251
|
Abstract
Caenorhabditis elegans is an androdioecious nematode composed of selfing hermaphrodites and rare males. A model of male maintenance demonstrates that selfing rates in hermaphrodites cannot be too high or else the frequency of males will be driven down to the rate of spontaneous nondisjunction of the X chromosome. After their outcrossing ability is assessed, males are found to skirt the frequency range in which they would be maintained. When male maintenance is directly assessed by elevating male frequency and observing the frequency change through time, males are gradually eliminated from the population. Males, therefore, appear to reproduce at a rate just below that necessary for them to be maintained. Populations polymorphic for a mutation (fog-2) that effectively changes hermaphrodites into females demonstrate that there is strong selection against dioecy. Factors such as variation in male mating ability and inbreeding depression could potentially lead to the long-term maintenance of males.
Collapse
Affiliation(s)
- Andrew D Stewart
- Department of Biology, University of Texas, Arlington, Texas 76019-0498, USA.
| | | |
Collapse
|
252
|
Abstract
The free-living nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, yet males are maintained in wild-type populations at low frequency. To determine the role of males in C. elegans, we develop a mathematical model for the genetic system of hermaphrodites that can either self-fertilize or be fertilized by males and we perform laboratory observations and experiments on both C. elegans and a related dioecious species C. remanei. We show that the mating efficiency of C. elegans is poor compared to a dioecious species and that C. elegans males are more attracted to C. remanei females than they are to their conspecific hermaphrodites. We postulate that a genetic mutation occurred during the evolution of C. elegans hermaphrodites, resulting in the loss of an attracting sex pheromone present in the ancestor of both C. elegans and C. remanei. Our findings suggest that males are maintained in C. elegans because of the particular genetic system inherited from its dioecious ancestor and because of nonadaptive spontaneous nondisjunction of sex chromosomes, which occurs during meiosis in the hermaphrodite. A theoretical argument shows that the low frequency of male mating observed in C. elegans can support male-specific genes against mutational degeneration. This results in the continuing presence of functional males in a 99.9% hermaphroditic species in which outcrossing is disadvantageous to hermaphrodites.
Collapse
Affiliation(s)
- J R Chasnov
- Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
253
|
Weeks SC, Crosser BR, Gray MM. Relative fitness of two hermaphroditic mating types in the androdioecious clam shrimp,Eulimnadia texana. J Evol Biol 2001; 14:83-94. [DOI: 10.1046/j.1420-9101.2001.00251.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
254
|
Longman D, McGarvey T, McCracken S, Johnstone IL, Blencowe BJ, Cáceres JF. Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of C. elegans. Curr Biol 2001; 11:1923-33. [PMID: 11747818 DOI: 10.1016/s0960-9822(01)00589-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND SR family and SR-related proteins assemble on exonic splicing enhancer (ESE) sequences to promote both constitutive and regulated splicing. The SRm160 splicing coactivator, an SR-related nuclear matrix protein of 160 kDa, is important for the splicing of specific constitutive and ESE-dependent pre-mRNAs. RESULTS In the present study, we show that SRm160 is required to promote pre-mRNA splicing mediated by a large population of functional ESE sequences within a randomized 18 nucleotide sequence. This suggests that it functions as a general coactivator by interacting with different SR family/SR-related proteins bound to different ESE sequences. Consistent with this, several SR family and SR-related proteins coimmunoprecipitated specifically with SRm160 in the presence of low salt. We used RNA interference (RNAi) in Caenorhabditis elegans to determine whether interactions between CeSRm160 and different CeSR family proteins are important in a whole-organism context. Previously we showed that RNAi of CeSRm160 and individual CeSR family genes other than CeSF2/ASF results in no obvious phenotype, which is indicative of gene redundancy. In the present study, we demonstrate that RNAi of CeSRm160 in combination with any CeSR family gene results in the production of unfertilized oocytes by the injected mother. CONCLUSIONS The observation that simultaneous suppression of CeSRm160 and individual CeSR family proteins results in a distinct phenotype is indicative of critical functional interactions between these factors. Our results provide biochemical and genetic evidence indicating that interactions between SRm160 and multiple SR family proteins are important for both optimal splicing activity and for proper development.
Collapse
Affiliation(s)
- D Longman
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
255
|
Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M, Nasmyth K. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol 2001; 11:1825-35. [PMID: 11728305 DOI: 10.1016/s0960-9822(01)00588-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.
Collapse
Affiliation(s)
- M F Siomos
- Research Institute of Molecular Pathology (IMP), Dr. Bohrgasse 7, Vienna 1030, Austria
| | | | | | | | | | | | | |
Collapse
|
256
|
Abstract
Comparisons between related species often allow the detailed genetic analysis of evolutionary processes. Here we advocate the use of the nematode Caenorhabditis elegans (and several other rhabditid species) as model systems for microevolutionary studies. Compared to Drosophila species, which have been a mainstay of such studies, C. elegans has a self-fertilizing mode of reproduction, a shorter life cycle and a convenient cell-level analysis of phenotypic variation. Data concerning its population genetics and ecology are still scarce, however. We review molecular, behavioral and developmental intraspecific polymorphisms for populations of C. elegans, Oscheius sp. 1 and Pristionchus pacificus. Focusing on vulval development, which has been well characterized in several species, we discuss relationships between patterns of variations: (1) for a given genotype (developmental variants), (2) after mutagenesis (mutability), (3) in different populations of the same species (polymorphisms) and (4) between closely related species. These studies have revealed that evolutionary variations between sister species affect those characters that show phenotypic developmental variants, that are mutable and that are polymorphic within species.
Collapse
Affiliation(s)
- M Delattre
- Institut Jacques Monod, CNRS, Universités de Paris 6 et 7, Tour 43, 2 place Jussieu, 75251 Paris cedex 05, France
| | | |
Collapse
|
257
|
Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV. Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 2001; 12:1725-36. [PMID: 11408580 PMCID: PMC37336 DOI: 10.1091/mbc.12.6.1725] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1-L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins. rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.
Collapse
Affiliation(s)
- V Matyash
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Weeks SC, Hutchison JA, Zucker N. Maintenance of androdioecy in the freshwater shrimp, Eulimnadia texana: do hermaphrodites need males for complete fertilization? Evol Ecol 2001. [DOI: 10.1023/a:1014878521117] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
259
|
|
260
|
Hill KL, L'Hernault SW. Analyses of reproductive interactions that occur after heterospecific matings within the genus Caenorhabditis. Dev Biol 2001; 232:105-14. [PMID: 11254351 DOI: 10.1006/dbio.2000.0136] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of zygotes in internally fertilizing organisms requires a number of successful interactions between oocytes and sperm within a receptive female reproductive tract. These interactions are usually assumed to be species-specific. For most species, it is either not possible to inseminate females with sperm from a different species or not possible to observe the consequences of such an insemination because the female is opaque. Nematodes of the genus Caenorhabditis are optically transparent and prior work indicates copulation between individuals of two different species is possible. We have used a series of vital stains and other cytological methods to analyze sperm after cross-species mating. We present here a series of analyses of the postcopulatory, prefertilization interactions among three Caenorhabditis species and find that reproductive biology is conserved, to varying degrees, among all three species. This approach allows investigation into which in vivo interactions between sperm and both oocytes and the somatic gonad have been maintained during the reproductive isolation that accompanies speciation.
Collapse
Affiliation(s)
- K L Hill
- Graduate Program in Genetics and Molecular Biology, Department of Biology, Emory University, 1510 Clifton Rd. NE, Atlanta, Georgia, 30322, USA
| | | |
Collapse
|
261
|
Page BD, Guedes S, Waring D, Priess JR. The C. elegans E2F- and DP-related proteins are required for embryonic asymmetry and negatively regulate Ras/MAPK signaling. Mol Cell 2001; 7:451-60. [PMID: 11463371 DOI: 10.1016/s1097-2765(01)00193-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early C. elegans embryos exhibit protein asymmetries that allow rapid diversification of cells. Establishing these asymmetries requires the novel protein MEX-5. We show that mutations in the efl-1 and dpl-1 genes cause defects in protein localization resembling defects caused by mutations in mex-5. efl-1 and dpl-1 encode homologs of vertebrate E2F and DP proteins that regulate transcription as a heterodimer. efl-1 and dpl-1 mutants have elevated levels of activated Map kinase in oocytes. Their mutant phenotype and that of mex-5 mutants can be suppressed by reducing Ras/Map kinase signaling. We propose this signaling pathway has a role in embryonic asymmetry and that EFL-1/DPL-1 control the level of Map kinase activation.
Collapse
Affiliation(s)
- B D Page
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | |
Collapse
|
262
|
Zucker N, Stafki B, Weeks SC. Maintenance of androdioecy in the freshwater clam shrimp Eulimnadia texana: longevity of males relative to hermaphrodites. CAN J ZOOL 2001. [DOI: 10.1139/z00-211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clam shrimp Eulimnadia texana exhibits a rare mixed mating system known as androdioecy. In this ephemeral-pond branchiopod crustacean, males coexist with hermaphrodites, which can outcross with males or self-fertilize. We provide an estimate of the longevity of males relative to hermaphrodites (1 σ), an important parameter of a model that was developed to explain the conditions under which this system would be stable. Under both optimal rearing conditions and various sex-ratio treatments, hermaphrodites from two study populations lived significantly longer than males. Since various aspects of mating have been found to be costly to males and females/hermaphrodites in other taxa, we explored this possibility as well. Hermaphrodites showed no differences in longevity when kept in groups provided with different mating opportunities. Males, however, lived significantly longer when mating opportunities were increased, a result contrary to what we had expected. Behavioral observations, however, suggested that malemale interactions may have been deleterious to males living in groups with little opportunity to mate. This was confirmed by an additional study in which individual males were maintained in the presence and absence of hermaphrodites. Under these conditions we still detected no longevity cost of mating for males.
Collapse
|
263
|
Abstract
Demographic characteristics of the bacterial-feeding nematode Caenorhabditis elegans were determined in two long-lived mutant strains, TJ1052 (age-1), CB4876 (clk-1), and a wild-type strain, N2. Within each strain, there was little correlation between longevity and reproduction for individuals that lived longer than 10days. Long-lived mutant strains produced fewer eggs than the wild type. Mean total life spans were 13.2days for the wild type, 21.9days for age-1, and 15.8days for clk-1; maximum life spans were 24days for the wild type, 47days for age-1, and 32days for clk-1. Differences in total life span resulted primarily from longer post-reproductive survival. The mean post-reproductive life spans were longer than the wild type by 183% in age-1 and 60% in clk-1. We conclude that (i) post-reproductive survival is not correlated with egg production within isogenic populations of C. elegans, and (ii) the relationship between reproduction and longevity differs among isogenic populations with specific longevity genes.
Collapse
Affiliation(s)
- J Chen
- Department of Nematology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
264
|
Abstract
The nematode Caenorhabditis elegans is an attractive model system for the study of fertilization. C. elegans exists as a self-fertilizing hermaphrodite or as a male. This unusual situation provides an excellent opportunity to identify and maintain sterile mutants that affect sperm and no other cells. Analysis of these mutants can identify genes that encode proteins required for gamete recognition, adhesion, signaling, fusion, and/or activation at fertilization. These genes can also provide a starting point for the identification of additional molecules required for fertility. This review describes progress in the genetic and molecular dissection of fertilization in C. elegans and related studies on sperm competition.
Collapse
Affiliation(s)
- A Singson
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
265
|
|
266
|
Every Sperm Is Sacred: Fertilization in Caenorhabditis elegans. Dev Biol 2001. [DOI: 10.1006/dbio.2000.0118 s0012-1606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
267
|
Golden A, Sadler PL, Wallenfang MR, Schumacher JM, Hamill DR, Bates G, Bowerman B, Seydoux G, Shakes DC. Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J Cell Biol 2000; 151:1469-82. [PMID: 11134076 PMCID: PMC2150685 DOI: 10.1083/jcb.151.7.1469] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 11/01/2000] [Indexed: 11/30/2022] Open
Abstract
The metaphase to anaphase transition is a critical stage of the eukaryotic cell cycle, and, thus, it is highly regulated. Errors during this transition can lead to chromosome segregation defects and death of the organism. In genetic screens for temperature-sensitive maternal effect embryonic lethal (Mel) mutants, we have identified 32 mutants in the nematode Caenorhabditis elegans in which fertilized embryos arrest as one-cell embryos. In these mutant embryos, the oocyte chromosomes arrest in metaphase of meiosis I without transitioning to anaphase or producing polar bodies. An additional block in M phase exit is evidenced by the failure to form pronuclei and the persistence of phosphohistone H3 and MPM-2 antibody staining. Spermatocyte meiosis is also perturbed; primary spermatocytes arrest in metaphase of meiosis I and fail to produce secondary spermatocytes. Analogous mitotic defects cause M phase delays in mitotic germline proliferation. We have named this class of mutants "mat" for metaphase to anaphase transition defective. These mutants, representing six different complementation groups, all map near genes that encode subunits of the anaphase promoting complex or cyclosome, and, here, we show that one of the genes, emb-27, encodes the C. elegans CDC16 ortholog.
Collapse
Affiliation(s)
- Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Penny L. Sadler
- Department of Biology, University of Houston, Houston, Texas 77204
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Matthew R. Wallenfang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jill M. Schumacher
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Danielle R. Hamill
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Gayle Bates
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Diane C. Shakes
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| |
Collapse
|
268
|
Nance J, Davis EB, Ward S. spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans. Genetics 2000; 156:1623-33. [PMID: 11102362 PMCID: PMC1461390 DOI: 10.1093/genetics/156.4.1623] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis elegans spermatids complete a dramatic morphogenesis to crawling spermatozoa in the absence of an actin- or tubulin-based cytoskeleton and without synthesizing new gene products. Mutations in three genes (spe-8, spe-12, and spe-27) prevent the initiation of this morphogenesis, termed activation. Males with mutations in any of these genes are fertile. By contrast, mutant hermaphrodites are self-sterile when unmated due to a failure in spermatid activation. Intriguingly, mutant hermaphrodites form functional spermatozoa and become self-fertile upon mating, suggesting that spermatids can be activated by male seminal fluid. Here we describe a mutation in a fourth gene, spe-29, which mimics the phenotype of spe-8, spe-12, and spe-27 mutants. spe-29 sperm are defective in the initiation of hermaphrodite sperm activation, yet they maintain the ability to complete the morphogenetic rearrangements that follow. Mutant alleles of spe-12, spe-27, and spe-29 exhibit genetic interactions that suggest that the wild-type products of these genes function in a common signaling pathway to initiate sperm activation. We have identified the spe-29 gene, which is expressed specifically in the sperm-producing germ line and is predicted to encode a small, novel transmembrane protein.
Collapse
Affiliation(s)
- J Nance
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
269
|
Weeks SC, Crosser BR, Bennett R, Gray M, Zucker N. Maintenance of androdioecy in the freshwater shrimp, Eulimnadia texana: estimates of inbreeding depression in two populations. Evolution 2000; 54:878-87. [PMID: 10937261 DOI: 10.1111/j.0014-3820.2000.tb00088.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androdioecy is an uncommon form of reproduction in which males coexist with hermaphrodites. Androdioecy is thought to be difficult to evolve in species that regularly inbreed. The freshwater shrimp Eulimnadia texana has recently been described as both androdioecious and highly selfing and is thus anomalous. Inbreeding depression is one factor that may maintain males in these populations. Here we examine the extent of "late" inbreeding depression (after sexual maturity) in these clam shrimp using two tests: (1) comparing the fitness of shrimp varying in their levels of individual heterozygosity from two natural populations that differ in overall genetic diversity; and (2) specifically outcrossing and selfing shrimp from these same populations and comparing fitness of the resulting offspring. The effects of inbreeding differed within each population. In the more genetically diverse population, fecundity, size, and mortality were significantly reduced in inbred shrimp. In the less genetically diverse population, none of the fitness measures was significantly lowered in selfed shrimp. Combining estimates of early inbreeding depression from a previous study with current estimates of late inbreeding depression suggests that inbreeding depression is substantial (delta = 0.68) in the more diverse population and somewhat lower (delta = 0.50) in the less diverse population. However, given that males have higher mortality rates than hermaphrodites, neither estimate of inbreeding depression is large enough to account for the maintenance of males in either population by inbreeding depression alone. Thus, the stability of androdioecy in this system is likely only if hermaphrodites are unable to self-fertilize many of their own eggs when not mated to a male or if male mating success is generally high (or at least high when males are rare). Patterns of fitness responses in the two populations were consistent with the hypothesis that inbreeding depression is caused by partially recessive deleterious alleles, although a formal test of this hypothesis still needs to be conducted.
Collapse
Affiliation(s)
- S C Weeks
- Department of Biology, University of Akron, Ohio 44325-3908, USA.
| | | | | | | | | |
Collapse
|
270
|
Abstract
Sexual reproduction of multicellular organisms depends critically on the coordinate development of the germ line and somatic gonad, a process known as gonadogenesis. Together these tissues ensure the formation of functional gametes and, in the female of many species, create a context for production and further development of the zygote. Since the future of the species hangs in the balance, it is not surprising that gonadogenesis is a complex process involving conserved and multi-faceted developmental mechanisms. Genetic, anatomical, cell biological, and molecular experiments have established the nematode Caenorhabditis elegans as a paradigm for studying gonadogenesis. Furthermore, these studies demonstrate the utility of C. elegans gonadogenesis for exploring broad issues in cell and developmental biology, such as cell fate specification, morphogenesis, cell signaling, cell cycle control, and programmed cell death. The synergy of molecular genetics and cell biology conducted at single-cell resolution in real time permits an extraordinary depth of analysis in this organism. In this review, we first describe the embryonic and post-embryonic development and morphology of the C. elegans gonad. Next we recount seminal experiments that established the field, highlight recent results that provide insight into conserved developmental mechanisms, and present future prospects for the field.
Collapse
Affiliation(s)
- E J Hubbard
- Department of Biology, New York University, New York, USA
| | | |
Collapse
|
271
|
Abstract
Cell fusion is a universal process that occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. Very little is known about the molecular and cellular mechanisms of cell fusion during pattern formation. Here we review the dynamic anatomy of all cell fusions during embryonic and postembryonic development in an organism. Nearly all the cell fates and cell lineages are invariant in the nematode C. elegans and one third of the cells that are born fuse to form 44 syncytia in a reproducible and stereotyped way. To explain the function of cell fusion in organ formation we propose the fusomorphogenetic model as a simple cellular mechanism to efficiently redistribute membranes using a combination of cell fusion and polarized membrane recycling during morphogenesis. Thus, regulated intercellular and intracellular membrane fusion processes may drive elongation of the embryo as well as postembryonic organ formation in C. elegans. Finally, we use the fusomorphogenetic hypothesis to explain the role of cell fusion in the formation of organs like muscles, bones, and placenta in mammals and other species and to speculate on how the intracellular machinery that drive fusomorphogenesis may have evolved.
Collapse
Affiliation(s)
- G Shemer
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | |
Collapse
|
272
|
Furuta T, Tuck S, Kirchner J, Koch B, Auty R, Kitagawa R, Rose AM, Greenstein D. EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Mol Biol Cell 2000; 11:1401-19. [PMID: 10749938 PMCID: PMC14855 DOI: 10.1091/mbc.11.4.1401] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here we show that emb-30 is required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Germline-specific emb-30 mutant alleles block the meiotic divisions. Mutant oocytes, fertilized by wild-type sperm, set up a meiotic spindle but do not progress to anaphase I. As a result, polar bodies are not produced, pronuclei fail to form, and cytokinesis does not occur. Severe-reduction-of-function emb-30 alleles (class I alleles) result in zygotic sterility and lead to germline and somatic defects that are consistent with an essential role in promoting the metaphase-to-anaphase transition during mitosis. Analysis of the vulval cell lineages in these emb-30(class I) mutant animals suggests that mitosis is lengthened and eventually arrested when maternally contributed emb-30 becomes limiting. By further reducing maternal emb-30 function contributed to class I mutant animals, we show that emb-30 is required for the metaphase-to-anaphase transition in many, if not all, cells. Metaphase arrest in emb-30 mutants is not due to activation of the spindle assembly checkpoint but rather reflects an essential emb-30 requirement for M-phase progression. A reduction in emb-30 activity can suppress the lethality and sterility caused by a null mutation in mdf-1, a component of the spindle assembly checkpoint machinery. This result suggests that delaying anaphase onset can bypass the spindle checkpoint requirement for normal development. Positional cloning established that emb-30 encodes the likely C. elegans orthologue of APC4/Lid1, a component of the anaphase-promoting complex/cyclosome, required for the metaphase-to-anaphase transition. Thus, the anaphase-promoting complex/cyclosome is likely to be required for all metaphase-to-anaphase transitions in a multicellular organism.
Collapse
Affiliation(s)
- T Furuta
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Sadler PL, Shakes DC. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development 2000; 127:355-66. [PMID: 10603352 DOI: 10.1242/dev.127.2.355] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has long been appreciated that spermiogenesis, the cellular transformation of sessile spermatids into motile spermatozoa, occurs in the absence of new DNA transcription. However, few studies have addressed whether the physical presence of a sperm nucleus is required either during spermiogenesis or for subsequent sperm functions during egg activation and early zygotic development. To determine the role of the sperm nucleus in these processes, we analyzed two C. elegans mutants whose spermatids lack DNA. Here we show that these anucleate sperm not only differentiate into mature functional spermatozoa, but they also crawl toward and fertilize oocytes. Furthermore, we show that these anucleate sperm induce both normal egg activation and anterior-posterior polarity in the 1-cell C. elegans embryo. The latter finding demonstrates for the first time that although the anterior-posterior embryonic axis in C. elegans is specified by sperm, the sperm pronucleus itself is not required. Also unaffected is the completion of oocyte meiosis, formation of an impermeable eggshell, migration of the oocyte pronucleus, and the separation and expansion of the sperm-contributed centrosomes. Our investigation of these mutants confirms that, in C. elegans, neither the sperm chromatin mass nor a sperm pronucleus is required for spermiogenesis, proper egg activation, or the induction of anterior-posterior polarity.
Collapse
Affiliation(s)
- P L Sadler
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | | |
Collapse
|
274
|
Weeks SC, Crosser BR, Bennett R, Gray M, Zucker N. MAINTENANCE OF ANDRODIOECY IN THE FRESHWATER SHRIMP, EULIMNADIA TEXANA: ESTIMATES OF INBREEDING DEPRESSION IN TWO POPULATIONS. Evolution 2000. [DOI: 10.1554/0014-3820(2000)054[0878:moaitf]2.3.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
275
|
Abstract
Genetic and cell biological analyses of sperm behavior in the female reproductive tract are providing important clues to the mechanisms of sperm competition, a form of sexual selection that is an important force that shapes reproductive behavior, physiology and morphology in a wide range of species.
Collapse
Affiliation(s)
- T L Karr
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
276
|
Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 1999; 212:101-23. [PMID: 10419689 DOI: 10.1006/dbio.1999.9356] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.
Collapse
Affiliation(s)
- D H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway, Bronx, New York, 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Singson A, Hill KL, L'Hernault SW. Sperm competition in the absence of fertilization in Caenorhabditis elegans. Genetics 1999; 152:201-8. [PMID: 10224254 PMCID: PMC1460588 DOI: 10.1093/genetics/152.1.201] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hermaphrodite self-fertilization is the primary mode of reproduction in the nematode Caenorhabditis elegans. However, when a hermaphrodite is crossed with a male, nearly all of the oocytes are fertilized by male-derived sperm. This sperm precedence during reproduction is due to the competitive superiority of male-derived sperm and results in a functional suppression of hermaphrodite self-fertility. In this study, mutant males that inseminate fertilization-defective sperm were used to reveal that sperm competition within a hermaphrodite does not require successful fertilization. However, sperm competition does require normal sperm motility. Additionally, sperm competition is not an absolute process because oocytes not fertilized by male-derived sperm can sometimes be fertilized by hermaphrodite-derived sperm. These results indicate that outcrossed progeny result from a wild-type cross because male-derived sperm are competitively superior and hermaphrodite-derived sperm become unavailable to oocytes. The sperm competition assays described in this study will be useful in further classifying the large number of currently identified mutations that alter sperm function and development in C. elegans.
Collapse
Affiliation(s)
- A Singson
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
278
|
Abstract
The study of sex determination in model organisms has been especially fruitful in increasing our understanding of developmental biology, gene regulation and evolutionary mechanisms. The free living nematode, Caenorhabditis elegans, can develop as one of two sexes; male or self-fertilizing hermaphrodite. Here we discuss the progress toward a genetic and molecular understanding of that decision. Numerous genetic loci have been identified that affect sexual fate, and epistasis analysis of these genes has led to a model of a regulatory hierarchy with stepwise negative interactions. It is becoming evident that many of the genes have numerous levels of regulation. We also discuss the apparent rapid rate of evolution that many of the sex determination proteins have undergone. Protein sequences of homologues from closely related species are more divergent than homologues of proteins involved in other developmental processes. Rapid evolution of sex determination genes may be a common theme throughout the animal kingdom.
Collapse
Affiliation(s)
- D Hansen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada
| | | |
Collapse
|
279
|
Nance J, Minniti AN, Sadler C, Ward S. spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics 1999; 152:209-20. [PMID: 10224255 PMCID: PMC1460590 DOI: 10.1093/genetics/152.1.209] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During spermiogenesis, Caenorhabditis elegans spermatids activate and mature into crawling spermatozoa without synthesizing new proteins. Mutations in the spe-12 gene block spermatid activation, rendering normally self-fertile hermaphrodites sterile. Mutant males, however, are fertile. Surprisingly, when mutant hermaphrodites mate with a male, their self-spermatids activate and form functional spermatozoa, presumably due to contact with male seminal fluid. Here we show that, in addition to its essential role in normal activation of hermaphrodite-derived spermatids, SPE-12 also plays a supplementary but nonessential role in mating-induced activation. We have identified the spe-12 gene, which encodes a novel protein containing a single transmembrane domain. spe-12 mRNA is expressed in the sperm-producing germ line and the protein localizes to the spermatid cell surface. We propose that SPE-12 functions downstream of both hermaphrodite- and male-derived activation signals in a spermatid signaling pathway that initiates spermiogenesis.
Collapse
Affiliation(s)
- J Nance
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
280
|
LaMunyon CW, Ward S. Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc Biol Sci 1999; 266:263-7. [PMID: 10081163 PMCID: PMC1689669 DOI: 10.1098/rspb.1999.0631] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the free-living rhabditid nematode Caenorhabditis elegans, sperm size is a determinant of sperm competitiveness. Larger sperm crawl faster and physically displace smaller sperm to take fertilization priority, but not without a cost: larger sperm are produced at a slower rate. Here, we investigate the evolution of sperm size in the family Rhabditidae by comparing sperm among 19 species, seven of which are hermaphroditic (self-fertile hermaphrodites and males), the rest being gonochoristic (females and males). We found that sperm size differed significantly with reproductive mode: males of gonochoristic species had significantly larger sperm than did males of the hermaphroditic species. Because males compose 50% of the populations of gonochoristic species but are rare in hermaphroditic species, the risk of male-male sperm competition is greater in gonochoristic species. Larger sperm have thus evolved in species with a greater risk of sperm competition. Our results support recent studies contending that sperm size may increase in response to sperm competition.
Collapse
Affiliation(s)
- C W LaMunyon
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|
281
|
McCarter J, Bartlett B, Dang T, Schedl T. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 1999; 205:111-28. [PMID: 9882501 DOI: 10.1006/dbio.1998.9109] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior to fertilization, oocytes undergo meiotic maturation (cell cycle progression) and ovulation (expulsion from the ovary). To begin the study of these processes in Caenorhabditis elegans, we have defined a time line of germline and somatic events by video microscopy. As the oocyte matures, its nuclear envelope breaks down and its cell cortex rearranges. Immediately thereafter, the oocyte is ovulated by increasing contraction of the myoepithelial gonadal sheath and relaxation of the distal spermatheca. By systematically altering the germ cell contents of the hermaphrodite using mutant strains, we have uncovered evidence of four cell-cell interactions that regulate maturation and ovulation. (1) Both spermatids and spermatozoa induce oocyte maturation. In animals with a feminized germline, maturation is inhibited and oocytes arrest in diakinesis. The introduction of sperm by mating restores maturation. (2) Sperm also directly promote sheath contraction. In animals with a feminized or tumorous germline, contractions are infrequent, whereas in animals with a masculinized germline or with sperm introduced by mating, contractions are frequent. (3 and 4) The maturing oocyte both induces spermathecal dilation and modulates sheath contractions at ovulation; dilation of the distal spermatheca and sharp increases in sheath contraction rates are only observed in the presence of a maturing oocyte.
Collapse
Affiliation(s)
- J McCarter
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | | | | |
Collapse
|
282
|
Abstract
Female sperm storage is an integral part of the reproductive pattern of many species. In the female, sperm become sequestered in specialized storage organs or reservoirs, where they may remain for several days, weeks, months, or years before being used to fertilize eggs. Several different but interrelated mechanisms are used by animals to target the sperm to the portion of the female genital tract adapted for sperm storage. Both males and females influence this process. This review describes themes among the mechanisms and molecules necessary for sperm to become efficiently stored in females and the roles that the female storage organs play in the nourishment, protection, and release of stored sperm.
Collapse
Affiliation(s)
- D M Neubaum
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
283
|
Abstract
The nematode Caenorhabditis elegans has two naturally occurring sexes: a self-fertile XX hermaphrodite that first produces sperm, then oocytes, and an XO male. The primary determinant of sex is the X:A ratio, the number of X chromosomes to sets of autosomes. The X:A ratio regulates not only sex determination, but also dosage compensation. In the intervening years since the identification of the X:A ratio, most of the key regulatory genes that respond to the X:A ratio have been genetically identified and ordered into regulatory hierarchies. Advances have also been made in identifying the X chromosome numerator elements of the X:A ratio. This review highlights the genetic, molecular, and biochemical approaches that have led to an understanding of how these genes interact to control sex determination and dosage compensation. The review also discusses the differences between the control of sexual cell fate in the soma and germ line of C. elegans and addresses the role of germ-line-specific regulation in controlling the sperm-oocyte decision in the hermaphrodite germ line. Finally, strategies that take advantage of the availability of the entire C. elegans genome sequence, which is expected to be completed in 1998, are discussed for identifying hitherto unidentified genes that may play a role in the control of sexual cell fate.
Collapse
Affiliation(s)
- P E Kuwabara
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
284
|
LaMunyon CW, Ward S. Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc Biol Sci 1998; 265:1997-2002. [PMID: 9821364 PMCID: PMC1689481 DOI: 10.1098/rspb.1998.0531] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sperm competition is generally thought to drive the evolution of sperm miniaturization. Males gain advantage by transferring more sperm, which they produce by dividing limited resources into ever smaller cells. Here, we describe the opposite effect of size on the competitiveness of amoeboid sperm in the hermaphroditic nematode Caenorhabditis elegans. Larger sperm crawled faster and displaced smaller sperm, taking precedence at fertilization. Larger sperm took longer to produce, however, and so were more costly than smaller sperm. Our results provide evidence of a mechanism to support recent theoretical and comparative studies that suggest sperm competition can favour not small, but large sperm.
Collapse
Affiliation(s)
- C W LaMunyon
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85741, USA.
| | | |
Collapse
|
285
|
Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998; 150:129-55. [PMID: 9725835 PMCID: PMC1460297 DOI: 10.1093/genetics/150.1.129] [Citation(s) in RCA: 539] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nematode Caenorhabditis elegans responds to overcrowding and scarcity of food by arresting development as a dauer larva, a nonfeeding, long-lived, stress-resistant, alternative third-larval stage. Previous work has shown that mutations in the genes daf-2 (encoding a member of the insulin receptor family) and age-1 (encoding a PI 3-kinase) result in constitutive formation of dauer larvae (Daf-c), increased adult longevity (Age), and increased intrinsic thermotolerance (Itt). Some daf-2 mutants have additional developmental, behavioral, and reproductive defects. We have characterized in detail 15 temperature-sensitive and 1 nonconditional daf-2 allele to investigate the extent of daf-2 mutant defects and to examine whether specific mutant traits correlate with each other. The greatest longevity seen in daf-2 mutant adults was approximately three times that of wild type. The temperature-sensitive daf-2 mutants fell into two overlapping classes, including eight class 1 mutants, which are Daf-c, Age, and Itt, and exhibit low levels of L1 arrest at 25.5 degrees. Seven class 2 mutants also exhibit the class 1 defects as well as some or all of the following: reduced adult motility, abnormal adult body and gonad morphology, high levels of embryonic and L1 arrest, production of progeny late in life, and reduced brood size. The strengths of the Daf-c, Age, and Itt phenotypes largely correlated with each other but not with the strength of class 2-specific defects. This suggests that the DAF-2 receptor is bifunctional. Examination of the null phenotype revealed a maternally rescued egg, L1 lethal component, and a nonconditional Daf-c component. With respect to the Daf-c phenotype, the dauer-defective (Daf-d) mutation daf-12(m20) was epistatic to daf-2 class 1 alleles but not the severe class 2 alleles tested. All daf-2 mutant defects were suppressed by the daf-d mutation daf-16(m26). Our findings suggest a new model for daf-2, age-1, daf-12, and daf-16 interactions.
Collapse
Affiliation(s)
- D Gems
- Molecular Biology Program and Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Gadagkar R. How to gain the benefits of sexual reproduction without paying the cost: a worm shows the way. Trends Ecol Evol 1998; 13:220-1. [PMID: 21238274 DOI: 10.1016/s0169-5347(98)01391-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R Gadagkar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India; Animal Behaviour Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| |
Collapse
|
287
|
Singson A, Mercer KB, L'Hernault SW. The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell 1998; 93:71-9. [PMID: 9546393 DOI: 10.1016/s0092-8674(00)81147-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the nematode worm C. elegans, individuals with mutations in the spe-9 gene produce spermatozoa with wild-type morphology and motility that cannot fertilize oocytes even after contact between gametes. Therefore, disruption of spe-9 function affects either gamete recognition, adhesion, signaling, and/or fusion. The spe-9 gene encodes a sperm transmembrane protein with an extracellular domain that contains ten epidermal growth factor-like repeats. A common feature of proteins that include epidermal growth factor-like motifs is their involvement in extracellular functions such as adhesive and ligand-receptor interactions. Additionally, the overall structure of the predicted SPE-9 protein is similar to that of ligands for the Notch/LIN-12/GLP-1 family of transmembrane receptors. These results suggest that SPE-9 functions in the specialized cell-cell interactions required for fertilization.
Collapse
Affiliation(s)
- A Singson
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
288
|
Rose KL, Winfrey VP, Hoffman LH, Hall DH, Furuta T, Greenstein D. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 1997; 192:59-77. [PMID: 9405097 DOI: 10.1006/dbio.1997.8728] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Caenorhabditis elegans, specialized contractile myoepithelial cells of the somatic gonad, the gonadal sheath cells, are closely apposed to oocytes and are required for normal meiotic maturation and ovulation. Previously we found that mutations in the ceh-18 gene, which encodes a POU-class homeoprotein expressed in sheath cells, result in oocyte defects. To determine the basis for these oocyte defects, we have used time-lapse video Nomarski microscopy to observe meiotic maturation, ovulation, and early embryogenesis in ceh-18 mutants. In ceh-18 mutants sheath cell contractions are weaker, less frequent, and uncoordinated throughout the sequence of ovulation events, and ovulation is defective. Defective ovulation can result in the formation of endomitotic oocytes in the gonad, the formation of haploid embryos, and reversals in embryonic polarity. ceh-18 mutant oocytes exhibit defects prior to nuclear envelope breakdown, suggesting that they are physiologically different from the wild type. We observed delays in meiotic maturation, as well as maturation out of the normal spatial and temporal sequence, suggesting that proximal sheath cells directly or indirectly promote and spatially restrict meiotic maturation. Analysis of sheath cell differentiation in ceh-18 mutants using antibodies to proteins of the contractile apparatus reveals that although contractile proteins are expressed, the sheath cells appear disorganized. Transmission electron microscopy reveals that ceh-18 mutant sheath cells are morphologically irregular and only loosely cover oocytes. Taken together, these observations indicate that ceh-18 is a crucial determinant of sheath cell differentiation, a function required for normal meiotic maturation and ovulation.
Collapse
Affiliation(s)
- K L Rose
- Department of Cell Biology, Vanderbilt University School of Medicine, 21st and Garland, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | |
Collapse
|
289
|
LaMunyon CW, Ward S. Increased competitiveness of nematode sperm bearing the male X chromosome. Proc Natl Acad Sci U S A 1997; 94:185-9. [PMID: 8990183 PMCID: PMC19277 DOI: 10.1073/pnas.94.1.185] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Male offspring, which cannot reproduce independently, represent a cost of sexual reproduction. This cost is eliminated by the production of hermaphroditic offspring in the self-fertilizing nematode Caenorhabditis briggsae. However, these hermaphrodites can outcross by mating with males. Half the sperm received from males contain no sex chromosome and therefore give rise to male progeny. Mating with males should thus impose the cost of making male offspring. We found that male sperm took immediate precedence over hermaphrodite sperm, resulting in maximized outcrossing, but the appearance of male progeny was delayed after mating. This delay is caused by the male X-bearing sperm outcompeting their nullo-X counterparts. The competitive advantage of X-bearing sperm over nullo-X sperm is limited to sperm from males; it did not occur in a mutant hermaphrodite that produces both types of sperm. The chromosomal effect on sperm competitiveness in C. briggsae, which has not been observed in other species, suggests that the X chromosome has evolved a form of meiotic drive, selfishly increasing the competitiveness of sperm that bear it over those that do not. Thus, the multiple levels of sperm competitiveness found in C. briggsae maximize outcrossing after mating while delaying the cost of making male offspring.
Collapse
Affiliation(s)
- C W LaMunyon
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|
290
|
Abstract
Parasitic nematode infections remain a major public health problem in many parts of the world. Because most of the current strategies aimed at controlling parasitic nematode infections have met with only limited success, it may be time to consider alternative approaches. An aspect of nematode biology that has drawn little attention as a target for control is the reproductive process. Although there are numerous facets of the overall reproductive biology of nematodes that hold potential as targets for intervention, Alan Scott here focuses on the male reproductive system, and outlines some of the known unique processes and characteristics of sperm formation and sperm function that could be exploited to block fertilization.
Collapse
Affiliation(s)
- A L Scott
- Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA. ascott@
| |
Collapse
|
291
|
Bertram MJ, Neubaum DM, Wolfner MF. Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:971-980. [PMID: 9014340 DOI: 10.1016/s0965-1748(96)00064-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In many insect species, sperm transferred in a single mating are stored by the female in specialized organs and are gradually used to fertilize eggs. Thus, insects must have mechanisms to ensure that substantial numbers of sperm reach and become stored in the storage organs. We report here that a glycoprotein, Acp36DE, made by the accessory glands of Drosophila melanogaster males, shows localization in the mated female suggesting a role in sperm storage. In the mated female, Acp36DE associates with the wall of the oviduct, just anterior to the openings of the sperm storage organs. Acp36DE also associates with the leading edge of the sperm mass. It does not enter the hemolymph. Complete localization of Acp36DE in the mated female requires sperm and the presence of eggs in the ovaries. We hypothesize that Acp36DE, or a complex containing it, forms a barrier that "corrals" sperm near the openings to the sperm storage organs. Concentration of sperm here could facilitate their efficient storage. Acp36DE remains in the genital tract for several hours after mating, concurrent with the time that sperm are being stored. Facilitation of sperm storage by Acp36DE may also explain the previously observed effect of this protein on sperm competition.
Collapse
Affiliation(s)
- M J Bertram
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
292
|
Iwasaki K, McCarter J, Francis R, Schedl T. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J Cell Biol 1996; 134:699-714. [PMID: 8707849 PMCID: PMC2120936 DOI: 10.1083/jcb.134.3.699] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
emo-1(oz1) is a member of a class of hermaphrodite sterile mutations in Caenorhabditis elegans that produce endomitotic oocytes in the gonad arm. Oocytes in emo-1(oz1) mutants exhibit multiple defects during oogenesis. After meiotic maturation, ovulation fails, trapping oocytes in the gonad arm where they become endomitotic. emo-1 encodes a homologue of the Sec61p gamma subunit, a protein necessary for translocation of secretory and transmembrane proteins into the endoplasmic reticulum of yeast and mammalian cells. A putative emo-1 null mutation, oz151, displays embryonic lethality. The oz1 sterile mutation is a transposable element insertion into the emo-1 3' untranslated region that almost completely eliminates germline mRNA accumulation. Genetic mosaic analysis using the oz1 allele indicates that emo-1(+) expression in germ cells is required for fertility. The J67 monoclonal antibody, which recognizes an oocyte surface antigen (Strome, S. 1986. In Gametogenesis and the Early Embryo. J.G. Gall, editor. Alan R. Liss, Inc., New York. 77-95.), does not stain oz1 oocytes, a finding consistent with defective protein transport in the mutant. We propose that the emo-1 gene product acts in the transport of secreted and transmembrane proteins in C. elegans oocytes, and is necessary for both oogenesis and the coupling of ovulation with meiotic maturation.
Collapse
Affiliation(s)
- K Iwasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
293
|
Abstract
Anteroposterior asymmetries are apparent in C elegans development before the first cell division. Here we identify the cue that specifies the anteroposterior axis, and investigate how this cue is interpreted to generate initial asymmetry. In C. elegans, the sperm normally enters the egg in an invariant position. We have found that causing fertilisation to occur in the abnormal end of the egg completely reverses the orientation of the anteroposterior axis, but gives otherwise normal development. This result suggests that a component of the sperm normally specifies the anteroposterior axis. We have found that a cytoplasmic rearrangement in the uncleaved zygote is directed by the sperm, suggesting a mechanism by which the sperm may specify the axis. The results additionally reveal that the C elegans oocyte is constructed with no axis prespecified in the form of asymmetrically localised cytoplasmic determinants.
Collapse
Affiliation(s)
- B Goldstein
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
294
|
Abstract
The paternal-effect embryonic-lethal gene, spe-11, is required for normal development of early C. elegans embryos. Spe-11 embryos fail to complete meiosis, form a weak eggshell, fail to orient properly the first mitotic spindle, and fail to undergo cytokinesis. Here we report cloning and sequencing of the spe-11 gene, which encodes a novel protein. As predicted by the paternal-effect mutant phenotype, the gene is expressed during spermatogenesis but is not detectable in females undergoing oogenesis, and the protein is present in mature sperm. To investigate whether SPE-11's essential function is during spermatogenesis or whether sperm-delivered SPE-11 functions in the newly fertilized embryo, we engineered animals to supply SPE-11 to the embryo through the oocyte rather than through the sperm. We found that maternal expression is sufficient for embryonic viability. This result demonstrates that SPE-11 is not required during spermatogenesis, and suggests that SPE-11 is a sperm-supplied factor that participates directly in development of the early embryo. In contrast to the many known maternal factors required for embryogenesis, SPE-11 is the first paternally contributed factor to be genetically identified and molecularly characterized.
Collapse
Affiliation(s)
- H Browning
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
295
|
LaMunyon CW, Ward S. Sperm precedence in a hermaphroditic nematode (Caenorhabditis elegans) is due to competitive superiority of male sperm. EXPERIENTIA 1995; 51:817-23. [PMID: 7649241 DOI: 10.1007/bf01922436] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
When male and hermaphrodite Caenorhabditis elegans mate, the male's sperm outcompete the hermaphrodite's own sperm and fertilize a majority of the offspring. Here, we investigate the mechanism of male sperm precedence. We rule out the possibility that male sperm are stronger and more competitive because they are activated later than hermaphrodite sperm. We also find that a previously known gender difference in sperm activation does not influence sperm competition. Male sperm, rinsed free of seminal fluid, retained the capacity to take precedence after artificial insemination. Therefore, we conclude that male sperm themselves are competitively superior to hermaphrodite sperm. This trait maximizes outcrossing after mating and may increase both genetic diversity and heterozygosity of offspring whose parents, due to self-fertilization, may be highly homozygous.
Collapse
Affiliation(s)
- C W LaMunyon
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
296
|
Church DL, Guan KL, Lambie EJ. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 1995; 121:2525-35. [PMID: 7671816 DOI: 10.1242/dev.121.8.2525] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the germline of Caenorhabditis elegans hermaphrodites, meiotic cell cycle progression occurs in spatially restricted regions. Immediately after leaving the distal mitotic region, germ cells enter meiosis and thereafter remain in the pachytene stage of first meiotic prophase for an extended period. At the dorsoventral gonadal flexure, germ cells exit pachytene and subsequently become arrested in diakinesis. We have found that exit from pachytene is dependent on the function of three members of the MAP kinase signaling cascade. One of these genes, mek-2, is a newly identified C. elegans MEK (MAP kinase kinase). The other two genes, mpk-1/sur-1 (MAP kinase) and let-60 ras, were previously identified based on their roles in vulval induction and are shown here to act in combination with mek-2 to permit exit from pachytene. Through genetic mosaic analysis, we demonstrate that the expression of mpk-1/sur-1 is required within the germline to permit exit from pachytene.
Collapse
Affiliation(s)
- D L Church
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
297
|
Affiliation(s)
- S W L'Hernault
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
298
|
Graham PL, Schedl T, Kimble J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. DEVELOPMENTAL GENETICS 1993; 14:471-84. [PMID: 8111975 DOI: 10.1002/dvg.1020140608] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Caenorhabditis elegans XX animal possesses a hermaphrodite germ line, producing first sperm, then oocytes. In this paper, we report the genetic identification of five genes, mog-2, mog-3, mog-4, mog-5, and mog-6, that influence the hermaphrodite switch from spermatogenesis to oogenesis. In mog-2-mog-6 mutants, spermatogenesis continues past the time at which hermaphrodites normally switch into oogenesis and no oocytes are observed. Therefore, in these mutants, germ cells are transformed from a female fate (oocyte) to a male fate (sperm). The fem-3 gene is one of five genes that acts at the end of the germline sex determination pathway to direct spermatogenesis. Analyses of mog;fem-3 double mutants suggest that the mog-2-mog-6 genes act before fem-3; thus these genes may be in a position to negatively regulate fem-3 or one of the other terminal regulators of germline sex determination. Double mutants of fem-3 and any one of the mog mutations make oocytes. Using these double mutants, we show that oocytes from any mog;fem-3 double mutant are defective in their ability to support embryogenesis. This maternal effect lethality indicates that each of the mog genes is required for embryogenesis. The two defects in mog-2-mog-6 mutants are similar to those of mog-1: all six mog genes eliminate the sperm/oocyte switch in hermaphrodites and cause maternal effect lethality. We propose that the mog-2-mog-6 mutations identify genes that act with mog-1 to effect the sperm/oocyte switch. We further speculate that the mog-1-mog-6 mutations all interfere with translational controls of fem-3 and other maternal mRNAs.
Collapse
Affiliation(s)
- P L Graham
- Department of CMS Biology, Northwestern University Medical School, Chicago, Illinois
| | | | | |
Collapse
|
299
|
Abstract
Sex and death are two fundamental but poorly understood aspects of life. They are often thought to be linked because reproduction requires the diversion of limited resources from somatic growth and maintenance. This diversion of resources in mated animals, often called a cost of reproduction, is usually expressed as a reduction of lifespan in mated animals, although some debate exists on the best way to measure this cost. I report here that in the soil nematode, Caenorhabditis elegans, sex significantly decreases male lifespan without reducing hermaphrodite lifespan. The reduction of mated male lifespan seems to be caused by additional sperm production and not by the physical activity of mating. This conclusion is supported by observations that a mutation reducing sperm production increased mean lifespan by about 65% in both mated males and hermaphrodites. This suggests that spermatogenesis, rather than oogenesis or the physical act of mating, is a major factor reducing lifespan in C. elegans. This contradicts the traditional biological assumption that large oocytes are much costlier to produce than small sperm.
Collapse
Affiliation(s)
- W A Van Voorhies
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson 85721
| |
Collapse
|
300
|
Affiliation(s)
- P E Mains
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| |
Collapse
|