201
|
Dzopalic T, Dragicevic A, Bozic B, Rajkovic I, Colic M. Dose-dependent response of dendritic cells to 7-thia-8-oxo-guanosine and its modulation by polyinosinic:polycytidylic acid. Exp Biol Med (Maywood) 2012; 237:784-92. [PMID: 22859738 DOI: 10.1258/ebm.2012.011409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeting the endosomal Toll-like receptors (TLRs) by specific agonists seems to be a promising tool for stimulation of the immunogenicity of dendritic cells (DCs). Since the functional outcome upon the engagement of TLRs may be different, the aim of our study was to examine if and how different concentrations of 7-thia-8-oxo-guanosine (7-TOG), a selective TLR7 agonist, influence differentiation, maturation and functions of human monocyte-derived DCs (MoDCs) and if its effects on MoDCs could be modulated by co-ligation of TLR3. Immature MoDCs were treated with different concentrations of 7-TOG (25, 100 and 250 μmol/L) alone, or together with polyinosinic:polycytidylic acid, Poly (I:C) (10 ng/mL), a selective TLR3 agonist, for an additional 48 h. We showed that the highest concentration of 7-TOG stimulated the differentiation, maturation and allostimulatory capability of MoDCs. These changes were accompanied by an increased production of interleukin 12 (IL-12) and induction of T helper (Th)1 and Th17 immune responses. Both Th responses were significantly augmented by additional stimulation of MoDCs with Poly (I:C). The treatment of MoDCs with the intermediate concentration of 7-TOG resulted in the up-regulation of co-stimulatory molecule (CD86) and increased production of IL-1β and IL-6 by MoDCs, followed by the stimulation of the Th17 immune response. The lowest concentration of 7-TOG down-regulated the expression of CD40 on MoDCs and potentiated the Th2 immune response. The Th2 response was not significantly modulated by additional treatment of MoDCs with Poly (I:C), but this combination of TLR3/TLR7 agonists also stimulated both Th1 and Th17 responses. In conclusion, our results show that 7-TOG influences the phenotype and functions of MoDCs in a dose-dependent manner and suggests that fine-tuned signaling through TLR7 may be modified by the engagement of TLR3, resulting in a different outcome of immune response.
Collapse
Affiliation(s)
- Tanja Dzopalic
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Crnotravska 17, 11002 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
202
|
Mori J, Vranac T, Smrekar B, Cernilec M, Serbec VČ, Horvat S, Ihan A, Benčina M, Jerala R. Chimeric flagellin as the self-adjuvanting antigen for the activation of immune response against Helicobacter pylori. Vaccine 2012; 30:5856-63. [PMID: 22819990 DOI: 10.1016/j.vaccine.2012.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/19/2012] [Accepted: 07/08/2012] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection can cause gastritis, peptic ulcer and can lead to gastric cancer. Lengthy antibiotic therapy does not protect the host against reinfection. H. pylori evolved to evade the recognition of the immune response by modifying several of its components whose orthologous proteins from other bacteria activate the innate immune response. Flagella are essential for the H. pylori effective colonization of human duodenum and stomach. TLR5, a member of the Toll-like receptor family, recognizes flagellin of most bacteria, such as Escherichia coli, but does not recognize the flagellin FlaA of H. pylori. We restored the ability of FlaA for the recognition by TLR5 by engineering a chimeric flagellin, in which both terminal segments of H. pylori flagellin were replaced by the corresponding segments from TLR5-activating E. coli flagellin. Recombinant chimeric flagellin folded correctly and was able to activate TLR5. Significantly increased serum IgG and IgA antibody responses were determined in mice vaccinated with chimeric flagellin in comparison to mice vaccinated with a control protein (FlaA) or negative control. Antibody titers remained high even 8 months after the last immunization. Antibodies were able to bind native flagellin from H. pylori lysate. Vaccination with chimeric flagellin provided mice with significant protection against H. pylori. The approach of chimeric flagellin can therefore generate effective immunogens that enable activation of innate and adaptive immune response and can be used to construct efficient vaccines against H. pylori or other flagellated bacteria that evade TLR5 recognition.
Collapse
Affiliation(s)
- Jerneja Mori
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Modulation of Toll-like receptor ligands and Candida albicans-induced cytokine responses by specific probiotics. Cytokine 2012; 59:159-65. [DOI: 10.1016/j.cyto.2012.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
|
204
|
Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012; 11:237-56. [PMID: 22309671 DOI: 10.1586/erv.11.189] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innate immune system plays an essential role in the host's first line of defense against microbial invasion, and involves the recognition of distinct pathogen-associated molecular patterns by pattern recognition receptors (PRRs). Activation of PRRs triggers cell signaling leading to the production of proinflammatory cytokines, chemokines and Type 1 interferons, and the induction of antimicrobial and inflammatory responses. These innate responses are also responsible for instructing the development of an appropriate pathogen-specific adaptive immune response. In this review, the focus is on different classes of PRRs that have been identified, including Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and the retinoic acid-inducible gene-I-like receptors, and their importance in host defense against infection. The role of PRR cooperation in generating optimal immune responses required for protective immunity and the potential of targeting PRRs in the development of a new generation of vaccine adjuvants is also discussed.
Collapse
Affiliation(s)
- Colleen Olive
- The Queensland Institute of Medical Research, Locked Bag 2000, Royal Brisbane Hospital, Herston, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
205
|
Agrawal A, Sridharan A, Prakash S, Agrawal H. Dendritic cells and aging: consequences for autoimmunity. Expert Rev Clin Immunol 2012; 8:73-80. [PMID: 22149342 DOI: 10.1586/eci.11.77] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system has evolved to mount immune responses against foreign pathogens and to remain silent against self-antigens. A balance between immunity and tolerance is required as any disturbance may result in chronic inflammation or autoimmunity. Dendritic cells (DCs) actively participate in maintaining this balance. Under steady-state conditions, DCs remain in an immature state and do not mount an immune response against circulating self-antigens in the periphery, which maintains a state of tolerance. By contrast, foreign antigens result in DC maturation and DC-induced T-cell activation. Inappropriate maturation of DCs due to infections or tissue injury may cause alterations in the balance between the tolerogenic and immunogenic functions of DCs and instigate the development of autoimmune diseases. This article provides an overview of the effects of advancing age on DC functions and their implications in autoimmunity.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
206
|
Zhao X, Ross EJ, Wang Y, Horwitz BH. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms. PLoS One 2012; 7:e32811. [PMID: 22427889 PMCID: PMC3299705 DOI: 10.1371/journal.pone.0032811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb) and IL-12 p40 (Il12b) gene expression in macrophages following LPS stimulation have not been directly compared. Methodology/Principal Findings We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN) in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A) that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. Conclusions These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.
Collapse
Affiliation(s)
- Xixing Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Erik J. Ross
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Yanyan Wang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Bruce H. Horwitz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Emergency Medicine, Children's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
207
|
Larsen JM, Steen-Jensen DB, Laursen JM, Søndergaard JN, Musavian HS, Butt TM, Brix S. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota. PLoS One 2012; 7:e31976. [PMID: 22363778 PMCID: PMC3283686 DOI: 10.1371/journal.pone.0031976] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/16/2012] [Indexed: 12/11/2022] Open
Abstract
Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.
Collapse
Affiliation(s)
- Jeppe Madura Larsen
- Systems Biology of Immune Regulation, Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
208
|
Toll- and NOD-like receptor mRNA expression in canine sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis. Vet Immunol Immunopathol 2012; 145:618-24. [PMID: 22321737 DOI: 10.1016/j.vetimm.2012.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/20/2022]
Abstract
The pathogenesis of canine sino-nasal aspergillosis (SNA) and lymphoplasmacytic rhinitis (LPR) remains poorly understood. The innate immune system is implicated in the etiology of human chronic rhinosinusitis. Therefore, we hypothesized that dysfunction in innate immunity could be implicated in the pathogenesis of SNA and LPR. Expression of messenger RNA (mRNA) encoding Toll-like receptors (TLRs) 1-10 and NOD-like receptors (NODs) 1 and 2 in nasal mucosal biopsies from SNA or LPR dogs was compared with mucosa from healthy controls. Gene expression was quantified using quantitative real-time reverse transcriptase polymerase chain reaction normalized against multiple housekeeper genes. All TLR and NOD genes were quantified in all samples. SNA was associated with significantly increased expression of TLRs 1-4, 6-10; and NOD2, relative to controls. LPR was associated with significantly increased expression of TLRs 1, 2, 6-8, relative to controls. There was significantly more expression of TLRs 1, 4, 6-10 and NOD2 in SNA dogs than in LPR dogs. The significance of these differences in the pathogenesis of these diseases is yet to be determined.
Collapse
|
209
|
Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, Gelfand E, Pagés G, Pouysségur J, Alam R. ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J 2012; 26:1934-45. [PMID: 22262639 DOI: 10.1096/fj.11-196477] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1(-/-) mice. ERK1(-/-) mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1(-/-) mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1(-/-) mice manifested reduced proliferation in response to the sensitizing allergen. ERK1(-/-) T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1(-/-) mice showed reduced numbers of CD44(high) CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1(-/-) mice had reduced numbers of CD44(high) cells. Finally, CD4 T cells form ERK1(-/-) mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44(high) Th2 cells, was much reduced in ERK1(-/-) mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.
Collapse
Affiliation(s)
- Nicholas Goplen
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Volz T, Kaesler S, Biedermann T. Innate immune sensing 2.0 - from linear activation pathways to fine tuned and regulated innate immune networks. Exp Dermatol 2011; 21:61-9. [DOI: 10.1111/j.1600-0625.2011.01393.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
211
|
Svajger U, Pohleven J, Kos J, Strukelj B, Jeras M. CNL, a ricin B-like lectin from mushroom Clitocybe nebularis, induces maturation and activation of dendritic cells via the toll-like receptor 4 pathway. Immunology 2011; 134:409-18. [PMID: 22044067 PMCID: PMC3230795 DOI: 10.1111/j.1365-2567.2011.03500.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 07/19/2011] [Accepted: 08/15/2011] [Indexed: 01/01/2023] Open
Abstract
A novel lectin, isolated from the basidiomycete mushroom Clitocybe nebularis and termed C. nebularis lectin (CNL), exhibits an immunostimulatory effect on the most potent antigen-presenting cells, the dendritic cells (DCs). Treatment of human monocyte-derived DCs with CNL in doses from 1 to 10 μg/ml resulted in a dose-dependent induction of overall DC maturation characteristics. Exposure of DCs to CNL for 48 hr resulted in extensive up-regulation of co-stimulatory molecules CD80 and CD86, as well as of the maturation marker CD83 and HLA-DR molecules. Such CNL-matured DCs (CNL-DCs) were capable of inducing a T helper type 1-polarized response in naive CD4+ CD45RA+ T cells in 5-day allogeneic co-cultures. The allostimulatory potential of CNL-DCs was significantly increased relative to untreated controls, as was their capacity to produce several pro-inflammatory cytokines such as interleukin-6, interleukin-8 and tumour necrosis factor-α. By using a specific Toll-like receptor 4 (TLR4) signalling inhibitor, CLI-095, as well as Myd88 inhibitory peptide, we have shown that DC activation by CNL is completely dependent on the TLR4 activation pathway. Furthermore, activation of TLR4 by CNL was confirmed via TLR4 reporter assay. Measurement of p65 nuclear factor-κB and p38 mitogen-activated protein kinase (MAPK) phosphorylation levels following CNL stimulation of DCs revealed primarily an increase in nuclear factor-κB activity, with less effect on the induction of p38 MAPK signalling than of lipopolysaccharide-matured DCs. The CNL had the ability to activate human DCs in such a way as to subsequently direct T helper type 1 T-cell responses. Our results encourage the use of mushroom-derived lectins for use in therapeutic strategies with aims such as to strengthen anti-tumour immune responses.
Collapse
Affiliation(s)
- Urban Svajger
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
212
|
Jaradat SM, Ababneh KT, Jaradat SA, Abbadi MS, Taha AH, Karasneh JA, Haddad HI. Association of interleukin-10 gene promoter polymorphisms with chronic and aggressive periodontitis. Oral Dis 2011; 18:271-9. [PMID: 22077544 DOI: 10.1111/j.1601-0825.2011.01872.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Interleukin-10 gene promoter polymorphisms have been associated with interleukin-10 decreased production, thereby playing a role in the pathogenesis of periodontitis. This study aimed to investigate whether interleukin-10 single nucleotide polymorphisms at positions -1087(G/A) and -597(C/A) are associated with generalised chronic periodontitis and localised aggressive periodontitis. METHODS Genomic DNA samples were isolated from 276 unrelated Jordanian participants. Subjects were categorised into 86 periodontally healthy controls, 105 chronic periodontitis patients and 85 localised aggressive periodontitis patients. Genotype frequencies were calculated, and differences were determined using Pearson chi-squared test, and odds ratio and 95% confidence intervals were included. RESULTS The frequencies of the -1087A and -597A alleles were significantly more common in chronic periodontitis patients than controls. The A-positive allele genotypes (GA, AA) at position -1087 and A-positive allele genotypes (CA, AA) at position -597 appeared to increase the risk of having chronic periodontitis. No significant differences were observed in the genotype frequencies between localised aggressive periodontitis patients and controls. CONCLUSIONS These findings indicate the possible use of interleukin-10 single nucleotide polymorphisms as genetic markers in chronic periodontitis patients and further emphasise the molecular differences between chronic periodontitis and aggressive periodontitis.
Collapse
Affiliation(s)
- S M Jaradat
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
213
|
Raïch-Regué D, Naranjo-Gómez M, Grau-López L, Ramo C, Pujol-Borrell R, Martínez-Cáceres E, Borràs FE. Differential effects of monophosphoryl lipid A and cytokine cocktail as maturation stimuli of immunogenic and tolerogenic dendritic cells for immunotherapy. Vaccine 2011; 30:378-87. [PMID: 22085546 DOI: 10.1016/j.vaccine.2011.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/10/2011] [Accepted: 10/28/2011] [Indexed: 12/20/2022]
Abstract
Immunotherapy using monocyte-derived dendritic cells (MDDC) is increasingly being considered as alternative therapeutic approach in cancer, infectious diseases and also in autoimmunity when patients are not responsive to conventional treatments. In general, generation of MDDC from monocytes is induced in the presence of GM-CSF and IL-4, and a maturation stimulus is added to the culture to obtain mature DCs suitable for therapy. For DC maturation, different combinations of pro-inflammatory mediators and Toll-like receptor ligands have been tested, obtaining DCs that differ in their properties and the type of immune response they promote. Therefore, it is necessary to find an optimal cytokine environment for DC maturation to obtain a cellular product suitable for DC-based immunotherapeutic protocols. In this study, we have evaluated in vitro the effects of different maturation stimuli on the viability, phenotype, cytokine profile, stability and functionality of immunogenic and tolerogenic (1α,25-dihydroxyvitamin D(3)-treated) MDDC. Maturation was induced using the clinical grade TLR4-agonist: monophosphoryl lipid A (LA), compared to the traditional cytokine cocktail (CC; clinical grade TNF-α, IL-1β, PGE2) and a combination of both. Our results showed the combination of CC+LA rendered a potent immunogenic DC population that induced the production of IFN-γ and IL-17 in allogeneic co-cultures, suggesting a Th17 polarization. Moreover, these immunogenic DCs showed a high surface expression of CD83, CD86, HLA-DR and secretion of IL-12p70. When aiming to induce tolerance, using LA to generate mature TolDC did not represent a clear advantage, and the stability and the suppressive capability exhibited by CC-matured TolDC may represent the best option. Altogether, these findings demonstrate the relevance of an appropriate maturation stimulus to rationally modulate the therapeutic potential of DCs in immunotherapy.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- Laboratory of Immunobiology for Research and Diagnosis (LIRAD), Blood and Tissue Bank (BST), Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
214
|
Terrazas CA, Huitron E, Vazquez A, Juarez I, Camacho GM, Calleja EA, Rodriguez-Sosa M. MIF synergizes with Trypanosoma cruzi antigens to promote efficient dendritic cell maturation and IL-12 production via p38 MAPK. Int J Biol Sci 2011; 7:1298-310. [PMID: 22110382 PMCID: PMC3221366 DOI: 10.7150/ijbs.7.1298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 01/30/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been found to be involved in host resistance to several parasitic infections. To determine the mechanisms of the MIF-dependent responses to Trypanosoma cruzi, we investigated host resistance in MIF-/- mice (on the BALB/c background) during an intraperitoneal infection. We focused on the potential involvement of MIF in dendritic cell (DC) maturation and cytokine production. Following a challenge with 5 x 103T. cruzi parasites, wild type (WT) mice developed a strong IL-12 response and adequate maturation of the draining mesenteric lymph node DCs and were resistant to infection. In contrast, similarly infected MIF-/- mice mounted a weak IL-12 response, displayed immature DCs in the early phases of infection and rapidly succumbed to T. cruzi infection. The lack of maturation and IL-12 production by the DCs in response to total T. cruzi antigen (TcAg) was confirmed by in vitro studies. These effects were reversed following treatment with recombinant MIF. Interestingly, TcAg-stimulated bone marrow-derived DCs from both WT and MIF-/- mice had increased ERK1/2 MAPK phosphorylation. In contrast, p38 phosphorylation was only upregulated in WT DCs. Reconstitution of MIF to MIF-/- DCs upregulated p38 phosphorylation. The MIF-p38 pathway affected MHC-II and CD86 expression as well as IL-12 production. These findings demonstrate that the MIF-induced early DC maturation and IL-12 production mediates resistance to T. cruzi infection, probably by activating the p38 pathway.
Collapse
Affiliation(s)
- Cesar A Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México-UNAM, C. P. 54090 Estado de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
215
|
Hossain MS, Jaye DL, Pollack BP, Farris AB, Tselanyane ML, David E, Roback JD, Gewirtz AT, Waller EK. Flagellin, a TLR5 agonist, reduces graft-versus-host disease in allogeneic hematopoietic stem cell transplantation recipients while enhancing antiviral immunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:5130-40. [PMID: 22013117 DOI: 10.4049/jimmunol.1101334] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in patients treated with allogeneic hematopoietic stem cell transplantation (HSCT). Posttransplant immunosuppressive drugs incompletely control GVHD and increase susceptibility to opportunistic infections. In this study, we used flagellin, a TLR5 agonist protein (∼50 kDa) extracted from bacterial flagella, as a novel experimental treatment strategy to reduce both acute and chronic GVHD in allogeneic HSCT recipients. On the basis of the radioprotective effects of flagellin, we hypothesized that flagellin could ameliorate GVHD in lethally irradiated murine models of allogeneic HSCT. Two doses of highly purified flagellin (administered 3 h before irradiation and 24 h after HSCT) reduced GVHD and led to better survival in both H-2(b) → CB6F1 and H-2(K) → B6 allogeneic HSCT models while preserving >99% donor T cell chimerism. Flagellin treatment preserved long-term posttransplant immune reconstitution characterized by more donor thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells and significantly enhanced antiviral immunity after murine CMV infection. The proliferation index and activation status of donor spleen-derived T cells and serum concentration of proinflammatory cytokines in flagellin-treated recipients were reduced significantly within 4 d posttransplant compared with those of the PBS-treated control recipients. Allogeneic transplantation of radiation chimeras previously engrafted with TLR5 knockout hematopoietic cells showed that interactions between flagellin and TLR5 expressed on both donor hematopoietic and host nonhematopoietic cells were required to reduce GVHD. Thus, the peritransplant administration of flagellin is a novel therapeutic approach to control GVHD while preserving posttransplant donor immunity.
Collapse
Affiliation(s)
- Mohammad S Hossain
- Division of Stem Cell and Bone Marrow Transplantation, Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Ghoneum M, Agrawal S. Activation of human monocyte-derived dendritic cells in vitro by the biological response modifier arabinoxylan rice bran (MGN-3/Biobran). Int J Immunopathol Pharmacol 2011; 24:941-8. [PMID: 22230400 DOI: 10.1177/039463201102400412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arabinoxylan rice bran (MGN-3/Biobran) is a potent biological response modifier (BRM) that activates natural killer (NK) cells, T cells and monocytes. Currently, little is known regarding the effects of MGN-3 on dendritic cells (DCs), the cell type that bridges innate and adaptive immunity. Therefore, we examined the stimulatory effects of MGN-3 on DCs. Human monocyte-derived DCs were treated with MGN-3 at different concentrations (5-20 microg/ml) for 24 hours in vitro. Activation of DCs was determined by assessing the expression of co-stimulatory and maturation markers (CD40, CD80, CD83, CD86 and HLA-DR) by flow cytometry, and production of cytokines by ELISA. DC function was determined by assessing their ability to activate naïve T cells. Activation of T cells was assessed by measuring cell proliferation and cytokine production. MGN-3 treatment, in a dose-dependent manner, resulted in: 1) up-regulation of the surface expression of CD83 and CD86, on DCs; 2) an increase in the production of pro-inflammatory and immuno-regulatory cytokines (IL-1beta, IL-6, IL-10, TNF-alpha, IL-12p40 and low levels of IL-12p70 and IL-2) by DCs; and 3) MGN-3 stimulated DC induced CD4+T cell proliferation and their production of cytokines, IFN-gamma, IL-10, IL-17. Results suggest that MGN-3 functions as a natural adjuvant for DC activation and thus may be used in DC-based vaccine strategies against infections and cancer.
Collapse
Affiliation(s)
- M Ghoneum
- Department of Otolaryngology, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| | | |
Collapse
|
217
|
Abstract
IL-36α (IL-1F6), IL-36β (IL-1F8), and IL-36γ (IL-1F9) are members of the IL-1 family of cytokines. These cytokines bind to IL-36R (IL-1Rrp2) and IL-1RAcP, activating similar intracellular signals as IL-1, whereas IL-36Ra (IL-1F5) acts as an IL-36R antagonist (IL-36Ra). In this study, we show that both murine bone marrow-derived dendritic cells (BMDCs) and CD4(+) T lymphocytes constitutively express IL-36R and respond to IL-36α, IL-36β, and IL-36γ. IL-36 induced the production of proinflammatory cytokines, including IL-12, IL-1β, IL-6, TNF-α, and IL-23 by BMDCs with a more potent stimulatory effect than that of other IL-1 cytokines. In addition, IL-36β enhanced the expression of CD80, CD86, and MHC class II by BMDCs. IL-36 also induced the production of IFN-γ, IL-4, and IL-17 by CD4(+) T cells and cultured splenocytes. These stimulatory effects were antagonized by IL-36Ra when used in 100- to 1000-fold molar excess. The immunization of mice with IL-36β significantly and specifically promoted Th1 responses. Our data thus indicate a critical role of IL-36R ligands in the interface between innate and adaptive immunity, leading to the stimulation of T helper responses.
Collapse
|
218
|
Abstract
One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body's own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions and the microenvironment in programming tolerogenic DCs. Here, we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | |
Collapse
|
219
|
Kiura K, Hasebe A, Saeki A, Segawa T, Okada F, Shamsul HM, Ohtani M, Into T, Inoue N, Wakita M, Shibata KI. In vivo anti- and pro-tumour activities of the TLR2 ligand FSL-1. Immunobiology 2011; 216:891-900. [DOI: 10.1016/j.imbio.2011.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 11/16/2022]
|
220
|
Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10:336-45. [PMID: 20619360 PMCID: PMC3030666 DOI: 10.1016/j.arr.2010.06.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self-antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-α in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, USA
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, USA
| |
Collapse
|
221
|
Wagner B, Wimer C, Freer H, Osterrieder N, Erb HN. Infection of peripheral blood mononuclear cells with neuropathogenic equine herpesvirus type-1 strain Ab4 reveals intact interferon-α induction and induces suppression of anti-inflammatory interleukin-10 responses in comparison to other viral strains. Vet Immunol Immunopathol 2011; 143:116-24. [PMID: 21764140 DOI: 10.1016/j.vetimm.2011.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 12/25/2022]
Abstract
The recent increase in incidence, morbidity, and mortality of neurological disease induced by equine herpesvirus type 1 (EHV-1) has suggested a change of virulence of the virus. The exact mechanisms by which EHV-1 induces neurologic disease are not known. Environmental, viral, and host risk factors might contribute to neurological manifestation. Here, we investigated innate interferon-α (IFN-α), interleukin-10 (IL-10) and IL-4 responses after infection of equine peripheral blood mononuclear cells (PBMC) with EHV-1 using an available cytokine multiplex assay. Three viral strains representing an older isolate (RacL11), a recent abortigenic (NY03) and a neuropathogenic isolate (Ab4) were compared to identify differences in cytokine induction that might explain the increased pathogenicity of Ab4. Cytokine concentrations were also compared between foals, mares after birth, pregnant and non-pregnant mares to investigate whether immune responses to EHV-1 infection are influenced by age or pregnancy status. PBMC from all groups secreted high concentrations of anti-viral IFN-α in response to EHV-1. A reduced response was observed in foals compared to non-pregnant mares. EHV-1 infection induced moderate IL-10 and overall low IL-4 secretion. Ab4 infection resulted in a significant reduction of IL-10 responses in adult horses. IL-10 and IL-4 responses were lower in foals than in most mare groups. These data suggested that EHV-1 induces robust IFN-α secretion without major differences between viral strains. However, anti-inflammatory IL-10 production was significantly reduced after infection with neuropathogenic Ab4. The ability of this EHV-1 isolate to down-regulate IL-10 production might contribute to increased local inflammation and a higher risk for neurological manifestation of the disease after infection with Ab4.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
222
|
Hedger MP, Winnall WR, Phillips DJ, de Kretser DM. The regulation and functions of activin and follistatin in inflammation and immunity. VITAMINS AND HORMONES 2011; 85:255-97. [PMID: 21353885 DOI: 10.1016/b978-0-12-385961-7.00013-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activins are members of the transforming growth factor β superfamily with broad and complex effects on cell growth and differentiation. Activin A has long been known to be a critical regulator of inflammation and immunity, and similar roles are now emerging for activin B, with which it shares 65% sequence homology. These molecules and their binding protein, follistatin, are widely expressed, and their production is increased in many acute and chronic inflammatory conditions. Synthesis and release of the activins are stimulated by inflammatory cytokines, Toll-like receptor ligands, and oxidative stress. The activins interact with heterodimeric serine/threonine kinase receptor complexes to activate SMAD transcription factors and the MAP kinase signaling pathways, which mediate inflammation, stress, and immunity. Follistatin binds to the activins with high affinity, thereby obstructing the activin receptor binding site, and targets them to cell surface proteoglycans and lysosomal degradation. Studies on transgenic mice and those with gene knockouts, together with blocking studies using exogenous follistatin, have established that activin A plays critical roles in the onset of cachexia, acute and chronic inflammatory responses such as septicemia, colitis and asthma, and fibrosis. However, activin A also directs the development of monocyte/macrophages, myeloid dendritic cells, and T cell subsets to promote type 2 and regulatory immune responses. The ability of both endogenous and exogenous follistatin to block the proinflammatory and profibrotic actions of activin A has led to interest in this binding protein as a potential therapeutic for limiting the severity of disease and to improve subsequent damage associated with inflammation and fibrosis. However, the ability of activin A to sculpt the subsequent immune response as well means that the full range of effects that might arise from blocking activin bioactivity will need to be considered in any therapeutic applications.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
223
|
Nguyen CT, Kim SY, Kim MS, Lee SE, Rhee JH. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine 2011; 29:5731-9. [PMID: 21696869 DOI: 10.1016/j.vaccine.2011.05.095] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 05/25/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen that causes high levels of mortality and morbidity in infants and the elderly. Despite the use of antibiotics and vaccines, fatal pneumococcal disease remains prevalent. Pneumococcal surface protein A (PspA), a highly immunogenic surface protein produced by all strains of S. pneumoniae, can elicit protective immunity against fatal pneumococcal infection. We have previously demonstrated that the Vibrio vulnificus FlaB, a bacterial flagellin protein and agonist of TLR5, has strong mucosal adjuvant activity and induces protective immunity upon co-administration with tetanus toxoid. In this study, we have tested whether intranasal immunization with recombinant fusion proteins consisted of PspA and FlaB (PspA-FlaB and FlaB-PspA) is able to elicit more efficient protective mucosal immune responses against pneumococcal infection than immunization with PspA alone or with a stoichiometric mixture of PspA and FlaB. When mice were intranasally immunized with fusion proteins, significantly higher levels of anti-PspA IgG and IgA were induced in serum and mucosal secretions. The mice immunized intranasally with the FlaB-PspA fusion protein were the most protected from a lethal challenge with live S. pneumoniae, as compared to the mice immunized with PspA only, a mixture of PspA and FlaB, or the PspA-FlaB fusion protein. FlaB-PspA also induced a cross protection against heterologous capsular types. These results suggest that a FlaB-PspA fusion protein alone could be used as an anti-pneumococcal mucosal vaccine or as an effective partner protein for multivalent capsular polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Chung Truong Nguyen
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun-gun, Jeonnam 519-809, South Korea
| | | | | | | | | |
Collapse
|
224
|
Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011; 29:71-109. [PMID: 21166540 DOI: 10.1146/annurev-immunol-031210-101312] [Citation(s) in RCA: 1398] [Impact Index Per Article: 99.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IL-10 family of cytokines consists of nine members: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and the more distantly related IL-28A, IL-28B, and IL-29. Evolutionarily, IL-10 family cytokines emerged before the adaptive immune response. These cytokines elicit diverse host defense mechanisms, especially from epithelial cells, during various infections. IL-10 family cytokines are essential for maintaining the integrity and homeostasis of tissue epithelial layers. Members of this family can promote innate immune responses from tissue epithelia to limit the damage caused by viral and bacterial infections. These cytokines can also facilitate the tissue-healing process in injuries caused by infection or inflammation. Finally, IL-10 itself can repress proinflammatory responses and limit unnecessary tissue disruptions caused by inflammation. Thus, IL-10 family cytokines have indispensable functions in many infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
225
|
Wang S, Villablanca EJ, De Calisto J, Gomes DCO, Nguyen DD, Mizoguchi E, Kagan JC, Reinecker HC, Hacohen N, Nagler C, Xavier RJ, Rossi-Bergmann B, Chen YB, Blomhoff R, Snapper SB, Mora JR. MyD88-dependent TLR1/2 signals educate dendritic cells with gut-specific imprinting properties. THE JOURNAL OF IMMUNOLOGY 2011; 187:141-50. [PMID: 21646294 DOI: 10.4049/jimmunol.1003740] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gut-associated dendritic cells (DC) synthesize all-trans retinoic acid, which is required for inducing gut-tropic lymphocytes. Gut-associated DC from MyD88(-/-) mice, which lack most TLR signals, expressed low levels of retinal dehydrogenases (critical enzymes for all-trans retinoic acid biosynthesis) and were significantly impaired in their ability to induce gut-homing T cells. Pretreatment of extraintestinal DC with a TLR1/2 agonist was sufficient to induce retinal dehydrogenases and to confer these DC with the capacity to induce gut-homing lymphocytes via a mechanism dependent on MyD88 and JNK/MAPK. Moreover, gut-associated DC from TLR2(-/-) mice, or from mice in which JNK was pharmacologically blocked, were impaired in their education to imprint gut-homing T cells, which correlated with a decreased induction of gut-tropic T cells in TLR2(-/-) mice upon immunization. Thus, MyD88-dependent TLR2 signals are necessary and sufficient to educate DC with gut-specific imprinting properties and contribute in vivo to the generation of gut-tropic T cells.
Collapse
Affiliation(s)
- Sen Wang
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Maturation of human dendritic cells with Saccharomyces cerevisiae (yeast) reduces the number and function of regulatory T cells and enhances the ratio of antigen-specific effectors to regulatory T cells. Vaccine 2011; 29:4992-9. [PMID: 21569810 DOI: 10.1016/j.vaccine.2011.04.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/17/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
Abstract
We compared the effects of yeast-treated human dendritic cells (DCs) with CD40L-matured human DCs for the induction of effector cells and the number and functionality of CD4(+)CD25(+)CD127(-)FoxP3(+) regulatory T cells (Tregs). DCs were treated with yeast or CD40L and cocultured with isolated autologous CD4(+) T cells. CD4(+)CD25(+)CD127(-) T cells isolated from the coculture of CD4(+) T cells plus yeast-treated DCs (yeast coculture) had a lower expression of FoxP3 and decreased suppressive function compared to CD4(+)CD25(+)CD127(-) T cells isolated from the coculture of CD4(+) T cells plus CD40L-treated DCs (CD40L coculture). Also, compared to the CD40L coculture, the yeast coculture showed increases in the ratio of CD4(+)CD25(+) activated T cells to Tregs and in the production of Th1-related cytokines (IL-2, TNF-α, IFN-γ) and IL-6. In addition, yeast-treated DCs used as antigen-presenting cells (APCs) incubated with the tumor antigen CEA enhanced the proliferation of CEA-specific CD4(+) T cells compared to the use of CD40L-matured DCs used as APCs. This is the first study to report on the role of yeast-treated/matured human DCs in reducing Treg frequency and functionality and in enhancing effector to Treg ratios. These results provide an additional rationale for the use of yeast as a vector in cancer vaccines.
Collapse
|
227
|
Netea MG, van de Veerdonk FL, van Deuren M, van der Meer JWM. Defects of pattern recognition: primary immunodeficiencies of the innate immune system. Curr Opin Pharmacol 2011; 11:412-22. [PMID: 21498117 DOI: 10.1016/j.coph.2011.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/16/2011] [Indexed: 01/01/2023]
Abstract
Genetic defects leading to impaired recognition of invading pathogens by the innate immune system, and hence to increased susceptibility to specific classes of microorganisms have been recently recognized. To date, defects have been described in three of the major families of pattern recognition receptors (PRRs): the Toll-like receptors (TLRs), the C-type lectin receptors (CLRs), and the nucleotide binding domain leucine-rich repeat containing receptors (NLRs). By contrast, defects in the viral receptors RigI helicases have not been found. PRR defects vary greatly in severity, display a narrow susceptibility profile towards specific pathogens, and when severe in infancy and childhood, often decrease in severity thereafter. Their discovery leads to crucial insight in the pathophysiology of infections, and offer therapeutic targets for future immunotherapy.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Medicine and Nijmegen Institute for Infection, Inflammation & Immunity (N4i), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
228
|
Priming CD8+ T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8+ T cells retaining CD28. Blood 2011; 117:6542-51. [PMID: 21493800 DOI: 10.1182/blood-2010-11-317966] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TLRs expressed on dendritic cells (DCs) differentially activate DCs when activated alone or in combination, inducing distinct cytokines and costimulatory molecules that influence T-cell responses. Defining the requirements of DCs to program T cells during priming to become memory rather than effector cells could enhance vaccine development. We used an in vitro system to assess the influence of DC maturation signals on priming naive human CD8+ T cells. Maturation of DCs with lipopolysaccharide (LPS; TLR4) concurrently with R848 (TLR7/8) induced a heterogeneous population of DCs that produced high levels of IL12 p70. Compared with DCs matured with LPS or R848 alone, the DC population matured with both adjuvants primed CD8+ T-cell responses containing an increased proportion of antigen-specific T cells retaining CD28 expression. Priming with a homogenous subpopulation of LPS/R848-matured DCs that were CD83(Hi)/CD80+/CD86+ reduced this CD28+ subpopulation and induced T cells with an effector cytokine signature, whereas priming with the less mature subpopulations of DCs resulted in minimal T-cell expansion. These results suggest that TLR4 and TLR7/8 signals together induce DCs with fully mature and less mature phenotypes that are both required to more efficiently prime CD8+ T cells with qualities associated with memory T cells.
Collapse
|
229
|
Vael C, Vanheirstraeten L, Desager KN, Goossens H. Denaturing gradient gel electrophoresis of neonatal intestinal microbiota in relation to the development of asthma. BMC Microbiol 2011; 11:68. [PMID: 21477358 PMCID: PMC3079593 DOI: 10.1186/1471-2180-11-68] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extended 'hygiene hypothesis' suggests that the initial composition of the infant gut microbiota is a key determinant in the development of atopic disease. Several studies have demonstrated that the microbiota of allergic and non-allergic infants are different even before the development of symptoms, with a critical time window during the first 6 months of life. The aim of the study was to investigate the association between early intestinal colonisation and the development of asthma in the first 3 years of life using DGGE (denaturing gradient gel electrophoresis). METHODS In a prospective birth cohort, 110 children were classified according to the API (Asthma Predictive Index). A positive index included wheezing during the first three years of life combined with eczema in the child in the first years of life or with a parental history of asthma. A fecal sample was taken at the age of 3 weeks and analysed with DGGE using universal and genus specific primers. RESULTS The Asthma Predictive Index was positive in 24/110 (22%) of the children. Using universal V3 primers a band corresponding to a Clostridum coccoides XIVa species was significantly associated with a positive API. A Bacteroides fragilis subgroup band was also significantly associated with a positive API. A final DGGE model, including both bands, allowed correct classification of 73% (80/110) of the cases. CONCLUSION Fecal colonisation at age 3 weeks with either a Bacteroides fragilis subgroup or a Clostridium coccoides subcluster XIVa species is an early indicator of possible asthma later in life. These findings need to be confirmed in a new longitudinal follow-up study.
Collapse
Affiliation(s)
- Carl Vael
- Department of Microbiology, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
230
|
Le Bert N, Chain BM, Rook G, Noursadeghi M. DC priming by M. vaccae inhibits Th2 responses in contrast to specific TLR2 priming and is associated with selective activation of the CREB pathway. PLoS One 2011; 6:e18346. [PMID: 21483768 PMCID: PMC3069967 DOI: 10.1371/journal.pone.0018346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/25/2011] [Indexed: 02/02/2023] Open
Abstract
The environmental mycobacterium, M. vaccae has been used in mouse models to support the contemporary hygiene hypothesis that non-pathogenic microorganisms reduce allergy associated T helper (Th)2 responses and inflammatory diseases by augmenting regulatory T cells. However, data for human models and possible mechanisms are limited. We tested the effect of innate immune interactions between human DC and M. vaccae on DC-dependent T cell responses. M. vaccae activation of DC via Toll like receptor (TLR)2 was compared to a specific TLR2 ligand (Pam(3)CSK4) and alternative stimulation with a TLR4 ligand (LPS). M. vaccae induced DC dependent inhibition of Th2 responses, in contrast to Pam(3)CSK4, which had the opposite effect and LPS, which had no polarizing effect. DC maturation, gene expression and cytokine production, in response to each stimulus did not correlate with the specific functional effects. Comparable DC transcriptional responses to M. vaccae and Pam(3)CSK4 suggested that TLR2 mediated transcriptional regulation was not sufficient for inhibition of Th2 responses. Transcription factor enrichment analysis and assessment of signaling events, implicated a role for selective early activation of the CREB pathway by M. vaccae. Further study of the CREB pathway may provide novel insight into the molecular mechanisms of DC-dependent T cell polarization.
Collapse
Affiliation(s)
- Nina Le Bert
- Infection and Immunity, University College London, London, United Kingdom
| | - Benjamin M. Chain
- Infection and Immunity, University College London, London, United Kingdom
| | - Graham Rook
- Infection and Immunity, University College London, London, United Kingdom
| | - Mahdad Noursadeghi
- Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
231
|
D'Incà R, Barollo M, Scarpa M, Grillo AR, Brun P, Vettorato MG, Castagliuolo I, Sturniolo GC. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig Dis Sci 2011; 56:1178-87. [PMID: 20737210 DOI: 10.1007/s10620-010-1384-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 07/29/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND An imbalance in gut microbiota seems to contribute to the development of chronic inflammatory disorders of the gastrointestinal tract, such as ulcerative colitis (UC). Although it has been suggested that probiotic supplementation is an effective approach to colitis, its effects on intestinal flora and on mucosal cytokine balance have never been explored. AIM To evaluate the effect of Lactobacillus casei (L. casei) DG, a probiotic strain, on colonic-associated microbiota, mucosal cytokine balance, and toll-like receptor (TLR) expression. METHODS Twenty-six patients with mild left-sided UC were randomly allocated to one of three groups for an 8-week treatment period: the first group of 7 patients received oral 5-aminosalicylic acid (5-ASA) alone, the second group of 8 patients received oral 5-ASA plus oral L. casei DG, and the third group of 11 patients received oral 5-ASA and rectal L. casei DG. Biopsies were collected from the sigmoid region to culture mucosal-associated microbes and to assess cytokine and TLR messenger RNA (mRNA) levels by quantitative real-time polymerase chain reaction (RT-PCR). RESULTS 5-ASA alone or together with oral L. casei DG failed to affect colonic flora and TLR expression in a significant manner, but when coupled with rectally administered L. casei DG, it modified colonic microbiota by increasing Lactobacillus spp. and reducing Enterobacteriaceae. It also significantly reduced TLR-4 and interleukin (IL)-1β mRNA levels and significantly increased mucosal IL-10. CONCLUSIONS Manipulation of mucosal microbiota by L. casei DG and its effects on the mucosal immune system seem to be required to mediate the beneficial activities of probiotics in UC patients.
Collapse
Affiliation(s)
- Renata D'Incà
- Department of Surgical and Gastroenterological Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Švajger U, Obermajer N, Anderluh M, Kos J, Jeras M. DC-SIGN ligation greatly affects dendritic cell differentiation from monocytes compromising their normal function. J Leukoc Biol 2011; 89:893-905. [DOI: 10.1189/jlb.0810463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
233
|
Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans? J Parasitol Res 2011; 2011:965369. [PMID: 21603205 PMCID: PMC3095412 DOI: 10.1155/2011/965369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.
Collapse
|
234
|
Martins AJ, Spanton S, Sheikh HI, Kim SO. The anti-inflammatory role of granulocyte colony-stimulating factor in macrophage–dendritic cell crosstalk after Lactobacillus rhamnosusGR-1 exposure. J Leukoc Biol 2011; 89:907-915. [DOI: 10.1189/jlb.0810445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACTMΦs are important sensory cells of the innate immune system and regulate immune responses through releasing different combinations of cytokines. In this study, we examined whether cytokines released by MΦs in response to the probiotic bacterial strain GR-1 modulate the responses of DCs. The cytokine profile released by GR-1-treated MΦs was characterized by low levels of TNF-α, GM-CSF, IL-6, and IL-12 but very high levels of G-CSF. GR-1 CM did not induce expression of the shared p40 subunit of IL-12 and IL-23 and costimulatory molecules CD80 or CD86 or increase T cell stimulatory capacity in DCs. However, in G-CSFR-deficient DCs or after antibody-mediated neutralization of G-CSF, GR-1 CM induced IL-12/23 p40 production significantly, indicating that G-CSF within the GR-1 CM inhibits IL-12/23 p40 production induced by other CM components. GR-1 CM and rG-CSF also inhibited LPS-induced IL-12 production at the mRNA and protein levels. The inhibition of IL-12 production by G-CSF was at least in part mediated through inhibition of JNK activation. Finally, splenic DCs of GR-1-injected mice produced less IL-12/23 p40 than those of PBS-injected mice in response to LPS ex vivo, and this was at least partially dependent on exposure to GR-1-induced G-CSF in vivo. Altogether, these results suggest that G-CSF modulates the IL-12/23 p40 response of DCs in the context of the probiotic GR-1 through MΦ–DC crosstalk.
Collapse
Affiliation(s)
- Andrew J Martins
- Department of Microbiology and Immunology, University of Western Ontario , London, Ontario, Canada
- Centre for Human Immunology, University of Western Ontario , London, Ontario, Canada
| | - Sarah Spanton
- Department of Microbiology and Immunology, University of Western Ontario , London, Ontario, Canada
| | - Haroon I Sheikh
- Department of Microbiology and Immunology, University of Western Ontario , London, Ontario, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology, University of Western Ontario , London, Ontario, Canada
- Centre for Human Immunology, University of Western Ontario , London, Ontario, Canada
| |
Collapse
|
235
|
Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 2011; 117:4490-500. [PMID: 21385848 DOI: 10.1182/blood-2010-09-308064] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate target mRNAs by binding to their 3' untranslated regions. There is growing evidence that microRNA-155 (miR155) modulates gene expression in various cell types of the immune system and is a prominent player in the regulation of innate and adaptive immune responses. To define the role of miR155 in dendritic cells (DCs) we performed a detailed analysis of its expression and function in human and mouse DCs. A strong increase in miR155 expression was found to be a general and evolutionarily conserved feature associated with the activation of DCs by diverse maturation stimuli in all DC subtypes tested. Analysis of miR155-deficient DCs demonstrated that miR155 induction is required for efficient DC maturation and is critical for the ability of DCs to promote antigen-specific T-cell activation. Expression-profiling studies performed with miR155(-/-) DCs and DCs overexpressing miR155, combined with functional assays, revealed that the mRNA encoding the transcription factor c-Fos is a direct target of miR155. Finally, all of the phenotypic and functional defects exhibited by miR155(-/-) DCs could be reproduced by deregulated c-Fos expression. These results indicate that silencing of c-Fos expression by miR155 is a conserved process that is required for DC maturation and function.
Collapse
|
236
|
Jung ID, Jeong SK, Lee CM, Noh KT, Heo DR, Shin YK, Yun CH, Koh WJ, Akira S, Whang J, Kim HJ, Park WS, Shin SJ, Park YM. Enhanced Efficacy of Therapeutic Cancer Vaccines Produced by Co-Treatment with Mycobacterium tuberculosis Heparin-Binding Hemagglutinin, a Novel TLR4 Agonist. Cancer Res 2011; 71:2858-70. [DOI: 10.1158/0008-5472.can-10-3487] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
237
|
Cunha C, Romani L, Carvalho A. Cracking the Toll-like receptor code in fungal infections. Expert Rev Anti Infect Ther 2011; 8:1121-37. [PMID: 20954879 DOI: 10.1586/eri.10.93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Innate control of fungal infection requires the specific recognition of invariant fungal molecular structures by a variety of innate immune receptors, including Toll-like receptors. In addition to the role in inducing protective immune responses, Toll-like receptor engagement may paradoxically favor fungal infections, by inducing inflammatory pathology and impairing antifungal immunity. Although the dissection of complex genetic traits modulating susceptibility to fungal infections is complex, the contribution of host genetics may hold the key to elucidating new risk factors for these severe, often fatal diseases. Understanding host-pathogen interactions at the innate immune interface will eventually lead to the development of new therapeutics and genetic markers in fungal infections.
Collapse
Affiliation(s)
- Cristina Cunha
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | | |
Collapse
|
238
|
Differential Toll-like receptor recognition and induction of cytokine profile by Bifidobacterium breve and Lactobacillus strains of probiotics. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:621-8. [PMID: 21288993 DOI: 10.1128/cvi.00498-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of probiotics as a food supplement has gained tremendous interest in the last few years as beneficial effects were reported in gut homeostasis and nutrient absorption but also in immunocompromised patients, supporting protection from colonization or infection with pathogenic bacteria or fungi. As a treatment approach for inflammatory bowel diseases, a suitable probiotic strain would ideally be one with a low immunogenic potential. Insight into the immunogenicities and types of T-cell responses induced by potentially probiotic strains allows a more rational selection of a particular strain. In the present study, the bacterial strains Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1), and Lactobacillus casei (DN-114 001) were compared concerning their capacity to induce inflammatory responses in terms of cytokine production by human and mouse primary immune cells. It was demonstrated that the B. breve strain induced lower levels of the proinflammatory cytokine gamma interferon (IFN-γ) than the tested L. rhamnosus and L. casei strains. Both B. breve and lactobacilli induced cytokines in a Toll-like receptor 9 (TLR9)-dependent manner, while the lower inflammatory profile of B. breve was due to inhibitory effects of TLR2. No role for TLR4, NOD2, and C-type lectin receptors was apparent. In conclusion, TLR signaling is involved in the differentiation of inflammatory responses between probiotic strains used as food supplements.
Collapse
|
239
|
Dowling DJ, Noone CM, Adams PN, Vukman KV, Molloy SF, Forde J, Asaolu S, O'Neill SM. Ascaris lumbricoides pseudocoelomic body fluid induces a partially activated dendritic cell phenotype with Th2 promoting ability in vivo. Int J Parasitol 2011; 41:255-61. [PMID: 20974144 DOI: 10.1016/j.ijpara.2010.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.
Collapse
Affiliation(s)
- David J Dowling
- Parasite Immune Modulation Group, School of Nursing, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
240
|
McFadden JP, Dearman RJ, White JML, Basketter DA, Kimber I. The Hapten-Atopy hypothesis II: the ‘cutaneous hapten paradox’. Clin Exp Allergy 2011; 41:327-37. [DOI: 10.1111/j.1365-2222.2010.03684.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
241
|
Affiliation(s)
- Mihai G Netea
- Department of Medicine and Nijmegen Institute for Infection, Inflammation, and Immunity, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
242
|
Abstract
Vaccines represent a potent tool to prevent or contain infectious diseases with high morbidity or mortality. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the effective elicitation of protective immune responses by vaccines. Recent research suggests that this represents the cooperative action of the innate and adaptive immune systems. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules, whose list is constantly updated to fill the several empty spaces of this puzzle. The recent development of new technologies and computational tools permits the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review the role of the innate immunity in the host response to vaccine antigens and the potential of systems biology in providing relevant and novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| | | |
Collapse
|
243
|
Fransen F, Stenger RM, Poelen MCM, van Dijken HH, Kuipers B, Boog CJP, van Putten JPM, van Els CACM, van der Ley P. Differential effect of TLR2 and TLR4 on the immune response after immunization with a vaccine against Neisseria meningitidis or Bordetella pertussis. PLoS One 2010; 5:e15692. [PMID: 21203418 PMCID: PMC3009743 DOI: 10.1371/journal.pone.0015692] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens. The mechanisms behind their effectiveness are poorly defined. Here we investigated the role of Toll-like receptor (TLR) 2 and TLR4 in the induction of immune responses in mice after immunization with these vaccines. Innate and adaptive immune responses were compared between wild type mice and mice deficient in TLR2, TLR4, or TRIF. TRIF-deficient and TLR4-deficient mice showed impaired immunity after immunization. In contrast, immune responses were not lower in TLR2−/− mice but tended even to be higher after immunization. Together our data demonstrate that TLR4 activation contributes to the immunogenicity of the N. meningitidis OMV vaccine and the whole cell pertussis vaccine, but that TLR2 activation is not required.
Collapse
Affiliation(s)
- Floris Fransen
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Utrecht University, Utrecht, The Netherlands
| | - Rachel M. Stenger
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Martien C. M. Poelen
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Harry H. van Dijken
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Betsy Kuipers
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Claire J. P. Boog
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Utrecht University, Utrecht, The Netherlands
| | - Jos P. M. van Putten
- Department of Immunology and Infectious Diseases, Utrecht University, Utrecht, The Netherlands
| | | | - Peter van der Ley
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
244
|
Kramer CD, Poole NM, Coons LB, Cole JA. Tick saliva regulates migration, phagocytosis, and gene expression in the macrophage-like cell line, IC-21. Exp Parasitol 2010; 127:665-71. [PMID: 21145320 DOI: 10.1016/j.exppara.2010.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 02/06/2023]
Abstract
We studied the effects of tick saliva on cell migration, cell signaling, phagocytosis, and gene expression in the murine macrophage cell line, IC-21. Saliva increased both basal- and platelet-derived growth factor (PDGF)-stimulated migration in IC-21 cells. However, saliva did not affect PDGF-stimulated extracellular signal-regulated kinase (ERK) activity. Zymosan-mediated interleukin-1 receptor associated kinase (IRAK) activity increased when cells were pretreated with saliva. Saliva suppressed phagocytosis of zymosan particles by IC-21 cells. An RT(2) Profiler™ PCR Array revealed that saliva regulates gene expression in a manner consistent with an immune response skewed toward a Th2 reaction, which is characterized by production of anti-inflammatory cytokines IL-4 and IL-10. Our results using IC-21 cells suggest that Dermacentor variabilis has evolved a mechanism for regulating macrophage function, which may contribute to the tick's ability to modulate immune function.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States.
| | | | | | | |
Collapse
|
245
|
Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential. THE JOURNAL OF IMMUNOLOGY 2010; 185:5677-82. [PMID: 21048152 DOI: 10.4049/jimmunol.1002156] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flagellin is a potent activator of a broad range of cell types involved in innate and adaptive immunity. An increasing number of studies have demonstrated the effectiveness of flagellin as an adjuvant, as well as its ability to promote cytokine production by a range of innate cell types, trigger a generalized recruitment of T and B lymphocytes to secondary lymphoid sites, and activate TLR5(+)CD11c(+) cells and T lymphocytes in a manner that is distinct from cognate Ag recognition. The plasticity of flagellin has allowed for the generation of a range of flagellin-Ag fusion proteins that have proven to be effective vaccines in animal models. This review summarizes the state of our current understanding of the adjuvant effect of flagellin and addresses important areas of current and future research interest.
Collapse
Affiliation(s)
- Steven B Mizel
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
246
|
Aerosol vaccines for tuberculosis: a fine line between protection and pathology. Tuberculosis (Edinb) 2010; 91:82-5. [PMID: 21067975 DOI: 10.1016/j.tube.2010.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/24/2010] [Accepted: 09/26/2010] [Indexed: 12/21/2022]
Abstract
Pulmonary delivery of vaccines against airborne infection is being investigated worldwide, but there is limited effort directed at developing inhaled vaccines for tuberculosis (TB). This review addresses some of the challenges confronting vaccine development for TB and attempts to link these challenges to the promises of mucosal immunity offered by pulmonary delivery. There are several approaches working toward this goal including subunit vaccines, recombinant strains, a novel vaccine strain Mycobacterium w, and DNA vaccine approaches. While it is clear that lung-resident adaptive immunity is an attainable goal, vaccine platforms must ensure that damage to the lung is limited during both vaccination and when memory cells respond to pathogenic infection.
Collapse
|
247
|
Schramm G, Haas H. Th2 immune response against Schistosoma mansoni infection. Microbes Infect 2010; 12:881-8. [DOI: 10.1016/j.micinf.2010.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/28/2023]
|
248
|
Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. THE JOURNAL OF IMMUNOLOGY 2010; 185:7067-76. [PMID: 21041732 DOI: 10.4049/jimmunol.1001137] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several TLR agonists are effective in tumor immunotherapy, but their early innate mechanisms of action, particularly those of TLR2 agonists, are unclear. Mast cells are abundant surrounding solid tumors where they are often protumorigenic and enhance tumor angiogenesis. However, antitumor roles for mast cells have also been documented. The impact of mast cells may be dependent on their activation status and mediator release in different tumors. Using an orthotopic melanoma model in wild-type C57BL/6 and mast cell-deficient Kit(W-sh/W-sh) mice and a complementary Matrigel-tumor model in C57BL/6 mice, mast cells were shown to be crucial for TLR2 agonist (Pam(3)CSK(4))-induced tumor inhibition. Activation of TLR2 on mast cells reversed their well-documented protumorigenic role. Tumor growth inhibition after peritumoral administration of Pam(3)CSK(4) was restored in Kit(W-sh/W-sh) mice by local reconstitution with wild-type, but not TLR2-deficient, mast cells. Mast cells secrete multiple mediators after Pam(3)CSK(4) activation, and in vivo mast cell reconstitution studies also revealed that tumor growth inhibition required mast cell-derived IL-6, but not TNF. Mast cell-mediated anticancer properties were multifaceted. Direct antitumor effects in vitro and decreased angiogenesis and recruitment of NK and T cells in vivo were observed. TLR2-activated mast cells also inhibited the growth of lung cancer cells in vivo. Unlike other immune cells, mast cells are relatively radioresistant making them attractive candidates for combined treatment modalities. This study has important implications for the design of immunotherapeutic strategies and reveals, to our knowledge, a novel mechanism of action for TLR2 agonists in vivo.
Collapse
|
249
|
Jones SC, Brahmakshatriya V, Huston G, Dibble J, Swain SL. TLR-activated dendritic cells enhance the response of aged naive CD4 T cells via an IL-6-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2010; 185:6783-94. [PMID: 20980632 DOI: 10.4049/jimmunol.0901296] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The most effective immunological adjuvants contain microbial products, such as TLR agonists, which bind to conserved pathogen recognition receptors. These activate dendritic cells (DCs) to become highly effective APCs. We assessed whether TLR ligand-treated DCs can enhance the otherwise defective response of aged naive CD4 T cells. In vivo administration of CpG, polyinosinic-polycytidylic acid, and Pam(3)CSK(4) in combination with Ag resulted in the increased expression of costimulatory molecules and MHC class II by DCs, increased serum levels of the inflammatory cytokines IL-6 and RANTES, and increased cognate CD4 T cell responses in young and aged mice. We show that, in vitro, preactivation of DCs by TLR ligands makes them more efficient APCs for aged naive CD4 T cells. After T-DC interaction, there are enhanced production of inflammatory cytokines, particularly IL-6, and greater expansion of the aged T cells, resulting from increased proliferation and greater effector survival with increased levels of Bcl-2. TLR preactivation of both bone marrow-derived and ex vivo DCs improved responses. IL-6 produced by the activated DCs during cognate T cell interaction was necessary for enhanced aged CD4 T cell expansion and survival. These studies suggest that some age-associated immune defects may be overcome by targeted activation of APCs by TLR ligands.
Collapse
|
250
|
Jeong YJ, Hong SW, Kim JH, Jin DH, Kang JS, Lee WJ, Hwang YI. Vitamin C-treated murine bone marrow-derived dendritic cells preferentially drive naïve T cells into Th1 cells by increased IL-12 secretions. Cell Immunol 2010; 266:192-9. [PMID: 21074755 DOI: 10.1016/j.cellimm.2010.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/11/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
Vitamin C has been reported to shift immune responses toward Th1. In this study, we evaluated whether this effect was by way of dendritic cells. Murine dendritic cells (DCs) were prepared from bone marrow precursors. DCs treated with vitamin C secreted an increased amount of IL-12p70 after activation with LPS. These cells rendered naïve T cells to secrete more Th1 cytokine, IFN-γ, and less Th2-cytokine, IL-5 in the culture supernatants. Vitamin C-treatment also increased phosphorylation of p38 and ERK1/2 in DCs. p38 inhibitor in culture media suppressed the effect of vitamin C to elevate IL-12p70 secretion. In contrast, ERK inhibitor elevated IL-12p70 secretion. In summary, vitamin C taken up into DCs increased IL-12p70 secretion of these cells by modulating the activation of signal molecules, and thus shifted immune responses toward Th1. These data provide us a new insight on the role of vitamin C in modulating immune responses.
Collapse
Affiliation(s)
- Young-Joo Jeong
- Department of Anatomy and Tumor Immunity Medical Research Center, Seoul National University, College of Medicine, Chongno-Gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|