2451
|
Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2009; 182:4046-55. [PMID: 19299702 DOI: 10.4049/jimmunol.0801143] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Macroautophagy plays an important role in the regulation of cell survival, metabolism, and the lysosomal degradation of cytoplasmic material. In the immune system, autophagy contributes to the clearance of intracellular pathogens, MHCII cross-presentation of endogenous Ags, as well as cell survival. We and others have demonstrated that autophagy occurs in T lymphocytes and contributes to the regulation of their cellular function, including survival and proliferation. Here we show that the essential autophagy gene Atg7 is required in a cell-intrinsic manner for the survival of mature primary T lymphocytes. We also find that mitochondrial content is developmentally regulated in T but not in B cells, with exit from the thymus marking a transition from high mitochondrial content in thymocytes to lower mitochondrial content in mature T cells. Macroautophagy has been proposed to play an important role in the clearance of intracellular organelles, and autophagy-deficient mature T cells fail to reduce their mitochondrial content in vivo. Consistent with alterations in mitochondrial content, autophagy-deficient T cells have increased reactive oxygen species production as well as an imbalance in pro- and antiapoptotic protein expression. With much recent interest in the possibility of autophagy-dependent developmentally programmed clearance of organelles in lens epithelial cells and erythrocytes, our data demonstrate that autophagy may have a physiologically significant role in the clearance of superfluous mitochondria in T lymphocytes as part of normal T cell homeostasis.
Collapse
Affiliation(s)
- Heather H Pua
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
2452
|
Wu JJ, Quijano C, Chen E, Liu H, Cao L, Fergusson MM, Rovira II, Gutkind S, Daniels MP, Komatsu M, Finkel T. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY) 2009; 1:425-37. [PMID: 20157526 PMCID: PMC2806022 DOI: 10.18632/aging.100038] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 04/08/2009] [Indexed: 11/25/2022]
Abstract
Impaired
or deficient autophagy is believed to cause or contribute to aging, as well
as a number of age-related pathologies. The exact mechanism through which
alterations in autophagy induce these various pathologies is not well
understood. Here we describe the creation of two in vivo mouse
models that allow for the characterization of the alteration in
mitochondrial function and the contribution of the corresponding oxidative
stress following deletion of Atg7. Using these models we demonstrate that
isolated mitochondria obtained from Atg7-/- skeletal muscle
exhibit a significant defect in mitochondrial respiration. We further show
that cells derived from Atg7-/- mice have an altered metabolic
profile characterized by decreased resting mitochondrial oxygen consumption
and a compensatory increase in basal glycolytic rates. Atg7-/-cells
also exhibit evidence for increased steady state levels of reactive oxygen
species. The observed mitochondrial dysfunction and oxidative stress is
also evident in a mouse model where Atg7 is deleted within the pancreatic
β cell. In this model, the simple administration of an antioxidant can
significantly ameliorate the physiological impairment in glucose-stimulated
insulin secretion. Taken together, these results demonstrate the potential
role of mitochondrial dysfunction and oxidative stress in autophagy related
pathology.
Collapse
Affiliation(s)
- J Julie Wu
- Translational Medicine Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2453
|
Abstract
Axonal dysfunction is the major phenotypic change in many neurodegenerative diseases, but the processes underlying this impairment are not clear. Modifier of cell adhesion (MOCA) is a presenilin binding protein that functions as a guanine nucleotide exchange factor for Rac1. The loss of MOCA in mice leads to axonal degeneration and causes sensorimotor impairments by decreasing cofilin phosphorylation and altering its upstream signaling partners LIM kinase and p21-activated kinase, an enzyme directly downstream of Rac1. The dystrophic axons found in MOCA-deficient mice are associated with abnormal aggregates of neurofilament protein, the disorganization of the axonal cytoskeleton, and the accumulation of autophagic vacuoles and polyubiquitinated proteins. Furthermore, MOCA deficiency causes an alteration in the actin cytoskeleton and the formation of cofilin-containing rod-like structures. The dystrophic axons show functional abnormalities, including impaired axonal transport. These findings demonstrate that MOCA is required for maintaining the functional integrity of axons and define a model for the steps leading to axonal degeneration.
Collapse
|
2454
|
Bergemalm D, Forsberg K, Jonsson PA, Graffmo KS, Brännström T, Andersen PM, Antti H, Marklund SL. Changes in the spinal cord proteome of an amyotrophic lateral sclerosis murine model determined by differential in-gel electrophoresis. Mol Cell Proteomics 2009; 8:1306-17. [PMID: 19357085 DOI: 10.1074/mcp.m900046-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by loss of motor neurons resulting in progressive paralysis. To date, more than 140 different mutations in the gene encoding CuZn-superoxide dismutase (SOD1) have been associated with ALS. Several transgenic murine models exist in which various mutant SOD1s are expressed. We used DIGE to analyze the changes in the spinal cord proteome induced by expression of the unstable SOD1 truncation mutant G127insTGGG (G127X) in mice. Unlike mutants used in most other models, G127X lacks SOD activity and is present at low levels, thus reducing the risk of overexpression artifacts. The mice were analyzed at their peak body weights just before onset of symptoms. Variable importance plot analysis showed that 420 of 1,800 detected protein spots contributed significantly to the differences between the groups. By MALDI-TOF MS analysis, 54 differentially regulated proteins were identified. One spot was found to be a covalently linked mutant SOD1 dimer, apparently analogous to SOD1-immunoreactive bands migrating at double the molecular weight of SOD1 monomers previously detected in humans and mice carrying mutant SOD1s and in sporadic ALS cases. Analyses of affected functional pathways and the subcellular representation of alterations suggest that the toxicity exerted by mutant SODs induces oxidative stress and affects mitochondria, cellular assembly/organization, and protein degradation.
Collapse
Affiliation(s)
- Daniel Bergemalm
- Clinical Chemistry, Dept. of Medical Biosciences, Umeå University, SE-90185 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
2455
|
Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 2009; 33:517-27. [PMID: 19250912 PMCID: PMC2669153 DOI: 10.1016/j.molcel.2009.01.021] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/29/2008] [Accepted: 01/23/2009] [Indexed: 12/21/2022]
Abstract
The two main routes that cells use for degrading intracellular proteins are the ubiquitin-proteasome and autophagy-lysosome pathways, which have been thought to have largely distinct clients. Here, we show that autophagy inhibition increases levels of proteasome substrates. This is largely due to p62 (also called A170/SQSTM1) accumulation after autophagy inhibition. Excess p62 inhibits the clearance of ubiquitinated proteins destined for proteasomal degradation by delaying their delivery to the proteasome's proteases. Our data show that autophagy inhibition, which was previously believed to only affect long-lived proteins, will also compromise the ubiquitin-proteasome system. This will lead to increased levels of short-lived regulatory proteins, like p53, as well as the accumulation of aggregation-prone proteins, with predicted deleterious consequences.
Collapse
Affiliation(s)
- Viktor I Korolchuk
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
2456
|
|
2457
|
Jaeger PA, Wyss-Coray T. All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol Neurodegener 2009; 4:16. [PMID: 19348680 PMCID: PMC2679749 DOI: 10.1186/1750-1326-4-16] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/06/2009] [Indexed: 12/12/2022] Open
Abstract
Autophagy is the major pathway involved in the degradation of proteins and organelles, cellular remodeling, and survival during nutrient starvation. Autophagosomal dysfunction has been implicated in an increasing number of diseases from cancer to bacterial and viral infections and more recently in neurodegeneration. While a decrease in autophagic activity appears to interfere with protein degradation and possibly organelle turnover, increased autophagy has been shown to facilitate the clearance of aggregation-prone proteins and promote neuronal survival in a number of disease models. On the other hand, too much autophagic activity can be detrimental as well and lead to cell death, suggesting the regulation of autophagy has an important role in cell fate decisions. An increasing number of model systems are now available to study the role of autophagy in the central nervous system and how it might be exploited to treat disease. We will review here the current knowledge of autophagy in the central nervous system and provide an overview of the various models that have been used to study acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Philipp A Jaeger
- Geriatric Research Education and Clinical Center, VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, California, USA.
| | | |
Collapse
|
2458
|
Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009; 33:505-16. [PMID: 19250911 DOI: 10.1016/j.molcel.2009.01.020] [Citation(s) in RCA: 888] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/17/2008] [Accepted: 01/16/2009] [Indexed: 02/08/2023]
Abstract
Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Institute of Biochemistry II, Goethe University, Frankfurt (Main), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2459
|
Jeong H, Then F, Melia TJ, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009; 137:60-72. [PMID: 19345187 PMCID: PMC2940108 DOI: 10.1016/j.cell.2009.03.018] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 10/13/2008] [Accepted: 03/11/2009] [Indexed: 01/05/2023]
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disease caused by neuronal accumulation of the mutant protein huntingtin. Improving clearance of the mutant protein is expected to prevent cellular dysfunction and neurodegeneration in HD. We report here that such clearance can be achieved by posttranslational modification of the mutant Huntingtin (Htt) by acetylation at lysine residue 444 (K444). Increased acetylation at K444 facilitates trafficking of mutant Htt into autophagosomes, significantly improves clearance of the mutant protein by macroautophagy, and reverses the toxic effects of mutant huntingtin in primary striatal and cortical neurons and in a transgenic C. elegans model of HD. In contrast, mutant Htt that is rendered resistant to acetylation dramatically accumulates and leads to neurodegeneration in cultured neurons and in mouse brain. These studies identify acetylation as a mechanism for removing accumulated protein in HD, and more broadly for actively targeting proteins for degradation by autophagy.
Collapse
Affiliation(s)
- Hyunkyung Jeong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| | - Florian Then
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| | - Thomas J. Melia
- Department of Cell Biology, Yale University, New Haven, CT 06519, USA
| | - Joseph R. Mazzulli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| | - Libin Cui
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| | - Jeffrey N. Savas
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
- NYU and NIH Graduate Partnership Program in Structural Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Cindy Voisine
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| | - Paolo Paganetti
- Novartis Pharma AG, NIBR Basel, Neuroscience Discovery, CH-4002 Basel, Switzerland
| | - Naoko Tanese
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Anne C. Hart
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| | - Ai Yamamoto
- Department of Neurology, College of Physician and Surgeons, Columbia University, New York, NY 10032, USA
| | - Dimitri Krainc
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Mass General Institute for Neurodegeneration, Charlestown, MA 02129, USA
| |
Collapse
|
2460
|
Abstract
Several methods are now available for monitoring autophagy. Although biological methods are useful for cultured cells and homogenous tissues, these methods are not suitable for determining the autophagic activity of each cell type in heterogeneous tissues. Furthermore, intracellular localization of autophagosomes often provides valuable information. Thus, morphological assays are still important in many studies. Although electron microscopy has been the gold standard, recent studies of the molecular mechanism of autophagy have led to the development of several marker proteins for autophagosomes, the most widely used of which is LC3, a mammalian homolog of Atg8. These marker proteins allow identification of autophagic structures by fluorescence microscopy. This method has been applied to whole animals by generating green fluorescent protein (GFP)-LC3 transgenic mice. This chapter describes the background and practicality of, and possible precautions in the application of, this method using the GFP-LC3 transgenic mouse model.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2461
|
Sarkar S, Ravikumar B, Rubinsztein DC. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol 2009; 453:83-110. [PMID: 19216903 DOI: 10.1016/s0076-6879(08)04005-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autophagy has emerged as a field of rapidly growing interest with implications in several disease conditions, such as cancer, infectious diseases, and neurodegenerative diseases. Autophagy is a major degradation pathway for aggregate-prone, intracytosolic proteins causing neurodegenerative disorders, such as Huntington's disease and forms of Parkinson's disease. Up-regulating autophagy may be a tractable therapeutic intervention for clearing these disease-causing proteins. The identification of autophagy-enhancing compounds would be beneficial not only in neurodegenerative diseases but also in other conditions where up-regulating autophagy may act as a protective pathway. Furthermore, small molecule modulators of autophagy may also be useful in dissecting pathways governing mammalian autophagy. In this chapter, we highlight assays that can be used for the identification of autophagy regulators, such as measuring the clearance of mutant aggregate-prone proteins or of autophagic flux with bafilomycin A(1). Using these methods, we recently described several mTOR-independent autophagy-enhancing compounds that have protective effects in various models of Huntington's disease.
Collapse
Affiliation(s)
- Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
2462
|
Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:726-36. [PMID: 19111580 PMCID: PMC4382014 DOI: 10.1016/j.bbamcr.2008.11.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease.
Collapse
Affiliation(s)
- Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | |
Collapse
|
2463
|
Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2009; 8:128-39. [PMID: 19274853 DOI: 10.1016/j.arr.2009.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is the major diagnosis for severe and irreversible central loss of vision in elderly people in the developed countries. The loss of vision involves primarily a progressive degeneration and cell death of postmitotic retinal pigment epithelial cells (RPE), which secondarily evokes adverse effects on photoreceptor cells. The RPE cells are exposed to chronic oxidative stress from three sources: their high levels of oxygen consumption, their exposure to the high levels of lipid peroxidation derived from the photoreceptor outer segments and their exposure to constant light stimuli. Cells increase the expression of heat shock proteins (HSPs) in order to normalize their growth conditions in response to various environmental stress factors, e.g. oxidative stress. The HSPs function as molecular chaperones by preventing the accumulation of cellular cytotoxic protein aggregates and assisting in correct folding of both nascent and misfolded proteins. Increased HSPs levels are observed in the retina of AMD patients, evidence of stressed tissue. A hallmark of RPE cell aging is lysosomal lipofuscin accumulation reflecting a weakened capacity to degrade proteins in lysosomes. The presence of lipofuscin increases the misfolding of intracellular proteins, which evokes additional stress in the RPE cells. If the capacity of HSPs to repair protein damages is overwhelmed, then the proteins are mainly cleared in proteasomes or in lysosomes. In this review, we discuss the role of heat shock proteins, proteasomes, and lysosomes and autophagic processes in RPE cell proteolysis and how these might be involved in development of AMD. In addition to classical lysosomal proteolysis, we focus on the increasing evidence that, HSPs, proteasomes and autophagy regulate protein turnover in the RPE cells and thus have important roles in AMD disease.
Collapse
|
2464
|
Walkley SU. Pathogenic cascades in lysosomal disease-Why so complex? J Inherit Metab Dis 2009; 32:181-9. [PMID: 19130290 PMCID: PMC2682782 DOI: 10.1007/s10545-008-1040-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
Lysosomal disease represents a large group of more than 50 clinically recognized conditions resulting from inborn errors of metabolism affecting the organelle known as the lysosome. The lysosome is an integral part of the larger endosomal/lysosomal system, and is closely allied with the ubiquitin-proteosomal and autophagosomal systems, which together comprise essential cell machinery for substrate degradation and recycling, homeostatic control, and signalling. More than two-thirds of lysosomal diseases affect the brain, with neurons appearing particularly vulnerable to lysosomal compromise and showing diverse consequences ranging from specific axonal and dendritic abnormalities to neuron death. While failure of lysosomal function characteristically leads to lysosomal storage, new studies argue that lysosomal diseases may also be appropriately viewed as 'states of deficiency' rather than simply overabundance (storage). Interference with signalling events and salvage processing normally controlled by the endosomal/lysosomal system may represent key mechanisms accounting for the inherent complexity of lysosomal disorders. Analysis of lysosomal disease pathogenesis provides a unique window through which to observe the importance of the greater lysosomal system for normal cell health.
Collapse
Affiliation(s)
- S U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, 10461, USA.
| |
Collapse
|
2465
|
Autophagy: A lysosomal degradation pathway with a central role in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:664-73. [DOI: 10.1016/j.bbamcr.2008.07.014] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 01/09/2023]
|
2466
|
Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 2009; 11:777-90. [PMID: 18828708 DOI: 10.1089/ars.2008.2270] [Citation(s) in RCA: 600] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) have been identified as signaling molecules in various pathways regulating both cell survival and cell death. Autophagy, a self-digestion process that degrades intracellular structures in response to stress, such as nutrient starvation, is also involved in both cell survival and cell death. Alterations in both ROS and autophagy regulation contribute to cancer initiation and progression, and both are targets for developing therapies to induce cell death selectively in cancer cells. Many stimuli that induce ROS generation also induce autophagy, including nutrient starvation, mitochondrial toxins, hypoxia, and oxidative stress. Some of these stimuli are under clinical investigation as cancer treatments, such as 2-methoxyestrodial and arsenic trioxide. Recently, it was demonstrated that ROS can induce autophagy through several distinct mechanisms involving Atg4, catalase, and the mitochondrial electron transport chain (mETC). This leads to both cell-survival and cell-death responses and could be selective toward cancer cells. In this review, we give an overview of the roles ROS and autophagy play in cell survival and cell death, and their importance to cancer. Furthermore, we describe how autophagy is mediated by ROS and the implications of this regulation to cancer treatments.
Collapse
Affiliation(s)
- Meghan B Azad
- Manitoba Institute of Cell Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
2467
|
|
2468
|
Qiao L, Zhang J. Inhibition of lysosomal functions reduces proteasomal activity. Neurosci Lett 2009; 456:15-9. [PMID: 19429125 DOI: 10.1016/j.neulet.2009.03.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/09/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Protein accumulation and aggregation are signatures of several major neurodegenerative diseases. Proteasomal- and lysosomal-mediated protein degradation pathways are the two major pathways for intracellular protein degradation. Cross-regulation between these two pathways may be important for protein homeostasis. Pharmacological inhibition of proteasomal activities has been shown to up-regulate the levels of lysosomal enzymes. To determine whether the reverse regulatory mechanism also occurs in the cell, we investigated the effects of inhibition of lysosomal function on proteasomal activities. We found that rather than up-regulating proteasomal activities in response to lysosomal disruptors, reduced lysosomal function reduces proteasomal functions, indicating a lack of compensatory up-regulation of proteasomal functions. Inhibition of lysosomal or proteasomal activities led to higher levels of chaperone heat shock cognate protein Hsc70, suggesting an attempt to compensate protein degradation deficiency by enhancing chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Liyan Qiao
- Department of Pathology, 930 Sparks Center, 1530 3rd Ave S, University of Alabama at Birmingham, Birmingham, AL 35294-0017, United States
| | | |
Collapse
|
2469
|
Toda H, Mochizuki H, Flores R, Josowitz R, Krasieva TB, Lamorte VJ, Suzuki E, Gindhart JG, Furukubo-Tokunaga K, Tomoda T. UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev 2009; 22:3292-307. [PMID: 19056884 DOI: 10.1101/gad.1734608] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Axonal transport mediated by microtubule-dependent motors is vital for neuronal function and viability. Selective sets of cargoes, including macromolecules and organelles, are transported long range along axons to specific destinations. Despite intensive studies focusing on the motor machinery, the regulatory mechanisms that control motor-cargo assembly are not well understood. Here we show that UNC-51/ATG1 kinase regulates the interaction between synaptic vesicles and motor complexes during transport in Drosophila. UNC-51 binds UNC-76, a kinesin heavy chain (KHC) adaptor protein. Loss of unc-51 or unc-76 leads to severe axonal transport defects in which synaptic vesicles are segregated from the motor complexes and accumulate along axons. Genetic studies show that unc-51 and unc-76 functionally interact in vivo to regulate axonal transport. UNC-51 phosphorylates UNC-76 on Ser(143), and the phosphorylated UNC-76 binds Synaptotagmin-1, a synaptic vesicle protein, suggesting that motor-cargo interactions are regulated in a phosphorylation-dependent manner. In addition, defective axonal transport in unc-76 mutants is rescued by a phospho-mimetic UNC-76, but not a phospho-defective UNC-76, demonstrating the essential role of UNC-76 Ser(143) phosphorylation in axonal transport. Thus, our data provide insight into axonal transport regulation that depends on the phosphorylation of adaptor proteins.
Collapse
Affiliation(s)
- Hirofumi Toda
- Division of Neurosciences, Beckman Research Institute of the City of Hope, California 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2470
|
Shibata M, Yoshimura K, Furuya N, Koike M, Ueno T, Komatsu M, Arai H, Tanaka K, Kominami E, Uchiyama Y. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 2009; 382:419-23. [PMID: 19285958 DOI: 10.1016/j.bbrc.2009.03.039] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 01/01/2023]
Abstract
Lipid droplets (LDs) are ubiquitous in eukaryotic cells, while excess free fatty acids and glucose in plasma are converted to triacylglycerol (TAG) and stored as LDs. However, the mechanism for the generation and growth of LDs in cells is largely unknown. We show here that the LC3 lipidation system essential for macroautophagy is involved in LD formation. LD formation accompanied by accumulation of TAG induced by starvation was largely suppressed in the hepatocytes that cannot execute autophagy. Under starvation conditions, LDs in addition to autophagosomes were abundantly formed in the cytoplasm of these tissue cells. Moreover, LC3 was localized on the surface of LDs and LC3-II (lipidation form) was fractionated to a perilipin (LD marker)-positive lipid fraction from the starved liver. Taken together, these results indicate that the LC3 conjugation system is critically involved in lipid metabolism via LD formation.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2471
|
Martinet W, De Meyer GRY. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 2009; 104:304-17. [PMID: 19213965 DOI: 10.1161/circresaha.108.188318] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | |
Collapse
|
2472
|
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009; 11:468-76. [PMID: 19270693 DOI: 10.1038/ncb1854] [Citation(s) in RCA: 773] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/03/2009] [Indexed: 12/30/2022]
Abstract
Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1-Vps34 complex in autophagy regulation remains to be elucidated. Combining mouse genetics and biochemistry, we have identified a large in vivo Beclin 1 complex containing the known proteins Vps34, p150/Vps15 and UVRAG, as well as two newly identified proteins, Atg14L (yeast Atg14-like) and Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein). Characterization of the new proteins revealed that Atg14L enhances Vps34 lipid kinase activity and upregulates autophagy, whereas Rubicon reduces Vps34 activity and downregulates autophagy. We show that Beclin 1 and Atg14L synergistically promote the formation of double-membraned organelles that are associated with Atg5 and Atg12, whereas forced expression of Rubicon results in aberrant late endosomal/lysosomal structures and impaired autophagosome maturation. We hypothesize that by forming distinct protein complexes, Beclin 1 and its binding proteins orchestrate the precise function of the class III PI(3)K in regulating autophagy at multiple steps.
Collapse
|
2473
|
Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11:385-96. [PMID: 19270696 DOI: 10.1038/ncb1846] [Citation(s) in RCA: 950] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/23/2008] [Indexed: 12/11/2022]
Abstract
Beclin 1, a protein essential for autophagy, binds to hVps34/Class III phosphatidylinositol-3-kinase and UVRAG. Here, we have identified two Beclin 1 associated proteins, Atg14L and Rubicon. Atg14L and UVRAG bind to Beclin 1 in a mutually exclusive manner, whereas Rubicon binds only to a subpopulation of UVRAG complexes; thus, three different Beclin 1 complexes exist. GFP-Atg14L localized to the isolation membrane and autophagosome, as well as to the ER and unknown puncta. Knockout of Atg14L in mouse ES cells caused a defect in autophagosome formation. GFP-Rubicon was localized at the endosome/lysosome. Knockdown of Rubicon caused enhancement of autophagy, especially at the maturation step, as well as enhancement of endocytic trafficking. These data suggest that the Beclin 1-hVps34 complex functions in two different steps of autophagy by altering the subunit composition.
Collapse
|
2474
|
Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2009; 284:6322-8. [PMID: 19124466 PMCID: PMC5405322 DOI: 10.1074/jbc.m807135200] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/19/2008] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a regulated process of intracellular catabolism required for normal cellular maintenance, as well as serving as an adaptive response under various stress conditions, including starvation. The molecular regulation of autophagy in mammalian cells remains incompletely understood. Here we demonstrate a role for protein acetylation in the execution and regulation of autophagy. In particular, we demonstrate that the p300 acetyltransferase can regulate the acetylation of various known components of the autophagy machinery. Knockdown of p300 reduces acetylation of Atg5, Atg7, Atg8, and Atg12, although overexpressed p300 increases the acetylation of these same proteins. Furthermore, p300 and Atg7 colocalize within cells, and the two proteins physically interact. The interaction between p300 and Atg7 is dependent on nutrient availability. Finally, we demonstrate that knockdown of p300 can stimulate autophagy, whereas overexpression of p300 inhibits starvation-induced autophagy. These results demonstrate a role for protein acetylation and particularly p300 in the regulation of autophagy under conditions of limited nutrient availability.
Collapse
Affiliation(s)
- In Hye Lee
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Toren Finkel
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
2475
|
Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297-305. [PMID: 19258318 DOI: 10.1074/jbc.m900573200] [Citation(s) in RCA: 1137] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a degradative process that recycles long-lived and faulty cellular components. It is linked to many diseases and is required for normal development. ULK1, a mammalian serine/threonine protein kinase, plays a key role in the initial stages of autophagy, though the exact molecular mechanism is unknown. Here we report identification of a novel protein complex containing ULK1 and two additional protein factors, FIP200 and ATG13, all of which are essential for starvation-induced autophagy. Both FIP200 and ATG13 are critical for correct localization of ULK1 to the pre-autophagosome and stability of ULK1 protein. Additionally, we demonstrate by using both cellular experiments and a de novo in vitro reconstituted reaction that FIP200 and ATG13 can enhance ULK1 kinase activity individually but both are required for maximal stimulation. Further, we show that ATG13 and ULK1 are phosphorylated by the mTOR pathway in a nutrient starvation-regulated manner, indicating that the ULK1.ATG13.FIP200 complex acts as a node for integrating incoming autophagy signals into autophagosome biogenesis.
Collapse
Affiliation(s)
- Ian G Ganley
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
2476
|
Autophagy, antiviral immunity, and viral countermeasures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1478-84. [PMID: 19264100 PMCID: PMC2739265 DOI: 10.1016/j.bbamcr.2009.02.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/19/2022]
Abstract
The autophagy pathway likely evolved not only to maintain cellular and tissue homeostasis but also to protect cells against microbial attack. This conserved mechanism by which cytoplasmic cargo is delivered to the endolysosomal system is now recognized as a central player in coordinating the host response to diverse intracellular pathogens, including viruses. As an endolysosomal delivery system, autophagy functions in the transfer of viruses from the cytoplasm to the lysosome where they are degraded, in the transfer of viral nucleic acids to endosomal sensors for the activation of innate immunity, and in the transfer of endogenous viral antigens to MHC class II compartments for the activation of adaptive immunity. Viruses have, in turn, evolved different strategies to antagonize, and potentially, to exploit the host autophagic machinery. Moreover, through mechanisms not yet well understood, autophagy may dampen host innate immune and inflammatory responses to viral infection. This review highlights the roles of autophagy in antiviral immunity, viral strategies to evade autophagy, and potential negative feedback functions of autophagy in the host antiviral response.
Collapse
|
2477
|
McPhee CK, Baehrecke EH. Autophagy in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1452-60. [PMID: 19264097 DOI: 10.1016/j.bbamcr.2009.02.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/19/2022]
Abstract
Macroautophagy (autophagy) is a bulk cytoplasmic degradation process that is conserved from yeast to mammals. Autophagy is an important cellular response to starvation and stress, and plays critical roles in development, cell death, aging, immunity, and cancer. The fruit fly Drosophila melanogaster provides an excellent model system to study autophagy in vivo, in the context of a developing organism. Autophagy (atg) genes and their regulators are conserved in Drosophila, and autophagy is induced in response to nutrient starvation and hormones during development. In this review we provide an overview of how Drosophila research has contributed to our understanding of the role and regulation of autophagy in cell survival, growth, nutrient utilization, and cell death. Recent Drosophila research has also provided important mechanistic information about the role of autophagy in protein aggregation disorders, neurodegeneration, aging, and innate immunity. Differences in the role of autophagy in specific contexts and/or cell types suggest that there may be cell-context-specific regulators of autophagy, and studies in Drosophila are well-suited to yield discoveries about this specificity.
Collapse
Affiliation(s)
- Christina K McPhee
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
2478
|
Kraft C, Reggiori F, Peter M. Selective types of autophagy in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1404-12. [PMID: 19264099 DOI: 10.1016/j.bbamcr.2009.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/19/2022]
Abstract
Autophagy is the process through which cytosol and organelles are sequestered into a double-membrane vesicle called an autophagosome and delivered to the vacuole/lysosome for breakdown and recycling. One of its primary roles in unicellular organisms is to regulate intracellular homeostasis and to adjust organelle numbers in response to stress such as changes in nutrient availability. In higher eukaryotes, autophagy plays also an important role in stress-response, development, cell differentiation, immunity and tumor suppression. Importantly, a misregulation in this catabolic pathway is associated with diseases such as cancer, neurodegeneration and myopathies. For a long time, starvation-induced autophagy has been considered a non-selective pathway, however, numerous recent observations revealed that autophagy can also selectively eliminate specific proteins, protein complexes and organelles. Most of these studies used yeast Saccharomyces cerevisiae as a model organism. In this compendium, we will review what is known about the mechanisms and roles of selective types of autophagy in yeast and highlight possible connections of these pathways with human diseases. In addition, we will discuss some selective types of autophagy, which have so far only been described in higher eukaryotes.
Collapse
Affiliation(s)
- Claudine Kraft
- Institute of Biochemistry, HPM, ETH Hönggerberg, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
2479
|
Akbar MA, Ray S, Krämer H. The SM protein Car/Vps33A regulates SNARE-mediated trafficking to lysosomes and lysosome-related organelles. Mol Biol Cell 2009; 20:1705-14. [PMID: 19158398 PMCID: PMC2655250 DOI: 10.1091/mbc.e08-03-0282] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 11/25/2008] [Accepted: 01/09/2009] [Indexed: 01/18/2023] Open
Abstract
The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes.
Collapse
Affiliation(s)
| | - Sanchali Ray
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Helmut Krämer
- Departments of *Neuroscience and
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| |
Collapse
|
2480
|
He Y, Hua Y, Song S, Liu W, Keep RF, Xi G. Induction of autophagy in rat hippocampus and cultured neurons by iron. CEREBRAL HEMORRHAGE 2009; 105:29-32. [DOI: 10.1007/978-3-211-09469-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2481
|
Cardioprotection requires taking out the trash. Basic Res Cardiol 2009; 104:169-80. [PMID: 19242643 DOI: 10.1007/s00395-009-0011-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 01/25/2009] [Accepted: 02/26/2009] [Indexed: 01/08/2023]
Abstract
Autophagy is a critical cellular housekeeping process that is essential for removal of damaged or unwanted organelles and protein aggregates. Under conditions of starvation, it is also a mechanism to break down proteins to generate amino acids for synthesis of new and more urgently needed proteins. In the heart, autophagy is upregulated by starvation, reactive oxygen species, hypoxia, exercise, and ischemic preconditioning, the latter a well-known potent cardioprotective phenomenon. The observation that upregulation of autophagy confers protection against ischemia/reperfusion injury and inhibition of autophagy is associated with a loss of cardioprotection conferred by pharmacological conditioning suggests that the pathway plays a key role in enhancing the heart's tolerance to ischemia. While many of the antecedent signaling pathways of preconditioning are well-defined, the mechanisms by which preconditioning and autophagy converge to protect the heart are unknown. In this review we discuss mechanisms that potentially underlie the linkage between cardioprotection and autophagy in the heart.
Collapse
|
2482
|
Heiseke A, Aguib Y, Riemer C, Baier M, Schätzl HM. Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 2009; 109:25-34. [PMID: 19183256 DOI: 10.1111/j.1471-4159.2009.05906.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lithium is used for several decades to treat manic-depressive illness (bipolar affective disorder). Recently, it was found that lithium induces autophagy, thereby promoting the clearance of mutant huntingtin and alpha-synucleins in experimental systems. We show here for the first time that lithium significantly reduces the amount of pathological prion protein (PrP(Sc)) in prion-infected neuronal and non-neuronal cultured cells by inducing autophagy. Treatment of prion-infected cells with 3-methyladenine, a potent inhibitor of autophagy, counteracted the anti-prion effect of lithium, demonstrating that induction of autophagy mediates degradation of PrP(Sc). Co-treatment with lithium and rapamycin, a drug widely used to induce autophagy, had an additive effect on PrP(Sc) clearance compared to treatment with either drug alone. In addition, we provide evidence that the ability to reduce PrP(Sc) and to induce autophagy is common for diverse lithium compounds, not only for the drug lithium chloride, usually administered in clinical therapy. Furthermore, we show here that besides reduction of PrP(Sc)-aggregates, lithium-induced autophagy also slightly reduces the levels of cellular prion protein. Limiting the substrate available for conversion of cellular prion protein into PrP(Sc) may provide an additional mechanism for reduction of PrP(Sc) by lithium-induced autophagy.
Collapse
Affiliation(s)
- Andreas Heiseke
- Institute of Virology, Technische Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
2483
|
Marazziti D, Di Pietro C, Golini E, Mandillo S, Matteoni R, Tocchini-Valentini GP. Induction of macroautophagy by overexpression of the Parkinson's disease-associated GPR37 receptor. FASEB J 2009; 23:1978-87. [PMID: 19218498 DOI: 10.1096/fj.08-121210] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The orphan G-protein-coupled receptor 37 (GPR37) is a substrate of parkin, and its insoluble aggregates accumulate in brain tissue samples of Parkinson's disease patients, including Lewy bodies and neurites. Parkin activates the clearance of the unfolded receptor, while the overexpression of GPR37, in the absence of parkin, can lead to unfolded protein-induced cell death. We found that overexpression of the human GPR37 receptor in HEK293 cells and consequent activation of an endoplasmic reticulum (ER) stress response had effects comparable to starvation, in inducing the cellular autophagic pathway. Treatment with specific modulators provided further evidence for the autophagic clearance of the overexpressed GPR37 protein, in detergent-soluble and -insoluble fractions, as confirmed by the conversion of the microtubule-associated protein 1, light chain 3 (LC3)-I marker to its LC3-II isoform. Furthermore, Gpr37-null mutant mice displayed consistent alterations of ER stress and autophagic pathway markers in brain tissue samples. These findings show that GPR37 overexpression per se can induce cellular autophagy, which may prevent the selective degeneration of GPR37-expressing neurons, as reported for Parkinson's and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniela Marazziti
- Istituto di Biologia Cellulare-CNR, Campus A. Buzzati-Traverso, Via E. Ramarini 32, I-00015 Monterotondo Scalo, Rome, Italy
| | | | | | | | | | | |
Collapse
|
2484
|
Herrera VLM, Decano JL, Steffen M, Ruiz-Opazo N. Autophagy: insights from DEspR-deficiency and haploinsufficiency. Autophagy 2009; 5:259-62. [PMID: 19139631 DOI: 10.4161/auto.5.2.7617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently showed that DEspR-haploinsufficiency resulted in increased neuronal autophagy and spongiform changes in the adult brain especially the hippocampus, cerebral cortex and basal ganglia, causing cognitive performance deficits. This model demonstrates a causal link between increased autophagy and neurodegenerative changes. This is in contrast with recent observations that decreased autophagy from null mutations of autophagy genes, Atg5 and Atg7, results in early neurodegenerative changes. With the observed autophagy phenotype, we then compared the neural tube phenotype of DEspR-deficient mice with knockout mice of genes established to underlie or regulate autophagy. Intriguingly, the hyperproliferative neuroepithelium observed in DEspR-deficient embryos is also detected in null mutants of Ambra1, an autophagy modulator, and two apoptosis genes, Apaf1 and Caspase 9. While all four knockout models exhibited hyperproliferative neuroepithelium, DEspR-deficient mice differed by having greater neural tube cavitation. Additionally, observed DEspR roles in angiogenesis and autophagy recapitulated the association of angiogenesis inhibition and increased autophagy as observed for endostatin and kringle5, thus elucidating an expanding complex network of autophagy, apoptosis and angiogenesis in neuroepithelial development, and an emerging complex spectrum of autophagy effects on neurodegeneration. Nevertheless, DEspR provides a ligand-activated receptor system to modulate autophagy--be it to increase autophagy by inhibition of DEspR-function, or to decrease autophagy by agonist stimulation of DEspR-function.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section Molecular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
2485
|
Abstract
Autophagy is a major catabolic pathway by which mammalian cells degrade and recycle macromolecules and organelles. It plays a critical role in removing protein aggregates, as well as damaged or excess organelles, to maintain intracellular homeostasis and to keep the cell healthy. In the heart, autophagy occurs at low levels under normal conditions, and defects in this process cause cardiac dysfunction and heart failure. However, this pathway is rapidly upregulated under environmental stress conditions, including ATP depletion, reactive oxygen species, and mitochondrial permeability transition pore opening. Although autophagy is enhanced in various pathophysiological conditions, such as during ischemia and reperfusion, the functional role of increased autophagy is not clear and is currently under intense investigation. In this review, we discuss the evidence for autophagy in the heart in response to ischemia and reperfusion, identify factors that regulate autophagy, and analyze the potential roles autophagy might play in cardiac cells.
Collapse
Affiliation(s)
- Asa B Gustafsson
- BioScience Center, San Diego State University, San Diego, CA 92182-4650, USA
| | | |
Collapse
|
2486
|
Karten B, Peake KB, Vance JE. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:659-70. [PMID: 19416638 DOI: 10.1016/j.bbalip.2009.01.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Niemann-Pick C disease is a fatal progressive neurodegenerative disorder caused in 95% of cases by mutations in the NPC1 gene; the remaining 5% of cases result from mutations in the NPC2 gene. The major biochemical manifestation of NPC1 deficiency is an abnormal sequestration of lipids, including cholesterol and glycosphingolipids, in late endosomes/lysosomes (LE/L) of all cells. In this review, we summarize the current knowledge of the NPC1 protein in mammalian cells with particular focus on how defects in NPC1 alter lipid trafficking and neuronal functions. NPC1 is a protein of LE/L and is predicted to contain thirteen transmembrane domains, five of which constitute a sterol-sensing domain. The precise function of NPC1, and the mechanism by which NPC1 and NPC2 (both cholesterol binding proteins) act together to promote the movement of cholesterol and other lipids out of the LE/L, have not yet been established. Recent evidence suggests that the sequestration of cholesterol in LE/L of cells of the brain (neurons and glial cells) contributes to the widespread death and dysfunction of neurons in the brain. Potential therapies include treatments that promote the removal of cholesterol and glycosphingolipids from LE/L. Currently, the most promising approach for extending life-span and improving the quality of life for NPC patients is a combination of several treatments each of which individually modestly slows disease progression.
Collapse
Affiliation(s)
- Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
2487
|
Abstract
Mutations in the CHMP2B (charged multivesicular body protein 2B) gene that lead to C-terminal truncations of the protein can cause frontotemporal dementia. CHMP2B is a member of ESCRT-III (endosomal sorting complex required for transport III), which is required for formation of the multivesicular body, a late endosomal structure that fuses with the lysosome to degrade endocytosed proteins. Overexpression of mutant C-terminally truncated CHMP2B proteins produces an enlarged endosomal phenotype in PC12 and human neuroblastoma cells, which is likely to be due to a dominant-negative effect on endosomal function. Disruption of normal endosomal trafficking is likely to affect the transport of neuronal growth factors and autophagic clearance of proteins, both of which could contribute to neurodegeneration in frontotemporal dementia.
Collapse
|
2488
|
Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, Miao L, Zhang H. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 2009; 136:308-21. [PMID: 19167332 DOI: 10.1016/j.cell.2008.12.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/26/2008] [Accepted: 12/09/2008] [Indexed: 01/24/2023]
Abstract
How autophagy, an evolutionarily conserved intracellular catabolic system for bulk degradation, selectively degrades protein aggregates is poorly understood. Here, we show that several maternally derived germ P granule components are selectively eliminated by autophagy in somatic cells during C. elegans embryogenesis. The activity of sepa-1 is required for the degradation of these P granule components and for their accumulation into aggregates, termed PGL granules, in autophagy mutants. SEPA-1 forms protein aggregates and is also a preferential target of autophagy. SEPA-1 directly binds to the P granule component PGL-3 and also to the autophagy protein LGG-1/Atg8. SEPA-1 aggregates consistently colocalize with PGL granules and with LGG-1 puncta. Thus, SEPA-1 functions as a bridging molecule in mediating the specific recognition and degradation of P granule components by autophagy. Our study reveals a mechanism for preferential degradation of protein aggregates by autophagy and emphasizes the physiological significance of selective autophagy during animal development.
Collapse
Affiliation(s)
- Yuxia Zhang
- National Institute of Biological Sciences, Beijing 102206, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2489
|
Yue Z, Friedman L, Komatsu M, Tanaka K. The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1496-507. [PMID: 19339210 DOI: 10.1016/j.bbamcr.2009.01.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/24/2009] [Accepted: 01/27/2009] [Indexed: 01/08/2023]
Abstract
Autophagy is a tightly regulated cell self-eating process. It has been shown to be associated with various neuropathological conditions and therefore, traditionally known as a stress-induced process. Recent studies, however, reveal that autophagy is constitutively active in healthy neurons. Neurons are highly specialized, post-mitotic cells that are typically composed of a soma (cell body), a dendritic tree, and an axon. Despite the vast growth of our current knowledge of autophagy, the detailed process in such a highly differentiated cell type remains elusive. Current evidence strongly suggests that autophagy is uniquely regulated in neurons and is also highly adapted to local physiology in the axons. In addition, the molecular mechanism for basal autophagy in neurons may be significantly divergent from "classical" induced autophagy. A considerable number of studies have increasingly shown an important role for autophagy in neurodegenerative diseases and have explored autophagy as a potential drug target. Thus, understanding the neuronal autophagy process will ultimately aid in drug target identification and rational design of drug screening to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenyu Yue
- Department of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
2490
|
Abstract
Dietary compounds can influence the risk of cancer and other diseases through diverse mechanisms which include the activation or inhibition of macroautophagy. Macroautophagy is a catabolic process for the lysosomal degradation and recycling of cytoplasmic constituents which has been implicated in several pathologies, including cancer and neurodegeneration. In some instances, macroautophagy acts to suppress tumor formation and neural degeneration. Thus, it may be feasible to design diets, supplements or therapeutics that can alter the level of macroautophagy within cells to prevent or treat disease. While critical questions still need to be answered before we can safely and effectively implement such a strategy, we provide here a review of the literature regarding dietary constituents that have a demonstrated macroautophagy-modulating function.
Collapse
Affiliation(s)
- Adrienne M. Hannigan
- The Genome Sciences Centre; British Columbia Cancer Agency; Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- The Genome Sciences Centre; British Columbia Cancer Agency; Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby, British Columbia, Canada
| |
Collapse
|
2491
|
Lee MS. Role of autophagy in the control of cell death and inflammation. Immune Netw 2009; 9:8-11. [PMID: 20107532 PMCID: PMC2803293 DOI: 10.4110/in.2009.9.1.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 12/27/2022] Open
Abstract
There is mounting evidence that autophagy is involved in diverse physiological and pathological processes that have immense relevance in human development, diseases and aging. Immunity and inflammation are not exceptions. Here, the role of autophagy in the control of immune processes particularly that related to cell death and inflammation is discussed.
Collapse
Affiliation(s)
- Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul 135-710, Korea
| |
Collapse
|
2492
|
Cao L, Xu J, Lin Y, Zhao X, Liu X, Chi Z. Autophagy is upregulated in rats with status epilepticus and partly inhibited by Vitamin E. Biochem Biophys Res Commun 2009; 379:949-53. [DOI: 10.1016/j.bbrc.2008.12.178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/27/2008] [Indexed: 01/08/2023]
|
2493
|
Raben N, Baum R, Schreiner C, Takikita S, Mizushima N, Ralston E, Plotz P. When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease. Autophagy 2009; 5:111-3. [PMID: 19001870 DOI: 10.4161/auto.5.1.7293] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, which results from a deficiency of the glycogen-degrading lysosomal hydrolase acid-alpha glucosidase (GAA). Skeletal and cardiac muscle are most severely affected by the progressive expansion of glycogen-filled lysosomes. In both humans and an animal model of the disease (GAA KO), skeletal muscle pathology also involves massive accumulation of autophagic vesicles and autophagic buildup in the core of myofibers, suggesting an induction of autophagy. Only when we suppressed autophagy in the skeletal muscle of the GAA KO mice did we realize that the excess of autophagy manifests as a functional deficiency. This failure of productive autophagy is responsible for the accumulation of potentially toxic aggregate-prone ubiquitinated proteins, which likely cause profound muscle damage in Pompe mice. Also, by generating muscle-specific autophagy-deficient wild-type mice, we were able to analyze the role of autophagy in healthy skeletal muscle.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, NIAMS, NIH, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | |
Collapse
|
2494
|
Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 2009; 284:2719-2728. [PMID: 19029119 PMCID: PMC2631952 DOI: 10.1074/jbc.m805920200] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy is a vacuolar lysosomal catabolic pathway that is stimulated during periods of nutrient starvation to preserve cell integrity. Ceramide is a bioactive sphingolipid associated with a large range of cell processes. Here we show that short-chain ceramides (C(2)-ceramide and C(6)-ceramide) and stimulation of the de novo ceramide synthesis by tamoxifen induce the dissociation of the complex formed between the autophagy protein Beclin 1 and the anti-apoptotic protein Bcl-2. This dissociation is required for macroautophagy to be induced either in response to ceramide or to starvation. Three potential phosphorylation sites, Thr(69), Ser(70), and Ser(87), located in the non-structural N-terminal loop of Bcl-2, play major roles in the dissociation of Bcl-2 from Beclin 1. We further show that activation of c-Jun N-terminal protein kinase 1 by ceramide is required both to phosphorylate Bcl-2 and to stimulate macroautophagy. These findings reveal a new aspect of sphingolipid signaling in up-regulating a major cell process involved in cell adaptation to stress.
Collapse
Affiliation(s)
- Sophie Pattingre
- INSERM U756,
Université Paris Sud 11, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, 92296
Châtenay-Malabry, France, INSERM U858,
Institut de Médecine Moléculaire de
Rangueil, Université Toulouse III, 31000 Toulouse, France, and the
Howard Hughes Medical Institute and the Departments
of Internal Medicine and
Microbiology, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Chantal Bauvy
- INSERM U756,
Université Paris Sud 11, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, 92296
Châtenay-Malabry, France, INSERM U858,
Institut de Médecine Moléculaire de
Rangueil, Université Toulouse III, 31000 Toulouse, France, and the
Howard Hughes Medical Institute and the Departments
of Internal Medicine and
Microbiology, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Stéphane Carpentier
- INSERM U756,
Université Paris Sud 11, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, 92296
Châtenay-Malabry, France, INSERM U858,
Institut de Médecine Moléculaire de
Rangueil, Université Toulouse III, 31000 Toulouse, France, and the
Howard Hughes Medical Institute and the Departments
of Internal Medicine and
Microbiology, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Thierry Levade
- INSERM U756,
Université Paris Sud 11, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, 92296
Châtenay-Malabry, France, INSERM U858,
Institut de Médecine Moléculaire de
Rangueil, Université Toulouse III, 31000 Toulouse, France, and the
Howard Hughes Medical Institute and the Departments
of Internal Medicine and
Microbiology, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Beth Levine
- INSERM U756,
Université Paris Sud 11, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, 92296
Châtenay-Malabry, France, INSERM U858,
Institut de Médecine Moléculaire de
Rangueil, Université Toulouse III, 31000 Toulouse, France, and the
Howard Hughes Medical Institute and the Departments
of Internal Medicine and
Microbiology, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Patrice Codogno
- INSERM U756,
Université Paris Sud 11, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, 92296
Châtenay-Malabry, France, INSERM U858,
Institut de Médecine Moléculaire de
Rangueil, Université Toulouse III, 31000 Toulouse, France, and the
Howard Hughes Medical Institute and the Departments
of Internal Medicine and
Microbiology, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
2495
|
Lim A, Kraut R. The Drosophila BEACH family protein, blue cheese, links lysosomal axon transport with motor neuron degeneration. J Neurosci 2009; 29:951-63. [PMID: 19176804 PMCID: PMC3849423 DOI: 10.1523/jneurosci.2582-08.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 11/12/2008] [Accepted: 12/07/2008] [Indexed: 01/29/2023] Open
Abstract
Impaired axon transport is one of the earliest pathological manifestations of several neurodegenerative diseases, and mutations in motor proteins can exacerbate or cause degeneration (Williamson and Cleveland, 1999; Gunawardena and Goldstein, 2004; Stokin and Goldstein, 2006). Compromised function in lysosomes and other degradative organelles that intersect with the lysosomal pathway are also strongly implicated in neurodegenerative disease pathology (Nixon and Cataldo, 2006; Rubinsztein, 2006). However, any functional link between these two phenomena has not as yet been recognized. Drosophila mutants in blue cheese (bchs) undergo progressive brain degeneration as adults and have shortened life span (Finley et al., 2003), but the cellular function of Bchs and the cause of degeneration have not been identified. A role in lysosomal trafficking is suggested by the homology of Bchs with the vesicle trafficking-associated BEACH (Beige and Chediak-Higashi) domain protein family (Wang et al., 2002; De Lozanne, 2003) and by its genetic interaction with a lysosomal transport pathway (Simonsen et al., 2007). Here, we describe the degeneration of a population of identified larval motor neurons in bchs mutants. We present evidence that Bchs is primarily lysosomal in those motor neurons in wild type and, using live fluorescence imaging of individual motor neurons in intact larvae, show that lysosomal vesicles fail to be transported toward motor neuron termini in bchs mutant and Bchs-overexpressing larvae. We suggest therefore that anterograde transport of lysosomes toward synaptic termini is a key factor in preventing motor neuron degeneration and that Bchs reveals a functional link between the lysosomal degradative pathway and transport.
Collapse
Affiliation(s)
- Angeline Lim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, and
| | - Rachel Kraut
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research, Singapore 138669
| |
Collapse
|
2496
|
Abstract
Autophagy and proteasomal degradation constitute the two main catabolic pathways in cells. While the proteasome degrades primarily short-lived soluble proteins, macroautophagy, the main constitutive autophagic pathway, delivers cell organelles and protein aggregates for lysosomal degradation. Both the proteasome and macroautophagy are attractive effector mechanisms for the immune system because they can be used to degrade foreign substances, including pathogenic proteins, within cells. Therefore, both innate and adaptive immune responses use these pathways for intracellular clearance of pathogens as well as for presentation of pathogen fragments to the adaptive immune system. Because, however, the same mechanisms are used for the steady-state turnover of cellular self-components, the immune system has to be desensitized not to recognize these. Therefore, proteasomal degradation and macroautophagy are also involved in tolerizing the immune system prior to pathogen encounter. We will discuss recent advances in our understanding how macroautophagy selects self-structures in the steady state, how presentation of these on major histocompatibility complex class II molecules leads to tolerance and how macroautophagy assists both innate and adaptive immunity. This new knowledge on the specialized functions of the metabolic process macroautophagy in higher eukaryotes should allow us to target it for therapy development against immunopathologies and to improve vaccinations.
Collapse
Affiliation(s)
- Monique Gannagé
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
2497
|
Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One 2009; 4:e4201. [PMID: 19145255 PMCID: PMC2626277 DOI: 10.1371/journal.pone.0004201] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 12/02/2008] [Indexed: 12/20/2022] Open
Abstract
The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.
Collapse
Affiliation(s)
- Daijun Ling
- Division of Neuroscience, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Ho-Juhn Song
- Department of Developmental and Molecular Pathway, Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Dan Garza
- Department of Developmental and Molecular Pathway, Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Thomas P. Neufeld
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul M. Salvaterra
- Division of Neuroscience, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Graduate School of Biological Science, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
2498
|
Kim DH, Davis RC, Furukawa R, Fechheimer M. Autophagy contributes to degradation of Hirano bodies. Autophagy 2009; 5:44-51. [PMID: 18989098 DOI: 10.4161/auto.5.1.7228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hirano bodies are actin-rich inclusions reported most frequently in the hippocampus in association with a variety of conditions including neurodegenerative diseases, and aging. We have developed a model system for formation of Hirano bodies in Dictyostelium and cultured mammalian cells to permit detailed studies of the dynamics of these structures in living cells. Model Hirano bodies are frequently observed in membrane-enclosed vesicles in mammalian cells consistent with a role of autophagy in the degradation of these structures. Clearance of Hirano bodies by an exocytotic process is supported by images from electron microscopy showing extracellular release of Hirano bodies, and observation of Hirano bodies in the culture medium of Dictyostelium and mammalian cells. An autophagosome marker protein Atg8-GFP, was co-localized with model Hirano bodies in wild type Dictyostelium cells, but not in atg5(-) or atg1-1 autophagy mutant strains. Induction of model Hirano bodies in Dictyostelium with a high level expression of 34 kDa DeltaEF1 from the inducible discoidin promoter resulted in larger Hirano bodies and a cessation of cell doubling. The degradation of model Hirano bodies still occurred rapidly in autophagy mutant (atg5(-)) Dictyostelium, suggesting that other mechanisms such as the ubiquitin-mediated proteasome pathway could contribute to the degradation of Hirano bodies. Chemical inhibition of the proteasome pathway with lactacystin, significantly decreased the turnover of Hirano bodies in Dictyostelium providing direct evidence that autophagy and the proteasome can both contribute to degradation of Hirano bodies. Short term treatment of mammalian cells with either lactacystin or 3-methyl adenine results in higher levels of Hirano bodies and a lower level of viable cells in the cultures, supporting the conclusion that both autophagy and the proteasome contribute to degradation of Hirano bodies.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
2499
|
Abstract
The heart is a highly plastic organ capable of remodeling in response to changes in physiological or pathological demand. For example, when workload increases, compensatory hypertrophic growth of individual cardiomyocytes occurs to increase cardiac output. Sustained stress, however, such as that occurring with hypertension or following myocardial infarction, triggers changes in energy metabolism and sarcomeric protein composition, loss of cardiomyocytes, ventricular dilation, reduced pump function, and ultimately heart failure. It has been known for some time that autophagy is active in cardiomyocytes, occurring at increased levels in disease. Now, with recent advances in our understanding of molecular mechanisms governing autophagy, the potential contributions of cardiomyocyte autophagy to ventricular remodeling and disease pathogenesis are being explored. As part of this work, several recent studies have focused on autophagy in heart disease elicited by changes in hemodynamic load. Pressure overload stress elicits a robust autophagic response in cardiomyocytes that is maladaptive, contributing to disease progression. In this context, load-induced aggregation of intracellular proteins is a proximal event triggering autophagic clearance mechanisms. These findings in the setting of pressure overload contrast with protein aggregation occurring in a model of protein chaperone malfunction, where activation of autophagy is beneficial, antagonizing disease progression. Here, we review recent studies of cardiomyocyte autophagy in load-induced disease and address molecular mechanisms and unanswered questions.
Collapse
Affiliation(s)
- Beverly A Rothermel
- Departments of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | | |
Collapse
|
2500
|
Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 2009; 4:e4160. [PMID: 19129916 PMCID: PMC2612751 DOI: 10.1371/journal.pone.0004160] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/05/2008] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch's membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly.
Collapse
Affiliation(s)
- Ai Ling Wang
- Forsythe Laboratory for the Investigation of the Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Chicago, Illinois, United States of America
| | - Thomas J. Lukas
- Forsythe Laboratory for the Investigation of the Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Chicago, Illinois, United States of America
| | - Ming Yuan
- Forsythe Laboratory for the Investigation of the Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Chicago, Illinois, United States of America
| | - Nga Du
- Forsythe Laboratory for the Investigation of the Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Chicago, Illinois, United States of America
| | - Mark O. Tso
- Forsythe Laboratory for the Investigation of the Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Chicago, Illinois, United States of America
| | - Arthur H. Neufeld
- Forsythe Laboratory for the Investigation of the Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|