251
|
Chi H, Sun L, Shiu RH, Han R, Hsieh CP, Wei TM, Lo CC, Chang HY, Sang TK. Cleavage of human tau at Asp421 inhibits hyperphosphorylated tau induced pathology in a Drosophila model. Sci Rep 2020; 10:13482. [PMID: 32778728 PMCID: PMC7417559 DOI: 10.1038/s41598-020-70423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Hyperphosphorylated and truncated tau variants are enriched in neuropathological aggregates in diseases known as tauopathies. However, whether the interaction of these posttranslational modifications affects tau toxicity as a whole remains unresolved. By expressing human tau with disease-related Ser/Thr residues to simulate hyperphosphorylation, we show that despite severe neurodegeneration in full-length tau, with the truncation at Asp421, the toxicity is ameliorated. Cytological and biochemical analyses reveal that hyperphosphorylated full-length tau distributes in the soma, the axon, and the axonal terminal without evident distinction, whereas the Asp421-truncated version is mostly restricted from the axonal terminal. This discrepancy is correlated with the fact that fly expressing hyperphosphorylated full-length tau, but not Asp421-cleaved one, develops axonopathy lesions, including axonal spheroids and aberrant actin accumulations. The reduced presence of hyperphosphorylated tau in the axonal terminal is corroborated with the observation that flies expressing Asp421-truncated variants showed less motor deficit, suggesting synaptic function is preserved. The Asp421 cleavage of tau is a proteolytic product commonly found in the neurofibrillary tangles. Our finding suggests the coordination of different posttranslational modifications on tau may have an unexpected impact on the protein subcellular localization and cytotoxicity, which may be valuable when considering tau for therapeutic purposes.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Lee Sun
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ren-Huei Shiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Rui Han
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Ping Hsieh
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Min Wei
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Chuan Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
252
|
Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: The prime pathological player. Int J Biol Macromol 2020; 163:1599-1617. [PMID: 32784025 DOI: 10.1016/j.ijbiomac.2020.07.327] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a prevalently found tauopathy characterized by memory loss and cognitive insufficiency. AD is an age-related neurodegenerative disease with two major hallmarks which includes extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. With population aging worldwide, there is an indispensable need for treatment strategies that can potentially manage this developing dementia. Despite broad researches on targeting Aβ in the past two decades, research findings on Aβ targeted therapeutics failed to prove efficacy in the treatment of AD. Tau protein with its extensive pathological role in several neurodegenerative diseases can be considered as a promising target candidate for developing therapeutic interventions. The abnormal hyperphosphorylation of tau plays detrimental pathological functions which ultimately lead to neurodegeneration. This review will divulge the importance of tau in AD pathogenesis, the interplay of Aβ and tau, the pathological functions of tau, and potential therapeutic strategies for an effective management of neuronal disorders.
Collapse
Affiliation(s)
- Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
253
|
Bulgart HR, Neczypor EW, Wold LE, Mackos AR. Microbial involvement in Alzheimer disease development and progression. Mol Neurodegener 2020; 15:42. [PMID: 32709243 PMCID: PMC7382139 DOI: 10.1186/s13024-020-00378-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and the 5th leading cause of death in individuals over 65. AD is a complex disease stemming from genetic, environmental, and lifestyle factors. It is known that AD patients have increased levels of senile plaques, neurofibrillary tangles, and neuroinflammation; however, the mechanism(s) by which the plaques, tangles, and neuroinflammation manifest remain elusive. A recent hypothesis has emerged that resident bacterial populations contribute to the development and progression of AD by contributing to neuroinflammation, senile plaque formation, and potentially neurofibrillary tangle accumulation (Fig. 1). This review will highlight recent studies involved in elucidating microbial involvement in AD development and progression.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Evan W. Neczypor
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH USA
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
| |
Collapse
|
254
|
Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15:e0224952. [PMID: 32692785 PMCID: PMC7373298 DOI: 10.1371/journal.pone.0224952] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Isabel Torres
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gabrielle Aiello
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Milin Kurup
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Richard Yost
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
| | - Kevin K. Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States of America
| |
Collapse
|
255
|
Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020; 134:547-570. [PMID: 32167154 DOI: 10.1042/cs20191313] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
Collapse
|
256
|
Chen Q, Tu Y, Mak S, Chen J, Lu J, Chen C, Yang X, Wang S, Wen S, Ma S, Li M, Han Y, Wah-Keung Tsim K, Pi R. Discovery of a novel small molecule PT109 with multi-targeted effects against Alzheimer's disease in vitro and in vivo. Eur J Pharmacol 2020; 883:173361. [PMID: 32673674 DOI: 10.1016/j.ejphar.2020.173361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD), which is characterized by impairment of cognitive functions, is a chronic neurodegenerative disease that mainly affects the elderly. Currently available anti-AD drugs can only offer limited symptom-relieving effects. "One-compound-Multitargeted Strategy" have been recognized as the promising way to win the war against AD. Herein we report a potential anti-AD agent PT109 with multi-functions. First, an 81-kinase screening was carried out and results showed that PT109 potently inhibited c-Jun N-terminal kinases and Serum and glucocorticoid-inducible kinase 1, which are the important signaling molecules involved in neurogenesis, neuroprotection and neuroinflammation and mildly inhibit glycogen synthase kinase-3β as well as protein kinase C gamma, both are involved in AD pathological processes. In addition, invitro studies of immunofluorescent staining and Western blot showed that PT109 might promote the neurogenesis of C17.2 cells and induce synaptogenesis in primary cultured rat hippocampal neurons. We detected and confirmed the neuroprotective effect of PT109 in cultured HT22 cells by MTT assay, dehydrogenase assay, glutathione assay and reactive oxygen species assay. Furthermore, the results of Western blot, ELISA assay and immunofluorescent staining indicated that PT109 attenuated lipopolysaccharide-induced inflammation in BV2 cells and primary astrocytes. The results of Morris water maze and Step-through test indicated that PT109 improved the spatial learning ability in APP/PS1 mice. More importantly, the invivo pharmacokinetic parameters indicated that PT109 had better medicinal properties. Taken together, our findings suggest that PT109 may be a promising candidate for treating AD through multiple targets although further studies are ought to be conducted.
Collapse
Affiliation(s)
- Qiuhe Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Yalin Tu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Shinghung Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hong Kong
| | - Jingkao Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Chen Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Xiaohong Yang
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Shengnan Wang
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Shijun Wen
- Cancer Center of South China, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingtao Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hong Kong
| | - Karl Wah-Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong
| | - Rongbiao Pi
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, 510006, China; Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.
| |
Collapse
|
257
|
Liccardo D, Marzano F, Carraturo F, Guida M, Femminella GD, Bencivenga L, Agrimi J, Addonizio A, Melino I, Valletta A, Rengo C, Ferrara N, Rengo G, Cannavo A. Potential Bidirectional Relationship Between Periodontitis and Alzheimer's Disease. Front Physiol 2020; 11:683. [PMID: 32719612 PMCID: PMC7348667 DOI: 10.3389/fphys.2020.00683] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly population, representing a global public health priority. Despite a large improvement in understanding the pathogenesis of AD, the etiology of this disorder remains still unclear, and no current treatment is able to prevent, slow, or stop its progression. Thus, there is a keen interest in the identification and modification of the risk factors and novel molecular mechanisms associated with the development and progression of AD. In this context, it is worth noting that several findings support the existence of a direct link between neuronal and non-neuronal inflammation/infection and AD progression. Importantly, recent studies are now supporting the existence of a direct relationship between periodontitis, a chronic inflammatory oral disease, and AD. The mechanisms underlying the association remain to be fully elucidated, however, it is generally accepted, although not confirmed, that oral pathogens can penetrate the bloodstream, inducing a low-grade systemic inflammation that negatively affects brain function. Indeed, a recent report demonstrated that oral pathogens and their toxic proteins infect the brain of AD patients. For instance, when AD progresses from the early to the more advanced stages, patients could no longer be able to adequately adhere to proper oral hygiene practices, thus leading to oral dysbiosis that, in turn, fuels infection, such as periodontitis. Therefore, in this review, we will provide an update on the emerging (preclinical and clinical) evidence that supports the relationship existing between periodontitis and AD. More in detail, we will discuss data attesting that periodontitis and AD share common risk factors and a similar hyper-inflammatory phenotype.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Armida Addonizio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Imma Melino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, Siena, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
258
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
259
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
260
|
Takaichi Y, Chambers JK, Inoue H, Ano Y, Takashima A, Nakayama H, Uchida K. Phosphorylation and oligomerization of α-synuclein associated with GSK-3β activation in the rTg4510 mouse model of tauopathy. Acta Neuropathol Commun 2020; 8:86. [PMID: 32560668 PMCID: PMC7304163 DOI: 10.1186/s40478-020-00969-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of specific phosphorylated protein aggregates in the brain, such as hyperphosphorylated tau (hp-tau) in tauopathies and phosphorylated α-synuclein (p-αSyn) in α-synucleinopathies. The simultaneous accumulation of different proteins is a common event in many neurodegenerative diseases. We herein describe the detection of the phosphorylation and dimerization of αSyn and activation of GSK-3β, a major kinase known to phosphorylate tau and αSyn, in the brains of rTg4510 mice that overexpress human P301L mutant tau. Immunohistochemistry showed p-αSyn aggregates in rTg4510 mice, which were suppressed by doxycycline-mediated decreases in mutant tau expression levels. A semi-quantitative analysis revealed a regional correlation between hp-tau and p-αSyn accumulation in rTg4510 mice. Furthermore, proteinase K-resistant αSyn aggregates were found in the region with excessive hp-tau accumulation in rTg4510 mice, and these aggregates were morphologically different from proteinase K-susceptible p-αSyn aggregates. Western blotting revealed decreases in p-αSyn monomers in TBS- and sarkosyl-soluble fractions and increases in ubiquitinated p-αSyn dimers in sarkosyl-soluble and insoluble fractions in rTg4510 mice. Furthermore, an activated form of GSK-3β was immunohistochemically detected within cells containing both hp-tau and p-αSyn aggregates. A semi-quantitative analysis revealed that increased GSK-3β activity strongly correlated with hp-tau and p-αSyn accumulation in rTg4510 mice. Collectively, the present results suggest that the overexpression of human P301L mutant tau promoted the phosphorylation and dimerization of endogenous αSyn by activating GSK-3β in rTg4510 mice. This synergic effect between tau, αSyn, and GSK-3β may be involved in the pathophysiology of several neurodegenerative diseases that show the accumulation of both tau and αSyn.
Collapse
|
261
|
Messiha BAS, Ali MRA, Khattab MM, Abo-Youssef AM. Perindopril ameliorates experimental Alzheimer's disease progression: role of amyloid β degradation, central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacology 2020; 28:1343-1364. [PMID: 32488543 DOI: 10.1007/s10787-020-00724-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
Accumulating evidence indicates that over-stimulation of angiotensin-converting enzyme 1 (ACE1) activity is associated with β-amyloid (Aβ) and phosphorylated tau (p-tau)-induced apoptosis, oxido-nitrosative neuroinflammatory stress and neurodegeneration in Alzheimer's disease (AD). Alternatively, activation of the ACE2, the metalloprotease neprilysin (Neutral Endopeptidase; NEP) and the insulin-degrading enzyme (IDE) could oppose the effects of ACE1 activation. We aim to investigate the relationship between ACE1/ACE2/NEP/IDE and amyloidogenic/hyperlipidemic-lipid raft signaling in hyperlipidemic AD model. Induction of AD was performed in ovariectomized female rats with high-fat high fructose diet (HFFD) feeding after 4 weeks following D-galactose injection (150 mg/kg). The brain-penetrating ACE1 inhibitor perindopril (0.5 mg/kg/day, p.o.) was administered on a daily basis for 30 days. Perindopril significantly decreased hippocampal expression of ACE1 and increased expression of ACE2, NEP and IDE. Perindopril markedly decreased Aβ1-42, improved lipid profile and ameliorated the lipid raft protein markers caveolin1 (CAV1) and flotillin 1 (FLOT1). This was accompanied by decreased expression of p-tau and enhancement of cholinergic neurotransmission, coupled with decreased oxido-nitrosative neuroinflammatory stress, enhancement of blood-brain barrier (BBB) functioning and lower expression of the apoptotic markers glial fibrillary acidic protein (GFAP), Bax and β-tubulin. In addition, perindopril ameliorated histopathological damage and improved learning, cognitive and recognition impairment as well as depressive behavior in Morris water maze, Y maze, novel object recognition and forced swimming tests, respectively. Conclusively, perindopril could improve cognitive defects in AD rats, at least through activation of ACE2/NEP/IDE and inhibition of ACE1 and subsequent modulation of amyloidogenic/hyperlipidemic-lipid raft signaling and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohammed R A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
262
|
Jiang Y, Li L, Dai CL, Zhou R, Gong CX, Iqbal K, Gu JH, Liu F. Effect of Peripheral Insulin Administration on Phosphorylation of Tau in the Brain. J Alzheimers Dis 2020; 75:1377-1390. [PMID: 32417781 DOI: 10.3233/jad-200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormally hyperphosphorylated tau is the major protein of neurofibrillary tangles in Alzheimer's disease. Insulin activates PI3K-AKT signaling and regulates tau phosphorylation. Impaired brain insulin signaling is involved in Alzheimer's disease pathogenesis. However, the effect of peripheral insulin on tau phosphorylation is controversial. OBJECTIVE In the present study, we determined the effect of peripheral insulin administration on tau phosphorylation in brain. METHODS We intraperitoneally injected a super physiological dose of insulin to mice and analyzed PI3K-AKT signaling and tau phosphorylation in brains by western blots. RESULTS We found that peripherally administered insulin activated the PI3K-AKT signaling pathway immediately in the liver, but not in the brain. Tau phosphorylation in the mouse brain was found to be first decreased (15 min) and then increased (30 min and 60 min) after peripheral insulin administration and these changes correlated inversely with body temperature and the level of brain protein O-GlcNAcylation. Maintaining body temperature of mice post peripheral insulin administration prevented the insulin/hypoglycemia-induced tau hyperphosphorylation after peripheral insulin administration. CONCLUSION These findings suggest that peripheral insulin can induce tau hyperphosphorylation through both hypothermia and downregulation of brain protein O-GlcNAcylation during hypoglycemia.
Collapse
Affiliation(s)
- Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Longfei Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Ranran Zhou
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jin-Hua Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Clinical Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
263
|
Yang Y, Zhang Z. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:110. [PMID: 32477095 PMCID: PMC7241259 DOI: 10.3389/fnagi.2020.00110] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) has been a major health issue for more than one century since it was first reported in 1906. As one of the most common neurodegenerative diseases, AD is characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) in the affected brain area. Microglia are the major regulators of neuroinflammation in the brain, and neuroinflammation has become recognized as the core pathophysiological process of various neurodegenerative diseases. In the central nervous system (CNS), microglia play a dual role in AD development. For one thing, they degrade amyloid β (Aβ) to resist its deposition; for another, microglia release pro-inflammatory and inflammatory factors, contributing to neuroinflammation as well as the spreading of Aβ and tau pathology. Wnt pathways are important regulators of cell fate and cell activities. The dysregulation of Wnt pathways is responsible for both abnormal tau phosphorylation and synaptic loss in AD. Recent studies have also confirmed the regulatory effect of Wnt signaling on microglial inflammation. Thus, the study of microglia, Wnt pathways, and their possible interactions may open up a new direction for understanding the mechanisms of neuroinflammation in AD. In this review, we summarize the functions of microglia and Wnt pathways and their roles in AD in order to provide new ideas for understanding the pathogenesis of AD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
264
|
Autophagy Dysfunction in Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol Psychiatry 2020; 87:797-807. [PMID: 31262433 DOI: 10.1016/j.biopsych.2019.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss due to aberrant accumulation of misfolded proteins inside and outside neurons and glial cells, leading to a loss of cellular protein homeostasis. Today, no therapy is available to block or slow down AD progression, and the mechanisms of the disease are not fully understood. Autophagy is an intracellular degradation pathway crucial to maintaining cellular homeostasis by clearing damaged organelles, pathogens, and unwanted protein aggregates. In recent years, autophagy dysfunction has gained considerable attention in AD and other neurodegenerative diseases because it has been linked to the accumulation of misfolded proteins that ultimately causes neuronal death in many of these disorders. Interestingly, autophagy-activating compounds have also shown some promising results in both clinical trials and preclinical studies. This review aims at summarizing the current knowledge on autophagy dysfunction in the context of AD pathophysiology, providing recent mechanistic insights on AD-mediated autophagic flux disruption and highlighting potential and novel therapeutic opportunities that target this system for AD therapy.
Collapse
|
265
|
Brain microRNAs dysregulation: Implication for missplicing and abnormal post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Pharmacol Res 2020; 155:104729. [DOI: 10.1016/j.phrs.2020.104729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
|
266
|
Bi A, An W, Wang C, Hua Y, Fang F, Dong X, Chen R, Zhang Z, Luo L. SCR-1693 inhibits tau phosphorylation and improves insulin resistance associated cognitive deficits. Neuropharmacology 2020; 168:108027. [DOI: 10.1016/j.neuropharm.2020.108027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/29/2022]
|
267
|
Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7039138. [PMID: 32411333 PMCID: PMC7206886 DOI: 10.1155/2020/7039138] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older people, and the prevalence of this disease is estimated to rise quickly in the upcoming years. Unfortunately, almost all of the drug candidates tested for AD until now have failed to exhibit any efficacy. Henceforth, there is an increased necessity to avert and/or slow down the advancement of AD. It is known that one of the major pathological characteristics of AD is the presence of senile plaques (SPs) in the brain. These SPs are composed of aggregated amyloid beta (Aβ), derived from the amyloid precursor protein (APP). Pharmaceutical companies have conducted a number of studies in order to identify safe and effective anti-Aβ drugs to combat AD. It is known that α-, β-, and γ-secretases are the three proteases that are involved in APP processing. Furthermore, there is a growing interest in these proteases, as they have a contribution to the modulation and production of Aβ. It has been observed that small compounds can be used to target these important proteases. Indeed, these compounds must satisfy the common strict requirements of a drug candidate targeted for brain penetration and selectivity toward different proteases. In this article, we have focused on the auspicious molecules which are under development for targeting APP-processing enzymes. We have also presented several anti-AD molecules targeting Aβ accumulation and phosphorylation signaling in APP processing. This review highlights the structure-activity relationship and other physicochemical features of several pharmacological candidates in order to successfully develop new anti-AD drugs.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
268
|
Llorach-Pares L, Rodriguez-Urgelles E, Nonell-Canals A, Alberch J, Avila C, Sanchez-Martinez M, Giralt A. Meridianins and Lignarenone B as Potential GSK3β Inhibitors and Inductors of Structural Neuronal Plasticity. Biomolecules 2020; 10:E639. [PMID: 32326204 PMCID: PMC7226462 DOI: 10.3390/biom10040639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glycogen Synthase Kinase 3 (GSK3) is an essential protein, with a relevant role in many diseases such as diabetes, cancer and neurodegenerative disorders. Particularly, the isoform GSK3β is related to pathologies such as Alzheimer's disease (AD). This enzyme constitutes a very interesting target for the discovery and/or design of new therapeutic agents against AD due to its relation to the hyperphosphorylation of the microtubule-associated protein tau (MAPT), and therefore, its contribution to neurofibrillary tangles (NFT) formation. An in silico target profiling study identified two marine molecular families, the indole alkaloids meridianins from the tunicate genus Aplidium, and lignarenones, the secondary metabolites of the shelled cephalaspidean mollusc Scaphander lignarius, as possible GSK3β inhibitors. The analysis of the surface of GSK3β, aimed to find possible binding regions, and the subsequent in silico binding studies revealed that both marine molecular families can act over the ATP and/or substrate binding regions. The predicted inhibitory potential of the molecules from these two chemical families was experimentally validated in vitro by showing a ~50% of increased Ser9 phosphorylation levels of the GSK3β protein. Furthermore, we determined that molecules from both molecular families potentiate structural neuronal plasticity in vitro. These results allow us to suggest that meridianins and lignarenone B could be used as possible therapeutic candidates for the treatment of GSK3β involved pathologies, such as AD.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, (Spain); (L.L.-P.); (C.A.)
- Mind the Byte S.L., 08007 Barcelona, Catalonia, Spain;
| | - Ened Rodriguez-Urgelles
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (E.R.-U.); (J.A.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | | | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (E.R.-U.); (J.A.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, (Spain); (L.L.-P.); (C.A.)
| | | | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (E.R.-U.); (J.A.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
269
|
Xie Y, Yan L, Zeng H, Chen W, Lu JH, Wan JB, Su H, Yao X. Fish oil protects the blood-brain barrier integrity in a mouse model of Alzheimer's disease. Chin Med 2020; 15:29. [PMID: 32256685 PMCID: PMC7106819 DOI: 10.1186/s13020-020-00314-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is ranked as the most prevalent neurodegenerative disease. However, the exact molecular mechanisms underlying pathophysiological alterations in AD remain unclear, especially at the prodromal stage. The decreased proteolytic degradation of Aβ, blood-brain barrier (BBB) disruption, and neuroinflammation are considered to play key roles in the course of AD. METHODS Male APPswe/PS1dE9 C57BL/6 J double-transgenic (APP/PS1) mice in the age range from 1 month to 6 months and age-matched wild type mice were used in this study, intending to investigate the expression profiles of Aβ-degrading enzymes for Aβ degradation activities and zonula occludens-1 (zo-1) for BBB integrity at the prodromal stage. RESULTS Our results showed that there were no significant genotype-related alterations in mRNA expression levels of 4 well-characterized Aβ-degrading enzymes in APP/PS1 mice within the ages of 6 months. Interestingly, a significant decrease in zo-1 expression was observed in APP/PS1 mice starting from the age of 5 months, suggesting that BBB disrupt occurs at an early stage. Moreover, treatment of fish oil (FO) for 4 weeks remarkably increased zo-1 expression and significantly inhibited the glial activation and NF-κB activation in APP/PS1 mice. CONCLUSION The results of our study suggest that FO supplement could be a potential therapeutic early intervention for AD through protecting the BBB integrity and suppressing glial and NF-κB activation.
Collapse
Affiliation(s)
- Youna Xie
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| |
Collapse
|
270
|
Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Peña V. GSK3β and Tau Protein in Alzheimer's Disease and Epilepsy. Front Cell Neurosci 2020; 14:19. [PMID: 32256316 PMCID: PMC7089874 DOI: 10.3389/fncel.2020.00019] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia present in older adults; its etiology involves genetic and environmental factors. In recent years, epidemiological studies have shown a correlation between AD and chronic epilepsy since a considerable number of patients with AD may present seizures later on. Although the pathophysiology of seizures in AD is not completely understood, it could represent the result of several molecular mechanisms linked to amyloid beta-peptide (Aβ) accumulation and the hyperphosphorylation of tau protein, which may induce an imbalance in the release and recapture of excitatory and inhibitory neurotransmitters, structural alterations of the neuronal cytoskeleton, synaptic loss, and neuroinflammation. These changes could favor the recurrent development of hypersynchronous discharges and epileptogenesis, which, in a chronic state, favor the neurodegenerative process and influence the cognitive decline observed in AD. Supporting this correlation, histopathological studies in the brain tissue of temporal lobe epilepsy (TLE) patients have revealed the presence of Aβ deposits and the accumulation of tau protein in the neurofibrillary tangles (NFTs), accompanied by an increase of glycogen synthase kinase-3 beta (GSK3β) activity that may lead to an imminent alteration in posttranslational modifications of some microtubule-associated proteins (MAPs), mainly tau. The present review is focused on understanding the pathological aspects of GSK3β and tau in the development of TLE and AD.
Collapse
Affiliation(s)
- Danira Toral-Rios
- Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Pavel S Pichardo-Rojas
- Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Mario Alonso-Vanegas
- Centro Internacional de Cirug#x000ED;a de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, HMG, Hospital Coyoacán, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
271
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
272
|
Barron MR, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. Increasing Tau 4R Tau Levels Exacerbates Hippocampal Tau Hyperphosphorylation in the hTau Model of Tauopathy but Also Tau Dephosphorylation Following Acute Systemic Inflammation. Front Immunol 2020; 11:293. [PMID: 32194553 PMCID: PMC7066213 DOI: 10.3389/fimmu.2020.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Inflammation is considered a mechanistic driver of Alzheimer's disease, thought to increase tau phosphorylation, the first step to the formation of neurofibrillary tangles (NFTs). To further understand how inflammation impacts the development of tau pathology, we used (hTau) mice, which express all six, non-mutated, human tau isoforms, but with an altered ratio of tau isoforms favoring 3R tau due to the concomitant loss of murine tau (mTau) that is predominantly 4R. Such an imbalance pattern has been related to susceptibility to NFTs formation, but whether or not this also affects susceptibility to systemic inflammation and related changes in tau phosphorylation is not known. To reduce the predominance of 3R tau by increasing 4R tau availability, we bred hTau mice on a heterozygous mTau background and compared the impact of systemic inflammation induced by lipopolysaccharide (LPS) in hTau mice hetero- or homozygous mTau knockout. Three-month-old male wild-type (Wt), mTau+/-, mTau-/-, hTau/mTau+/-, and hTau/mTau-/- mice were administered 100, 250, or 330 μg/kg of LPS or its vehicle phosphate buffer saline (PBS) [intravenously (i.v.), n = 8-9/group]. Sickness behavior, reflected by behavioral suppression in the spontaneous alternation task, hippocampal tau phosphorylation, measured by western immunoblotting, and circulating cytokine levels were quantified 4 h after LPS administration. The persistence of the LPS effects (250 μg/kg) on these measures, and food burrowing behavior, was assessed at 24 h post-inoculation in Wt, mTau+/-, and hTau/mTau+/- mice (n = 9-10/group). In the absence of immune stimulation, increasing 4R tau levels in hTau/mTau+/- exacerbated pS202 and pS396/404 tau phosphorylation, without altering total tau levels or worsening early behavioral perturbations characteristic of hTau/mTau-/- mice. We also show for the first time that modulating 4R tau levels in hTau mice affects the response to systemic inflammation. Behavior was suppressed in all genotypes 4 h following LPS administration, but hTau/mTau+/- exhibited more severe sickness behavior at the 100 μg/kg dose and a milder behavioral and cytokine response than hTau/mTau-/- mice at the 330 μg/kg dose. All LPS doses decreased tau phosphorylation at both epitopes in hTau/mTau+/- mice, but pS202 levels were selectively reduced at the 100 μg/kg dose in hTau/mTau-/- mice. Behavioral suppression and decreased tau phosphorylation persisted at 24 h following LPS administration in hTau/mTau+/- mice.
Collapse
Affiliation(s)
- Matthew R Barron
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jane Gartlon
- EMEA Knowledge Centre, Eisai Ltd., Hatfield, United Kingdom
| | | | | | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
273
|
Ohyagi Y, Takei SI. Insulin signaling as a therapeutic target in Alzheimer’s disease: Efficacy of apomorphine. ACTA ACUST UNITED AC 2020. [DOI: 10.1111/ncn3.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine Graduate School of Medicine Ehime University Ehime Japan
| | - Satoko I. Takei
- Department of Neurology and Geriatric Medicine Graduate School of Medicine Ehime University Ehime Japan
| |
Collapse
|
274
|
Crowe A, Henderson MJ, Anderson J, Titus SA, Zakharov A, Simeonov A, Buist A, Delay C, Moechars D, Trojanowski JQ, Lee VMY, Brunden KR. Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. J Biol Chem 2020; 295:4001-4013. [PMID: 32034092 DOI: 10.1074/jbc.ra119.010532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) brains are senile plaques, comprising β-amyloid (Aβ) peptides, and neuronal inclusions formed from tau protein. These plaques form 10-20 years before AD symptom onset, whereas robust tau pathology is more closely associated with symptoms and correlates with cognitive status. This temporal sequence of AD pathology development, coupled with repeated clinical failures of Aβ-directed drugs, suggests that molecules that reduce tau inclusions have therapeutic potential. Few tau-directed drugs are presently in clinical testing, in part because of the difficulty in identifying molecules that reduce tau inclusions. We describe here two cell-based assays of tau inclusion formation that we employed to screen for compounds that inhibit tau pathology: a HEK293 cell-based tau overexpression assay, and a primary rat cortical neuron assay with physiological tau expression. Screening a collection of ∼3500 pharmaceutical compounds with the HEK293 cell tau aggregation assay, we obtained only a low number of hit compounds. Moreover, these compounds generally failed to inhibit tau inclusion formation in the cortical neuron assay. We then screened the Prestwick library of mostly approved drugs in the cortical neuron assay, leading to the identification of a greater number of tau inclusion inhibitors. These included four dopamine D2 receptor antagonists, with D2 receptors having previously been suggested to regulate tau inclusions in a Caenorhabditis elegans model. These results suggest that neurons, the cells most affected by tau pathology in AD, are very suitable for screening for tau inclusion inhibitors.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Johnathon Anderson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Arjan Buist
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Charlotte Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
275
|
Tian Y, Meng L, Zhang Z. What is strain in neurodegenerative diseases? Cell Mol Life Sci 2020; 77:665-676. [PMID: 31531680 PMCID: PMC11105091 DOI: 10.1007/s00018-019-03298-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterized by the aggregation of misfolded proteins, including Aβ, tau and α-synuclein. It is well recognized that these misfolded proteins are able to self-propagate and spread throughout the nervous system and cause neuronal injury in a way that resembles prion disease. These disease-specific misfolded proteins demonstrate unique features, including the seeding barrier, the conformational memory effect, strain selection and strain evolution, based on the presence of various strains. However, the accurate definition of the term strain remains to be clarified. Here, a clear interpretation is proposed by a retrospective of its history in prion research and the recent progress in neurodegeneration research. Furthermore, the causes contributing to the genesis of various strains are also summarized. Deeper insight into strains helps us to understand the phenomena we observe in this field and it also enlightens us on the elusive mechanisms and management of neurodegeneration.
Collapse
Affiliation(s)
- Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
276
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
277
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
278
|
Petry FDS, Coelho BP, Gaelzer MM, Kreutz F, Guma FTCR, Salbego CG, Trindade VMT. Genistein protects against amyloid-beta-induced toxicity in SH-SY5Y cells by regulation of Akt and Tau phosphorylation. Phytother Res 2019; 34:796-807. [PMID: 31795012 DOI: 10.1002/ptr.6560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular deposition of amyloid-β (Aβ) peptide and hyperphosphorylation of Tau protein, which ultimately leads to the formation of intracellular neurofibrillary tangles and cell death. Increasing evidence indicates that genistein, a soy isoflavone, has neuroprotective effects against Aβ-induced toxicity. However, the molecular mechanisms involved in its neuroprotection are not well understood. In this study, we have established a neuronal damage model using retinoic-acid differentiated SH-SY5Y cells treated with different concentrations of Aβ25-35 to investigate the effect of genistein against Aβ-induced cell death and the possible involvement of protein kinase B (PKB, also termed Akt), glycogen synthase kinase 3β (GSK-3β), and Tau as an underlying mechanism to this neuroprotection. Differentiated SH-SY5Y cells were pre-treated for 24 hr with genistein (1 and 10 nM) and exposed to Aβ25-35 (25 μM), and we found that genistein partially inhibited Aβ induced cell death, primarily apoptosis. Furthermore, the protective effect of genistein was associated with the inhibition of Aβ-induced Akt inactivation and Tau hyperphosphorylation. These findings reinforce the neuroprotective effects of genistein against Aβ toxicity and provide evidence that its mechanism may involve regulation of Akt and Tau proteins.
Collapse
Affiliation(s)
- Fernanda Dos Santos Petry
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bárbara Paranhos Coelho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Maier Gaelzer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Kreutz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
279
|
Croft CL, Futch HS, Moore BD, Golde TE. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener 2019; 14:45. [PMID: 31791377 PMCID: PMC6889333 DOI: 10.1186/s13024-019-0346-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 01/30/2023] Open
Abstract
Organotypic slice cultures of brain or spinal cord have been a longstanding tool in neuroscience research but their utility for understanding Alzheimer's disease (AD) and other neurodegenerative proteinopathies has only recently begun to be evaluated. Organotypic brain slice cultures (BSCs) represent a physiologically relevant three-dimensional model of the brain. BSCs support all the central nervous system (CNS) cell types and can be produced from brain areas involved in neurodegenerative disease. BSCs can be used to better understand the induction and significance of proteinopathies underlying the development and progression of AD and other neurodegenerative disorders, and in the future may serve as bridging technologies between cell culture and in vivo experiments for the development and evaluation of novel therapeutic targets and strategies. We review the initial development and general use of BSCs in neuroscience research and highlight the advantages of these cultures as an ex vivo model. Subsequently we focus on i) BSC-based modeling of AD and other neurodegenerative proteinopathies ii) use of BSCs to understand mechanisms underlying these diseases and iii) how BSCs can serve as tools to screen for suitable therapeutics prior to in vivo investigations. Finally, we will examine i) open questions regarding the use of such cultures and ii) how emerging technologies such as recombinant adeno-associated viruses (rAAV) may be combined with these models to advance translational research relevant to neurodegenerative disorders.
Collapse
Affiliation(s)
- C L Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - H S Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - B D Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - T E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
280
|
Glaucocalyxin A as a natural product increases amyloid β clearance and decreases tau phosphorylation involving the mammalian target of rapamycin signaling pathway. Neuroreport 2019; 30:310-316. [PMID: 30688759 DOI: 10.1097/wnr.0000000000001202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder correlated with age, characterized by the accumulation of amyloid β (Aβ) plaques and neurofibrillary tangles. The mammalian target of rapamycin (mTOR) is an important protein that regulates Aβ clearance and tau phosphorylation. Therefore, mTOR has become a pivotal therapeutic target for AD treatment. In this study, we discovered a natural product, glaucocalyxin A (GLA), as a new mTOR inhibitor based on a high-throughput screening platform with α-screen technology against our natural product library. Further study showed that GLA increased Aβ clearance involving the protein kinase B/mTOR/autophagy signaling pathway and inhibited tau phosphorylation involving the mTOR/70-kDa ribosomal protein S6 kinase pathway, which highlighted the therapeutic potential of GLA for the AD treatment.
Collapse
|
281
|
Gracia L, Lora G, Blair LJ, Jinwal UK. Therapeutic Potential of the Hsp90/Cdc37 Interaction in Neurodegenerative Diseases. Front Neurosci 2019; 13:1263. [PMID: 31824256 PMCID: PMC6882380 DOI: 10.3389/fnins.2019.01263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development. These efforts have revealed that the phosphorylation of proteins by kinases may play a critical role in the aggregation of disease-associated proteins, which is thought to contribute to neurodegeneration. Interestingly, a molecular chaperone complex consisting of the 90 kDa heat shock protein (Hsp90) and Cell Division Cycle 37 (Cdc37) has been shown to regulate the maturation of many of these kinases as well as regulate some disease-associated proteins directly. Thus, the Hsp90/Cdc37 complex may represent a potential drug target for regulating proteins linked to neurodegenerative diseases, through both direct and indirect interactions. Herein, we discuss the broad understanding of many Hsp90/Cdc37 pathways and how this protein complex may be a useful target to regulate the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Liam Gracia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| | - Gabriella Lora
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umesh K. Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| |
Collapse
|
282
|
Alves M, Kenny A, de Leo G, Beamer EH, Engel T. Tau Phosphorylation in a Mouse Model of Temporal Lobe Epilepsy. Front Aging Neurosci 2019; 11:308. [PMID: 31780921 PMCID: PMC6861366 DOI: 10.3389/fnagi.2019.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphorylation of the microtubule-associated protein tau and its resultant aggregation into neurofibrillary tangles (NFT) is a pathological characteristic of neurodegenerative disorders known as tauopathies. Tau is a neuronal protein involved in the stabilization of microtubule structures of the axon and the aberrant phosphorylation of tau is associated with several neurotoxic effects. The discovery of tau pathology and aggregates in the cortex of Temporal lobe epilepsy (TLE) patients has focused interest on hyperphosphorylation of tau as a potential mechanism contributing to increased states of hyperexcitability and cognitive decline. Previous studies using animal models of status epilepticus and tissue from patients with TLE have shown increased tau phosphorylation in the brain following acute seizures and during epilepsy, with tau phosphorylation correlating with cognitive deficits in patients. Suggesting a functional role of tau during epilepsy, studies in tau-deficient and tau-overexpressing mice have demonstrated a causal role of tau during seizure generation. Previous studies, analyzing the impact of seizures on tau hyperphosphorylation, have mainly used animal models of acute seizures. These models, however, do not replicate all aspects of chronic epilepsy. In this study, we investigated the effects of acute seizures (status epilepticus) and chronic epilepsy upon the expression and phosphorylation of tau using the intra-amygdala kainic acid (KA)-induced status epilepticus mouse model. Status epilepticus resulted in an immediate increase in total tau levels in the hippocampus, in particular, the dentate gyrus, and phosphorylation of the AT8 epitope (Ser202, Thr205), with phosphorylated tau mainly localizing to the mossy fibers of the dentate gyrus. During epilepsy, abnormal phosphorylation of tau was detected again at the AT8 epitope with lower total tau levels in the CA3 and CA1 subfields of the hippocampus. Chronic epilepsy in mice also resulted in a strong localization of AT8 phospho-tau to microglia, indicating a distinct pattern of tau hyperphosphorylation during chronic epilepsy compared to status epilepticus. Our results reaffirm previous observations of tau phosphorylation post-status epilepticus, but also elaborate on tau alterations in epileptic mice which more faithfully mimic TLE. Our results confirm seizures affect tau hyperphosphorylation, however, suggest epitope-specific phosphorylation of tau and differences in cell-specific localization according to disease progression.
Collapse
Affiliation(s)
- Marianna Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gioacchino de Leo
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward H Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
283
|
Amir Mishan M, Rezaei Kanavi M, Shahpasand K, Ahmadieh H. Pathogenic Tau Protein Species: Promising Therapeutic Targets for Ocular Neurodegenerative Diseases. J Ophthalmic Vis Res 2019; 14:491-505. [PMID: 31875105 PMCID: PMC6825701 DOI: 10.18502/jovr.v14i4.5459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein, which is highly expressed in the central nervous system as well as ocular neurons and stabilizes microtubule structure. It is a phospho-protein being moderately phosphorylated under physiological conditions but its abnormal hyperphosphorylation or some post-phosphorylation modifications would result in a pathogenic condition, microtubule dissociation, and aggregation. The aggregates can induce neuroinflammation and trigger some pathogenic cascades, leading to neurodegeneration. Taking these together, targeting pathogenic tau employing tau immunotherapy may be a promising therapeutic strategy in fighting with cerebral and ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
284
|
Ko HJ, Chiou SJ, Wong YH, Wang YH, Lai Y, Chou CH, Wang C, Loh JK, Lieu AS, Cheng JT, Lin YT, Lu PJ, Fann MJ, Huang CYF, Hong YR. GSKIP-Mediated Anchoring Increases Phosphorylation of Tau by PKA but Not by GSK3beta via cAMP/PKA/GSKIP/GSK3/Tau Axis Signaling in Cerebrospinal Fluid and iPS Cells in Alzheimer Disease. J Clin Med 2019; 8:1751. [PMID: 31640277 PMCID: PMC6832502 DOI: 10.3390/jcm8101751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Based on the protein kinase A (PKA)/GSK3β interaction protein (GSKIP)/glycogen synthase kinase 3β (GSK3β) axis, we hypothesized that these might play a role in Tau phosphorylation. Here, we report that the phosphorylation of Tau Ser409 in SHSY5Y cells was increased by overexpression of GSKIP WT more than by PKA- and GSK3β-binding defective mutants (V41/L45 and L130, respectively). We conducted in vitro assays of various kinase combinations to show that a combination of GSK3β with PKA but not Ca2+/calmodulin-dependent protein kinase II (CaMK II) might provide a conformational shelter to harbor Tau Ser409. Cerebrospinal fluid (CSF) was evaluated to extend the clinical significance of Tau phosphorylation status in Alzheimer's disease (AD), neurological disorders (NAD), and mild cognitive impairment (MCI). We found higher levels of different PKA-Tau phosphorylation sites (Ser214, Ser262, and Ser409) in AD than in NAD, MCI, and normal groups. Moreover, we used the CRISPR/Cas9 system to produce amyloid precursor protein (APPWT/D678H) isogenic mutants. These results demonstrated an enhanced level of phosphorylation by PKA but not by the control. This study is the first to demonstrate a transient increase in phosphor-Tau caused by PKA, but not GSK3β, in the CSF and induced pluripotent stem cells (iPSCs) of AD, implying that both GSKIP and GSK3β function as anchoring proteins to strengthen the cAMP/PKA/Tau axis signaling during AD pathogenesis.
Collapse
Affiliation(s)
- Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shean-Jaw Chiou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Yu-Hui Wong
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yin-Hsuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - YunLing Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hua Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Yu-Te Lin
- Section of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Jung Lu
- Institute of Clinical Medicine, School of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences and Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chi-Ying F Huang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
285
|
Paudel YN, Angelopoulou E, Jones NC, O’Brien TJ, Kwan P, Piperi C, Othman I, Shaikh MF. Tau Related Pathways as a Connecting Link between Epilepsy and Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4199-4212. [PMID: 31532186 DOI: 10.1021/acschemneuro.9b00460] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point toward an important interconnection between epilepsy and Alzheimer's disease (AD) pathogenesis. Patients with epilepsy (PWE) commonly exhibit cognitive impairment similar to AD patients, who in turn are at a higher risk of developing epilepsy compared to age-matched controls. To date, no disease-modifying treatment strategy is available for either epilepsy or AD, reflecting an immediate need for exploring common molecular targets, which can delineate a possible mechanistic link between epilepsy and AD. This review attempts to disentangle the interconnectivity between epilepsy and AD pathogenesis via the crucial contribution of Tau protein. Tau protein is a microtubule-associated protein (MAP) that has been implicated in the pathophysiology of both epilepsy and AD. Hyperphosphorylation of Tau contributes to the different forms of human epilepsy and inhibition of the same exerted seizure inhibitions and altered disease progression in a range of animal models. Moreover, Tau-protein-mediated therapy has demonstrated promising outcomes in experimental models of AD. In this review, we discuss how Tau-related mechanisms might present a link between the cause of seizures in epilepsy and cognitive disruption in AD. Untangling this interconnection might be instrumental in designing novel therapies that can minimize epileptic seizures and cognitive deficits in patients with epilepsy and AD.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Nigel C. Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
| |
Collapse
|
286
|
Wu HY, Kuo PC, Wang YT, Lin HT, Roe AD, Wang BY, Han CL, Hyman BT, Chen YJ, Tai HC. β-Amyloid Induces Pathology-Related Patterns of Tau Hyperphosphorylation at Synaptic Terminals. J Neuropathol Exp Neurol 2019; 77:814-826. [PMID: 30016458 DOI: 10.1093/jnen/nly059] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A synergy between β-amyloid (Aβ) and tau appears to occur in Alzheimer disease (AD), but the mechanisms of interaction, and potential locations, are little understood. This study investigates the possibility of such interactions within the cortical synaptic compartments of APP/PS1 mice. We used label-free quantitative mass spectrometry to study the phosphoproteome of synaptosomes, covering 2400 phosphopeptides and providing an unbiased survey of phosphorylation changes associated with amyloid pathology. Hyperphosphorylation was detected on 36 synaptic proteins, many of which are associated with the cytoskeleton. Importantly, tau is one of the most hyperphosphorylated proteins at the synapse, upregulated at both proline-directed kinase (PDK) sites (S199/S202, S396/S404) and nonPDK sites (S400). These PDK sites correspond to well-known pathological tau epitopes in AD patients, recognized by AT8 and PHF-1 antibodies, respectively. Hyperphosphorylation at S199/S202, a rarely examined combination, was further validated in patient-derived human synaptosomes by immunoblotting. Global surveys of upregulated phosphosites revealed 2 potential kinase motifs, which resemble those of cyclin-dependent kinase 5 (CDK5, a PDK) and casein kinase II (CK2, a nonPDK). Our data demonstrate that, within synaptic compartments, amyloid pathology is associated with tau hyperphosphorylation at disease-relevant epitopes. This provides a plausible mechanism by which Aβ promotes the spreading of tauopathy.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Po-Cheng Kuo
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hao-Tai Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Allyson D Roe
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bo Y Wang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ju Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
287
|
Melchior B, Mittapalli GK, Lai C, Duong‐Polk K, Stewart J, Güner B, Hofilena B, Tjitro A, Anderson SD, Herman DS, Dellamary L, Swearingen CJ, Sunil K, Yazici Y. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer's disease. Aging Cell 2019; 18:e13000. [PMID: 31267651 PMCID: PMC6718548 DOI: 10.1111/acel.13000] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A) is known to phosphorylate the microtubule-associated tau protein. Overexpression is correlated with tau hyperphosphorylation and neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). This study assessed the potential of SM07883, an oral DYRK1A inhibitor, to inhibit tau hyperphosphorylation, aggregation, NFT formation, and associated phenotypes in mouse models. Exploratory neuroinflammatory effects were also studied. SM07883 specificity was tested in a kinase panel screen and showed potent inhibition of DYRK1A (IC50 = 1.6 nM) and GSK-3β (IC50 = 10.8 nM) kinase activity. Tau phosphorylation measured in cell-based assays showed a reduction in phosphorylation of multiple tau epitopes, especially the threonine 212 site (EC50 = 16 nM). SM07883 showed good oral bioavailability in multiple species and demonstrated a dose-dependent reduction of transient hypothermia-induced phosphorylated tau in the brains of wild-type mice compared to vehicle (47%, p < 0.001). Long-term efficacy assessed in aged JNPL3 mice overexpressing the P301L human tau mutation (3 mg/kg, QD, for 3 months) exhibited significant reductions in tau hyperphosphorylation, oligomeric and aggregated tau, and tau-positive inclusions compared to vehicle in brainstem and spinal cord samples. Reduced gliosis compared to vehicle was further confirmed by ELISA. SM07883 was well tolerated with improved general health, weight gain, and functional improvement in a wire-hang test compared to vehicle-treated mice (p = 0.048). SM07883, a potent, orally bioavailable, brain-penetrant DYRK1A inhibitor, significantly reduced effects of pathological tau overexpression and neuroinflammation, while functional endpoints were improved compared to vehicle in animal models. This small molecule has potential as a treatment for AD.
Collapse
|
288
|
Chen Y, Xu J, Zhou X, Liu S, Zhang Y, Ma S, Fu AKY, Ip NY, Chen Y. Changes of Protein Phosphorylation Are Associated with Synaptic Functions during the Early Stage of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3986-3996. [PMID: 31424205 DOI: 10.1021/acschemneuro.9b00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease is an irreversible neurodegenerative disorder for which we have limited knowledge of the mechanisms underlying its pathogenesis, especially the molecular events that trigger the deterioration of neuronal functions in the early stage. Protein phosphorylation and dephosphorylation are highly dynamic and reversible post-translational modifications that control protein signaling and hence neuronal functions, aberrations of which are implicated in various neurodegenerative diseases including Alzheimer's disease. We conducted a quantitative phosphoproteomic analysis in the brains of APP/PS1 mice, an Aβ-deposition transgenic mouse model, at 3 months old, the stage at which amyloid pathology just initiates. Compared to the wild-type mouse brains, we found that changes in serine phosphorylation were predominant in the APP/PS1 mouse brains, and that the occurrence of proline-directed phosphorylation was most common among the overrepresented phosphopeptides. Further analysis of the 167 phosphoproteins that were significantly up- or downregulated in APP/PS1 mouse brains revealed the enrichment of these proteins in synapse-related pathways. In particular, Western blot analysis validated the increased phosphorylation of chromogranin B, a protein enriched in large dense-core vesicles, in APP/PS1 mouse brains. These findings collectively suggest that changes in the phosphoprotein network may be associated with the deregulation of synaptic functions during the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Jinying Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Saijuan Liu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yulin Zhang
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Amy K. Y. Fu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
289
|
Liang Z, Zhang B, Xu M, Morisseau C, Hwang SH, Hammock BD, Li QX. 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) Urea, a Selective and Potent Dual Inhibitor of Soluble Epoxide Hydrolase and p38 Kinase Intervenes in Alzheimer's Signaling in Human Nerve Cells. ACS Chem Neurosci 2019; 10:4018-4030. [PMID: 31378059 PMCID: PMC7028313 DOI: 10.1021/acschemneuro.9b00271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Neuroinflammation is a prevalent pathogenic stress leading to neuronal death in AD. Targeting neuroinflammation to keep neurons alive is an attractive strategy for AD therapy. 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) is a potent inhibitor of soluble epoxide hydrolase (sEH) and can enter into the brain. It has good efficacy on a wide range of chronic inflammatory diseases in preclinical animal models. However, the anti-neuroinflammatory effects and molecular mechanisms of TPPU for potential AD interventions remain elusive. With an aim to develop multitarget therapeutics for neurodegenerative diseases, we screened TPPU against sEH from different mammalian species and a broad panel of human kinases in vitro for potential new targets relevant to neuroinflammation in AD. TPPU inhibits both human sEH and p38β kinase, two key regulators of inflammation, with nanomolar potencies and distinct selectivity. To further elucidate the molecular mechanisms, differentiated SH-SY5Y human neuroblastoma cells were used as an AD cell model, and we investigated the neuroprotection of TPPU against amyloid oligomers. We found that TPPU effectively prevents neuronal death by mitigating amyloid neurotoxicity, tau hyperphosphorylation, and mitochondrial dysfunction, promoting neurite outgrowth and suppressing activation and nuclear translocation of NF-κB for inflammatory responses in human nerve cells. The results indicate that TPPU is a potent and selective dual inhibitor of sEH and p38β kinase, showing a synergistic action in multiple AD signaling pathways. Our study sheds light upon TPPU and other sEH/p38β dual inhibitors for potential pharmacological interventions in AD.
Collapse
Affiliation(s)
- Zhibin Liang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Bei Zhang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Meng Xu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
290
|
Yan T, Wang L, Gao J, Siedlak SL, Huntley ML, Termsarasab P, Perry G, Chen SG, Wang X. Rab10 Phosphorylation is a Prominent Pathological Feature in Alzheimer's Disease. J Alzheimers Dis 2019; 63:157-165. [PMID: 29562525 DOI: 10.3233/jad-180023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized by neurofibrillary tangles (NFTs), senile plaques (SPs), and a progressive loss of neuronal cells in selective brain regions. Rab10, a small Rab GTPase involved in vesicular trafficking, has recently been identified as a novel protein associated with AD. Interestingly, Rab10 is a key substrate of leucine-rich repeat kinase 2 (LRRK2), a serine/threonine protein kinase genetically associated with the second most common neurodegenerative disease Parkinson's disease. However, the phosphorylation state of Rab10 has not yet been investigated in AD. Here, using a specific antibody recognizing LRRK2-mediated Rab10 phosphorylation at the amino acid residue threonine 73 (pRab10-T73), we performed immunocytochemical analysis of pRab10-T73 in hippocampal tissues of patients with AD. pRab10-T73 was prominent in NFTs in neurons within the hippocampus in all cases of AD examined, whereas immunoreactivity was very faint in control cases. Other characteristic AD pathological structures including granulovacuolar degeneration, dystrophic neurites and neuropil threads also contained pRab10-T73. The pRab10-T73 immunoreactivity was diminished greatly following dephosphorylation with alkaline phosphatase. pRab10-T73 was further found to be highly co-localized with hyperphosphorylated tau (pTau) in AD, and demonstrated similar pathological patterns as pTau in Down syndrome and progressive supranuclear palsy. Although pRab10-T73 immunoreactivity could be noted in dystrophic neurites surrounding SPs, SPs were largely negative for pRab10-T73. These findings indicate that Rab10 phosphorylation could be responsible for aberrations in the vesicle trafficking observed in AD leading to neurodegeneration.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mikayla L Huntley
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Pichet Termsarasab
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Shu G Chen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
291
|
Feng L, Zhang L. Resveratrol Suppresses Aβ-Induced Microglial Activation Through the TXNIP/TRX/NLRP3 Signaling Pathway. DNA Cell Biol 2019; 38:874-879. [PMID: 31215797 DOI: 10.1089/dna.2018.4308] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lifang Feng
- Department of Infection Management, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, People's Republic of China
| | - Lingli Zhang
- Department of Pharmacy, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
292
|
Aguayo S, Schuh CMAP, Vicente B, Aguayo LG. Association between Alzheimer's Disease and Oral and Gut Microbiota: Are Pore Forming Proteins the Missing Link? J Alzheimers Dis 2019; 65:29-46. [PMID: 30040725 DOI: 10.3233/jad-180319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition affecting millions of people worldwide. It is associated with cerebral amyloid-β (Aβ) plaque deposition in the brain, synaptic disconnection, and subsequent progressive neuronal death. Although considerable progress has been made to elucidate the pathogenesis of AD, the specific causes of the disease remain highly unknown. Recent research has suggested a potential association between certain infectious diseases and dementia, either directly due to bacterial brain invasion and toxin production, or indirectly by modulating the immune response. Therefore, in the present review we focus on the emerging issues of bacterial infection and AD, including the existence of antimicrobial peptides having pore-forming properties that act in a similar way to pores formed by Aβ in a variety of cell membranes. Special focus is placed on oral bacteria and biofilms, and on the potential mechanisms associating bacterial infection and toxin production in AD. The role of bacterial outer membrane vesicles on the transport and delivery of toxins as well as porins to the brain is also discussed. Aβ has shown to possess antimicrobial activity against several bacteria, and therefore could be upregulated as a response to bacteria and bacterial toxins in the brain. Although further research is needed, we believe that the control of biofilm-mediated diseases could be an important potential prevention mechanism for AD development.
Collapse
|
293
|
Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer's Disease Neuronal Cell Culture Models. J Alzheimers Dis 2019; 64:787-800. [PMID: 29914017 DOI: 10.3233/jad-170862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Natural products are a significantly underutilized source of potential treatments against human disease. Alzheimer's disease (AD) is a prime example of conditions that could be amenable to such treatments as suggested by recent findings. OBJECTIVE Aiming to identify novel potentially therapeutic approaches against AD, we assessed the effects of Cichorium spinosum and Sideritis scardica extracts, both distinct components of the Mediterranean diet. METHODS/RESULTS After the detailed characterization of the extracts' composition using LC-HRMS methods, they were evaluated on two AD neuronal cell culture models, namely the AβPP overexpressing SH-SY5Y-AβPP and the hyperphosphorylated tau expressing PC12-htau. Initially their effect on cell viability of SH-SY5Y and PC12 cells was examined, and subsequently their downstream effects on AβPP and tau processing pathways were investigated in the SH-SY5Y-AβPP and PC12-htau cells. We found that the S. scardica and C. spinosum extracts have similar effects on tau, as they both significantly decrease total tau, the activation of the GSK3β, ERK1 and/or ERK2 kinases of tau, as well as tau hyperphosphorylation. Furthermore, both extracts appear to promote AβPP processing through the alpha, non-amyloidogenic pathway, albeit through partly different mechanisms. CONCLUSIONS These findings suggest that C. spinosum and S. scardica could have a notable potential in the prevention and/or treatment of AD, and merit further investigations at the in vivo level.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Giagini
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Bioanalytical, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
294
|
An update on the interactions between Alzheimer's disease, autophagy and inflammation. Gene 2019; 705:157-166. [DOI: 10.1016/j.gene.2019.04.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
|
295
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
296
|
Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, Tanila H, Haapasalo A, Hiltunen M, Natunen T. Altered Insulin Signaling in Alzheimer's Disease Brain - Special Emphasis on PI3K-Akt Pathway. Front Neurosci 2019; 13:629. [PMID: 31275108 PMCID: PMC6591470 DOI: 10.3389/fnins.2019.00629] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) and type 2 diabetes (T2D) are both diseases with increasing prevalence in aging populations. T2D, characterized by insulin resistance and defective insulin signaling, is a common co-morbidity and a risk factor for AD, increasing the risk approximately two to fourfold. Insulin exerts a wide variety of effects as a growth factor as well as by regulating glucose, fatty acid, and protein metabolism. Certain lifestyle factors, physical inactivity and typical Western diet (TWD) containing high fat and high sugar are strongly associated with insulin resistance and T2D. The PI3K-Akt signaling pathway is a major mediator of effects of insulin and plays a crucial role in T2D pathogenesis. Decreased levels of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) subunits as well as blunted Akt kinase phosphorylation have been observed in the AD brain, characterized by amyloid-β and tau pathologies. Furthermore, AD mouse models fed with TWD have shown to display altered levels of PI3K subunits. How impaired insulin-PI3K-Akt signaling in peripheral tissues or in the central nervous system (CNS) affects the development or progression of AD is currently poorly understood. Interestingly, enhancement of PI3K-Akt signaling in the CNS by intranasal insulin (IN) treatment has been shown to improve memory in vivo in mice and in human trials. Insulin is known to augment neuronal growth and synapse formation through the PI3K-Akt signaling pathway. However, PI3K-Akt pathway mediates signaling related to different functions also in other cell types, like microglia and astrocytes. In this review, we will discuss the most prominent molecular mechanisms related to the PI3K-Akt pathway in AD and how T2D and altered insulin signaling may affect the pathogenesis of AD.
Collapse
Affiliation(s)
- Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Simo Ryhänen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
297
|
Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer's disease. Mol Neurodegener 2019; 14:23. [PMID: 31186026 PMCID: PMC6558879 DOI: 10.1186/s13024-019-0320-x] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The Alzheimer’s disease (AD) afflicted brain is neuropathologically defined by extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau protein. However, accumulating evidence suggests that the presynaptic protein α-synuclein (αSyn), mainly associated with synucleinopathies like Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is involved in the pathophysiology of AD. Lewy-related pathology (LRP), primarily comprised of αSyn, is present in a majority of autopsied AD brains, and higher levels of αSyn in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) and AD have been linked to cognitive decline. Recent studies also suggest that the asymptomatic accumulation of Aβ plaques is associated with higher CSF αSyn levels in subjects at risk of sporadic AD and in individuals carrying autosomal dominant AD mutations. Experimental evidence has further linked αSyn mainly to tau hyperphosphorylation, but also to the pathological actions of Aβ and the APOEε4 allele, the latter being a major genetic risk factor for both AD and DLB. In this review, we provide a summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD, and furthermore describe in detail the current knowledge of αSyn structure and inferred function.
Collapse
Affiliation(s)
- Daniel Twohig
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden.
| |
Collapse
|
298
|
Shukla R, Munjal NS, Singh TR. Identification of novel small molecules against GSK3β for Alzheimer's disease using chemoinformatics approach. J Mol Graph Model 2019; 91:91-104. [PMID: 31202091 DOI: 10.1016/j.jmgm.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is a rapidly increasing neurodegenerative disease. It is a multifactorial disease and also a global threat. Several enzymes are implicated in the disease in which Glycogen Synthase Kinase 3 beta is a key enzyme to increase the disease progression by the hyperphosphorylation of the tau protein. We have used an integrative chemoinformatics and pharmacokinetics approach for the identification of novel small molecules. We have retrieved a subset from the ZINC database (n = 5,36,709) and screened against GSK3β in four steps. From here top 298 potent compounds were selected and employed for their pharmacokinetics analysis. We had seen that 29 compounds showed the key characteristics to be a novel drug candidate therefore, all these compounds were employed for redocking studies using Autodock Vina and Autodock. This analysis revealed that four compounds were showing good binding affinity. All these four compounds were employed for MDS analysis of 100 ns From here using a bunch of MD analyses we have found that out of four compounds GSK3β-ZINC21011059 and GSK3β-ZINC21011066 act as a stable protein-ligand complex. Therefore we proposed ZINC21011059 and ZINC21011066 can serve as a novel compounds against GSK3β and predicted scaffold can be used for further optimization towards the improvement of isoform selectivity, and warranting further investigations towards their in vitro and in vivo validation of the bioactivity.
Collapse
Affiliation(s)
- Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, H.P, 173234, India
| | - Nupur S Munjal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, H.P, 173234, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, H.P, 173234, India.
| |
Collapse
|
299
|
Algar WR, Jeen T, Massey M, Peveler WJ, Asselin J. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7067-7091. [PMID: 30415548 DOI: 10.1021/acs.langmuir.8b02733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enzymes are important biomarkers for molecular diagnostics and targets for the action of drugs. In turn, inorganic nanoparticles (NPs) are of interest as materials for biological assays, biosensors, cellular and in vivo imaging probes, and vectors for drug delivery and theranostics. So how does an enzyme interact with a NP, and what are the outcomes of multivalent conjugation of its substrate to a NP? This invited feature article addresses the current state of the art in answering this question. Using gold nanoparticles (Au NPs) and semiconductor quantum dots (QDs) as illustrative materials, we discuss aspects of enzyme structure-function and the properties of NP interfaces and surface chemistry that determine enzyme-NP interactions. These aspects render the substrate-on-NP configurations far more complex and heterogeneous than the conventional turnover of discrete substrate molecules in bulk solution. Special attention is also given to the limitations of a standard kinetic analysis of the enzymatic turnover of these configurations, the need for a well-defined model of turnover, and whether a "hopping" model can account for behaviors such as the apparent acceleration of enzyme activity. A detailed and predictive understanding of how enzymes turn over multivalent NP-substrate conjugates will require a convergence of many concepts and tools from biochemistry, materials, and interface science. In turn, this understanding will help to enable rational, optimized, and value-added designs of NP bioconjugates for biomedical and clinical applications.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Tiffany Jeen
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Melissa Massey
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - William J Peveler
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
- Division of Biomedical Engineering, School of Engineering , University of Glasgow , Glasgow G12 8LT , United Kingdom
| | - Jérémie Asselin
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
300
|
Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, Wang T, Petronis A, Labrie V. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer's disease pathology and cognitive symptoms. Nat Commun 2019; 10:2246. [PMID: 31113950 PMCID: PMC6529540 DOI: 10.1038/s41467-019-10101-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/18/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic control of enhancers alters neuronal functions and may be involved in Alzheimer’s disease (AD). Here, we identify enhancers in neurons contributing to AD by comprehensive fine-mapping of DNA methylation at enhancers, genome-wide. We examine 1.2 million CpG and CpH sites in enhancers in prefrontal cortex neurons of individuals with no/mild, moderate, and severe AD pathology (n = 101). We identify 1224 differentially methylated enhancer regions; most of which are hypomethylated at CpH sites in AD neurons. CpH methylation losses occur in normal aging neurons, but are accelerated in AD. Integration of epigenetic and transcriptomic data demonstrates a pro-apoptotic reactivation of the cell cycle in post-mitotic AD neurons. Furthermore, AD neurons have a large cluster of significantly hypomethylated enhancers in the DSCAML1 gene that targets BACE1. Hypomethylation of these enhancers in AD is associated with an upregulation of BACE1 transcripts and an increase in amyloid plaques, neurofibrillary tangles, and cognitive decline. Epigenetic control of enhancers may contribute to neurological disease. Here the authors carry out genome-wide analysis of DNA methylation in neurons isolated postmortem from patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Peipei Li
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Lee Marshall
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Gabriel Oh
- Centre for Addiction and Mental Health, Toronto, M5T 1R8, ON, Canada
| | - Jennifer L Jakubowski
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Daniel Groot
- Centre for Addiction and Mental Health, Toronto, M5T 1R8, ON, Canada
| | - Yu He
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Arturas Petronis
- Centre for Addiction and Mental Health, Toronto, M5T 1R8, ON, Canada.,Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA. .,Centre for Addiction and Mental Health, Toronto, M5T 1R8, ON, Canada. .,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|