collembolan growth, with implications for ecosystem functioning in terrestrial environments.
Collapse
Affiliation(s)
- Qian Xiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA; Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles 28933, Spain
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
233
|
Hyoju SK, Zaborin A, Keskey R, Sharma A, Arnold W, van den Berg F, Kim SM, Gottel N, Bethel C, Charnot-Katsikas A, Jianxin P, Adriaansens C, Papazian E, Gilbert JA, Zaborina O, Alverdy JC. Mice Fed an Obesogenic Western Diet, Administered Antibiotics, and Subjected to a Sterile Surgical Procedure Develop Lethal Septicemia with Multidrug-Resistant Pathobionts. mBio 2019; 10:e00903-19. [PMID: 31363025 PMCID: PMC6667615 DOI: 10.1128/mbio.00903-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Despite antibiotics and sterile technique, postoperative infections remain a real and present danger to patients. Recent estimates suggest that 50% of the pathogens associated with postoperative infections have become resistant to the standard antibiotics used for prophylaxis. Risk factors identified in such cases include obesity and antibiotic exposure. To study the combined effect of obesity and antibiotic exposure on postoperative infection, mice were allowed to gain weight on an obesogenic Western-type diet (WD), administered antibiotics and then subjected to an otherwise recoverable sterile surgical injury (30% hepatectomy). The feeding of a WD alone resulted in a major imbalance of the cecal microbiota characterized by a decrease in diversity, loss of Bacteroidetes, a bloom in Proteobacteria, and the emergence of antibiotic-resistant organisms among the cecal microbiota. When WD-fed mice were administered antibiotics and subjected to 30% liver resection, lethal sepsis, characterized by multiple-organ damage, developed. Notable was the emergence and systemic dissemination of multidrug-resistant (MDR) pathobionts, including carbapenem-resistant, extended-spectrum β-lactamase-producing Serratia marcescens, which expressed a virulent and immunosuppressive phenotype. Analysis of the distribution of exact sequence variants belonging to the genus Serratia suggested that these strains originated from the cecal mucosa. No mortality or MDR pathogens were observed in identically treated mice fed a standard chow diet. Taken together, these results suggest that consumption of a Western diet and exposure to certain antibiotics may predispose to life-threating postoperative infection associated with MDR organisms present among the gut microbiota.IMPORTANCE Obesity remains a prevalent and independent risk factor for life-threatening infection following major surgery. Here, we demonstrate that when mice are fed an obesogenic Western diet (WD), they become susceptible to lethal sepsis with multiple organ damage after exposure to antibiotics and an otherwise-recoverable surgical injury. Analysis of the gut microbiota in this model demonstrates that WD alone leads to loss of Bacteroidetes, a bloom of Proteobacteria, and evidence of antibiotic resistance development even before antibiotics are administered. After antibiotics and surgery, lethal sepsis with organ damage developed in in mice fed a WD with the appearance of multidrug-resistant pathogens in the liver, spleen, and blood. The importance of these findings lies in exposing how the selective pressures of diet, antibiotic exposure, and surgical injury can converge on the microbiome, resulting in lethal sepsis and organ damage without the introduction of an exogenous pathogen.
Collapse
Affiliation(s)
- Sanjiv K Hyoju
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Robert Keskey
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Anukriti Sharma
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Wyatt Arnold
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Fons van den Berg
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Neil Gottel
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Cindy Bethel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | - Peng Jianxin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Guangdong Province Hospital of Chinese Medicine, China
| | - Carleen Adriaansens
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emily Papazian
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jack A Gilbert
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - John C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
234
|
Qian L, Gao R, Huang J, Qin H. Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high-fat diet. Exp Ther Med 2019; 18:2262-2270. [PMID: 31452713 DOI: 10.3892/etm.2019.7801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous animal studies have demonstrated that oral probiotics may have a beneficial role in preventing obesity, inflammatory bowel disease and even colorectal cancer, which are all associated with a high-fat diet (HFD). However, the underlying beneficial effects of combined probiotic and dietary intervention on the gut microbiota of 'non-patient' individuals previously on an HFD have yet to be fully elucidated. In the present study, fecal samples were obtained from 36 volunteers on a high-fat diet and after dietary intervention for 4 months, and 16S rDNA sequencing was applied to identify how probiotics and dietary intervention had altered the composition of the microbiota. The results demonstrated that probiotics treatment and dietary intervention in combination raised the diversity of lumen microbes compared with their individual applications. A markedly separated distribution (β-diversity) was observed, confirming the difference in gut microbiota composition among the treatment groups. Bacterial taxonomic analysis demonstrated that the relative abundance of 30 species was altered among the groups following dietary intervention and/or probiotic supplementation. The majority of the species that exhibited a population increase belonged to two butyrate-producing families, Ruminococcaceae and Lachnospiraceae, whereas the species with reduced populations mainly belonged to the Bacteroidaceae family. Collectively, these results suggest that combined probiotic and dietary intervention is able to improve the gut microbiota composition of human subjects on an HFD.
Collapse
Affiliation(s)
- Leimin Qian
- Department of Gastrointestinal Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Renyuan Gao
- Department of General Surgery, The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Jianming Huang
- Department of Gastrointestinal Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Huanlong Qin
- Department of General Surgery, The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
235
|
Sharma M, Chandel D, Shukla G. Antigenotoxicity and Cytotoxic Potentials of Metabiotics Extracted from Isolated Probiotic, Lactobacillus rhamnosus MD 14 on Caco-2 and HT-29 Human Colon Cancer Cells. Nutr Cancer 2019; 72:110-119. [PMID: 31266374 DOI: 10.1080/01635581.2019.1615514] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Probiotics, the beneficial bacteria produce active metabolites which could probably mimic their anticancer effect and prevent the risk associated with live bacteria. Thus, the study was designed to isolate effective lactic acid bacteria (LAB) and monitor anticancerous potential of their metabiotic extracts. Probiotics were isolated from different sources and their cell free supernatants (CFS) were screened for antigenotoxic and cytotoxic potentials using SOS Chromo Test and MTT assay on Caco-2 and HT-29 cells. Organic extracts of CFS were prepared and dissolved in different solvents. The isolate with most effective metabiotic extract in terms of cytotoxicity was classified for probiotic and phylogenetic characters and the metabiotic extract was characterized physiochemically. Among 60 isolated LAB, CFS of only 10 isolates showed antigenotoxicity more than 30% and four exhibited 70-80% cytotoxicity. Further, organic extracts of these four CFS dissolved in carboxymethyl cellulose showed 80-90% cytotoxicity. Interestingly, the most effective isolate was found to possess probiotic attributes and phylogenetic characterization revealed it to be Lactobacillus rhamnosus MD 14. Physiochemical characterization of its metabiotic extract indicated the presence of heat sensitive organic acids and proteins. To conclude, metabiotics produced by isolated probiotic L. rhamnosus MD 14 exhibited both antigenotoxic and cytotoxic potential against colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Deepika Chandel
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
236
|
Li T, Qi M, Gatesoupe FJ, Tian D, Jin W, Li J, Lin Q, Wu S, Li H. Adaptation to Fasting in Crucian Carp (Carassius auratus): Gut Microbiota and Its Correlative Relationship with Immune Function. MICROBIAL ECOLOGY 2019; 78:6-19. [PMID: 30343437 DOI: 10.1007/s00248-018-1275-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Fasting influences the overall physiology of fish, and the knowledge how the gut microbiota, growth performances, and immune function in response to intermittent and long-term fasting is still insufficient. Here, we characterized the effects of fasting on the host-gut microbiota in crucian carp, which would enhance our insight into physiological adaptation to fasting. To achieve this, we investigated the gut microbial communities of crucian carp with different fasting stress, and corresponding immune and growth parameters. The gut microbial communities were structured into four clusters according to different fasting stress, namely one control group (feed regularly), two intermittent fasting groups (fasting period and re-feeding period, respectively), and one long-term fasting group. Intermittent fasting significantly improved the activity of superoxide dismutase (SOD) and lysozyme (LZM) (ANOVA, p < 0.05) and significantly increased alpha diversity and ecosystem stability of gut microbiota (ANOVA, p < 0.05). Gut length (GL) and condition factor (CF) showed no significant difference between the control group (CG) and intermittent fasting group under re-feeding period (RIF) (ANOVA, p = 0.11), but relative gut length (RGL) in group RIF was higher than that in the CG (ANOVA, p = 0.00). The bacterial genera Bacteroides, Akkermansia, and Erysipelotrichaceae were enriched in fishes under intermittent fasting. Two Bacteroides OTUs (OTU50 and OTU1292) correlated positively with immune (SOD, complement, and LZM) and growth (GL and RGL) parameters. These results highlight the possible interplay between growth performances, immune function, and gut microbiota in response to fasting.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengting Qi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | | | - Dongcan Tian
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihua Jin
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Huan Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
237
|
Keshteli AH, Madsen KL, Dieleman LA. Diet in the Pathogenesis and Management of Ulcerative Colitis; A Review of Randomized Controlled Dietary Interventions. Nutrients 2019; 11:nu11071498. [PMID: 31262022 PMCID: PMC6683258 DOI: 10.3390/nu11071498] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and experimental studies have suggested that diet is one of the environmental factors that contributes to the onset and pathophysiology of ulcerative colitis. Although many patients suffering from ulcerative colitis attribute their symptoms or disease relapse to dietary factors, only a few well-designed randomized controlled trials have been done to investigate the role of diet in the management of ulcerative colitis. Here, we review the potential mechanisms of the relationship between diet and pathogenesis of ulcerative colitis and summarize randomized controlled dietary interventions that have been conducted in ulcerative colitis patients.
Collapse
Affiliation(s)
- Ammar Hassanzadeh Keshteli
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Edmonton, AB T6G 2X8, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Edmonton, AB T6G 2X8, Canada
| | - Levinus A Dieleman
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada.
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Edmonton, AB T6G 2X8, Canada.
| |
Collapse
|
238
|
Greenspan SE, Lyra ML, Migliorini GH, Kersch-Becker MF, Bletz MC, Lisboa CS, Pontes MR, Ribeiro LP, Neely WJ, Rezende F, Romero GQ, Woodhams DC, Haddad CFB, Toledo LF, Becker CG. Arthropod-bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc Biol Sci 2019; 286:20190924. [PMID: 31238845 DOI: 10.1098/rspb.2019.0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The host-associated microbiome is vital to host immunity and pathogen defense. In aquatic ecosystems, organisms may interact with environmental bacteria to influence the pool of potential symbionts, but the effects of these interactions on host microbiome assembly and pathogen resistance are unresolved. We used replicated bromeliad microecosystems to test for indirect effects of arthropod-bacteria interactions on host microbiome assembly and pathogen burden, using tadpoles and the fungal amphibian pathogen Batrachochytrium dendrobatidis as a model host-pathogen system. Arthropods influenced host microbiome assembly by altering the pool of environmental bacteria, with arthropod-bacteria interactions specifically reducing host colonization by transient bacteria and promoting antimicrobial components of aquatic bacterial communities. Arthropods also reduced fungal zoospores in the environment, but fungal infection burdens in tadpoles corresponded most closely with arthropod-mediated patterns in microbiome assembly. This result indicates that the cascading effects of arthropods on the maintenance of a protective host microbiome may be more strongly linked to host health than negative effects of arthropods on pools of pathogenic zoospores. Our work reveals tight links between healthy ecosystem dynamics and the functioning of host microbiomes, suggesting that ecosystem disturbances such as loss of arthropods may have downstream effects on host-associated microbial pathogen defenses and host fitness.
Collapse
Affiliation(s)
- Sasha E Greenspan
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| | - Mariana L Lyra
- 2 Department of Zoology and Aquaculture Center (CAUNESP), Universidade Estadual Paulista , Rio Claro , SP 13506-900 , Brazil
| | - Gustavo H Migliorini
- 3 Programa de Pós-graduação em Biologia Animal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' , São José do Rio Preto SP 15054-000 , Brazil
| | - Mônica F Kersch-Becker
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| | - Molly C Bletz
- 4 Department of Biology, University of Massachusetts Boston , Boston, MA 02125 , USA
| | | | - Mariana R Pontes
- 6 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil.,8 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - Luisa P Ribeiro
- 6 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil.,8 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - Wesley J Neely
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| | - Felipe Rezende
- 6 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - Gustavo Q Romero
- 7 Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas SP 13083-862 , Brazil
| | - Douglas C Woodhams
- 4 Department of Biology, University of Massachusetts Boston , Boston, MA 02125 , USA
| | - Célio F B Haddad
- 2 Department of Zoology and Aquaculture Center (CAUNESP), Universidade Estadual Paulista , Rio Claro , SP 13506-900 , Brazil
| | - Luís Felipe Toledo
- 8 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - C Guilherme Becker
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| |
Collapse
|
239
|
Nogay NH, Nahikian-Nelms M. Can we reduce autism-related gastrointestinal and behavior problems by gut microbiota based dietary modulation? A review. Nutr Neurosci 2019; 24:327-338. [PMID: 31216957 DOI: 10.1080/1028415x.2019.1630894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Autism is a neurodevelopmental disorder that negatively affects a child's interaction and communication with the environment. The signals between intestine, brain, and microbiota change in autism. Altering the composition of microbiota may contribute to the development of clinical symptoms. Diet is one of the most important factors influencing intestinal microbiota.Aim: This study aimed to investigate the role of intestinal microbiota in gastrointestinal (GI) and behavioral problems seen in children with autism and discuss the potential effect of diet on intestinal microbiota in reducing these problems.Methods: The database Web of Science was searched for relevant studies. The combinations of the following terms were used for the search: 'autism' or 'autistic' and 'microbiome' or 'microbiota' or 'gut bacteria' or 'gut microbiota' or 'gut microbiome.' The analysis included human studies evaluating the relationship between GI problems and/or behavioral problems and intestinal microbiota in autism in the English language with no time limitation.Results: The initial search resulted in 691 studies, with 14 studies fully meeting the inclusion criteria. In these studies, high growth rates of Clostridium histolyticum, C. perfringens, and Sutterella; high ratio of Escherichia/Shigella; and low ratio of Bacteroidetes/Firmicutes were generally related to GI problems, while relative abundance of Desulfovibrio, Clostridium spp., and Bacteroides vulgatus were associated with behavior disorders.Conclusions: Published studies on the relationship of gastrointestinal and behavioral problems with gut microbiota in autism are very limited and contradictory. The fact that the results of the studies are not consistent with each other may be explained by the differences in the age of participants, geographical region, sample size, presence of GI problems in the selected control group, and feces or biopsy samples taken from different regions of GI system. With the available information, it is not yet possible to develop a gut microbiota-based nutritional intervention to treat GI symptoms for people with autism.
Collapse
Affiliation(s)
- Nalan Hakime Nogay
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey.,School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marcia Nahikian-Nelms
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
240
|
Zhou YJ, Chang YN, You JQ, Li SZ, Zhuang W, Cao CJ. Cold-pressed Canola Oil Reduces Hepatic Steatosis by Modulating Oxidative Stress and Lipid Metabolism in KM Mice Compared with Refined Bleached Deodorized Canola Oil. J Food Sci 2019; 84:1900-1908. [PMID: 31183867 DOI: 10.1111/1750-3841.14504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
The quality of canola oil is affected by different extraction methods. The effect of cold-pressed canola oil (CPCO) diet and traditional refined bleached deodorized canola oil (RBDCO) diet on lipid accumulation and hepatic steatosis in mice were investigated. The body weight, peroxisome proliferator-activated receptor-α concentration, serum lipid profile, insulin sensitivity, and oxidative stress were increased in mice fed with CPCO diet, which had higher unsaturated fatty acid, tocopherols, phytosterols, and phospholipids but lower saturated fatty acid than RBDCO, after 12 weeks,. Moreover, CPCO significantly increased tocopherols and phytosterols content in liver and reduced liver cholesterol contents and lipid vacuoles accumulation than RBDCO. Also, serum proinflammatory cytokines, 3-hydroxy-3-methylglutary coenzyme A reductase expression level, lipogenic enzymes, and transcriptional factors such as sterol regulatory element-binding proteins 1c, acetyl-CoA carboxylase, and fatty acid synthase in the liver were also markedly downregulated from CPCO diet mice. Overall, CPCO can reduce lipid accumulation and hepatic steatosis by regulating oxidative stress and lipid metabolism in Kun Ming mice compared with RBDCO. PRACTICAL APPLICATION: The results suggested that more bioactive components were contained in cold-pressed canola oil (CPCO) rather than refined bleached deodorized canola oil (RBDCO). CPCO could lower the risk of obesity and hyperlipidemia, reduce lipid accumulation, and prevent hepatic steatosis. It could be considered as a kind of better edible oil than RBDCO.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Jia-Qi You
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Sui-Zi Li
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Wei Zhuang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Cheng-Jia Cao
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| |
Collapse
|
241
|
Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediators Inflamm 2019; 2019:8373060. [PMID: 31281229 PMCID: PMC6589192 DOI: 10.1155/2019/8373060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
Given the association between a range of neurological disorders and changes in the gut microbiota, interest in the gut microbiota has recently increased. In particular, the significant involvement of the autoimmune processes in the development of epilepsy, one of the most serious and widespread neurological diseases, has led to a suggested link with the gut microbiome. Because the constitution of the gut microbiome can be influenced by diet, dietary therapy has been shown to have a positive impact on a wide range of conditions via alteration of the gut microbiota. An example of one such diet is the ketogenic diet (KD), which promotes a diet that contains high levels of fat, adequate levels of protein, and low levels of carbohydrate. Due to the near-total elimination of carbohydrates from the individual's food in this ultra-high-fat diet, ketone bodies become an important source of energy. Although the ketogenic diet has proven successful in the treatment of refractory epilepsy and other illnesses, the underlying mechanisms of its neuroprotective effects have yet to be fully elucidated. Nevertheless, recent studies strongly indicate a role for the gut microbiota in the effective treatment of epilepsy with the ketogenic diet. The latest advances regarding the links between the ketogenic diet, gut microbiota, and epilepsy are reviewed in this article, with a particular focus on the role of the gut microbiota in the treatment outcome.
Collapse
|
242
|
Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, Ostadrahimi A. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A randomized clinical trial. Appetite 2019; 141:104301. [PMID: 31132422 DOI: 10.1016/j.appet.2019.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Akkermansia muciniphila bacterium is one of the inhabitant gut microbiota involving in the energy homeostasis and inhibition of the inflammations. The present study was designed to evaluate the effects of Oleoylethanolamide (OEA) supplementation on the abundance of A. muciniphila and the dietary intakes in obese people. In this randomized, double-blind, controlled clinical trial, 60 eligible obese people were selected and divided randomly into two groups including OEA group (received two capsules containing 125 mg of OEA daily) and placebo group (received two capsules containing 125 mg of starch daily). The treatment lasted for 8 weeks. Dietary intakes were evaluated according to the three -day food record and, were analyzed by the Nutritionist 4 software. In order to evaluate the changes in the abundance of A. muciniphila bacterium, faeces samples were collected at baseline and at the end of study. The targeting of the 16S rRNA gene in A. muciniphila was measured by the quantitative real-time PCR analysis. For OEA group, the energy and carbohydrate intakes decreased significantly after adjusting for baseline values and confounder factors; (p = 0.035), the amount of carbohydrate was reported as 422.25 (SD = 103.11) gr and 368.44 (SD = 99.08) gr; (p = 0.042)), before and after the treatment, respectively. The abundance of A. muciniphila bacterium increased significantly in OEA group compared to placebo group (p < 0.001). Considering the accumulating evidence identified OEA as a novel, safe, and efficacious pharmaceutical agent increasing the abundance of A. muciniphila bacterium and modifying the energy balance, therefore it is suggested to use its supplement for treatment of the obese people. However, future studies are needed to confirm the positive results obtained in this study.
Collapse
Affiliation(s)
- Laleh Payahoo
- Assistant Professor of Nutrition Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Yaser Khajebishak
- Assistant Professor of Nutrition Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soleimanzade
- Department of Applied Biochemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abolfazl Barzegari
- Student Research Committee, School of Advanced Biomedical Sciences, Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
243
|
Nagpal R, Shively CA, Register TC, Craft S, Yadav H. Gut microbiome-Mediterranean diet interactions in improving host health. F1000Res 2019; 8:699. [PMID: 32704349 PMCID: PMC7359750 DOI: 10.12688/f1000research.18992.1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota plays a fundamental role in host health and disease. Host diet is one of the most significant modulators of the gut microbial community and its metabolic activities. Evidence demonstrates that dietary patterns such as the 'Western diet' and perturbations in gut microbiome (dysbiosis) have strong associations with a wide range of human diseases, including obesity, metabolic syndrome, type-2 diabetes and cardiovascular diseases. However, consumption of Mediterranean-style diets is considered healthy and associated with the prevention of cardiovascular and metabolic diseases, colorectal cancers and many other diseases. Such beneficial effects of the Mediterranean diet might be attributed to high proportion of fibers, mono- and poly-unsaturated fatty acids, antioxidants and polyphenols. Concurrent literature has demonstrated beneficial modulation of the gut microbiome following a Mediterranean-style diet in humans as well as in experimental animal models such as rodents. We recently demonstrated similar positive changes in the gut microbiome of non-human primates consuming a Mediterranean-style diet for long term (30 months). Therefore, it is rational to speculate that this positive modulation of the gut microbiome diversity, composition and function is one of the main factors intermediating the health effects of Mediterranean diet on the host. The present perspective discusses the evidences that the Mediterranean diet induces gut microbiome modulation in rodents, non-human primates and human subjects, and discusses the potential role of gut microbiota and microbial metabolites as one of the fundamental catalysts intermediating various beneficial health effects of Mediterranean diet on the host.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Division of Internal Medicine - Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Carol A. Shively
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Thomas C. Register
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Hariom Yadav
- Division of Internal Medicine - Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
244
|
Lew KN, Starkweather A, Cong X, Judge M. A Mechanistic Model of Gut-Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biol Res Nurs 2019; 21:384-399. [PMID: 31113222 DOI: 10.1177/1099800419849109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.
Collapse
Affiliation(s)
| | | | - Xiaomei Cong
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| | - Michelle Judge
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
245
|
Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells 2019; 8:cells8050450. [PMID: 31091682 PMCID: PMC6562883 DOI: 10.3390/cells8050450] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has indicated that diet and metabolites, including bacteria- and host-derived metabolites, orchestrate host pathophysiology by regulating metabolism, immune system and inflammation. Indeed, autoimmune diseases such as inflammatory bowel disease (IBD) are associated with the modulation of host response to diets. One crucial mechanism by which the microbiota affects the host is signaling through G protein-coupled receptors (GPCRs) termed metabolite-sensing GPCRs. In the gut, both immune and nonimmune cells express GPCRs and their activation generally provide anti-inflammatory signals through regulation of both the immune system functions and the epithelial integrity. Members of GPCR family serve as a link between microbiota, immune system and intestinal epithelium by which all these components crucially participate to maintain the gut homeostasis. Conversely, impaired GPCR signaling is associated with IBD and other diseases, including hepatic steatosis, diabetes, cardiovascular disease, and asthma. In this review, we first outline the signaling, function, expression and the physiological role of several groups of metabolite-sensing GPCRs. We then discuss recent findings on their role in the regulation of the inflammation, their existing endogenous and synthetic ligands and innovative approaches to therapeutically target inflammatory bowel disease.
Collapse
|
246
|
Baenas N, Wagner AE. Drosophila melanogaster as an alternative model organism in nutrigenomics. GENES AND NUTRITION 2019; 14:14. [PMID: 31080523 PMCID: PMC6501408 DOI: 10.1186/s12263-019-0641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Nutrigenomics explains the interaction between the genome, the proteome, the epigenome, the metabolome, and the microbiome with the nutritional environment of an organism. It is therefore situated at the interface between an organism's health, its diet, and the genome. The diet and/or specific dietary compounds are able to affect not only the gene expression patterns, but also the epigenetic mechanisms as well as the production of metabolites and the bacterial composition of the microbiota. Drosophila melanogaster provides a well-suited model organism to unravel these interactions in the context of nutrigenomics as it combines several advantages including an affordable maintenance, a short generation time, a high fecundity, a relatively short life expectancy, a well-characterized genome, and the availability of several mutant fly lines. Furthermore, it hosts a mammalian-like intestinal system with a clear microbiota and a fat body resembling the adipose tissue with liver-equivalent oenocytes, supporting the fly as an excellent model organism not only in nutrigenomics but also in nutritional research. Experimental approaches that are essentially needed in nutrigenomic research, including several sequencing technologies, have already been established in the fruit fly. However, studies investigating the interaction of a specific diet and/or dietary compounds in the fly are currently very limited. The present review provides an overview of the fly's morphology including the intestinal microbiome and antimicrobial peptides as modulators of the immune system. Additionally, it summarizes nutrigenomic approaches in the fruit fly helping to elucidate host-genome interactions with the nutritional environment in the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Nieves Baenas
- 1Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Anika E Wagner
- 2Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
247
|
Liu Y, Chen Z, Dai J, Yang P, Xu W, Ai Q, Zhang W, Zhang Y, Zhang Y, Mai K. Sodium butyrate supplementation in high-soybean meal diets for turbot (Scophthalmus maximus L.): Effects on inflammatory status, mucosal barriers and microbiota in the intestine. FISH & SHELLFISH IMMUNOLOGY 2019; 88:65-75. [PMID: 30840856 DOI: 10.1016/j.fsi.2019.02.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
A 12-week feeding trial was conducted to evaluate the effects of dietary sodium butyrate (NaBT) on the intestinal health of juvenile turbot (Scophthalmus maximus L.), in terms of inflammatory status, mucosal barriers and microbiota. Three isonitrogenous and isolipidic practical diets were used: (1) fish meal based group (FM); (2) soybean meal group (SBM), soy protein replacing 40% fish meal protein in FM; (3) NaBT group, 0.2% NaBT supplemented in SBM. Each diet was fed to triplicate tanks (30 fish in each tank). The current results showed that 0.2% dietary NaBT improved the growth performance of fish and alleviated the enteropathy, increasing the absorptive surface and mitigating the infiltration of mixed leukocytes in lamina propria. Fish fed the NaBT diet presented increased activities of intestinal brush border enzyme and similar nutrient digestibility with the FM group. Compared to SBM, the inclusion of 0.2% NaBT in diet significantly up-regulated the intestinal gene expression of tight junction proteins and down-regulated the gene expression of TNF-α and NF-κB. The gut microbial communities of the NaBT group were closer to the FM group than to the SBM group, in terms of PCoA, UPGMA and Heatmap analyses based on weighted Unifrac distance. The relative abundance of several dominant bacteria at the phylum (Proteobacteria, Bacteroidetes, Deinococcus-Thermus and Actinobacteria) and genus level (Thermus, Acinetobacter, Bacteroides and Silanimonas) were altered by dietary NaBT. In conclusion, dietary NaBT had positive roles in protecting the intestinal health of turbot from the impairment of soybean meal.
Collapse
Affiliation(s)
- Yang Liu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Pei Yang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weiqi Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| |
Collapse
|
248
|
Duan Y, Wang Y, Liu Q, Zhang J, Xiong D. Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stress. FISH & SHELLFISH IMMUNOLOGY 2019; 88:142-149. [PMID: 30807860 DOI: 10.1016/j.fsi.2019.02.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
pH of water environment affects the survival of aquatic animals. Intestine barrier function influences the health of animals, which is related to its mucosa structure, immune components, and microbial communities. In this study, we investigated the histological structure, digestive and metabolic capacity, immune responses, and microbial composition in the intestine of Litopenaeus vanmei under three different conditions: control (pH 8.3), low pH stress (pH 6.9), and high pH stress (pH 9.7) for 72 h. The results showed both low and high pH stress disrupted the intestine morphological structure, and induced variations in the activities of digestive (AMS, LPS, Tryp, and Pep) and metabolic (HK, PK, CCO, and LDH) enzymes. Low and high pH stress also increased oxidative stress (MDA, LPO, PC, and ·O2- generation), and decreased the antioxidant enzyme activities (T-AOC, SOD, and GST); shrimp enhanced CAT activity and HSP70, Trx, MT and Fer gene transcripts as defense mechanism. Additionally, Immune confusion was also found in the shrimp intestine in response to low and high pH stress, including the antibacterial ability (T-NOS, PO, proPO, ALF, and Lys), pathogen recognition (TLR and Lec), apoptosis (Casp, IAP and p53), and mucus homeostasis (Muc-1, Muc-2, Muc-5AC, Muc-5B, and Muc-19). pH exposure also decreased the diversity of the intestine bacterial, disturbed the composition of microbiota, and decreased the microbial metabolite SCFA contents. Our results indicated that acute pH stress can impair the intestine barrier function of white shrimp, probably via destroying mucosa structure, confusing digestion and metabolism, inducing oxidative stress, disordering immunity, and disrupting the microbial composition.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Qingsong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China.
| | - Dalin Xiong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| |
Collapse
|
249
|
Wang Z, Qi Q. Gut microbial metabolites associated with HIV infection. Future Virol 2019; 14:335-347. [PMID: 31263508 PMCID: PMC6595475 DOI: 10.2217/fvl-2019-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
HIV infection has been associated with alterations in gut microbiota and related microbial metabolite production. However, the mechanisms of how these functional microbial metabolites may affect HIV immunopathogenesis and comorbidities, such as cardiovascular disease and other metabolic diseases, remain largely unknown. Here we review the current understanding of gut microbiota and related metabolites in the context of HIV infection. We focus on several bacteria-produced metabolites, including tryptophan catabolites, short-chain fatty acids and trimethylamine-N-oxide (TMAO), and discuss their implications in HIV infection and comorbidities. We also prospect future studies using integrative multiomics approaches to better understand host-microbiota-metabolites interactions in HIV infection, and facilitate integrative medicine utilizing the microbiota in HIV infection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
250
|
Duan Y, Wang Y, Liu Q, Dong H, Li H, Xiong D, Zhang J. Changes in the intestine microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch. Sci Rep 2019; 9:6464. [PMID: 31015554 PMCID: PMC6478684 DOI: 10.1038/s41598-019-42939-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023] Open
Abstract
Resistant starch (RS) is a constituent of dietary fibre that has beneficial effects on the intestine physiological function of animals. However, the roles of RS on shrimp intestine health is unknown. In this study, we investigated the the effects of dietary RS on the microbial composition, and digestive and immune-related indices in the intestine of Litopenaeus vannamei. The shrimp were fed with diets containing different levels of RS: 0 g/kg (Control), 10 g/kg (RS1), 30 g/kg (RS2) and 50 g/kg (RS3) for 56 days. The results showed that dietary RS improved the morphology of the intestine mucosa. RS also increased the activity of digestive enzymes (AMS, LPS, Tryp, and Pep) and immune enzymes (PO, T-AOC, T-NOS, and NO), and the expression levels of immune-related genes (proPO, ALF, Lys, HSP70, Trx, Muc-1, Muc-2, Muc-5AC, Muc-5B, and Muc-19). A microbiome analysis indicated that dietary RS increased the short-chain fatty acids (SCFAs) contents and altered the composition of the intestine microbial. Specifically, RS increased the abundances of Proteobacteria and decreased the abundance of Bacteroidetes. At the genus level, the beneficial bacteria (Lutimonas, Ruegeria, Shimia, Mesoflavibacter, and Mameliella) were enriched, which might be involved in degrading toxins and producing beneficial metabolites; while potential pathogens (Formosa and Pseudoalteromonas) were decreased in response to dietary RS. Our results revealed that dietary RS could improve the intestine health of L. vannamei, probably via modulating the intestine microbial composition and SCFAs contents, and enhancing the digestion and immunity of the shrimp.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China
| | - Qingsong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China
| | - Dalin Xiong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P.R. China.
| |
Collapse
|