2601
|
Li TF, Zeng HJ, Shan Z, Ye RY, Cheang TY, Zhang YJ, Lu SH, Zhang Q, Shao N, Lin Y. Overexpression of kinesin superfamily members as prognostic biomarkers of breast cancer. Cancer Cell Int 2020; 20:123. [PMID: 32322170 PMCID: PMC7161125 DOI: 10.1186/s12935-020-01191-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kinesin superfamily (KIFs) has a long-reported significant influence on the initiation, development, and progress of breast cancer. However, the prognostic value of whole family members was poorly done. Our study intends to demonstrate the value of kinesin superfamily members as prognostic biomarkers as well as a therapeutic target of breast cancer. METHODS Comprehensive bioinformatics analyses were done using data from TCGA, GEO, METABRIC, and GTEx. LASSO regression was done to select tumor-related members. Nomogram was constructed to predict the overall survival (OS) of breast cancer patients. Expression profiles were testified by quantitative RT-PCR and immunohistochemistry. Transcription factor, GO and KEGG enrichments were done to explore regulatory mechanism and functions. RESULTS A total of 20 differentially expressed KIFs were identified between breast cancer and normal tissue with 4 (KIF17, KIF26A, KIF7, KIFC3) downregulated and 16 (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF20B, KIF22, KIF23, KIF24, KIF26B, KIF2C, KIF3B, KIF4A, KIFC1) overexpressed. Among which, 11 overexpressed KIFs (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIF4A, KIFC1) significantly correlated with worse OS, relapse-free survival (RFS) and distant metastasis-free survival (DMFS) of breast cancer. A 6-KIFs-based risk score (KIF10, KIF15, KIF18A, KIF18B, KIF20A, KIF4A) was generated by LASSO regression with a nomogram validated an accurate predictive efficacy. Both mRNA and protein expression of KIFs are experimentally demonstrated upregulated in breast cancer patients. Msh Homeobox 1 (MSX1) was identified as transcription factors of KIFs in breast cancer. GO and KEGG enrichments revealed functions and pathways affected in breast cancer. CONCLUSION Overexpression of tumor-related KIFs correlate with worse outcomes of breast cancer patients and can work as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Tian-Fu Li
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Hui-Juan Zeng
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Zhen Shan
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Run-Yi Ye
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Tuck-Yun Cheang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Yun-Jian Zhang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Si-Hong Lu
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Qi Zhang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
2602
|
Triple-negative breast cancer with calcified metastases of hepatic, portal vein and inferior vena cava: Report of a case and review of the literature. J Formos Med Assoc 2020; 119:1431-1434. [PMID: 32284165 DOI: 10.1016/j.jfma.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 11/24/2022] Open
Abstract
Breast cancer frequently metastasizes to the liver and this usually bears a poor prognosis. Complete calcifications of hepatic, portal vein and inferior vena cava (IVC) metastases from breast cancer after systemic chemotherapy is extremely rare and to our knowledge, has never been reported. It is important for physicians to recognize the pattern and the formation of calcified liver metastases because the radiographic features of calcifications may assist in differentiating the etiologies of underlying malignancies and provide prognostic significance. We here presented such a case of triple negative breast cancer (TNBC) with calcified liver, portal vein and IVC metastases, and reviewed the literature.
Collapse
|
2603
|
Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors. Breast Cancer Res Treat 2020; 181:297-307. [PMID: 32277377 DOI: 10.1007/s10549-020-05629-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/03/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Many human breast tumors become resistant to endocrine therapies and recur due to estrogen receptor (ERα) mutations that convey constitutive activity and a more aggressive phenotype. Here, we examined the effectiveness of a novel adamantyl antiestrogen, K-07, in suppressing the growth of breast cancer metastases containing the two most frequent ER-activating mutations, Y537S and D538G, and in extending survival in a preclinical metastatic cancer model. METHODS MCF7 breast cancer cells expressing luciferase and Y537S or D538G ER were injected into NOD-SCID-gamma female mice, and animals were treated orally with the antiestrogen K-07 or control vehicle. Comparisons were also made with the antiestrogen Fulvestrant. The development of metastases was monitored by in vivo bioluminescence imaging with phenotypic characterization of the metastases in liver and lung by immunohistochemical and biochemical analyses. RESULTS These breast cancer cells established metastases in liver and lung, and K-07 treatment reduced the metastatic burden. Mice treated with K-07 also survived much longer. By day 70, only 28% of vehicle-treated mice with mutant ER metastases were alive, whereas all K-07-treated D538G and Y537S mice were still alive. K-07 also markedly reduced the level of metastatic cell ER and the expression of ER-regulated genes. CONCLUSION The antiestrogen K-07 can reduce in vivo metastasis of breast cancers and extend host survival in this preclinical model driven by constitutively active mutant ERs, suggesting that this compound may be suitable for further translational examination of its efficacy in suppression of metastasis in breast cancers containing constitutively active mutant ERs.
Collapse
|
2604
|
Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020; 177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most prevalent type of tumor and the second leading cause of death due to cancer among women. Although screening methods, diagnosis and therapeutic options have improved in the last decade, chemoresistance remains an important challenge. There is evidence relating breast cancer resistance with signaling pathways involving hormone and growth receptors, survival, apoptosis and the activation of efflux pumps. However, the resistance mechanisms linked to drug uptake are poorly understood, despite it often being observed that the drug content is lower in resistant cancer cells and that the entry of the drug into these cells is a limiting process for the subsequent therapeutic effect.In this review, we provide an overview of drug uptake-based resistance mechanisms developed by cancer cells in the four main types of chemotherapy used in breast cancer: anthracyclines, taxanes, oxazaphosphorines and platinum-based drugs. The contribution of tumor microenvironment to reduced drug-uptake and multidrug resistance is also analyzed. As a developing field, nanomedicine-based approaches provide promising opportunities to improve drug specific targeting, cell interaction and uptake into cancer cells. The endocytic-mediated pathways attributed to the different types of nanoformulations as well as the contribution of nanotherapeutics to overcoming chemoresistance affecting drug uptake in breast cancer will be described. New approaches focusing on drug uptake mechanisms could improve breast cancer chemotherapy, obtaining better dose-response outcomes and reducing toxic side effects.
Collapse
Affiliation(s)
- Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
2605
|
Ligand and structure based virtual screening of chemical databases to explore potent small molecule inhibitors against breast invasive carcinoma using recent computational technologies. J Mol Graph Model 2020; 98:107591. [PMID: 32234678 DOI: 10.1016/j.jmgm.2020.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 11/21/2022]
Abstract
Breast carcinoma is the most common invasive cancer to affect the women in the North America and the world. Cancer of breast is the number one cancer overall with estimated 1.5 lakh new cases during 2016. The success of the current endocrine therapies is often limited due to the development of resistance. Therefore, there is a need to develop new lead compounds for breast cancer treatment. As 70% of breast carcinoma is ER+, and it is well known previously that estrogen receptor alpha (ERα) is overexpressed in ER + cases, so in the current work we attempt to develop some novel potent analogues against ERα. To achieve this, we have adopted an integrative computational approach that involves multiple sequence alignment, virtual screening (ligand and structure based), molecular docking, fingerprint based clustering and molecular dynamics simulation. The approach envisaged vital information about the binding site residues, conserved sequence among different species, ligand and protein conformations, binding energy of compound to bind into the active site of the receptor. Molecular docking analysis revealed that some analogues exhibited significant binding towards ERα. The top docked complexes showing good docking scores, hydrogen bond and hydrophobic interactions were selected for molecular dynamics simulation studies. RMSD revealed that the systems were quite stable with RMSD value below 3 Å. The RMSF analysis calculated residue wise fluctuations and revealed that the residues are flexible enough to interact with the ligand. The residue at C-terminal showed more flexibility as compared to other residues. To confirm binding of these analogues, MMGBSA analysis was performed which revealed binding energy of the ligands. Further, per-residue decomposition energy analysis revealed that Glu353, Leu346, Leu387 and Arg394 contributed towards ligand binding. The results visibly indicated that MMGBSA can act as filter in virtual screening experiments and play a major role in facilitating drug discovery.
Collapse
|
2606
|
Ferreira MF, Savoy JN, Markey MK. Teaching cross-cultural design thinking for healthcare. Breast 2020; 50:1-10. [PMID: 31958660 PMCID: PMC7375602 DOI: 10.1016/j.breast.2019.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is poised to transform breast cancer care. However, most scientists, engineers, and clinicians are not prepared to contribute to the AI revolution in healthcare. In this paper, we describe our experiences teaching a new undergraduate course for American students that aims to prepare the next generation for cross-cultural designthinking, which we believe is crucial for AI to achieve its full potential in breast cancer care. MATERIALS AND METHODS The key course activities are planning, conducting, and interpreting interviews of healthcare professionals from both Portugal and the United States. Since the course is offered as a short-term faculty-led study abroad program in Portugal, students are able to explore the impact of culture on healthcare delivery and the design of healthcare technologies. RESULTS The learning assessments demonstrated student growth in several areas pertinent for future development of AI for breast cancer care. With respect to understanding breast cancer care, prior to taking this course, most students had underestimated the impact of cancer and its treatment on women's quality of life and most were unaware of the importance of multidisciplinary care teams. Regarding AI in medicine, students became more mindful of data privacy issues and the need to consider the effect of AI on healthcare professionals. CONCLUSION This course illustrates the potential benefits for AI in medicine of introducing future scientists, engineers, and clinicians to cross cultural design-thinking early in their educational experiences.
Collapse
Affiliation(s)
- Mafalda Falcão Ferreira
- Informatics Engineering, University of Porto, Porto, Portugal; INESC TEC - Institute for Systems and Computer Engineering, Technology, and Science, Porto, Portugal
| | - Julia N Savoy
- Wisconsin Center for Education Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Mia K Markey
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2607
|
He M, Shen L, Jiang C, Gao G, Wang K, Jiao Y, Sun L, Cui Y, Ke Z, Yang Z. Rab22a is a novel prognostic marker for cell progression in breast cancer. Int J Mol Med 2020; 45:1037-1046. [PMID: 32124943 PMCID: PMC7053859 DOI: 10.3892/ijmm.2020.4486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) is the most common female malignant tumor worldwide. The mechanism of tumorigenesis is still unclear. Ras‑related proteins in brain (Rab)22a belongs to the Ras superfamily, which may act as an oncogene and participate in carcinogenesis. The present study aims to identify whether Rab22a could be a novel biomarker of prognosis and determine the effects of Rab22a on BC cell progression. A total 258 BC and 56 para‑tumor or non‑tumor formalin fixed paraffin embedded tissues were stained through immunohistochemistry. The association between Rab22a expression and clinicopathological features, as well as overall survival status were analyzed. The expression level of Rab22a in breast cell lines were detected using reverse transcription‑quantitative PCR and western blotting. SK‑BR‑3 cells were infected with Rab22a short hairpin RNA lenti‑virus and the ability of cell proliferation, migration and invasion were measured. Gene Set Enrichment Analysis (GSEA) was employed to analyze the pathways involved in the Rab22a mRNA high level group. Rab22a was found to be overexpressed in BC tissues and upregulated in BC cells. High expression of Rab22a was related to a poor prognosis of patients with BC. Knockdown of Rab22a decreased the proliferation, migration and invasion ability of BC cells. GSEA indicated that certain pathways, including mammalian target of rapamycin complex 1 and protein secretion were upregulated, while pathways, such as hypoxia and KRas were downregulated in the Rab22a high level group. Rab22a is of prognostic value for BC and necessary for BC cell proliferation.
Collapse
Affiliation(s)
- Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022
| | - Leihua Shen
- Department of General Surgery, Xi'an Central Hospital, Xi'an, Shanxi 710000
- Department of Breast Surgery
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | - Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | | | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021
| | | | | | - Zirui Ke
- Department of Breast Surgery
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | | |
Collapse
|
2608
|
Chu J, Yang D, Wang L, Xia J. Nomograms predicting survival for all four subtypes of breast cancer: a SEER-based population study. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:544. [PMID: 32411767 PMCID: PMC7214914 DOI: 10.21037/atm-20-2808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The prognosis of female breast cancer (BC) patients is determined by many clinicopathological factors. In this study, we aimed to identify prognostic factors for BC and develop reliable nomograms to predict the 1-, 3-, and 5-year overall survival (OS) and breast cancer-specific survival (BCSS). Methods The Surveillance, Epidemiology, and End Results (SEER) database was used to screen 227,989 eligible patients as the study cohort. The whole cohort was randomly divided into a training cohort (n=113,996) and a testing cohort (n=113,993). The log-rank test and Cox proportional hazards analysis were applied to select variables and build nomogram models based on the training cohort. Internal and external validation were performed to evaluate the performance of the models by calculating the C-index and generating calibration plots in the training cohort and testing cohort. Results The following factors were included in both the OS and BCSS nomograms: subtypes of BC, metastasis (bone, liver, lung, and brain), age at diagnosis, race, tumor size, grade, number of positive lymph nodes, and marital status. The calibration plots presented excellent consistency between the actual and nomogram-predicted survival probabilities in both the training cohort and testing cohort. The C-index values of the nomograms were 0.796 and 0.793 for OS and 0.856 and 0.853 for BCSS in the training and testing cohorts, respectively. Conclusions The established nomograms provide a visualization of the risk of each prognostic factor and can assist clinicians in predicting the 1-, 3-, and 5-year OS and BCSS for all 4 subtypes of BC.
Collapse
Affiliation(s)
- Jianli Chu
- Department of Health Statistics, The 4th Military Medical University, Xian 710032, China.,Center for Clinical Research, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Dehong Yang
- Center for Clinical Research, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Ling Wang
- Department of Health Statistics, The 4th Military Medical University, Xian 710032, China
| | - Jielai Xia
- Department of Health Statistics, The 4th Military Medical University, Xian 710032, China
| |
Collapse
|
2609
|
Knowlson C, Haddock P, Bingham V, McQuaid S, Mullan PB, Buckley NE. Pin1 plays a key role in the response to treatment and clinical outcome in triple negative breast cancer. Ther Adv Med Oncol 2020; 12:1758835920906047. [PMID: 32215056 PMCID: PMC7065279 DOI: 10.1177/1758835920906047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Triple negative breast cancer (TNBC) is the subset of breast cancer associated with the poorest outcome, and currently lacks targeted treatments. Standard of care (SoC) chemotherapy often consists of DNA damaging chemotherapies ± taxanes, with a range of responses observed. However, we currently lack biomarkers to predict this response and lack alternate treatment options. Methods: Pin1 expression was modulated in vitro and proliferation and treatment response was studied. Pin1 expression was analysed in patient samples and correlated with clinical outcome. Results: In this study, we have shown that the prolyl isomerase, Pin1, which is highly expressed in TNBC, plays a key role in pathogenesis of the disease. Knockdown of Pin1 in TNBC resulted in cell death while the opposite is seen in normal cells. We revealed for the first time that loss of Pin1 leads to increased sensitivity to Taxol but only in the absence of functional BRCA1. Conversely, loss of Pin1 results in decreased sensitivity to DNA-damaging agents independent of BRCA1 status. Analysis of Pin1 gene or IHC-based expression in over 200 TNBC patient samples revealed a novel role for Pin1 as a TNBC-specific biomarker, with high expression associated with improved outcome in the context of SoC chemotherapy. Preliminary data indicated this may be extended to other treatment options (e.g. Cisplatin/Parp Inhibitors) that are gaining traction for the treatment of TNBC. Conclusions: This study highlights the important role played by Pin1 in TNBC and highlights the context-dependent functions in modulating cell growth and response to treatment.
Collapse
Affiliation(s)
- Catherine Knowlson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paula Haddock
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Victoria Bingham
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| |
Collapse
|
2610
|
Chou TC, Chiang SC, Ko Y. Health state utilities for metastatic breast cancer in Taiwan. Breast 2020; 51:57-64. [PMID: 32213442 PMCID: PMC7377330 DOI: 10.1016/j.breast.2020.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
Background New developments in medications for metastatic breast cancer (MBC) can be of great benefit to patients, but unfortunately these medicines also increase expenditures. Cost-utility analyses (CUAs) are needed to allocate health resources properly, and health utility values are required to calculate quality-adjusted life years in those CUAs. Objective The aims of this study were to measure health utility values for several MBC-related health states and certain breast cancer treatment-related grade 3/4 adverse drug reactions (ADRs). In addition, we examined whether different methods and respondents’ characteristics would influence the utility values elicited. Methods A cross-sectional survey was conducted. The visual analogue scale (VAS) and time trade-off (TTO) methods were used to measure health utilities. Four MBC and nine ADR health states were selected for evaluation based on literature review and expert opinion. Information about respondents’ demographic and clinical characteristics were collected to examine the relationship between utilities and participant characteristics. Results A total of 102 patients participated in this study. The TTO-elicited values were higher than the VAS-derived scores except for two MBC-related health states. Among the MBC health states assessed, the TTO preference score ranged from 0.04 (palliative MBC) to 0.62 (responding MBC). For grade 3/4 ADRs, the mean TTO-derived utility values ranged from 0.35 (nausea/vomiting) to 0.79 (fatigue). The ranking of the preference scores derived from the VAS was similar to that of the TTO-elicited scores. Conclusion This study obtained health state utility values for MBC and grade 3/4 ADRs using both the TTO and the VAS, which provides useful data for future CUAs. This study obtained health state utility values for metastatic breast cancer (MBC) and grade 3/4 adverse drug reactions (ADRs) using both the time trade-off (TTO) and the visual analogue scale (VAS), which provides useful data for future cost-utility analyses. Among the MBC health states assessed, the TTO preference score ranged from 0.04 (palliative MBC) to 0.62 (responding MBC). For grade 3/4 ADRs, the mean TTO-derived utility values ranged from 0.35 (nausea/vomiting) to 0.79 (fatigue).
Collapse
Affiliation(s)
- Tzu-Chun Chou
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Pharmacy, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Shao-Chin Chiang
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Yu Ko
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Research Center of Pharmacoeconomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2611
|
Ghouse SM, Nguyen HM, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front Oncol 2020; 10:384. [PMID: 32266155 PMCID: PMC7105799 DOI: 10.3389/fonc.2020.00384] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a difficult-to-treat disease with high rates of local recurrence, distant metastasis, and poor overall survival with existing therapies. Thus, there is an unmet medical need to develop new treatment regimen(s) for TNBC patients. An oncolytic herpes simplex virus encoding a master anti-tumor cytokine, interleukin 12, (designated G47Δ-mIL12) selectively kills cancer cells while inducing anti-tumor immunity. G47Δ-mIL12 efficiently infected and killed murine (4T1 and EMT6) and human (HCC1806 and MDA-MB-468) mammary tumor cells in vitro. In vivo in the 4T1 syngeneic TNBC model, it significantly reduced primary tumor burden and metastasis, both at early and late stages of tumor development. The virus-induced local and abscopal effects were confirmed by significantly increased infiltration of CD45+ leukocytes and CD8+ T cells, and reduction of granulocytic and monocytic MDSCs in tumors, both treated and untreated contralateral, and in the spleen. Significant trafficking of dendritic cells (DCs) were only observed in spleens of virus-treatment group, indicating that DCs are primed and activated in the tumor-microenvironment following virotherapy, and trafficked to lymphoid organs for activation of immune cells, such as CD8+ T cells. DC priming/activation could be associated with virally enhanced expression of several antigen processing/presentation genes in the tumor microenvironment, as confirmed by NanoString gene expression analysis. Besides DC activation/priming, G47Δ-mIL12 treatment led to up-regulation of CD8+ T cell activation markers in the tumor microenvironment and inhibition of tumor angiogenesis. The anti-tumor effects of G47Δ-mIL12 treatment were CD8-dependent. These studies illustrate the ability of G47Δ-mIL12 to immunotherapeutically treat TNBC.
Collapse
Affiliation(s)
- Shanawaz M Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Praveen K Bommareddy
- School of Graduate Studies, Rutgers University, New Brunswick, NJ, United States
| | - Kirsten Guz-Montgomery
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
2612
|
Lu M, Wu Y, Zeng B, Sun J, Li Y, Luo J, Wang L, Yi Z, Li H, Ren G. CircEHMT1 inhibits metastatic potential of breast cancer cells by modulating miR-1233-3p/KLF4/MMP2 axis. Biochem Biophys Res Commun 2020; 526:306-313. [PMID: 32209259 DOI: 10.1016/j.bbrc.2020.03.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 01/09/2023]
Abstract
CircRNA is a kind of covalent head-to-tail looped RNA and plays an important role in tumor development. However, the identification of new potential targetable circRNAs to inhibit cancer development is still a huge challenge. In this study, we found that circEHMT1 inhibited migration and invasion of breast cancer cells. Mechanistically, we identified miR-1233-3p as a target of circEHMT1, and the circEHMT1/miR-1233-3p axis regulated matrix metalloprotease 2 (MMP2) by modulating the transcription factor Krϋppel-like factor 4 (KLF4). In summary, we showed that circEHMT1 has potential as a prognostic factor in breast cancer and played a tumor suppressor role via the circEHMT1/miR-1233-3p/KLF4/MMP2 axis.
Collapse
Affiliation(s)
- Mengqi Lu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2613
|
Dadiani M, Necula D, Kahana-Edwin S, Oren N, Baram T, Marin I, Morzaev-Sulzbach D, Pavlovski A, Balint-Lahat N, Anafi L, Wiemann S, Korner C, Gal-Yam EN, Avivi C, Kaufman B, Barshack I, Ben-Baruch A. TNFR2+ TILs are significantly associated with improved survival in triple-negative breast cancer patients. Cancer Immunol Immunother 2020; 69:1315-1326. [PMID: 32198536 DOI: 10.1007/s00262-020-02549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
In view of the relatively limited efficacy of immunotherapies targeting the PD-1-PD-L1 axis in triple-negative breast cancer (TNBC) and of published reports on tumor-promoting roles of TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs), we determined the incidence of TNFR2+ TILs in TNBC patient tumors, their association with disease outcome and relations with PD-1+ TILs. Using a cohort of treatment-naïve TNBC patients with long follow-up (n = 70), we determined the presence of TNFR2+ TILs and PD-1+ TILs by immunohistochemistry. TILs (≥ 1% of cellular mass) and TNFR2+ TILs (≥ 1% of total TILs) were detected in 96% and 74% of tumors, respectively. The presence of TILs at > 5% of tumor cell mass ("Positive TILs"), as well as of positive TNFR2+ TILs (> 5%), was independently associated with good prognosis, and combination of both parameters demonstrated superior outcome relative to their lower levels. PD1+ TILs (> 5/hot spot) were detected in 63% of patients. High levels of PD-1+ TILs (> 20/hot spot) showed an unfavorable disease outcome, and in their presence, the favorable outcome of positive TNFR2+ TILs was ablated. Thus, TNFR2+ TILs are strongly connected to improved prognosis in TNBC; these findings suggest that TNFR2+ TILs have favorable effects in TNBC patients, unlike the tumor-promoting roles attributed to them in other cancer systems. Overall, our observations propose that the TNFR2+ TIL subset should not be targeted in the course of TNBC therapy; rather, its beneficial impacts may become into power when anti-PD-1 regimens-that may potentiate immune activities-are administered to TNBC patients.
Collapse
Affiliation(s)
- Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Daniela Necula
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Nino Oren
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tamir Baram
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Irina Marin
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Anya Pavlovski
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Liat Anafi
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Korner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Camila Avivi
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Bella Kaufman
- Breast Oncology Institute, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
2614
|
Farell M, Self A, Guza C, Song H, Apollon L, Gomez EW, Kumar M. Lipid-Functionalized Graphene Loaded with hMnSOD for Selective Inhibition of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12407-12416. [PMID: 32077682 DOI: 10.1021/acsami.9b20070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combination therapies utilize multiple mechanisms to target cancer cells to minimize cancer cell survival. Graphene provides an ideal platform for combination therapy due to its photothermal properties and high loading capacity for cancer-fighting molecules. Lipid functionalization of graphene extends its potential as a therapeutic platform by improving its biocompatibility and functionality. Previous studies involving graphene demonstrated its usage as a therapeutic vehicle; however, the effect of bare and engineered graphene structures on oxidative stress has not been comprehensively investigated. Because oxidative stress has been linked to cancer progression, it is vital to examine the generation of reactive oxygen species (ROS) in response to therapeutic platforms. This study functionalizes reduced graphene oxide (rGO) with lipids and the antioxidant enzyme human manganese superoxide dismutase (hMnSOD) and presents a detailed characterization of cellular responses to bare and functionalized rGO nanostructures in tumorigenic and nontumorigenic breast cell lines. Each cell type displayed distinct responses depending on whether they were normal, nonmetastatic, or metastatic cells. Bare rGO significantly reduced cell growth and substantially increased ROS production in all cell lines and instigated necrosis in metastatic breast cancer cells. Cell proliferation decreased in cancerous breast cells upon introduction of lipid-rGO, which correlated with peroxidation of lipids coating the rGO. In contrast, lipid-rGO nanostructures had minimal impact on proliferation and lipid peroxidation for normal breast cells. Lipid-rGO nanostructures with bound hMnSOD inhibited the proliferation of metastatic cancer cells while preventing necrosis and avoiding the negative side effects on normal cells associated with chemotherapeutic agents. Together, the results confirm the importance of functionalizing rGO for therapeutic applications and present an additional modality for the usage of graphene to selectively target cancer cells.
Collapse
Affiliation(s)
- Megan Farell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ava Self
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christine Guza
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hyewon Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Luigi Apollon
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2615
|
Lin P, Liu WK, Li X, Wan D, Qin H, Li Q, Chen G, He Y, Yang H. MRI-based radiogenomics analysis for predicting genetic alterations in oncogenic signalling pathways in invasive breast carcinoma. Clin Radiol 2020; 75:561.e1-561.e11. [PMID: 32183997 DOI: 10.1016/j.crad.2020.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 01/23/2023]
Abstract
AIM To investigate the effect of radiomics in the assessment of alterations in canonical cancer pathways in breast cancer. MATERIALS AND METHODS Eighty-eight biopsy-proven breast cancer cases were included in the present study. Radiomics features were extracted from T1-weighted sagittal dynamic contrast-enhanced magnetic resonance imaging (MRI) images. Radiomics signatures were developed to predict genetic alterations in the cell cycle, Myc, PI3K, RTK/RAS, and p53 signalling pathways by using hypothesis testing combined with least absolute shrinkage and selection operator (LASSO) regression analysis. The predictive powers of the models were examined by the area under the curve (AUC) of the receiver operating characteristic curve. RESULTS A total of 5,234 radiomics features were obtained from MRI images based on the tumour region of interest. Hypothesis tests screened 250, 229, 156, 785, and 319 radiomics features that were differentially displayed between cell cycle, Myc, PI3K, RTK/RAS, and p53 alterations and no alteration status. According to the LASSO algorithm, 11, 12, 12, 15, and 13 features were identified for the construction of the radiomics signatures to predict cell cycle, Myc, PI3K, RTK/RAS, and p53 alterations, with AUC values of 0.933, 0.926, 0.956, 0.940, and 0.886, respectively. The cell cycle radiomics score correlated closely with the RTK/RAS and p53 radiomics scores. These signatures were also dysregulated in patients with different oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 statuses. CONCLUSION MRI-based radiogenomics analysis exhibits excellent performance in predicting genetic pathways alterations, thus providing a novel approach for non-invasively obtaining genetic-level molecular characteristics of tumours.
Collapse
Affiliation(s)
- P Lin
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - W K Liu
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fu Jian 350000, China
| | - X Li
- GE Healthcare, Shanghai, China
| | - D Wan
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - H Qin
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Q Li
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - G Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Y He
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - H Yang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| |
Collapse
|
2616
|
Lin PH, Chiang YF, Shieh TM, Chen HY, Shih CK, Wang TH, Wang KL, Huang TC, Hong YH, Li SC, Hsia SM. Dietary Compound Isoliquiritigenin, an Antioxidant from Licorice, Suppresses Triple-Negative Breast Tumor Growth via Apoptotic Death Program Activation in Cell and Xenograft Animal Models. Antioxidants (Basel) 2020; 9:228. [PMID: 32164337 PMCID: PMC7139602 DOI: 10.3390/antiox9030228] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/16/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with triple-negative breast cancer have few therapeutic strategy options. In this study, we investigated the effect of isoliquiritigenin (ISL) on the proliferation of triple-negative breast cancer cells. We found that treatment with ISL inhibited triple-negative breast cancer cell line (MDA-MB-231) cell growth and increased cytotoxicity. ISL reduced cell cycle progression through the reduction of cyclin D1 protein expression and increased the sub-G1 phase population. The ISL-induced apoptotic cell population was observed by flow cytometry analysis. The expression of Bcl-2 protein was reduced by ISL treatment, whereas the Bax protein level increased; subsequently, the downstream signaling molecules caspase-3 and poly ADP-ribose polymerase (PARP) were activated. Moreover, ISL reduced the expression of total and phosphorylated mammalian target of rapamycin (mTOR), ULK1, and cathepsin B, whereas the expression of autophagic-associated proteins p62, Beclin1, and LC3 was increased. The decreased cathepsin B cause the p62 accumulation to induce caspase-8 mediated apoptosis. In vivo studies further showed that preventive treatment with ISL could inhibit breast cancer growth and induce apoptotic and autophagic-mediated apoptosis cell death. Taken together, ISL exerts an effect on the inhibition of triple-negative MDA-MB-231 breast cancer cell growth through autophagy-mediated apoptosis. Therefore, future studies of ISL as a supplement or alternative therapeutic agent for clinical trials against breast cancer are warranted.
Collapse
Affiliation(s)
- Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan 33305, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung City 20301, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (P.-H.L.); (Y.-F.C.); (H.-Y.C.); (C.-K.S.); (S.-C.L.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
2617
|
Bao Y, Zhang S, Chen Z, Chen AT, Ma J, Deng G, Xu W, Zhou J, Yu ZQ, Yao G, Chen J. Synergistic Chemotherapy for Breast Cancer and Breast Cancer Brain Metastases via Paclitaxel-Loaded Oleanolic Acid Nanoparticles. Mol Pharm 2020; 17:1343-1351. [DOI: 10.1021/acs.molpharmaceut.0c00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Youmei Bao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Zeming Chen
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Junning Ma
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Gang Deng
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Zhi-Qiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| |
Collapse
|
2618
|
Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol 2020; 11:366. [PMID: 32194569 PMCID: PMC7066228 DOI: 10.3389/fimmu.2020.00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) suffer an unfavorable prognosis. Carboplatin (CBDCA) as a cytotoxic reagent has been widely administered to patients with cancer including TNBC. Programmed cell death protein 1 (PD-1) is an immune checkpoint, blockade of which unleashes T cell functions that kill cancer cells. However, the efficacy of CBDCA combined with anti-PD-1 antibodies in TNBC has not been determined. Patient-derived xenografts (PDX) were implanted to immune-deficient mice. Three mouse TNBC cell lines (4T1, EMT6, and E0771) were seeded to immune-competent mice. Tumor volumes and survival rates were monitored. CBDCA and anti-PD-1 antibodies were administered by intra-peritoneal injection at designated time points. Total CD8+ T cells, memory CD8+ T cells, and CD103+ dendritic cells (DC) in the tumor were measured by flow cytometry. Tumor-specific CD8+ T cells were quantified by the ELISpot assay. Administration of CBDCA to PDX-bearing mice induced increased levels of tumor cell necrosis and reduced tumor size. Treatment with CBDCA and anti-PD-1 antibodies reduced TNBC tumor volumes and slightly improved survival rates. More importantly, therapy with CBDCA and anti-PD-1 antibodies before surgery showed a remarkably improved, sustainable protection against a secondary tumor after surgery by a CD8+- T-cell-dependent manner, which required CCL4 expressed in the tumor and subsequently CD103+ DC recruited to the tumor microenvironment. Immunochemotherapy with CBDCA and anti-PD-1 antibodies before surgery improves the outcome of a secondary tumor after surgery via increasing the number of tumor-specific CD8+ T cells in the tumor microenvironment of murine TNBC. These results highlight the possibility to utilize this regimen in clinical practice.
Collapse
Affiliation(s)
- Meizhuo Gao
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tie Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Litong Ji
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuping Bai
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lining Tian
- Department of Medical Education, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjiang Song
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2619
|
Day CM, Hickey SM, Song Y, Plush SE, Garg S. Novel Tamoxifen Nanoformulations for Improving Breast Cancer Treatment: Old Wine in New Bottles. Molecules 2020; 25:E1182. [PMID: 32151063 PMCID: PMC7179425 DOI: 10.3390/molecules25051182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of death from cancer in women; second only to lung cancer. Tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA for hormone therapy of BC. Despite having striking efficacy in BC therapy, concerns regarding the dose-dependent carcinogenicity of TAM still persist, restricting its therapeutic applications. Nanotechnology has emerged as one of the most important strategies to solve the issue of TAM toxicity, owing to the ability of nano-enabled-formulations to deliver smaller concentrations of TAM to cancer cells, over a longer period of time. Various TAM-containing-nanosystems have been successfully fabricated to selectively deliver TAM to specific molecular targets found on tumour membranes, reducing unwanted toxic effects. This review begins with an outline of breast cancer, the current treatment options and a history of how TAM has been used as a combatant of BC. A detailed discussion of various nanoformulation strategies used to deliver lower doses of TAM selectively to breast tumours will then follow. Finally, a commentary on future perspectives of TAM being employed as a targeting vector, to guide the delivery of other therapeutic and diagnostic agents selectively to breast tumours will be presented.
Collapse
Affiliation(s)
- Candace M. Day
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Shane M. Hickey
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Sally E. Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
- Future Industry Institute, University of South Australia, 5095 Mawson Lakes, SA, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
- Future Industry Institute, University of South Australia, 5095 Mawson Lakes, SA, Australia
| |
Collapse
|
2620
|
Zheng S, Yang L, Zou Y, Liang JY, Liu P, Gao G, Yang A, Tang H, Xie X. Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer. J Hematol Oncol 2020; 13:17. [PMID: 32138762 PMCID: PMC7059688 DOI: 10.1186/s13045-020-00852-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with highly invasive ability and metastatic nature to the lymph nodes. Long non-coding RNAs (lncRNAs) have been widely explored in cancer tumorigenesis and progression. However, their roles in TNBC lymph node metastasis remains rarely studied. METHODS The expression of lncRNA highly upregulated in metastatic TNBC (HUMT) in cell lines and tissues was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). RNA immunoprecipitation (RIP) and RNA pulldown were used to verify the interaction between lncRNA and protein. Chromatin immunoprecipitation (CHIP) and dCas9-gRNA-guided chromatin immunoprecipitation (dCas9-CHIP) were conducted to identify the specific binding site of HUMT-YBX1 complex. Western blot was used to detect the downstream of HUMT. RESULTS HUMT was significantly upregulated in lymph node invasive cells and predicted poorer clinical prognosis. Functional study indicated that HUMT promoted lymphangiogenesis and lymph node metastasis. Bioinformatic analysis and qRT-PCR showed that the high expression of HUMT was correlated with the hypomethylation status of its promoter region. Further, HUMT recruited Y-box binding protein 1 (YBX1) to form a novel transcription complex and activated the expression of forkhead box k1 (FOXK1), thus enhancing the expression of vascular endothelial growth factor C (VEGFC). The therapeutic value was further validated in patient-derived xenograft (PDX) models, and a combined marker panel exhibited a better prognostic value for TNBC in receiver operating characteristic (ROC) analysis. CONCLUSIONS Our study identified a novel TNBC lymph node metastasis-associated lncRNA, which promoted TNBC progression and indicated a novel biomarker and potential therapeutic target for TNBC lymph node metastasis.
Collapse
Affiliation(s)
- Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Jie-ying Liang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 Guangdong China
| |
Collapse
|
2621
|
Aloe-Emodin Induces Breast Tumor Cell Apoptosis through Upregulation of miR-15a/miR-16-1 That Suppresses BCL2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5108298. [PMID: 32190086 PMCID: PMC7073502 DOI: 10.1155/2020/5108298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Aloe-emodin (AE) is a natural compound derived from aloe vera and palmatum rhubarb and shows anticancer activities in various cancers. Bcl-2 family is the main regulator of cell death or cell survival. This study describes the effects of AE on proliferation of breast tumor (BT) cells. METHODS MCF-10A, MCF-10AT, MCF-7, and MDA-MB-231 cell lines were exposed to AE. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Protein levels were measured by Western blotting. The levels of mRNA and miRNA were examined by RT-PCR. Bioinformatics was applied to screen miRNAs that bind to 3'-UTR of mRNA. RESULTS The results showed that AE selective activity inhibited the proliferation and induced apoptosis of MCF-10AT and MCF-7 cells but exhibited no significant inhibition in MCF10A and MDA-MB-231 cells. Mechanistically, AE dose-dependently decreased the protein expression of Bcl-2 and Bcl-xl, while it increased Bax protein expression in MCF-10AT and MCF-7 cells. The levels of Bcl-xl and Bax mRNA were altered by AE treatment, which was consistent with the protein expression results. However, Bcl-2 mRNA levels were not affected in either cell line, suggesting that AE may modulate the protein translation of Bcl-2 through miRNAs. In all candidate miRNAs that bind to 3'-UTR of Bcl-2, miR-15a and miR-16-1 were dose-dependently downregulated by AE. Moreover, inhibition of miR-15a/16-1 could eliminate the inhibition of MCF-10AT and MCF-7 cells growth by AE and could reverse the downregulation of AE-induced Bcl-2 protein level. CONCLUSION Our research provides an important basis that AE induces BT cell apoptosis through upregulation of miR-15a/miR-16-1 that suppresses BCL2.
Collapse
|
2622
|
Li Y, Gong C, Lu Q, Zhou Z, Luo T, Li W, Li G, Ge R, Xu F, Wang B. Real-World Data of Triplet Combination of Trastuzumab, Lapatinib, and Chemotherapy in HER2-Positive Metastatic Breast Cancer: A Multicenter Retrospective Study. Front Oncol 2020; 10:271. [PMID: 32195186 PMCID: PMC7062863 DOI: 10.3389/fonc.2020.00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/17/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction: Combination of trastuzumab (T) and lapatinib (L) has been showed to significantly improve the prognosis of HER2+ heavily pretreated metastatic breast cancer (MBC). Whether TL combined chemotherapy (TLC) can further improve the efficacy in HER2+ MBC remains to be further studied. The aim of the study was to report the first real-world data of TLC in HER2+ MBC, including the efficacy, safety and treatment patterns. Methods: Patients with HER2+ MBC treated with TLC in 5 institutions of China from September 2013 to July 2019 were included. Progression free survival (PFS), objective response rate (ORR), overall survival (OS), toxicity profile and treatment pattern were reported. Results: A total of 285 patients were included. 88.8% were exposed to trastuzumab and 49.2% received 2 or more lines of systematic therapy before TLC previously. The most common chemotherapy regimens combined with TL were capecitabine (40.7%) and vinorelbine (21.4%) and almost 1/3 received maintenance treatment after TLC. Median PFS was 10.9 months while patients received TLC as first line treatment showed longest median PFS of 20.7 months. Patients pretreated with trastuzumab showed a median PFS of 10.2 months. In patients who pretreated with trastuzumab, the continuation of trastuzumab on the basis of standard lapatinib plus capecitabine had a median PFS of 11.3 months. TL combined with capecitabine or vinorelbine showed no significant difference in median PFS, though TL combined with capecitabine had numerically prolongation (11.4 vs. 8.5 months, p = 0.231). Patients had brain metastasis (BM) also showed a median PFS (intracranial and extracranial lesions considered) of 10.6 months. Lines of systematic metastatic treatment was an independent predictive factor of PFS. The median OS was not reached. Two hundred and seventy seven patients were included in ORR analysis. ORR was 42.6%. Toxicities of triplet combinations were tolerable and the most common grade 3 and 4 adverse events were neutropenia (16.8%). Conclusions: TLC demonstrated promising effects and tolerable safety in HER2+MBC, even in patients with BM, providing a theoretical basis for clinical practice. Clinical Trial Registration:ClinicalTrials.gov, Identifier: NCT04001634.
Collapse
Affiliation(s)
- Yi Li
- Department of Medical Oncology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengcheng Gong
- Department of Medical Oncology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianyi Lu
- The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhaochun Zhou
- Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Ting Luo
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Medical Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Gang Li
- Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Rui Ge
- Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fei Xu
- The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Biyun Wang
- Department of Medical Oncology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2623
|
Galam N, Tulay P, Adali T. In Vitro MCF-7 Cells Apoptosis Analysis of Carboplatin Loaded Silk Fibroin Particles. Molecules 2020; 25:E1110. [PMID: 32131498 PMCID: PMC7179122 DOI: 10.3390/molecules25051110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023] Open
Abstract
Breast cancer ranks as the fifth leading cause of death worldwide. Chemotherapy is commonly used directly or as neo-adjuvant therapy for the management of breast cancer with its attendant adverse effects, underscoring the need to develop biocompatible bioactive compounds for pharmacological applications. The aim of this study is to encapsulate carboplatin (CP) with silk fibroin protein (SF) by using an ionic gelation method as a drug carrier system and assess the apoptotic effect on MCF-7 breast cancer cells during in vitro studies. The characterization of silk fibroin encapsulated carboplatin (SFCP) microparticles was analyzed by FTIR spectrophotometer, SEM, Mastersizer, and biodegradation methods. The encapsulation efficiency and release profile of SFCP microparticles were analyzed by an indirect UV-Vis spectrophotometric method. An apoptotic screening of MCF-7 cells was carried out with 10-200 µg/mL CP loaded SFCP, which were cultured for 24, 48, and 72 h. Data were analyzed using the Student's t test and analysis of variance. FTIR and drug release studies confirmed an interaction of silk fibroin with the carboplatin moiety. SFCP showed successful encapsulation of the carboplatin moiety. Apoptotic screening showed a dose dependent increase in absorbance, indicating significant cell death (p < 0.05). Thus, the direct apoptotic effect of SFCP microparticles on MCF-7 was confirmed.
Collapse
Affiliation(s)
- Nanyak Galam
- Tissue Engineering and Biomaterials Research Center, Near East University, P.O. Box 99138 North Cyprus, 10 99138 Mersin, Turkey;
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box 99138 North Cyprus, 10 99138 Mersin, Turkey
| | - Pinar Tulay
- DESAM Institute, Near East University, P.O. Box 99138 North Cyprus, 10 99138 Mersin, Turkey;
- Department of Medical Genetics, Faculty of Medicine, Near East University, P.O. Box 99138 North Cyprus, 10 99138 Mersin, Turkey
| | - Terin Adali
- Tissue Engineering and Biomaterials Research Center, Near East University, P.O. Box 99138 North Cyprus, 10 99138 Mersin, Turkey;
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box 99138 North Cyprus, 10 99138 Mersin, Turkey
| |
Collapse
|
2624
|
Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera LA, Díaz-Chávez J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front Oncol 2020; 10:220. [PMID: 32175277 PMCID: PMC7056883 DOI: 10.3389/fonc.2020.00220] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of vascular channels lacking endothelial cells. These channels are lined by tumor cells with cancer stem cell features, positive for periodic acid-Schiff, and negative for CD31 staining. The term VM was introduced by Maniotis et al. (1), who reported this phenomenon in highly aggressive uveal melanomas; since then, VM has been associated with poor prognosis, tumor aggressiveness, metastasis, and drug resistance in several tumors, including breast cancer. It is proposed that VM and angiogenesis (the de novo formation of blood vessels from the established vasculature by endothelial cells, which is observed in several tumors) rely on some common mechanisms. Furthermore, it is also suggested that VM could constitute a means to circumvent anti-angiogenic treatment in cancer. Therefore, it is important to determinant the factors that dictate the onset of VM. In this review, we describe the current understanding of VM formation in breast cancer, including specific signaling pathways, and cancer stem cells. In addition, we discuss the clinical significance of VM in prognosis and new opportunities of VM as a target for breast cancer therapy.
Collapse
Affiliation(s)
- Marco A Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| |
Collapse
|
2625
|
Cannabinoids and Hormone Receptor-Positive Breast Cancer Treatment. Cancers (Basel) 2020; 12:cancers12030525. [PMID: 32106399 PMCID: PMC7139952 DOI: 10.3390/cancers12030525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. Approximately 70–80% of BCs express estrogen receptors (ER), which predict the response to endocrine therapy (ET), and are therefore hormone receptor-positive (HR+). Endogenous cannabinoids together with cannabinoid receptor 1 and 2 (CB1, CB2) constitute the basis of the endocannabinoid system. Interactions of cannabinoids with hypothalamic–pituitary–gonadal axis hormones are well documented, and two studies found a positive correlation between peak plasma endogenous cannabinoid anandamide with peak plasma 17β-estradiol, luteinizing hormone and follicle-stimulating hormone levels at ovulation in healthy premenopausal women. Do cannabinoids have an effect on HR+ BC? In this paper we review known and possible interactions between cannabinoids and specific HR+ BC treatments. In preclinical studies, CB1 and CB2 agonists (i.e., anandamide, THC) have been shown to inhibit the proliferation of ER positive BC cell lines. There is less evidence for antitumor cannabinoid action in HR+ BC in animal models and there are no clinical trials exploring the effects of cannabinoids on HR+ BC treatment outcomes. Two studies have shown that tamoxifen and several other selective estrogen receptor modulators (SERM) can act as inverse agonists on CB1 and CB2, an interaction with possible clinical consequences. In addition, cannabinoid action could interact with other commonly used endocrine and targeted therapies used in the treatment of HR+ BC.
Collapse
|
2626
|
Han C, Fu Y, Zeng N, Yin J, Li Q. LncRNA FAM83H-AS1 promotes triple-negative breast cancer progression by regulating the miR-136-5p/metadherin axis. Aging (Albany NY) 2020; 12:3594-3616. [PMID: 32074085 PMCID: PMC7066879 DOI: 10.18632/aging.102832] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the function and regulation of the long non-coding RNA (lncRNA) FAM83H-AS1 in triple-negative breast cancer (TNBC). Our data show that the FAM83H-AS1 levels are increased in human TNBC cells and tissues. Proliferation, migration, and invasion of TNBC cells are decreased by FAM83H-AS1 suppression, but increased by FAM83H-AS1 overexpression. Bioinformatics analysis revealed that miR-136-5p is a potential target of FAM83H-AS1. MiR-136-5p expression is decreased in TNBC tissues, and its overexpression suppresses TNBC cell proliferation, migration, and invasion. MiR-136-5p suppression reverses the FAM83H-AS1 silencing-mediated inhibition of TNBC cell proliferation, migration, and invasion, suggesting that FAM83H-AS1 exerts its oncogenic effect by inhibiting miR-136-5p. Our data identify metadherin (MTDH) as the target gene of miR-136-5p, and demonstrate that the MTDH expression is increased in human TNBC tissues, which induces proliferation, migration, and invasion of TNBC cells. Importantly, our in vivo data show that FAM83H-AS1 also promotes tumor growth in TNBC mouse xenografts. Together, our results demonstrate that FAM83H-AS1 functions as an oncogenic lncRNA that regulates miR-136-5p and MTDH expression during TNBC progression, and suggest that targeting the FAM83H-AS1/miR-136-5p/MTDH axis may serve as a novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Chunyong Han
- Department of Breast Reconstruction, The Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yiwei Fu
- Department of Cell Biology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Ni Zeng
- Department of Respiratory, Tianjin Fifth Central Hospital, Tianjin 300457, China
| | - Jian Yin
- Department of Breast Reconstruction, The Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.,Department of Cell Biology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2627
|
Comparison of round smooth and shaped micro-textured implants in terms of quality of life and aesthetic outcomes in women undergoing breast reconstruction: a single-centre prospective study. Updates Surg 2020; 72:537-546. [PMID: 32062785 DOI: 10.1007/s13304-020-00721-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequent cancer among women, impacting 2.1 million women each year and having caused 627,000 deaths in 2018. In Italy, BC represents the first cancer diagnosis with 53,000 new cases in 2019 and the first cause of mortality for cancer among the female population. Breast implants represent the first reconstructive choice after mastectomy: in Italy, 411,000 prostheses have been implanted since 2010 and more than 95% of them are macro-texturized. The attempt to reduce complications such as capsular contracture, rotation and rupture of the prosthesis and the most recent BIA-ALCL association with macro-texturized implants have led to the development of new materials and the refinement of implants' coating techniques. We carried out a 1-year prospective single-centre study to evaluate patient-reported quality of life (QoL) and aesthetic outcomes after breast reconstructive surgery using two different prostheses: shaped micro-textured implants and round smooth implants. We treated 62 patients with radical or conservative mastectomy followed by reconstructive surgery performed with 44 shaped implants and 48 round implants. Quality of life evaluated through the Breast-Q®-questionnaire showed high scores of psycho-social well being in both groups, as well as pre- and post-operative aesthetic satisfaction and physical well being. Round smooth implants appear to be better in terms of softness, volume and less association with rippling, whereas shaped micro-textured implants prove to be better in the profile delineation. This study confirms the potentialities of both shaped micro-textured and round smooth implants in reconstructive surgery.
Collapse
|
2628
|
First-line endocrine therapy for postmenopausal patients with hormone receptor-positive, HER2-negative metastatic breast cancer: a systematic review and meta-analysis. Breast Cancer 2020; 27:340-346. [PMID: 32043218 PMCID: PMC7196086 DOI: 10.1007/s12282-020-01054-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Background In establishing the 2018 Breast Cancer Practice Guidelines of the Japan Breast Cancer Society, we explored the optimal first-line endocrine therapy for advanced postmenopausal hormone receptor-positive breast cancer. Methods We performed a systematic review of relevant reports from randomized-controlled studies published prior to November 2016 found using medical journal search engines. The main outcomes which we evaluated were progression-free survival (PFS), objective response rate (ORR), disease control rate (CBR), and toxicity. Results Four controlled trials comparing aromatase inhibitors (AI) and cyclin-dependent kinase (CDK)4/6 inhibitor combination therapy to AI monotherapy, and two controlled trials comparing anastrozole to fulvestrant 500 mg were analyzed. AI/CDK4/6 inhibitor combination therapy significantly improved PFS (Risk Ratio: 0.67, 95%CI 0.60–0.73), increased ORR (Risk Difference: 0.11, 95% CI 0.07–0.16), and increased CBR (Risk Difference: 0.11, 95% CI 0.07–0.15), compared with AI monotherapy. Patients who received this combination therapy had a higher grade ≥ 3 adverse event rate more than those who received AI monotherapy (Risk Difference: 43%, 95%CI: 0.39–0.47). Fulvestrant 500 mg alone significantly improved PFS (risk ratio: 0.85, 95%CI 0.72–0.98), but ORR and CBR were similar to those of anastrozole alone. Conclusion In the first-line treatment for advanced postmenopausal hormone receptor-positive breast cancer, a combination therapy of CDK4/6 inhibitors and AI showed significant improvement of PFS, ORR, and CBR but with significant increased toxicities compared with AI alone. Fulvestrant 500 mg monotherapy significantly prolonged PFS compared with AI monotherapy. We must wait for the results of the studies with longer follow-up period.
Collapse
|
2629
|
Zhao D, Jiang M, Zhang X, Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Mol Med 2020; 26:20. [PMID: 32041519 PMCID: PMC7011243 DOI: 10.1186/s10020-020-0146-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of tyrosine kinase inhibitors (TKIs) has changed the current treatment paradigm and achieved good results in recent decades. However, an increasing number of studies have indicated that the complex network of receptor tyrosine kinase (RTK) co-activation could influence the characteristic phenotypes of cancer and the tumor response to targeted treatments. One of strategies to blocking RTK co-activation is targeting the downstream factors of RTK, such as PI3K-AKT-mTOR pathway. RICTOR, a core component of mTORC2, acts as a key effector molecule of the PI3K-AKT pathway; its amplification is often associated with poor clinical outcomes and resistance to TKIs. Here, we discuss the biology of RICTOR in tumor and the prospects of targeting RICTOR as a complementary therapy to inhibit RTK co-activation.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Man Jiang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China.
| |
Collapse
|
2630
|
Gao W, Lin L, Fei X, Chen X, Shen K. Decision-making of Adjuvant Chemotherapy for Breast Cancer Patients with Discordant Risk Classifications between Clinical-Pathological Factors and 21-gene Recurrence Score. J Cancer 2020; 11:2509-2517. [PMID: 32201521 PMCID: PMC7066016 DOI: 10.7150/jca.38976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Clinical-pathological factors and 21-gene recurrence score (RS) influence adjuvant chemotherapy (ACT) decision for early breast cancer patients. We investigated the decision-making of ACT in patients with discordant risk classifications of clinical-pathological factors and RS. Methods: Patients with hormonal receptor (HR)+/ human epidermal growth factor receptor 2 (HER2)-, early breast cancer, who underwent 21-gene RS testing were identified from Ruijin Hospital (RJBC) and the Surveillance, Epidemiology, and End Results (SEER) database. According to Adjuvant! Online and RS (≤25 or >25), discordant risk classifications were defined as: clinical low-risk/ RS high-risk (C-low/ RS-high) and clinical high-risk/ RS low-risk (C-high/RS-low). McNemar's test was used to assess the changes between pre- and post-RS recommendations. Breast cancer-specific survival (BCSS) was estimated using the Kaplan-Meier methods. Results: Among 727 RJBC patients, the C-low/RS-high group and the C-high/RS-low group represented 19.7% and 21.3% of the cohort. After receiving 21-gene RS results, treatment recommendations were changed for 22.1% patients with discordant risk classifications: ACT rate increased from 41.9% to 75.5% in the C-low/RS-high group and decreased from 63.9% to 60.0% in the C-high/RS-low group. Among 2958 patients from the SEER cohort, 18.4% of the C-high/RS-low group and 59.2% of the C-low/RS-high group received ACT. There was no significant difference in the estimated 3-year BCSS between ACT or not among the C-low/RS-high group (p=0.708) and the C-high/RS-low groups (p=0.391). Conclusion: For patients with discordant risk classifications, physicians were apt to adopt the 21-gene RS rather than routine clinical-pathological factors to guide ACT selection.
Collapse
Affiliation(s)
- Weiqi Gao
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lin Lin
- Department of clinical laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiaochun Fei
- Department of pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2631
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
2632
|
Shahbandi A, Nguyen HD, Jackson JG. TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends Cancer 2020; 6:98-110. [PMID: 32061310 PMCID: PMC7931175 DOI: 10.1016/j.trecan.2020.01.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
TP53 is the most frequently mutated gene in breast cancer, but its role in survival is confounded by different studies concluding that TP53 mutations are associated with negative, neutral, or positive outcomes. Closer examination showed that many studies were limited by factors such as imprecise methods to detect TP53 mutations and small cohorts that combined patients treated with drugs having very different mechanisms of action. When only studies of patients receiving the same treatment(s) were compared, they tended to agree. These analyses reveal a role for TP53 in response to different treatments as complex as its different biological activities. We discuss studies that have assessed the role of TP53 mutations in breast cancer treatment and limitations in interpreting reported results.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA
| | - Hoang D Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA
| | - James G Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA.
| |
Collapse
|
2633
|
Chou WC, Hsiung CN, Chen WT, Tseng LM, Wang HC, Chu HW, Hou MF, Yu JC, Shen CY. A functional variant near XCL1 gene improves breast cancer survival via promoting cancer immunity. Int J Cancer 2020; 146:2182-2193. [PMID: 31904872 DOI: 10.1002/ijc.32855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Most genome-wide association studies (GWASs) identify genetic variants for breast cancer occurrence. In contrast, few are for recurrence and mortality. We conducted a GWAS on breast cancer survival after diagnosis in estrogen receptor-positive patients, including 953 Taiwanese patients with 159 events. Through Cox proportional hazard models estimation, we identified 24 risk SNPs with p < 1 × 10-5 . Based on imputation and integrated analysis, one SNP, rs1024176 (located in 1q24.2, p = 2.43 × 10-5 ) was found to be a functional variant associated with breast cancer survival and XCL1 gene expression. A series of experimental approaches, including cell-based analyses and CRISPR/Cas9 genome-editing system, were then used and identified the transcription factor MYBL2 was able to discriminately bind to the A allele of rs1024176, the protective variant for breast cancer survival, which promoted XCL1 expression, but not to the G allele of rs1024176. The chemokine XCL1 attracts type 1 dendritic cells (DC1s) to the tumor microenvironment. In breast cancer tissues, we applied a two-step Mendelian randomization analysis, using expression quantitative trait loci as instrumental variables, to confirm higher XCL1 expression was correlated with higher DC1 signatures and favorable disease progression, through the causal effect of rs1024176-A allele. Our study supports the genetic effect on preventing breast cancer survival through XCL1-induced DC1 recruitment in tumor microenvironment.
Collapse
Affiliation(s)
- Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
2634
|
Xiong H, Shen J, Chen Z, Yang J, Xie B, Jia Y, Jayasinghe U, Wang J, Zhao W, Xie S, Wang L, Zhou J. H19/let‑7/Lin28 ceRNA network mediates autophagy inhibiting epithelial‑mesenchymal transition in breast cancer. Int J Oncol 2020; 56:794-806. [PMID: 32124962 DOI: 10.3892/ijo.2020.4967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 11/06/2022] Open
Abstract
Long non‑coding RNA (lncRNA) H19 and Lin28 protein have been shown to participate in various pathophysiological processes, including cellular proliferation, autophagy and epithelial‑mesenchymal transition (EMT). A number of studies have investigated lncRNAs, microRNAs and mRNAs, and their roles in the initiation and progression of cancer, in doing so identifying competitive endogenous RNA (ceRNA) networks, including the H19/let‑7/Lin28 network. However, whether the H19/let‑7/Lin28 ceRNA network is involved in autophagy and EMT in breast cancer (BC) remains unclear. The present study demonstrated that the H19/let‑7/Lin28 loop was required for the downregulation of autophagy in BC cells via western blot analysis, reverse transcription‑quantitative PCR and autophagy flux monitoring. Using wound healing, migration and invasion assays, and morphological assays, the H19/let‑7/Lin28 loop was revealed to promote EMT in BC cells. Moreover, the H19/let‑7/Lin28 network was found to contribute to autophagy by inhibiting EMT in BC cells. To the best of our knowledge, the present study is the first to suggest the important roles of the H19/let‑7/Lin28 ceRNA network in BC autophagy and EMT, thus providing insight for the use of these molecules as prognostic biomarkers and therapeutic targets in BC metastasis.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jianguo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zihan Chen
- Department of Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bojian Xie
- Department of Surgical Oncology, Taizhou Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ushani Jayasinghe
- Department of Surgical Oncology, Rhode Island Hospital, Brown University, Providence, RI 02912, USA
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuduo Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
2635
|
Mahjoubin-Tehran M, Rezaei S, Jalili A, Aghaee-Bakhtiari SH, Orafai HM, Jamialahmadi T, Sahebkar A. Peptide decoys: a new technology offering therapeutic opportunities for breast cancer. Drug Discov Today 2020; 25:593-598. [PMID: 31978387 DOI: 10.1016/j.drudis.2020.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common cancer among women. Absence of hormone receptors (estrogen and progesterone) and lack of overexpression of Human Epidermal Growth Factor 2 (HER2) make triple-negative breast cancer (TNBC) an aggressive subtype of breast cancer that is resistant to conventional therapies. Peptide decoys have emerged as a novel therapeutic approach for the treatment of breast cancer. Decoy peptide technology entails the use of soluble proteins or peptides, including binding proteins or inactive cell surface receptors. Peptide decoys bind to certain ligands (e.g., inflammatory cytokines) with high affinity and specificity as receptors but cannot initiate any signaling pathway that is involved in the pathogenesis of breast cancer. In this review, we discuss the use of decoy peptides as a novel therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq; Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2636
|
Metalloporphyrin Pd(T4) Exhibits Oncolytic Activity and Cumulative Effects with 5-ALA Photodynamic Treatment against C918 Cells. Int J Mol Sci 2020; 21:ijms21020669. [PMID: 31968535 PMCID: PMC7013453 DOI: 10.3390/ijms21020669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy is a non-invasive method where light activates a photosensitizer bound to cancer cells, generating reactive oxygen species and resulting in cell death. This study assessed the oncolytic potential of photodynamic therapy, comparing European Medicines Agency and United States Food and Drug Administration-approved 5-aminolevulinic acid (5-ALA) to a metalloporphyrin, Pd(T4), against a highly invasive uveal melanoma cell line (C918) in two- and three-dimensional models in vitro. Epithelial monolayer studies displayed strong oncolytic effects (>70%) when utilizing Pd(T4) at a fraction of the concentration, and reduced pre-illumination time compared to 5-ALA post-405 nm irradiance. When analyzed at sub-optimal concentrations, application of Pd(T4) and 5-ALA with 405 nm displayed cumulative effects. Lethality from Pd(T4)-photodynamic therapy was maintained within a three-dimensional model, including the more resilient vasculogenic mimicry-forming cells, though at lower rates. At high concentrations, modality of cell death exhibited necrosis partially dependent on reactive oxygen species. However, sub-optimal concentrations of photosensitizer exhibited an apoptotic protein expression profile characterized by increased Bax/Bcl-2 ratio and endoplasmic stress-related proteins, along with downregulation of apoptotic inhibitors CIAP-1 and -2. Together, our results indicate Pd(T4) as a strong photosensitizer alone and in combination with 5-ALA against C918 cells.
Collapse
|
2637
|
Malmgren JA, Calip GS, Atwood MK, Mayer M, Kaplan HG. Metastatic breast cancer survival improvement restricted by regional disparity: Surveillance, Epidemiology, and End Results and institutional analysis: 1990 to 2011. Cancer 2020; 126:390-399. [PMID: 31639221 PMCID: PMC7004046 DOI: 10.1002/cncr.32531] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND The extent of breast cancer outcome disparity can be measured by comparing Surveillance, Epidemiology, and End Results (SEER) breast cancer-specific survival (BCSS) by region and with institutional cohort (IC) rates. METHODS Patients who were diagnosed with a first primary, de novo, stage IV breast cancer at ages 25 to 84 years from 1990 to 2011 were studied. The change in 5-year BCSS over time from 1990 to 2011 was compared using the SEER 9 registries (SEER 9) without the Seattle-Puget Sound (S-PS) region (n = 12,121), the S-PS region alone (n = 1931), and the S-PS region IC (n = 261). The IC BCSS endpoint was breast cancer death confirmed from chart and/or death certificate and cause-specific survival for SEER registries. BCSS was estimated using the Kaplan-Meier method. Hazard ratios (HzR) were calculated using Cox proportional-hazards models. RESULTS For SEER 9 without the S-PS region, 5-year BCSS improved 7% (from 19% to 26%) over time, it improved 14% for the S-PS region (21% to 35%), and it improved 27% for the S-PS IC (29% to 56%). In the IC Cox proportional-hazards model, recent diagnosis year, chemotherapy, surgery, and age <70 years were associated with better survival. For SEER 9, additional significant factors were white race and positive hormone receptor status and S-PS region was associated with better survival (HzR, 0.87; 95% CI, 0.84-0.90). In an adjusted model, hazard of BC death decreased in the most recent time period (2005-2011) by 28% in SEER 9 without S-PS, 43% in the S-PS region and 45% in the IC (HzR, 0.72 [95% CI, 0.67-0.76], 0.57 [95% CI, 0.49-0.66], and 0.55 [95% CI, 0.39-0.78], respectively). CONCLUSIONS Over 2 decades, the survival of patients with metastatic breast cancer improved nationally, but with regional survival disparity and differential improvement. To achieve equitable outcomes, access and treatment approaches will need to be identified and adopted.
Collapse
Affiliation(s)
- Judith A. Malmgren
- HealthStat Consulting, Inc.SeattleWashington
- Department of EpidemiologyUniversity of WashingtonSeattleWashington
| | - Gregory S. Calip
- Center for Pharmacoepidemiology and Pharmacoeconomic ResearchUniversity of Illinois at ChicagoChicagoIllinois
| | | | - Musa Mayer
- Metastatic Breast Cancer AllianceNew YorkNew York
| | | |
Collapse
|
2638
|
Reggiani F, Gobbi G, Ciarrocchi A, Ambrosetti DC, Sancisi V. Multiple roles and context-specific mechanisms underlying YAP and TAZ-mediated resistance to anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1873:188341. [PMID: 31931113 DOI: 10.1016/j.bbcan.2020.188341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Understanding the molecular mechanisms driving resistance to anti-cancer drugs is both a crucial step to define markers of response to therapy and a clinical need in many cancer settings. YAP and TAZ transcriptional cofactors behave as oncogenes in different cancer types. Deregulation of YAP/TAZ expression or alterations in components of the multiple signaling pathways converging on these factors are important mechanisms of resistance to chemotherapy, target therapy and hormone therapy. Moreover, response to immunotherapy may also be affected by YAP/TAZ activities in both tumor and microenvironment cells. For these reasons, various compounds inhibiting YAP/TAZ function by different direct and indirect mechanisms have been proposed as a mean to counter-act drug resistance in cancer. A particularly promising approach may be to simultaneously target both YAP/TAZ expression and their transcriptional activity through BET inhibitors.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
2639
|
Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine (Rij) 2020; 7:1849543520983196. [PMID: 33488814 PMCID: PMC7768851 DOI: 10.1177/1849543520983196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, approximately 1 in 4 cancers in women are diagnosed as breast cancer (BC). Despite significant advances in the diagnosis and therapy BCs, many patients develop metastases or relapses. Hence, novel therapeutic strategies are required, that can selectively and efficiently kill malignant cells. Direct targeting of the genetic and epigenetic aberrations that occur in BC development is a promising strategy to overcome the limitations of current therapies, which target the tumour phenotype. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, composed of only an easily modifiable single guide RNA (sgRNA) sequence bound to a Cas9 nuclease, has revolutionised genome editing due to its simplicity and efficiency compared to earlier systems. CRISPR/Cas9 and its associated catalytically inactivated dCas9 variants facilitate the knockout of overexpressed genes, correction of mutations in inactivated genes, and reprogramming of the epigenetic landscape to impair BC growth. To achieve efficient genome editing in vivo, a vector is required to deliver the components to target cells. Gold nanomaterials, including gold nanoparticles and nanoclusters, display many advantageous characteristics that have facilitated their widespread use in theranostics, as delivery vehicles, and imaging and photothermal agents. This review highlights the therapeutic applications of CRISPR/Cas9 in treating BCs, and briefly describes gold nanomaterials and their potential in CRISPR/Cas9 delivery.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
2640
|
Fantacuzzi M, De Filippis B, Gallorini M, Ammazzalorso A, Giampietro L, Maccallini C, Aturki Z, Donati E, Ibrahim RS, Shawky E, Cataldi A, Amoroso R. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur J Med Chem 2020; 185:111815. [DOI: 10.1016/j.ejmech.2019.111815] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
|
2641
|
Afshari H, Nourbakhsh M, Salehi N, Mahboubi-Rabbani M, Zarghi A, Noori S. STAT3-mediated Apoptotic-enhancing Function of Sclareol Against Breast Cancer Cells and Cell Sensitization to Cyclophosphamide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:398-412. [PMID: 32922496 PMCID: PMC7462487 DOI: 10.22037/ijpr.2020.112587.13843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sclareol is an organic compound with potential anti-tumor effects against various cancer types. However, its precise molecular mechanism in the suppression of tumor growth has not been fully elucidated. In the present study, the anti-proliferative and apoptosis-inducing effects of sclareol with cyclophosphamide were investigated in breast cancer cells and the involvement of the JAK/STAT pathway was evaluated. For this purpose, MCF-7 breast cancer cells were cultured and treated with various concentrations of sclareol to determine its IC50. Cell viability was measured by MTT assay and apoptosis was assessed by flow cytometric analysis of annexin V binding. Gene and protein expression were examined by real-time PCR and Western blotting, respectively. The activity of caspase enzymes was also measured. The results showed that sclareol significantly reduced cell viability and triggered cell death and its co-administration with cyclophosphamide enhanced its anti-cancer properties. Additionally, sclareol up-regulated the expression of p53 and BAX and reduced the expression of Bcl-2. Docking studies indicated an interaction between sclareol and STAT3 which was proved by attenuation of STAT3 phosphorylation after treatment of the cells with sclareol. Sclareol was also capable of suppressing the function of IL-6 in modulating the expression of apoptosis-associated genes. Altogether these data suggest the potential of sclareol as an anti-cancer agent and demonstrate that a combination of sclareol with cyclophosphamide might serve as an effective chemotherapeutic approach resulting in improvements in the treatment of breast cancer.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Salehi
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2642
|
Grimm LJ, Mazurowski MA. Breast Cancer Radiogenomics: Current Status and Future Directions. Acad Radiol 2020; 27:39-46. [PMID: 31818385 DOI: 10.1016/j.acra.2019.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
Radiogenomics is an area of research that aims to identify associations between imaging phenotypes ("radio-") and tumor genome ("-genomics"). Breast cancer radiogenomics research in particular has been an especially prolific area of investigation in recent years as evidenced by the wide number and variety of publications and conferences presentations. To date, research has primarily been focused on dynamic contrast enhanced pre-operative breast MRI and breast cancer molecular subtypes, but investigations have extended to all breast imaging modalities as well as multiple additional genetic markers including those that are commercially available. Furthermore, both human and computer-extracted features as well as deep learning techniques have been explored. This review will summarize the specific imaging modalities used in radiogenomics analysis, describe the methods of extracting imaging features, and present the types of genomics, molecular, and related information used for analysis. Finally, the limitations and future directions of breast cancer radiogenomics research will be discussed.
Collapse
|
2643
|
Donovan MG, Selmin OI, Stillwater BJ, Neumayer LA, Romagnolo DF. Do Olive and Fish Oils of the Mediterranean Diet Have a Role in Triple Negative Breast Cancer Prevention and Therapy? An Exploration of Evidence in Cells and Animal Models. Front Nutr 2020; 7:571455. [PMID: 33123546 PMCID: PMC7573103 DOI: 10.3389/fnut.2020.571455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most common malignancy and cause of cancer-related mortality among women worldwide. Triple negative breast cancers (TNBC) are the most aggressive and lethal of the breast cancer molecular subtypes, due in part to a poor understanding of TNBC etiology and lack of targeted therapeutics. Despite advances in the clinical management of TNBC, optimal treatment regimens remain elusive. Thus, identifying interventional approaches that suppress the initiation and progression of TNBC, while minimizing side effects, would be of great interest. Studies have documented an inverse relationship between the incidence of hormone receptor negative breast cancer and adherence to a Mediterranean Diet, particularly higher consumption of fish and olive oil. Here, we performed a review of studies over the last 5 years investigating the effects of fish oil, olive oil and their components in model systems of TNBC. We included studies that focused on the fish oil ω-3 essential fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in addition to olive oil polyphenolic compounds and oleic acid. Both beneficial and deleterious effects on TNBC model systems are reviewed and we highlight how multiple components of these Mediterranean Diet oils target signaling pathways known to be aberrant in TNBC including PI3K/Akt/mTOR, NF-κB/COX2 and Wnt/β-catenin.
Collapse
Affiliation(s)
- Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ, United States
| | - Ornella I. Selmin
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
| | - Barbara J. Stillwater
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Leigh A. Neumayer
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Donato F. Romagnolo
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Donato F. Romagnolo
| |
Collapse
|
2644
|
Zhou X, Shi K, Hao Y, Yang C, Zha R, Yi C, Qian Z. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy. Asian J Pharm Sci 2020; 15:26-41. [PMID: 32175016 PMCID: PMC7066044 DOI: 10.1016/j.ajps.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Oral tyrosine kinase inhibitors (TKIs) against epidermal growth factor receptor (EGFR) family have been introduced into the clinic to treat human malignancies for decades. Despite superior properties of EGFR-TKIs as small molecule targeted drugs, their applications are still restricted due to their low solubility, capricious oral bioavailability, large requirement of daily dose, high binding tendency to plasma albumin and initial/acquired drug resistance. Nanotechnology is a promising tool to improve efficacy of these drugs. Through non-oral routes. Various nanotechnology-based delivery approaches have been developed for providing efficient delivery of EGFR-TKIs with a better pharmacokinetic profile and tissue-targeting ability. This review aims to indicate the advantage of nanocarriers for EGFR-TKIs delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Qian
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
2645
|
Kancherla J, Rao S, Bhuvaneshwar K, Riggins RB, Beckman RA, Madhavan S, Corrada Bravo H, Boca SM. Evidence-Based Network Approach to Recommending Targeted Cancer Therapies. JCO Clin Cancer Inform 2020; 4:71-88. [PMID: 31990579 PMCID: PMC6995264 DOI: 10.1200/cci.19.00097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE In this work, we introduce CDGnet (Cancer-Drug-Gene Network), an evidence-based network approach for recommending targeted cancer therapies. CDGnet represents a user-friendly informatics tool that expands the range of targeted therapy options for patients with cancer who undergo molecular profiling by including the biologic context via pathway information. METHODS CDGnet considers biologic pathway information specifically by looking at targets or biomarkers downstream of oncogenes and is personalized for individual patients via user-inputted molecular alterations and cancer type. It integrates a number of different sources of knowledge: patient-specific inputs (molecular alterations and cancer type), US Food and Drug Administration-approved therapies and biomarkers (curated from DailyMed), pathways for specific cancer types (from Kyoto Encyclopedia of Genes and Genomes [KEGG]), gene-drug connections (from DrugBank), and oncogene information (from KEGG). We consider 4 different evidence-based categories for therapy recommendations. Our tool is delivered via an R/Shiny Web application. For the 2 categories that use pathway information, we include an interactive Sankey visualization built on top of d3.js that also provides links to PubChem. RESULTS We present a scenario for a patient who has estrogen receptor (ER)-positive breast cancer with FGFR1 amplification. Although many therapies exist for patients with ER-positive breast cancer, FGFR1 amplifications may confer resistance to such treatments. CDGnet provides therapy recommendations, including PIK3CA, MAPK, and RAF inhibitors, by considering targets or biomarkers downstream of FGFR1. CONCLUSION CDGnet provides results in a number of easily accessible and usable forms, separating targeted cancer therapies into categories in an evidence-based manner that incorporates biologic pathway information.
Collapse
|
2646
|
Lin H, Wu Y, Liang G, Chen L. Establishing a predicted model to evaluate prognosis for initially diagnosed metastatic Her2-positive breast cancer patients and exploring the benefit from local surgery. PLoS One 2020; 15:e0242155. [PMID: 33170907 PMCID: PMC7654787 DOI: 10.1371/journal.pone.0242155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND For patients initially diagnosed with metastatic Her2-positive breast cancer (MHBC), we intended to construct a nomogram with risk stratification to predict prognosis and to explore the role of local surgery. METHODS We retrieved data from the Surveillance, Epidemiology, and End Results (SEER) database. Kaplan-Meier (KM) method and log-rank test were used for the selection of significant variables. Cox regression analysis and Fine-Gray test were utilized to confirm independent prognostic factors of overall survival (OS) and breast cancer-specific survival (BCSS). A nomogram predicting 1-year, 3-year, and 5-year OS was developed and validated. Patients were stratified based on the optimal cut-off values of total personal score. KM method and log-rank test were used to estimate OS prognosis and benefit from local surgery and chemotherapy. RESULTS There were 1680 and 717 patients in the training and validation cohort. Age, race, marriage, T stage, estrogen receptor (ER) status, visceral metastasis (bone, brain, liver and lung) were identified as independent prognostic factors for OS and BCSS, while histology was also corelated with OS. C-indexes in the training and validation cohort were 0.70 and 0.68, respectively. Calibration plots indicated precise predictive ability. The total population was divided into low- (<141 points), intermediate- (142-208 points), and high-risk (>208 points) prognostic groups. Local surgery and chemotherapy brought various degrees of survival benefit for patients with diverse-risk prognosis. CONCLUSIONS We constructed a model with accurate prediction and discrimination. It would provide a reference for clinicians' decision-making. Surgery on the primary lesion was recommended for patients with good physical performance status, while further study on optimal surgical opportunity was needed.
Collapse
Affiliation(s)
- Hong Lin
- Department of Oncology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yanxuan Wu
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guoxi Liang
- Department of Oncology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Liming Chen
- Department of Oncology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
2647
|
Du C, Wang Y, Zhang Y, Zhang J, Zhang L, Li J. LncRNA DLX6-AS1 Contributes to Epithelial-Mesenchymal Transition and Cisplatin Resistance in Triple-negative Breast Cancer via Modulating Mir-199b-5p/Paxillin Axis. Cell Transplant 2020; 29:963689720929983. [PMID: 32686982 PMCID: PMC7563824 DOI: 10.1177/0963689720929983] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive cancer types with high recurrence, metastasis, and drug resistance. Recent studies report that long noncoding RNAs (lncRNAs)-mediated competing endogenous RNAs (ceRNA) play an important role in tumorigenesis and drug resistance of TNBC. Although elevated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) has been observed to promote carcinogenesis in various cancers, the role in TNBC remained unclear. In this study, expression levels of DLX6-AS1 were increased in TNBC tissues and cell lines when compared with normal tissues or breast fibroblast cells which were determined by quantitative real-time PCR (RT-qPCR). Then, CCK-8 assay, cell colony formation assay and western blot were performed in CAL-51 cells transfected with siRNAs of DLX6-AS1 or MDA-MB-231 cells transfected with DLX6-AS1 over expression plasmids. Knock down of DLX6-AS1 inhibited cell proliferation, epithelial-mesenchymal transition (EMT), decreased expression levels of BCL2 apoptosis regulator (Bcl-2), Snail family transcriptional repressor 1 (Snail) as well as N-cadherin and decreased expression levels of cleaved caspase-3, γ-catenin as well as E-cadherin, while up regulation of DLX6-AS1 had the opposite effect. Besides, knockdown of DLX6-AS1 in CAL-51 cells or up regulation of DLX6-AS1 in MDA-MB-231 cells also decreased or increased cisplatin resistance of those cells analyzed by MTT assay. Moreover, by using dual luciferase reporter assay, RNA immunoprecipitation and RNA pull down assay, a ceRNA which was consisted by lncRNA DLX6-AS1, microRNA-199b-5p (miR-199b-5p) and paxillin (PXN) was identified. And DLX6-AS1 function through miR-199b-5p/PXN in TNBC cells. Finally, results of xenograft experiments using nude mice showed that DLX6-AS1 regulated cell proliferation, EMT and cisplatin resistance by miR-199b-5p/PXN axis in vivo. In brief, DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance through miR-199b-5p/PXN signaling in TNBC in vitro and in vivo.
Collapse
Affiliation(s)
- Chuang Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yingying Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jianhua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Linfeng Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jingruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
2648
|
Pattarawat P, Wallace S, Pfisterer B, Odoi A, Wang HCR. Formulation of a triple combination gemcitabine plus romidepsin + cisplatin regimen to efficaciously and safely control triple-negative breast cancer tumor development. Cancer Chemother Pharmacol 2019; 85:141-152. [PMID: 31865420 DOI: 10.1007/s00280-019-04013-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive, lethal, and heterogeneous subtype of breast cancers, tending to have lower 5-year survival rates than other BC subtypes in response to conventional chemotherapies. This study's aim was to identify advanced regimens to effectively control TNBC tumor development. METHODS We investigated the combination of the DNA synthesis inhibitor gemcitabine, the DNA-damaging agent cisplatin, and the histone deacetylase inhibitor romidepsin to control a variety of breast cells in vitro. We studied the toxicity of drug doses and administration schedules to determine tolerable combination regimens in immune-deficient nude and -competent BALB/c mice. We then studied the efficacy of tolerable regimens in controlling TNBC cell-derived xenograft development in nude mice. By reducing clinically equivalent doses of each agent in combination, we formulated tolerable regimens in animals. We verified that the tolerable triple combination gemcitabine plus romidepsin + cisplatin regimen more efficacious than double combination regimens in controlling xenograft tumor development in nude mice. RESULTS A triple combination of gemcitabine + romidepsin + cisplatin synergistically induced death of the TNBC M.D. Anderson-Metastatic Breast cancer (MDA-MB) 231 and MDA-MB468, as well as Michigan Cancer Foundation (MCF) 7, MCF10A, and MCF10A-Ras cells. Cell death induced by gemcitabine + romidepsin + cisplatin was in a reactive oxygen species-dependent manner. CONCLUSION Considering the high costs for developing a new anticancer agent, we used the FDA-approved drugs gemcitabine, romidepsin (is approved for T-cell lymphoma and is under clinical trial for TNBC), and cisplatin to economically formulate an efficacious and safe combination regimen. The highly efficacious gemcitabine plus romidepsin + cisplatin regimen should be poised for efficient translation into clinical trials, ultimately contributing to reduced mortality and improved quality of life for TNBC patients.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA.,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shelby Wallace
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Bianca Pfisterer
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Agricola Odoi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2649
|
Xiao W, Zheng S, Zou Y, Yang A, Xie X, Tang H, Xie X. CircAHNAK1 inhibits proliferation and metastasis of triple-negative breast cancer by modulating miR-421 and RASA1. Aging (Albany NY) 2019; 11:12043-12056. [PMID: 31857500 PMCID: PMC6949091 DOI: 10.18632/aging.102539] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is increasing evidence that circular RNAs (circRNAs) participate in regulating cancer progression. However, the function and potential molecular mechanisms of circRNA in triple negative breast cancer (TNBC) are currently largely unclear. RESULTS We found that circAHNAK1 was significantly down-regulated in TNBC, and its expression was negatively associated with RFS and OS. Overexpression of circAHNAK1 can inhibit TNBC proliferation, migration and invasion in vitro. In vivo studies confirmed that circAHNAK1 inhibited TNBC tumor growth and metastasis. Mechanistic analysis indicated that circAHNAK1 acted as a miR-421 ceRNA (competitive endogenous RNA) to attenuate the inhibitory effect of miR-421 on its target gene RASA1. CONCLUSIONS In conclusion, CircAHNAK1 inhibits proliferation and metastasis of TNBC by modulating miR-421 and RASA1. METHODS CircRNA microarrays were used to screen for differential circRNA expression profiles. qRT-PCR was used to detect the expression levels of circRNAs. The effect of circAHNAK1 on recurrence -free survival (RFS) and overall survival (OS) in patients with TNBC was subsequently analyzed. The role of circAHNKA1 in the progression of TNBC was further evaluated by multiple in vivo and in vitro assays. Finally, we focused on the regulation of circAHNAK1 on miR-421 and its targeted gene RASA1 in TNBC.
Collapse
Affiliation(s)
- Weikai Xiao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
2650
|
Fan Y, Yu D, Li D, Wang X. Prevention of Local Tumor Recurrence After Surgery by Thermosensitive Gel-Based Chemophotothermal Therapy in Mice. Lasers Surg Med 2019; 52:682-691. [PMID: 31854013 DOI: 10.1002/lsm.23206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Local recurrence of cancer after surgery has long been a tough problem. In the present study, thermosensitive gel-based chemophotothermal therapy was applied to prevent the recurrence of liver cancer after surgery. STUDY DESIGN/MATERIALS AND METHODS Mesoporous silica nanoparticles (MSNs) were used as first-level carrier to co-load doxorubicin (DOX) and ICG. Then, the drug-loaded MSNs (D-I@MSN) were incorporated into poloxamer gel. A mimic model of liver cancer recurrence after surgery was prepared by subcutaneously injecting H22 cells into the armpit of mice. Then the two-level composite gel (D-I@MSN/gel) was also subcutaneously injected at the same site before the formation of tumor, followed by 808 nm laser irradiation. RESULTS The loading efficiency and entrapment efficiency of DOX were as high as 8.85% and 96.9%, and that of ICG were 9.24% and 99.3%, respectively. The results of in vitro cytotoxicity showed that cell viability in D-I@MSN+Laser group was only 5.8% after being irradiated by 808 nm laser for 5 minutes (0.5 W/cm2 ). In animal studies, tumor formation (tumor recurrence) was greatly inhibited in D-I@MSN+Laser group. CONCLUSIONS The thermosensitive gel-based chemophotothermal therapy showed excellent safety and efficacy when applied in the prevention of mimic local tumor replase after surgery in mice, presenting its great potential clinically. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanyan Fan
- Department of Gynecology, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Dujuan Yu
- Department of Respiratory, China-Japan Union Hospital, Jilin University, Changchun, 130021, P. R. China
| | - Duan Li
- The First People's Hospital of Tianmen, Tianmen, Hubei, 431700, P. R. China
| | - Xue Wang
- Physical Examination Center, China-Japan Union Hospital, Jilin University, Changchun, 130031, P. R. China
| |
Collapse
|