201
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
202
|
Lesniak RK, Nichols RJ, Montine TJ. Development of mutation-selective LRRK2 kinase inhibitors as precision medicine for Parkinson's disease and other diseases for which carriers are at increased risk. Front Neurol 2022; 13:1016040. [PMID: 36388213 PMCID: PMC9643380 DOI: 10.3389/fneur.2022.1016040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert K. Lesniak
- Medicinal Chemistry Knowledge Center, Sarafan Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
- *Correspondence: Robert K. Lesniak
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
- R. Jeremy Nichols
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, United States
- Thomas J. Montine
| |
Collapse
|
203
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
204
|
Abstract
Mutations in LRRK2 are associated with Parkinson’s disease. We have recently shown that LRRK2 is recruited and activated on damaged lysosomes; however, the mechanism underlying this process remains unclear. Here, we observe that lysosomal positioning regulates the ability of LRRK2 to phosphorylate and recruit Rab10 but not Rab12 on lysosomes. pRab10 is present almost exclusively at perinuclear LRRK2+ lysosomes, which also regulates LYTL (lysosomal tubulation/sorting driven by LRRK2) by recruiting its effector, JIP4. Manipulation of lysosomal positioning by promoting anterograde transport reduces pRab10 and JIP4 on lysosomes, while induction of retrograde transport has the opposite effect. This finding provides insight into the mechanism of LRRK2-dependent lysosomal damage regulation and supports future study of the role of LRRK2 in lysosomal biology. Genetic variation at the leucine-rich repeat kinase 2 (LRRK2) locus contributes to an enhanced risk of familial and sporadic Parkinson’s disease. Previous data have demonstrated that recruitment to various membranes of the endolysosomal system results in LRRK2 activation. However, the mechanism(s) underlying LRRK2 activation at endolysosomal membranes and the cellular consequences of these events are still poorly understood. Here, we directed LRRK2 to lysosomes and early endosomes, triggering both LRRK2 autophosphorylation and phosphorylation of the direct LRRK2 substrates Rab10 and Rab12. However, when directed to the lysosomal membrane, pRab10 was restricted to perinuclear lysosomes, whereas pRab12 was visualized on both peripheral and perinuclear LRRK2+ lysosomes, suggesting that lysosomal positioning provides additional regulation of LRRK2-dependent Rab phosphorylation. Anterograde transport of lysosomes to the cell periphery by increasing the expression of ARL8B and SKIP or by knockdown of JIP4 blocked the recruitment and phosphorylation of Rab10 by LRRK2. The absence of pRab10 from the lysosomal membrane prevented the formation of a lysosomal tubulation and sorting process we previously named LYTL. Conversely, overexpression of RILP resulted in lysosomal clustering within the perinuclear area and increased LRRK2-dependent Rab10 recruitment and phosphorylation. The regulation of Rab10 phosphorylation in the perinuclear area depends on counteracting phosphatases, as the knockdown of phosphatase PPM1H significantly increased pRab10 signal and lysosomal tubulation in the perinuclear region. Our findings suggest that LRRK2 can be activated at multiple cellular membranes, including lysosomes, and that lysosomal positioning further provides the regulation of some Rab substrates likely via differential phosphatase activity or effector protein presence in nearby cellular compartments.
Collapse
|
205
|
Zimprich A. LRRK2 PROTAC Degraders as a Potential Novel Targeting Strategy for Parkinson's Disease? Mov Disord 2022; 37:2193. [PMID: 36196588 DOI: 10.1002/mds.29243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
|
206
|
Malik AU, Karapetsas A, Nirujogi RS, Chatterjee D, Phung TK, Wightman M, Gourlay R, Morrice N, Mathea S, Knapp S, Alessi DR. PKC isoforms activate LRRK1 kinase by phosphorylating conserved residues (Ser1064, Ser1074 and Thr1075) within the CORB GTPase domain. Biochem J 2022; 479:1941-1965. [PMID: 36040231 PMCID: PMC9555798 DOI: 10.1042/bcj20220308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Leucine-rich-repeat-kinase 1 (LRRK1) and its homolog LRRK2 are multidomain kinases possessing a ROC-CORA-CORB containing GTPase domain and phosphorylate distinct Rab proteins. LRRK1 loss of function mutations cause the bone disorder osteosclerotic metaphyseal dysplasia, whereas LRRK2 missense mutations that enhance kinase activity cause Parkinson's disease. Previous work suggested that LRRK1 but not LRRK2, is activated via a Protein Kinase C (PKC)-dependent mechanism. Here we demonstrate that phosphorylation and activation of LRRK1 in HEK293 cells is blocked by PKC inhibitors including LXS-196 (Darovasertib), a compound that has entered clinical trials. We show multiple PKC isoforms phosphorylate and activate recombinant LRRK1 in a manner reversed by phosphatase treatment. PKCα unexpectedly does not activate LRRK1 by phosphorylating the kinase domain, but instead phosphorylates a cluster of conserved residues (Ser1064, Ser1074 and Thr1075) located within a region of the CORB domain of the GTPase domain. These residues are positioned at the equivalent region of the LRRK2 DK helix reported to stabilize the kinase domain αC-helix in the active conformation. Thr1075 represents an optimal PKC site phosphorylation motif and its mutation to Ala, blocked PKC-mediated activation of LRRK1. A triple Glu mutation of Ser1064/Ser1074/Thr1075 to mimic phosphorylation, enhanced LRRK1 kinase activity ∼3-fold. From analysis of available structures, we postulate that phosphorylation of Ser1064, Ser1074 and Thr1075 activates LRRK1 by promoting interaction and stabilization of the αC-helix on the kinase domain. This study provides new fundamental insights into the mechanism controlling LRRK1 activity and reveals a novel unexpected activation mechanism.
Collapse
Affiliation(s)
- Asad U. Malik
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Athanasios Karapetsas
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Raja S. Nirujogi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Deep Chatterjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences and Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Toan K. Phung
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Robert Gourlay
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Nick Morrice
- AB Sciex, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Sebastian Mathea
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences and Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences and Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
207
|
Vides EG, Adhikari A, Chiang CY, Lis P, Purlyte E, Limouse C, Shumate JL, Spínola-Lasso E, Dhekne HS, Alessi DR, Pfeffer SR. A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation. eLife 2022; 11:e79771. [PMID: 36149401 PMCID: PMC9576273 DOI: 10.7554/elife.79771] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022] Open
Abstract
Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease, and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here, we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'site #1,' can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher-affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'site #2' that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Edmundo G Vides
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Ayan Adhikari
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Claire Y Chiang
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Pawel Lis
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Charles Limouse
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Justin L Shumate
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Elena Spínola-Lasso
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Bioquímica y Biología Molecular, Universidad de Las Palmas de Gran CanariaGran CanariaSpain
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Dario R Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
208
|
Liu X, Kalogeropulou AF, Domingos S, Makukhin N, Nirujogi RS, Singh F, Shpiro N, Saalfrank A, Sammler E, Ganley IG, Moreira R, Alessi DR, Ciulli A. Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood-Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2. J Am Chem Soc 2022; 144:16930-16952. [PMID: 36007011 PMCID: PMC9501899 DOI: 10.1021/jacs.2c05499] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/20/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC50 values within 15-72 nM, Dmax values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F = 15%) and can penetrate the blood-brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development.
Collapse
Affiliation(s)
- Xingui Liu
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Alexia F. Kalogeropulou
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sofia Domingos
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Nikolai Makukhin
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Raja S. Nirujogi
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Francois Singh
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Natalia Shpiro
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Anton Saalfrank
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Esther Sammler
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ian G. Ganley
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Rui Moreira
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Dario R. Alessi
- Medical
Research Council (MRC) Protein Phosphorylation and Ubiquitylation
Unit, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alessio Ciulli
- Centre
for Targeted Protein Degradation, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
209
|
Pfeffer SR. LRRK2
phosphorylation of Rab
GTPases
in Parkinson’s disease. FEBS Lett 2022; 597:811-818. [PMID: 36114007 DOI: 10.1002/1873-3468.14492] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
Rab GTPases comprise a large family of conserved GTPases that are critical regulators of the secretory and endocytic pathways. The human genome encodes ~ 65 Rabs that localize to discrete membrane compartments and, when in their GTP-bound state, bind to effector proteins to carry out diverse functions. Activating mutations in LRRK2 kinase cause Parkinson's disease, and subsets of Rab GTPases are important LRRK2 substrates. LRRK2 phosphorylates a conserved threonine residue that is essential for Rab interaction with guanine nucleotide exchange factors, effectors, and GDI that recycles Rabs between membrane compartments. This brief review will highlight new findings related to LRRK2-mediated phosphorylation of Rab GTPases and its consequences. Remarkably, Rab phosphorylation flips a switch on Rab effector selection with dominant consequences for cell pathophysiology.
Collapse
Affiliation(s)
- Suzanne R. Pfeffer
- Department of Biochemistry Stanford University School of Medicine 279 Campus Drive Stanford CA 94305‐5307 USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network Chevy Chase MD USA
| |
Collapse
|
210
|
Fonseca-Ornelas L, Stricker JMS, Soriano-Cruz S, Weykopf B, Dettmer U, Muratore CR, Scherzer CR, Selkoe DJ. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. NPJ Parkinsons Dis 2022; 8:118. [PMID: 36114228 PMCID: PMC9481630 DOI: 10.1038/s41531-022-00380-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
α-Synuclein (αSyn) aggregation in Lewy bodies and neurites defines both familial and 'sporadic' Parkinson's disease. We previously identified α-helically folded αSyn tetramers, in addition to the long-known unfolded monomers, in normal cells. PD-causing αSyn mutations decrease the tetramer:monomer (T:M) ratio, associated with αSyn hyperphosphorylation and cytotoxicity in neurons and a motor syndrome of tremor and gait deficits in transgenic mice that responds in part to L-DOPA. Here, we asked whether LRRK2 mutations, the most common genetic cause of cases previously considered sporadic PD, also alter tetramer homeostasis. Patient neurons carrying G2019S, the most prevalent LRRK2 mutation, or R1441C each had decreased T:M ratios and pSer129 hyperphosphorylation of their endogenous αSyn along with increased phosphorylation of Rab10, a widely reported substrate of LRRK2 kinase activity. Two LRRK2 kinase inhibitors normalized the T:M ratio and the hyperphosphorylation in the G2019S and R1441C patient neurons. An inhibitor of stearoyl-CoA desaturase, the rate-limiting enzyme for monounsaturated fatty acid synthesis, also restored the αSyn T:M ratio and reversed pSer129 hyperphosphorylation in both mutants. Coupled with the recent discovery that PD-causing mutations of glucocerebrosidase in Gaucher's neurons also decrease T:M ratios, our findings indicate that three dominant genetic forms of PD involve life-long destabilization of αSyn physiological tetramers as a common pathogenic mechanism that can occur upstream of progressive neuronal synucleinopathy. Based on αSyn's finely-tuned interaction with certain vesicles, we hypothesize that the fatty acid composition and fluidity of membranes regulate αSyn's correct binding to highly curved membranes and subsequent assembly into metastable tetramers.
Collapse
Affiliation(s)
- Luis Fonseca-Ornelas
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan M S Stricker
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Soriano-Cruz
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Beatrice Weykopf
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christina R Muratore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Clemens R Scherzer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
211
|
Kalogeropulou AF, Purlyte E, Tonelli F, Lange SM, Wightman M, Prescott AR, Padmanabhan S, Sammler E, Alessi DR. Impact of 100 LRRK2 variants linked to Parkinson's disease on kinase activity and microtubule binding. Biochem J 2022; 479:1759-1783. [PMID: 35950872 PMCID: PMC9472821 DOI: 10.1042/bcj20220161] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.
Collapse
Affiliation(s)
- Alexia F. Kalogeropulou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Sven M. Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | | | - Esther Sammler
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, U.K
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
212
|
Vuidel A, Cousin L, Weykopf B, Haupt S, Hanifehlou Z, Wiest-Daesslé N, Segschneider M, Lee J, Kwon YJ, Peitz M, Ogier A, Brino L, Brüstle O, Sommer P, Wilbertz JH. High-content phenotyping of Parkinson's disease patient stem cell-derived midbrain dopaminergic neurons using machine learning classification. Stem Cell Reports 2022; 17:2349-2364. [PMID: 36179692 PMCID: PMC9561636 DOI: 10.1016/j.stemcr.2022.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic neuron (mDAN) in vitro models. We differentiated patient-derived induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we identified elevated levels of α-synuclein (αSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial dysfunction. Next, we measured additional image-based phenotypes and used machine learning (ML) to accurately classify mDANs according to their genotype. Additionally, we show that chemical compound treatments, targeting LRRK2 kinase activity or αSyn levels, are detectable when using ML classification based on multiple image-based phenotypes. We validated our approach using a second isogenic patient-derived SNCA gene triplication mDAN model which overexpresses αSyn. This phenotyping and classification strategy improves the practical exploitability of mDANs for disease modeling and the identification of novel LRRK2-associated drug targets.
Collapse
Affiliation(s)
| | | | - Beatrice Weykopf
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany; LIFE & BRAIN GmbH, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany; LIFE & BRAIN GmbH, Bonn, Germany
| | | | | |
Collapse
|
213
|
Ho PWL, Chang EES, Leung CT, Liu H, Malki Y, Pang SYY, Choi ZYK, Liang Y, Lai WS, Ruan Y, Leung KMY, Yung S, Mak JCW, Kung MHW, Ramsden DB, Ho SL. Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain α-synuclein oligomers without adverse effects. NPJ Parkinsons Dis 2022; 8:115. [PMID: 36088364 PMCID: PMC9464237 DOI: 10.1038/s41531-022-00386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences. Here, we significantly reduced αSyn oligomer accumulation in mouse striatum through long-term LRRK2 inhibition using GNE-7915 (specific brain-penetrant LRRK2 inhibitor) without causing adverse peripheral effects. GNE-7915 concentrations in wild-type (WT) mouse sera and brain samples reached a peak at 1 h, which gradually decreased over 24 h following a single subcutaneous (100 mg/kg) injection. The same dose in young WT and LRRK2R1441G mutant mice significantly inhibited LRRK2 kinase activity (Thr73-Rab10 and Ser106-Rab12 phosphorylation) in the lung, which dissipated by 72 h post-injection. 14-month-old mutant mice injected with GNE-7915 twice weekly for 18 weeks (equivalent to ~13 human years) exhibited reduced striatal αSyn oligomer and cortical pSer129-αSyn levels, correlating with inhibition of LRRK2 hyperactivity in brain and lung to WT levels. No GNE-7915-treated mice showed increased mortality or morbidity. Unlike reports of abnormalities in lung and kidney at acute high doses of LRRK2 inhibitors, our GNE-7915-treated mice did not exhibit swollen lamellar bodies in type II pneumocytes or abnormal vacuolation in the kidney. Functional and histopathological assessments of lung, kidney and liver, including whole-body plethysmography, urinary albumin-creatinine ratio (ACR), serum alanine aminotransferase (ALT) and serum interleukin-6 (inflammatory marker) did not reveal abnormalities after long-term GNE-7915 treatment. Long-term inhibition of mutant LRRK2 hyper-kinase activity to physiological levels presents an efficacious and safe disease-modifying therapy to ameliorate synucleinopathy in PD.
Collapse
|
214
|
Wang L, Wang H, Yi S, Zhang S, Ho MS. A
LRRK2
/
dLRRK
‐mediated lysosomal pathway that contributes to glial cell death and
DA
neuron survival. Traffic 2022; 23:506-520. [DOI: 10.1111/tra.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Linfang Wang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Honglei Wang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Shuanglong Yi
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Shiping Zhang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Margaret S. Ho
- School of Life Science and Technology ShanghaiTech University Shanghai China
| |
Collapse
|
215
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
216
|
Filippone A, Mannino D, Cucinotta L, Paterniti I, Esposito E, Campolo M. LRRK2 Inhibition by PF06447475 Antagonist Modulates Early Neuronal Damage after Spinal Cord Trauma. Antioxidants (Basel) 2022; 11:antiox11091634. [PMID: 36139708 PMCID: PMC9495377 DOI: 10.3390/antiox11091634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event followed by neurodegeneration, activation of the inflammatory cascade, and immune system. The leucine-rich-repeat kinase 2 (LRRK2) is a gene associated with Parkinson’s disease (PD), moreover, its kinase activity was found to be upregulated after instigated inflammation of the central nervous system (CNS). Here, we aimed to investigate the PF06447475 (abbreviated as PF-475) role as a pharmacological LRRK2 antagonist by counteracting pathological consequences of spinal cord trauma. The in vivo model of SCI was induced by extradural compression of the spinal cord, then mice were treated with PF0-475 (2.5–5 and 10 mg/kg i.p) 1 and 6 h after SCI. We found that PF-475 treatments at the higher doses (5 and 10 mg/kg) showed a great ability to significantly reduce the degree of spinal cord tissue injury, glycogen accumulation, and demyelination of neurons associated with trauma. Furthermore, oxidative stress and cytokines expression levels, including interleukins (IL-1, IL-6, IL-10, and 12), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), secreted and released after trauma were decreased by LRRK2 antagonist treatments. Our results suggest that the correlations between LRRK2 and inflammation of the CNS exist and that LRRK2 activity targeting could have direct effects on the intervention of neuroinflammatory disorders.
Collapse
|
217
|
Zhang ZW, Tu H, Jiang M, Vanan S, Chia SY, Jang SE, Saw WT, Ong ZW, Ma DR, Zhou ZD, Xu J, Guo KH, Yu WP, Ling SC, Margolin RA, Chain DG, Zeng L, Tan EK. The APP intracellular domain promotes LRRK2 expression to enable feed-forward neurodegenerative mechanisms in Parkinson's disease. Sci Signal 2022; 15:eabk3411. [PMID: 35998231 DOI: 10.1126/scisignal.abk3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gain-of-function mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common in familial forms of Parkinson's disease (PD), which is characterized by progressive neurodegeneration that impairs motor and cognitive function. We previously demonstrated that LRRK2-mediated phosphorylation of β-amyloid precursor protein (APP) triggers the production and nuclear translocation of the APP intracellular domain (AICD). Here, we connected LRRK2 to AICD in a feed-forward cycle that enhanced LRRK2-mediated neurotoxicity. In cooperation with the transcription factor FOXO3a, AICD promoted LRRK2 expression, thus increasing the abundance of LRRK2 that promotes AICD activation. APP deficiency in LRRK2G2019S mice suppressed LRRK2 expression, LRRK2-mediated mitochondrial dysfunction, α-synuclein accumulation, and tyrosine hydroxylase (TH) loss in the brain, phenotypes associated with toxicity and loss of dopaminergic neurons in PD. Conversely, AICD overexpression increased LRRK2 expression and LRRK2-mediated neurotoxicity in LRRK2G2019S mice. In LRRK2G2019S mice or cultured dopaminergic neurons from LRRK2G2019S patients, treatment with itanapraced reduced LRRK2 expression and was neuroprotective. Itanapraced showed similar effects in a neurotoxin-induced PD mouse model, suggesting that inhibiting the AICD may also have therapeutic benefits in idiopathic PD. Our findings reveal a therapeutically targetable, feed-forward mechanism through which AICD promotes LRRK2-mediated neurotoxicity in PD.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore.,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Se-Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Wuan-Ting Saw
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 169856, Singapore
| | - Zhi-Wei Ong
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Dong-Rui Ma
- Department of Neurology, Singapore General Hospital, Singapore 169609, Singapore
| | - Zhi-Dong Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 169856, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai-Hua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological Resource Center, A*STAR, Singapore 138673, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Shuo-Chien Ling
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | | | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore 308232, Singapore
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 169856, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| |
Collapse
|
218
|
Weindel CG, Martinez EL, Zhao X, Mabry CJ, Bell SL, Vail KJ, Coleman AK, VanPortfliet JJ, Zhao B, Wagner AR, Azam S, Scott HM, Li P, West AP, Karpac J, Patrick KL, Watson RO. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 2022; 185:3214-3231.e23. [PMID: 35907404 PMCID: PMC9531054 DOI: 10.1016/j.cell.2022.06.038] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2022]
Abstract
Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.
Collapse
Affiliation(s)
- Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Eduardo L Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Xiao Zhao
- Department of Molecular and Cellular Medicine, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Cory J Mabry
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA; Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Krystal J Vail
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Jordyn J VanPortfliet
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Sikandar Azam
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
219
|
Chen ML, Wu RM. Homozygous mutation of the LRRK2 ROC domain as a novel genetic model of parkinsonism. J Biomed Sci 2022; 29:60. [PMID: 35965315 PMCID: PMC9375908 DOI: 10.1186/s12929-022-00844-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Parkinson’s disease (PD) is one of the most important neurodegenerative disorders in elderly people. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in a large proportion of the patients with sporadic and familial PD. Mutations can occur at different locations in the LRRK2. Patients with LRRK2 ROC-COR mutations face an increased risk of typical motor symptoms of PD, along with cognitive decline. An animal model with a monogenic LRRK2 gene mutation is a suitable model for exploring the pathophysiology of PD and identifying potential drug therapies. However, the effect of homozygous (HOM) LRRK2 in PD pathophysiology is unclear. Methods We established human LRRK2 (hLRRK2) R1441G HOM transgenic (Tg) mice to explore the phenotype and pathological features that are associated with hLRRK2 R1441G Tg mouse models and discuss the potential clinical relevance. The open field test (OFT) was performed to examine motor and nonmotor behaviors. A CatWalk analysis system was used to study gait function. [18F]FDOPA PET was used to investigate functional changes in the nigrostriatal pathway in vivo. Transmission electron microscopy was used to examine the morphological changes in mitochondria and lysosomes in the substantia nigra. Results The R1441G HOM Tg mice demonstrated gait disturbance and exhibited less anxiety-related behavior and exploratory behavior than mice with hLRRK2 at 12 months old. Additionally, [18F]FDOPA PET showed a reduction in FDOPA uptake in the striatum of the HOM Tg mice. Notably, there was significant lysosome and autophagosome accumulation in the cytoplasm of dopaminergic neurons in R1441G hemizygous (HEM) and HOM mice. Moreover, it was observed using transmission electron microscopy (TEM) that the mitochondria of R1441G Tg mice were smaller than those of hLRRK2 mice. Conclusion This animal provides a novel HOM hLRRK2 R1441G Tg mouse model that reproduces some phenotype of Parkinsonism in terms of both motor and behavioral dysfunction. There is an increased level of mitochondrial fission and no change in the fusion process in the group of HOM hLRRK2 R1441G Tg mouse. This mutant animal model of PD might be used to study the mechanisms of mitochondrial dysfunction and explore potential new drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00844-9.
Collapse
|
220
|
Smith LJ, Lee CY, Menozzi E, Schapira AHV. Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Front Neurol 2022; 13:971252. [PMID: 36034282 PMCID: PMC9416236 DOI: 10.3389/fneur.2022.971252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Variants in the GBA1 and LRRK2 genes are the most common genetic risk factors associated with Parkinson disease (PD). Both genes are associated with lysosomal and autophagic pathways, with the GBA1 gene encoding for the lysosomal enzyme, glucocerebrosidase (GCase) and the LRRK2 gene encoding for the leucine-rich repeat kinase 2 enzyme. GBA1-associated PD is characterized by earlier age at onset and more severe non-motor symptoms compared to sporadic PD. Mutations in the GBA1 gene can be stratified into severe, mild and risk variants depending on the clinical presentation of disease. Both a loss- and gain- of function hypothesis has been proposed for GBA1 variants and the functional consequences associated with each variant is often linked to mutation severity. On the other hand, LRRK2-associated PD is similar to sporadic PD, but with a more benign disease course. Mutations in the LRRK2 gene occur in several structural domains and affect phosphorylation of GTPases. Biochemical studies suggest a possible convergence of GBA1 and LRRK2 pathways, with double mutant carriers showing a milder phenotype compared to GBA1-associated PD. This review compares GBA1 and LRRK2-associated PD, and highlights possible genotype-phenotype associations for GBA1 and LRRK2 separately, based on biochemical consequences of single variants.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
221
|
Oun A, Sabogal-Guaqueta AM, Galuh S, Alexander A, Kortholt A, Dolga AM. The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiol Dis 2022; 173:105837. [PMID: 35963526 DOI: 10.1016/j.nbd.2022.105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting elderly people. Pathogenic mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are the most common cause of autosomal dominant PD. LRRK2 activity is enhanced in both familial and idiopathic PD, thereby studies on LRRK2-related PD research are essential for understanding PD pathology. Finding an appropriate model to mimic PD pathology is crucial for revealing the molecular mechanisms underlying disease progression, and aiding drug discovery. In the last few years, the use of human-induced pluripotent stem cells (hiPSCs) grew exponentially, especially in studying neurodegenerative diseases like PD, where working with brain neurons and glial cells was mainly possible using postmortem samples. In this review, we will discuss the use of hiPSCs as a model for PD pathology and research on the LRRK2 function in both neuronal and immune cells, together with reviewing the recent advances in 3D organoid models and microfluidics.
Collapse
Affiliation(s)
- Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands; Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Angelica Maria Sabogal-Guaqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Sekar Galuh
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Anastasia Alexander
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
222
|
Thakur G, Kumar V, Lee KW, Won C. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes (Basel) 2022; 13:1426. [PMID: 36011337 PMCID: PMC9408223 DOI: 10.3390/genes13081426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the specific loss of dopaminergic neurons in the midbrain. The pathophysiology of PD is likely caused by a variety of environmental and hereditary factors. Many single-gene mutations have been linked to this disease, but a significant number of studies indicate that mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a potential therapeutic target for both sporadic and familial forms of PD. Consequently, the identification of potential LRRK2 inhibitors has been the focus of drug discovery. Various investigations have been conducted in academic and industrial organizations to investigate the mechanism of LRRK2 in PD and further develop its inhibitors. This review summarizes the role of LRRK2 in PD and its structural details, especially the kinase domain. Furthermore, we reviewed in vitro and in vivo findings of selected inhibitors reported to date against wild-type and mutant versions of the LRRK2 kinase domain as well as the current trends researchers are employing in the development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Gunjan Thakur
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
223
|
Bellucci A, Longhena F, Spillantini MG. The Role of Rab Proteins in Parkinson's Disease Synaptopathy. Biomedicines 2022; 10:biomedicines10081941. [PMID: 36009486 PMCID: PMC9406004 DOI: 10.3390/biomedicines10081941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-380
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| |
Collapse
|
224
|
Pathophysiological evaluation of the LRRK2 G2385R risk variant for Parkinson’s disease. NPJ Parkinsons Dis 2022; 8:97. [PMID: 35931783 PMCID: PMC9355991 DOI: 10.1038/s41531-022-00367-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Missense variants in leucine-rich repeat kinase 2 (LRRK2) lead to familial and sporadic Parkinson’s disease (PD). The pathological features of PD patients with LRRK2 variants differ. Here, we report an autopsy case harboring the LRRK2 G2385R, a risk variant for PD occurring mainly in Asian populations. The patient exhibited levodopa-responsive parkinsonism at the early stage and visual hallucinations at the advanced stage. The pathological study revealed diffuse Lewy bodies with neurofibrillary tangles, amyloid plaques, and mild signs of neuroinflammation. Biochemically, detergent-insoluble phospho-α-synuclein was accumulated in the frontal, temporal, entorhinal cortexes, and putamen, consistent with the pathological observations. Elevated phosphorylation of Rab10, a substrate of LRRK2, was also prominent in various brain regions. In conclusion, G2385R appears to increase LRRK2 kinase activity in the human brain, inducing a deleterious brain environment that causes Lewy body pathology.
Collapse
|
225
|
Langston RG, Beilina A, Reed X, Kaganovich A, Singleton AB, Blauwendraat C, Gibbs JR, Cookson MR. Association of a common genetic variant with Parkinson's disease is mediated by microglia. Sci Transl Med 2022; 14:eabp8869. [PMID: 35895835 PMCID: PMC9809150 DOI: 10.1126/scitranslmed.abp8869] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies of multiple neurodegenerative disorders have identified many genetic variants that are associated with risk of disease throughout a lifetime. For example, Parkinson's disease (PD) risk is attributed in part to both coding mutations in the leucine-rich repeat kinase 2 (LRRK2) gene and to a common noncoding variation in the 5' region of the LRRK2 locus, as identified by genome-wide association studies (GWAS). However, the mechanisms linking GWAS variants to pathogenicity are largely unknown. Here, we found that the influence of PD-associated noncoding variation on LRRK2 expression is specifically propagated through microglia and not by other cell types that express LRRK2 in the human brain. We find microglia-specific regulatory chromatin regions that modulate the LRRK2 expression in human frontal cortex and substantia nigra and confirm these results in a human-induced pluripotent stem cell-derived microglia model. We showed, using a large-scale clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen, that a regulatory DNA element containing the single-nucleotide variant rs6581593 influences the LRRK2 expression in microglia. Our study demonstrates that cell type should be considered when evaluating the role of noncoding variation in disease pathogenesis and sheds light on the mechanism underlying the association of the 5' region of LRRK2 with PD risk.
Collapse
Affiliation(s)
- R. G. Langston
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A. Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - X. Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - C. Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. R. Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - M. R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
226
|
LRRK2 kinase activity regulates GCase level and enzymatic activity differently depending on cell type in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:92. [PMID: 35853899 PMCID: PMC9296523 DOI: 10.1038/s41531-022-00354-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways, and immune function. Mutations in LRRK2 cause autosomal-dominant forms of Parkinson's disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we performed a comprehensive analysis of GCase levels and activity in complementary LRRK2 models, including (i) LRRK2 G2019S knock in (GSKI) mice, (ii) peripheral blood mononuclear cell (PBMCs), plasma, and fibroblasts from PD patients carrying LRRK2 G2019S mutation, (iii) patient iPSCs-derived neurons; (iv) endogenous and overexpressed cell models. In some of these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. GCase protein level is reduced in GSKI brain tissues and in G2019S iPSCs-derived neurons, but increased in fibroblasts and PBMCs from patients, suggesting cell-type-specific effects. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase in a cell-type-specific manner, with important implications in the context of therapeutic application of LRRK2 inhibitors in GBA1-linked and idiopathic PD.
Collapse
|
227
|
Fernández B, Chittoor-Vinod VG, Kluss JH, Kelly K, Bryant N, Nguyen APT, Bukhari SA, Smith N, Lara Ordóñez AJ, Fdez E, Chartier-Harlin MC, Montine TJ, Wilson MA, Moore DJ, West AB, Cookson MR, Nichols RJ, Hilfiker S. Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1423-1447. [PMID: 35599495 PMCID: PMC9398093 DOI: 10.3233/jpd-213128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Coding variation in the Leucine rich repeat kinase 2 gene linked to Parkinson’s disease (PD) promotes enhanced activity of the encoded LRRK2 kinase, particularly with respect to autophosphorylation at S1292 and/or phosphorylation of the heterologous substrate RAB10. Objective: To determine the inter-laboratory reliability of measurements of cellular LRRK2 kinase activity in the context of wildtype or mutant LRRK2 expression using published protocols. Methods: Benchmark western blot assessments of phospho-LRRK2 and phospho-RAB10 were performed in parallel with in situ immunological approaches in HEK293T, mouse embryonic fibroblasts, and lymphoblastoid cell lines. Rat brain tissue, with or without adenovirus-mediated LRRK2 expression, and human brain tissues from subjects with or without PD, were also evaluated for LRRK2 kinase activity markers. Results: Western blots were able to detect extracted LRRK2 activity in cells and tissue with pS1292-LRRK2 or pT73-RAB10 antibodies. However, while LRRK2 kinase signal could be detected at the cellular level with over-expressed mutant LRRK2 in cell lines, we were unable to demonstrate specific detection of endogenous cellular LRRK2 activity in cell culture models or tissues that we evaluated. Conclusion: Further development of reliable methods that can be deployed in multiple laboratories to measure endogenous LRRK2 activities are likely required, especially at cellular resolution.
Collapse
Affiliation(s)
- Belén Fernández
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | - Jillian H. Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kaela Kelly
- Duke Center for Neurodegeneration Research, Department of Pharmacology, Duke University, Durham, NC, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Department of Pharmacology, Duke University, Durham, NC, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Syed A. Bukhari
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nathan Smith
- Department of Biochemistry, Redox Biology Center, The University of Nebraska-Lincoln, NE, USA
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Mark A. Wilson
- Department of Biochemistry, Redox Biology Center, The University of Nebraska-Lincoln, NE, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Andrew B. West
- Duke Center for Neurodegeneration Research, Department of Pharmacology, Duke University, Durham, NC, USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Sabine Hilfiker
- Department of Anesthesiology and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
228
|
Ordóñez AJL, Fasiczka R, Fernández B, Naaldijk Y, Fdez E, Ramírez MB, Phan S, Boassa D, Hilfiker S. The LRRK2 signaling network converges on a centriolar phospho-Rab10/RILPL1 complex to cause deficits in centrosome cohesion and cell polarization. Biol Open 2022; 11:275880. [PMID: 35776681 PMCID: PMC9346292 DOI: 10.1242/bio.059468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
The Parkinson's-disease-associated LRRK2 kinase phosphorylates multiple Rab GTPases including Rab8 and Rab10, which enhances their binding to RILPL1 and RILPL2. The nascent interaction between phospho-Rab10 and RILPL1 blocks ciliogenesis in vitro and in the intact brain, and interferes with the cohesion of duplicated centrosomes in dividing cells. We show here that regulators of the LRRK2 signaling pathway including vps35 and PPM1H converge upon causing centrosomal deficits. The cohesion alterations do not require the presence of other LRRK2 kinase substrates including Rab12, Rab35 and Rab43 or the presence of RILPL2. Rather, they depend on the RILPL1-mediated centrosomal accumulation of phosphorylated Rab10. RILPL1 localizes to the subdistal appendage of the mother centriole, followed by recruitment of the LRRK2-phosphorylated Rab proteins to cause the centrosomal defects. The centrosomal alterations impair cell polarization as monitored by scratch wound assays which is reverted by LRRK2 kinase inhibition. These data reveal a common molecular pathway by which enhanced LRRK2 kinase activity impacts upon centrosome-related events to alter the normal biology of a cell. Summary: The Parkinson's disease LRRK2 signaling pathway converges upon the formation of a complex at the subdistal appendage of the mother centriole which causes centrosomal deficits and impairs appropriate cell polarization.
Collapse
Affiliation(s)
- Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Belén Fernández
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Yahaira Naaldijk
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elena Fdez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marian Blanca Ramírez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sébastien Phan
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
229
|
Wang S, Unnithan S, Bryant N, Chang A, Rosenthal LS, Pantelyat A, Dawson TM, Al‐Khalidi HR, West AB. Elevated Urinary Rab10 Phosphorylation in Idiopathic Parkinson Disease. Mov Disord 2022; 37:1454-1464. [PMID: 35521944 PMCID: PMC9308673 DOI: 10.1002/mds.29043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pathogenic leucine-rich repeat kinase 2 LRRK2 mutations may increase LRRK2 kinase activity and Rab substrate phosphorylation. Genetic association studies link variation in LRRK2 to idiopathic Parkinson disease (iPD) risk. OBJECTIVES Through measurements of the LRRK2 kinase substrate pT73-Rab10 in urinary extracellular vesicles, this study seeks to understand how LRRK2 kinase activity might change with iPD progression. METHODS Using an immunoblotting approach validated in LRRK2 transgenic mice, the ratio of pT73-Rab10 to total Rab10 protein was measured in extracellular vesicles from a cross-section of G2019S LRRK2 mutation carriers (N = 45 participants) as well as 485 urine samples from a novel longitudinal cohort of iPD and controls (N = 85 participants). Generalized estimating equations were used to conduct analyses with commonly used clinical scales. RESULTS Although the G2019S LRRK2 mutation did not increase pT73-Rab10 levels, the ratio of pT73-Rab10 to total Rab10 nominally increased over baseline in iPD urine vesicle samples with time, but did not increase in age-matched controls (1.34-fold vs. 1.05-fold, 95% confidence interval [CI], 0.004-0.56; P = 0.046; Welch's t test). Effect estimates adjusting for sex, age, disease duration, diagnosis, and baseline clinical scores identified increasing total Movement Disorder Society-Sponsored Revision of the Unified (MDS-UPDRS) scores (β = 0.77; CI, 0.52-1.01; P = 0.0001) with each fold increase of pT73-Rab10 to total Rab10. Lower Montreal Cognitive Assessment (MoCA) score in iPD is also associated with increased pT73-Rab10. CONCLUSIONS These results provide initial insights into peripheral LRRK2-dependent Rab phosphorylation, measured in biobanked urine, where higher levels of pT73-Rab10 are associated with worse disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Shijie Wang
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | - Shakthi Unnithan
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Nicole Bryant
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | - Allison Chang
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | | | | | - Ted M. Dawson
- Department of NeurologyThe Johns Hopkins UniversityBaltimoreMarylandUSA
- Neurodegeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hussein R. Al‐Khalidi
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew B. West
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
230
|
Tsafaras G, Baekelandt V. The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases. Neurobiol Dis 2022; 172:105806. [PMID: 35781002 DOI: 10.1016/j.nbd.2022.105806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is currently considered a multisystemic disorder rather than a pure brain disease, in line with the multiple hit hypothesis from Braak. However, despite increasing evidence that the pathology might originate in the periphery, multiple unknown aspects and contradictory data on the pathological processes taking place in the periphery jeopardize the interpretation and therapeutic targeting of PD. Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been widely linked with familial and sporadic PD cases. However, the actual role of LRRK2 in PD pathophysiology is far from understood. There is evidence that LRRK2 may be involved in alpha-synuclein (α-synuclein) pathology and immune cell regulation, but it has also been associated with inflammatory diseases such as inflammatory bowel disease, tuberculosis, leprosy, and several other bacterial infections. In this review, we focus on the different roles of LRRK2 in the periphery. More specifically, we discuss the involvement of LRRK2 in the propagation of α-synuclein pathology and its regulatory role in peripheral inflammation. A deeper understanding of the multidimensional functions of LRRK2 will pave the way for more accurate characterization of PD pathophysiology and its association with other inflammatory diseases.
Collapse
Affiliation(s)
- George Tsafaras
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
231
|
Wallings RL, Hughes LP, Staley HA, Simon ZD, McFarland NR, Alcalay RN, Garrido A, Martí MJ, Sarró ET, Dzamko N, Tansey MG. WHOPPA Enables Parallel Assessment of Leucine-Rich Repeat Kinase 2 and Glucocerebrosidase Enzymatic Activity in Parkinson's Disease Monocytes. Front Cell Neurosci 2022; 16:892899. [PMID: 35755775 PMCID: PMC9229349 DOI: 10.3389/fncel.2022.892899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Both leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GCase) are promising targets for the treatment of Parkinson’s disease (PD). Evidence suggests that both proteins are involved in biological pathways involving the lysosome. However, studies to date have largely investigated the enzymes in isolation and any relationship between LRRK2 and GCase remains unclear. Both enzymes are highly expressed in peripheral blood monocytes and have been implicated in immune function and inflammation. To facilitate the standardized measurement of these readouts in large cohorts of samples collected from persons with PD across the globe, we developed and optimized a sample collection and processing protocol with parallel flow cytometry assays. Assay parameters were first optimized using healthy control peripheral blood mononuclear cells (PBMCs), and then LRRK2 and GCase activities were measured in immune cells from persons with idiopathic PD (iPD). We tested the ability of this protocol to deliver similar results across institutes across the globe, and named this protocol the Wallings-Hughes Optimized Protocol for PBMC Assessment (WHOPPA). In the application of this protocol, we found increased LRRK2 levels and stimulation-dependent enzymatic activity, and decreased GBA index in classical iPD monocytes, as well as increased cytokine release in PD PBMCs. WHOPPA also demonstrated a strong positive correlation between LRRK2 levels, pRab10 and HLA-DR in classical monocytes from subjects with iPD. These data support a role for the global use of WHOPPA and expression levels of these two PD-associated proteins in immune responses, and provide a robust assay to determine if LRRK2 and GCase activities in monocytes have potential utility as reliable and reproducible biomarkers of disease in larger cohorts of subjects with PD.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Laura P Hughes
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hannah A Staley
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Zachary D Simon
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Nikolaus R McFarland
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Roy N Alcalay
- Department of Neurology, Neurological Institute of New York, Columbia University, New York, NY, United States.,Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alicia Garrido
- Hospital Clínic de Barcelona, Servicio de Neurología, Barcelona, Spain
| | - María José Martí
- Hospital Clínic de Barcelona, Servicio de Neurología, Barcelona, Spain
| | | | - Nicolas Dzamko
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
232
|
Karayel O, Virreira Winter S, Padmanabhan S, Kuras YI, Vu DT, Tuncali I, Merchant K, Wills AM, Scherzer CR, Mann M. Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson's disease. Cell Rep Med 2022; 3:100661. [PMID: 35732154 PMCID: PMC9245058 DOI: 10.1016/j.xcrm.2022.100661] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/29/2021] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a growing burden worldwide, and there is no reliable biomarker used in clinical routines to date. Cerebrospinal fluid (CSF) is routinely collected in patients with neurological symptoms and should closely reflect alterations in PD patients' brains. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomics workflow for CSF proteome profiling. From two independent cohorts with over 200 individuals, our workflow reproducibly quantifies over 1,700 proteins from minimal CSF amounts. Machine learning determines OMD, CD44, VGF, PRL, and MAN2B1 to be altered in PD patients or to significantly correlate with clinical scores. We also uncover signatures of enhanced neuroinflammation in LRRK2 G2019S carriers, as indicated by increased levels of CTSS, PLD4, and HLA proteins. A comparison with our previously acquired urinary proteomes reveals a large overlap in PD-associated changes, including lysosomal proteins, opening up new avenues to improve our understanding of PD pathogenesis.
Collapse
Affiliation(s)
- Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Virreira Winter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | - Yuliya I Kuras
- APDA Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Duc Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Idil Tuncali
- APDA Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Kalpana Merchant
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
233
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
234
|
Fdez E, Madero-Pérez J, Lara Ordóñez AJ, Naaldijk Y, Fasiczka R, Aiastui A, Ruiz-Martínez J, López de Munain A, Cowley SA, Wade-Martins R, Hilfiker S. Pathogenic LRRK2 regulates centrosome cohesion via Rab10/RILPL1-mediated CDK5RAP2 displacement. iScience 2022; 25:104476. [PMID: 35721463 PMCID: PMC9198432 DOI: 10.1016/j.isci.2022.104476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022] Open
Abstract
Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes. We show here that centrosomal deficits mediated by pathogenic LRRK2 can also be observed in patient-derived iPS cells, and we have used transiently transfected cell lines to identify the underlying mechanism. The LRRK2-mediated centrosomal cohesion deficits are dependent on both the GTP conformation and phosphorylation status of the Rab proteins. Pathogenic LRRK2 does not displace proteinaceous linker proteins which hold duplicated centrosomes together, but causes the centrosomal displacement of CDK5RAP2, a protein critical for centrosome cohesion. The LRRK2-mediated centrosomal displacement of CDK5RAP2 requires RILPL1 and phospho-Rab proteins, which stably associate with centrosomes. These data provide fundamental information as to how pathogenic LRRK2 alters the normal physiology of a cell.
Collapse
Affiliation(s)
- Elena Fdez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Antonio J Lara Ordóñez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Yahaira Naaldijk
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Rachel Fasiczka
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ana Aiastui
- CIBERNED (Institute Carlos III), Madrid, Spain.,Cell Culture Platform, Biodonostia Institute, San Sebastian, Spain
| | - Javier Ruiz-Martínez
- CIBERNED (Institute Carlos III), Madrid, Spain.,Department of Neurology, Hospital Universitario Donostia-OSAKIDETZA, San Sebastian, Spain.,Neurosciences Area, Biodonostia Institute, San Sebastian, Spain
| | - Adolfo López de Munain
- CIBERNED (Institute Carlos III), Madrid, Spain.,Department of Neurology, Hospital Universitario Donostia-OSAKIDETZA, San Sebastian, Spain.,Neurosciences Area, Biodonostia Institute, San Sebastian, Spain.,Department of Neurosciences, University of the Basque Country, San Sebastian, Spain
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
235
|
Coku I, Mutez E, Eddarkaoui S, Carrier S, Marchand A, Deldycke C, Goveas L, Baille G, Tir M, Magnez R, Thuru X, Vermeersch G, Vandenberghe W, Buée L, Defebvre L, Sablonnière B, Chartier-Harlin MC, Taymans JM, Huin V. Functional Analyses of Two Novel LRRK2 Pathogenic Variants in Familial Parkinson's Disease. Mov Disord 2022; 37:1761-1767. [PMID: 35708213 PMCID: PMC9543145 DOI: 10.1002/mds.29124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson's disease. However, only seven variants have been confirmed to be pathogenic. Objectives We identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing. Methods We transiently expressed wild‐type, the two new variants, or two known pathogenic mutants (G2019S and R1441G) in HEK‐293 T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins. Results The two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity. Conclusions We identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Ilda Coku
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Eugénie Mutez
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France.,University of Lille, Inserm, CHU Lille, Expert Center for Parkinson's Disease, Lille, France
| | - Sabiha Eddarkaoui
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Sébastien Carrier
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Claire Deldycke
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Liesel Goveas
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Guillaume Baille
- University of Lille, Inserm, CHU Lille, Expert Center for Parkinson's Disease, Lille, France
| | - Mélissa Tir
- Department of Neurology and Expert Center for Parkinson's Disease, Amiens University Hospital, CHU Amiens-Picardie, Amiens, France
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | | | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Luc Defebvre
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France.,University of Lille, Inserm, CHU Lille, Expert Center for Parkinson's Disease, Lille, France
| | - Bernard Sablonnière
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France.,University of Lille, Inserm, CHU Lille, Department of Toxicology and Genopathies, UF Neurobiology, Lille, France
| | | | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France
| | - Vincent Huin
- University of Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neuroscience & Cognition, Lille, France.,University of Lille, Inserm, CHU Lille, Department of Toxicology and Genopathies, UF Neurobiology, Lille, France
| |
Collapse
|
236
|
Petropoulou-Vathi L, Simitsi A, Valkimadi PE, Kedariti M, Dimitrakopoulos L, Koros C, Papadimitriou D, Papadimitriou A, Stefanis L, Alcalay RN, Rideout HJ. Distinct profiles of LRRK2 activation and Rab GTPase phosphorylation in clinical samples from different PD cohorts. NPJ Parkinsons Dis 2022; 8:73. [PMID: 35676398 PMCID: PMC9177829 DOI: 10.1038/s41531-022-00336-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Despite several advances in the field, pharmacodynamic outcome measures reflective of LRRK2 kinase activity in clinical biofluids remain urgently needed. A variety of targets and approaches have been utilized including assessments of LRRK2 itself (levels, phosphorylation), or its substrates (e.g. Rab10 or other Rab GTPases). We have previously shown that intrinsic kinase activity of LRRK2 isolated from PBMCs of G2019S carriers is elevated, irrespective of disease status. In the present study we find that phosphorylation of Rab10 is also elevated in G2019S carriers, but only those with PD. Additionally, phosphorylation of this substrate is also elevated in two separate idiopathic PD cohorts, but not in carriers of the A53T mutation in α-synuclein. In contrast, Rab29 phosphorylation was specifically reduced in urinary exosomes from A53T and idiopathic PD patients. Taken together, our findings highlight the need for the assessment of multiple complimentary targets for a more comprehensive picture of the disease.
Collapse
Affiliation(s)
- Lilian Petropoulou-Vathi
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athina Simitsi
- Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Politymi-Eleni Valkimadi
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Kedariti
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lampros Dimitrakopoulos
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Christos Koros
- Department of Neurology, University of Athens Medical School, Athens, Greece
| | | | | | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Roy N Alcalay
- Department of Neurology, Columbia University, York City, NY, USA
| | - Hardy J Rideout
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
237
|
Kluss JH, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 (LRRK2): an update on the potential therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2022; 26:537-546. [PMID: 35642531 DOI: 10.1080/14728222.2022.2082937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AREAS COVERED In this review, we will provide an update on the current status of drugs and other technologies that have emerged in recent years and provide an overview of their efficacy in ameliorating LRRK2 kinase activity and overall safety in animal models and humans. EXPERT OPINION The growth of both target discovery and innovative drug design has sparked a lot of excitement for the future of how we treat Parkinson's disease. Given the immense focus on LRRK2 as a therapeutic target, it is expected within the next decade to determine its therapeutic properties, or lack thereof, for PD.
Collapse
Affiliation(s)
- Jillian H Kluss
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.,Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy.,Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
238
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
239
|
Trinh J, Schymanski EL, Smajic S, Kasten M, Sammler E, Grünewald A. Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. MED GENET-BERLIN 2022; 34:103-116. [PMID: 38835904 PMCID: PMC11006382 DOI: 10.1515/medgen-2022-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Neurology, School of Medicine, Dundee, Ninewells Hospital, Dundee, UK
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
240
|
Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol 2022; 23:699-714. [DOI: 10.1038/s41580-022-00491-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
|
241
|
Wang P, Cui P, Luo Q, Chen J, Tang H, Zhang L, Chen S, Ma J. Penetrance of Parkinson disease LRRK2 G2385R-associated variant in the Chinese population. Eur J Neurol 2022; 29:2639-2644. [PMID: 35608967 DOI: 10.1111/ene.15417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE Penetrance estimates of the leucine-rich repeat kinase 2 (LRRK2) variants for Parkinson disease (PD) vary widely. G2385R is one of the most common LRRK2 variants in Asian populations, and its penetrance is currently unknown. We aimed to estimate the penetrance of G2385R in the Chinese population. METHODS The G2385R variant was tested by Sanger sequencing in 6386 participants older than 50 years, all from the community cohort established by Shanghai Ruijin Hospital in 2009-2011. G2385R carriers and matched noncarriers underwent a brief questionnaire survey (including sex, current age, PD diagnosis, and age at onset) and face-to-face PD assessment during 2020-2021. The penetrance of PD was estimated by the Kaplan-Meier method. RESULTS A total of 396 G2385R carriers and 415 noncarriers were included, after excluding those with a baseline diagnosis of PD or unwilling to participate. In G2385R carriers, the penetrance of PD was 1.64% at 70 years, 10.26% at 80 years, and 18.49% at 90 years, and reached 25.90% at 95 years. The penetrance of PD in G2385R carriers was higher than in noncarriers (p = 0.0071). In noncarriers, only 0%, 3.72%, and 9.66% developed parkinsonism by 70, 80, and 90 years of age. Among carriers and noncarriers, there were no statistically significant differences in penetrance comparisons between males and females, or between urban and rural. CONCLUSIONS The lifetime penetrance of LRRK2 G2385R in the Chinese population was 25.9%. The penetrance modifier of G2385R in our study was age-related. Further investigation of genetic and environmental modifiers affecting G2385R penetrance is warranted.
Collapse
Affiliation(s)
- Pei Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijing Cui
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Luo
- Department of Pediatric Hematology-Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huidong Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Ma
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
242
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
243
|
Understanding the contributions of VPS35 and the retromer in neurodegenerative disease. Neurobiol Dis 2022; 170:105768. [PMID: 35588987 DOI: 10.1016/j.nbd.2022.105768] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Perturbations of the endolysosomal pathway have been suggested to play an important role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Specifically, VPS35 and the retromer complex play an important role in the endolysosomal system and are implicated in the pathophysiology of these diseases. A single missense mutation in VPS35, Asp620Asn (D620N), is known to cause late-onset, autosomal dominant familial PD. In this review, we focus on the emerging role of the PD-linked D620N mutation in causing retromer dysfunction and dissect its implications in neurodegeneration. Additionally, we will discuss how VPS35 and the retromer are linked to AD, amyotrophic lateral sclerosis, and primary tauopathies. Interestingly, reduced levels of VPS35 and other retromer components have been observed in post-mortem brain tissue, suggesting a role for the retromer in the pathophysiology of these diseases. This review will provide a comprehensive dive into the mechanisms of VPS35 dysfunction in neurodegenerative diseases. Furthermore, we will highlight outstanding questions in the field and the retromer as a therapeutic target for neurodegenerative disease at large.
Collapse
|
244
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
245
|
Vozdek R, Pramstaller PP, Hicks AA. Functional Screening of Parkinson's Disease Susceptibility Genes to Identify Novel Modulators of α-Synuclein Neurotoxicity in Caenorhabditis elegans. Front Aging Neurosci 2022; 14:806000. [PMID: 35572147 PMCID: PMC9093606 DOI: 10.3389/fnagi.2022.806000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Idiopathic Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons during aging. The pathological hallmark of PD is the Lewy body detected in postmortem brain tissue, which is mainly composed of aggregated α-Synuclein (αSyn). However, it is estimated that 90% of PD cases have unknown pathogenetic triggers. Here, we generated a new transgenic Caenorhabditis elegans PD model eraIs1 expressing green fluorescent protein- (GFP-) based reporter of human αSyn in DA neurons, and exhibited a nice readout of the developed αSyn inclusions in DA neurons, leading to their degeneration during aging. Using these animals in a preliminary reverse genetic screening of >100-PD genome-wide association study- (GWAS-) based susceptibility genes, we identified 28 orthologs of C. elegans and their inactivation altered the phenotype of eraIs1; 10 knockdowns exhibited reduced penetrance of αSyn:Venus inclusions formed in the axons of cephalic (CEP) DA neurons, 18 knockdowns exhibited increased penetrance of disrupted CEP dendrite integrity among which nine knockdowns also exhibited disrupted neuronal morphology independent of the expressed αSyn reporter. Loss-of-function alleles of the five identified genes, such as sac-2, rig-6 or lfe-2, unc-43, and nsf-1, modulated the corresponding eraIs1 phenotype, respectively, and supported the RNA interference (RNAi) data. The Western blot analysis showed that the levels of insoluble αSyn:Venus were not correlated with the observed phenotypes in these mutants. However, RNAi of 12 identified modulators reduced the formation of pro-aggregating polyglutamine Q40:YFP foci in muscle cells, suggesting the possible role of these genes in cellular proteotoxicity. Therefore, modulators identified by their associated biological pathways, such as calcium signaling or vesicular trafficking, represent new potential therapeutic targets for neurodegenerative proteopathies and other diseases associated with aging.
Collapse
Affiliation(s)
- Roman Vozdek
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | | |
Collapse
|
246
|
Stormo AE, Shavarebi F, FitzGibbon M, Earley EM, Ahrendt H, Lum LS, Verschueren E, Swaney DL, Skibinski G, Ravisankar A, van Haren J, Davis EJ, Johnson JR, Von Dollen J, Balen C, Porath J, Crosio C, Mirescu C, Iaccarino C, Dauer WT, Nichols RJ, Wittmann T, Cox TC, Finkbeiner S, Krogan NJ, Oakes SA, Hiniker A. The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity. J Cell Biol 2022; 221:e202010065. [PMID: 35266954 PMCID: PMC8919618 DOI: 10.1083/jcb.202010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD); however, pathways regulating LRRK2 subcellular localization, function, and turnover are not fully defined. We performed quantitative mass spectrometry-based interactome studies to identify 48 novel LRRK2 interactors, including the microtubule-associated E3 ubiquitin ligase TRIM1 (tripartite motif family 1). TRIM1 recruits LRRK2 to the microtubule cytoskeleton for ubiquitination and proteasomal degradation by binding LRRK2911-919, a nine amino acid segment within a flexible interdomain region (LRRK2853-981), which we designate the "regulatory loop" (RL). Phosphorylation of LRRK2 Ser910/Ser935 within LRRK2 RL influences LRRK2's association with cytoplasmic 14-3-3 versus microtubule-bound TRIM1. Association with TRIM1 modulates LRRK2's interaction with Rab29 and prevents upregulation of LRRK2 kinase activity by Rab29 in an E3-ligase-dependent manner. Finally, TRIM1 rescues neurite outgrowth deficits caused by PD-driving mutant LRRK2 G2019S. Our data suggest that TRIM1 is a critical regulator of LRRK2, controlling its degradation, localization, binding partners, kinase activity, and cytotoxicity.
Collapse
Affiliation(s)
- Adrienne E.D. Stormo
- Departments of Pathology, University of California San Francisco, San Francisco, CA
| | - Farbod Shavarebi
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Molly FitzGibbon
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Elizabeth M. Earley
- Departments of Pathology, University of California San Francisco, San Francisco, CA
| | - Hannah Ahrendt
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Lotus S. Lum
- Departments of Pathology, University of California San Francisco, San Francisco, CA
| | - Erik Verschueren
- Departments of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
| | - Danielle L. Swaney
- Departments of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
| | - Gaia Skibinski
- Taube/Koret Center for Neurodegenerative Disease Research, J. David Gladstone Institutes, San Francisco, CA
- Center for Systems and Therapeutics, J. David Gladstone Institutes, San Francisco, CA
| | - Abinaya Ravisankar
- Taube/Koret Center for Neurodegenerative Disease Research, J. David Gladstone Institutes, San Francisco, CA
- Center for Systems and Therapeutics, J. David Gladstone Institutes, San Francisco, CA
| | - Jeffrey van Haren
- Departments of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Emily J. Davis
- Departments of Pathology, University of California San Francisco, San Francisco, CA
| | - Jeffrey R. Johnson
- Departments of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
| | - John Von Dollen
- Departments of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
| | - Carson Balen
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Jacob Porath
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - William T. Dauer
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Torsten Wittmann
- Departments of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA
| | - Timothy C. Cox
- Department of Oral and Craniofacial Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO
- School of Dentistry and Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO
| | - Steve Finkbeiner
- Departments of Neurology, University of California San Francisco, San Francisco, CA
- Departments of Physiology, University of California San Francisco, San Francisco, CA
- Taube/Koret Center for Neurodegenerative Disease Research, J. David Gladstone Institutes, San Francisco, CA
- Center for Systems and Therapeutics, J. David Gladstone Institutes, San Francisco, CA
| | - Nevan J. Krogan
- Departments of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
- Center for Systems and Therapeutics, J. David Gladstone Institutes, San Francisco, CA
| | - Scott A. Oakes
- Departments of Pathology, University of California San Francisco, San Francisco, CA
- Department of Pathology, University of Chicago, Chicago, IL
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, CA
| |
Collapse
|
247
|
Russo I, Bubacco L, Greggio E. LRRK2 as a target for modulating immune system responses. Neurobiol Dis 2022; 169:105724. [DOI: 10.1016/j.nbd.2022.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/08/2023] Open
|
248
|
Budayeva HG, Sengupta-Ghosh A, Phu L, Moffat JG, Ayalon G, Kirkpatrick DS. Phosphoproteome Profiling of the Receptor Tyrosine Kinase MuSK Identifies Tyrosine Phosphorylation of Rab GTPases. Mol Cell Proteomics 2022; 21:100221. [PMID: 35227894 PMCID: PMC8972003 DOI: 10.1016/j.mcpro.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes. Different agonists of muscle-specific kinase (MuSK) elicit similar phosphoprofiles. MuSK activation induces tyrosine phosphorylation of several Rab GTPases. MuSK inhibitors diminish receptor signaling, including phosphorylation on Rab10 Y6. Mutation of Rab10 Y6 disrupts its association with Mical adaptor proteins.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA.
| | | | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA
| | - John G Moffat
- Biochemical and Cellular Pharmacology and Computational Drug Design, Genentech, Inc, South San Francisco, California, USA
| | - Gai Ayalon
- Neuroscience Department, Genentech, Inc, South San Francisco, California, USA
| | - Donald S Kirkpatrick
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA.
| |
Collapse
|
249
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
250
|
Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. NPJ Parkinsons Dis 2022; 8:34. [PMID: 35347144 PMCID: PMC8960803 DOI: 10.1038/s41531-022-00297-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich-repeat kinase 2 (LRRK2), a potential therapeutic target for the treatment of Parkinson's disease (PD), is highly expressed in monocytes and macrophages and may play a role in the regulation of inflammatory pathways. To determine how LRRK2 protein levels and/or its activity modulate inflammatory cytokine/chemokine levels in human immune cells, isogenic human induced pluripotent stem cells (iPSC) with the LRRK2-activating G2019S mutation, wild-type LRRK2, and iPSC deficient in LRRK2 were differentiated to monocytes and macrophages and stimulated with inflammatory toll-like receptor (TLR) agonists in the presence and absence of LRRK2 kinase inhibitors. The effect of LRRK2 inhibitors and the effect of increasing LRRK2 levels with interferon gamma on TLR-stimulated cytokines were also assessed in primary peripheral blood-derived monocytes. Monocytes and macrophages with the LRRK2 G2019S mutation had significantly higher levels of cytokines and chemokines in tissue culture media following stimulation with TLR agonists compared to isogenic controls. Knockout of LRRK2 impaired phagocytosis but did not significantly affect TLR-mediated cytokine levels. Interferon gamma significantly increased the levels of LRRK2 and phosphorylation of its downstream Rab10 substrate, and potentiated TLR-mediated cytokine levels. LRRK2 kinase inhibitors did not have a major effect on TLR-stimulated cytokine levels. Results suggest that the LRRK2 G2019S mutation may potentiate inflammation following activation of TLRs. However, this was not dependent on LRRK2 kinase activity. Indeed, LRRK2 kinase inhibitors had little effect on TLR-mediated inflammation under the conditions employed in this study.
Collapse
|