251
|
Chen H, Yang M, Wang Q, Song F, Li X, Chen K. The new identified biomarkers determine sensitivity to immune check-point blockade therapies in melanoma. Oncoimmunology 2019; 8:1608132. [PMID: 31413919 DOI: 10.1080/2162402x.2019.1608132] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable clinical benefit in melanoma. However, our understanding of biomarkers that predict response to ICB remained obscure. Here we systematically analyzed the association between somatic mutations profile and clinicopathologic information from 336 melanoma patients treated by ICB (CTLA-4/PD-1). We identified eight new significantly mutated genes including COL5A1, SEMA3E, COL28A1, DGKG, RAPGEF5, GLDN, NCF2 and RCAN2. A mutational signature featured by enrichment of T > C mutations was identified to be associated with immune resistance (logistic regression model, OR, 2.59 [95%CI, 1.07 to 7.00], P = .043). High neoantigen quality was associated with prolonged immunotherapy survival (log-rank test, P = .009). This association remained significant after controlling for age, gender, stage and hypermutation (Cox proportional hazards model, HR, 0.56 [95%CI, 0.38 to 0.82], P = .003). Our findings shed new insights on biomarkers that are useful to predict melanoma patients who may benefit from ICB treatment; however, these biomarkers need to be validated in future studies.
Collapse
Affiliation(s)
- Hao Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Meng Yang
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangchun Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
252
|
Ejby M, Guskov A, Pichler MJ, Zanten GC, Schoof E, Saburi W, Slotboom DJ, Abou Hachem M. Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles. Mol Microbiol 2019; 112:114-130. [PMID: 30947380 DOI: 10.1111/mmi.14257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
Abstract
Human gut bifidobacteria rely on ATP-binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide-specific solute-binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β-manno-oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd ≈80 nM), affinity of BlMnBP1 is up to 2570-fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1-like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan-degrading Bacteroides ovatus strain in co-cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC-transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.
Collapse
Affiliation(s)
- M Ejby
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| | - A Guskov
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - M J Pichler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| | - G C Zanten
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, Denmark
| | - E Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| | - W Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - D J Slotboom
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - M Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
253
|
Abid MB. Could the menagerie of the gut microbiome really cure cancer? Hope or hype. J Immunother Cancer 2019; 7:92. [PMID: 30940203 PMCID: PMC6444641 DOI: 10.1186/s40425-019-0561-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
The investigational scale of the gut microbiome is expanding rapidly. In 2018, the intersection of gut microbiota and immuno-oncology received much attention. While the impact of gut microbiota on the immune system was already established, the year received an exponential expansion of microbiome’s role in the immunotherapy setting. The microbiome research pipeline is ripe for large-scale, prospective trials. Working knowledge of immune-based cancer treatments, heterogeneity in their responses and resistance mechanisms, relevant immunological and microbiological pathways and potential for gut microbiome in enhancing the responses, is critical.
Collapse
Affiliation(s)
- Muhammad Bilal Abid
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA. .,Division of Infectious Disease, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
254
|
Abstract
Although common evolutionary principles drive the growth of cancer cells regardless of the tissue of origin, the microenvironment in which tumours arise substantially differs across various organ sites. Recent studies have established that, in addition to cell-intrinsic effects, tumour growth regulation also depends on local cues driven by tissue environmental factors. In this Review, we discuss how tissue-specific determinants might influence tumour development and argue that unravelling the tissue-specific contribution to tumour immunity should help the development of precise immunotherapeutic strategies for patients with cancer.
Collapse
Affiliation(s)
- Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- INSERM U932, Institut Curie, Paris, France.
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
255
|
Li D, Toji S, Watanabe K, Torigoe T, Tsukahara T. Identification of novel human leukocyte antigen-A*11:01-restricted cytotoxic T-lymphocyte epitopes derived from osteosarcoma antigen papillomavirus binding factor. Cancer Sci 2019; 110:1156-1168. [PMID: 30767336 PMCID: PMC6447853 DOI: 10.1111/cas.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Osteosarcoma is the most common malignancy of bone that affects young people. Neoadjuvant chemotherapy and surgery have significantly improved the prognosis. However, the prognosis of non-responders to chemotherapy is still poor. To develop peptide-based immunotherapy for osteosarcoma, we previously identified CTL epitopes derived from papillomavirus binding factor (PBF) in the context of human leukocyte antigen (HLA)-A2, HLA-A24 and HLA-B55. In the present study, we identified two novel CTL epitopes, QVT (QVTVWLLEQK) and LSA (LSALPPPLHK), in the context of HLA-A11 using a sequence of screenings based on the predicted affinity of peptides, in vitro folding ability of peptide/HLA-A11 complex, reactivity of peptide/HLA-A11 tetramer and interferon (IFN)-γ production of T cells that was induced by mixed lymphocyte peptide culture under a limiting dilution condition. CTL clones directed to QVT and LSA peptides showed specific cytotoxicity against HLA-A11+ PBF+ osteosarcoma (HOS-A11) cells. In contrast, another epitope, ASV (ASVLSRRLGK), could highly induce cognate tetramer-positive CTL. This might be because the ASV peptide mimics the peptide ASV (R6Q) (ASVLSQRLGK) derived from bacterial polypeptides, ROK family proteins. However, ASV-induced CTL did not show cytokine production against the cognate peptide. In conclusion, the CTL epitopes QVT and LSA peptides might be useful for the development of immunotherapy targeting PBF for patients with osteosarcoma.
Collapse
Affiliation(s)
- Dongliang Li
- Ina Laboratory, Medical & Biological Laboratories Co., LtdInaJapan
| | - Shingo Toji
- Ina Laboratory, Medical & Biological Laboratories Co., LtdInaJapan
| | - Kazue Watanabe
- Ina Laboratory, Medical & Biological Laboratories Co., LtdInaJapan
| | - Toshihiko Torigoe
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Tomohide Tsukahara
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
256
|
Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G, Bai P. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells 2019; 8:E293. [PMID: 30934972 PMCID: PMC6523810 DOI: 10.3390/cells8040293] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of death among women worldwide. Dysbiosis, an aberrant composition of the microbiome, characterizes breast cancer. In this review we discuss the changes to the metabolism of breast cancer cells, as well as the composition of the breast and gut microbiome in breast cancer. The role of the breast microbiome in breast cancer is unresolved, nevertheless it seems that the gut microbiome does have a role in the pathology of the disease. The gut microbiome secretes bioactive metabolites (reactivated estrogens, short chain fatty acids, amino acid metabolites, or secondary bile acids) that modulate breast cancer. We highlight the bacterial species or taxonomical units that generate these metabolites, we show their mode of action, and discuss how the metabolites affect mitochondrial metabolism and other molecular events in breast cancer. These metabolites resemble human hormones, as they are produced in a "gland" (in this case, the microbiome) and they are subsequently transferred to distant sites of action through the circulation. These metabolites appear to be important constituents of the tumor microenvironment. Finally, we discuss how bacterial dysbiosis interferes with breast cancer treatment through interfering with chemotherapeutic drug metabolism and availability.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Judit Tóth
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gyula Ujlaki
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Judit Szabó
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
257
|
Gong J, Chehrazi-Raffle A, Placencio-Hickok V, Guan M, Hendifar A, Salgia R. The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies. Clin Transl Med 2019; 8:9. [PMID: 30887236 PMCID: PMC6423251 DOI: 10.1186/s40169-019-0225-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
There is growing interest in identifying predictive biomarkers for inhibitors of programmed cell death protein 1 receptor (PD-1), programmed death ligand 1 (PD-L1), and cytotoxic T-lymphocyte associated protein 4 (CTLA-4). Given the links between the stool microbiota, anticancer immunosurveillance, and general health, the composition of the gut microbiome has recently undergone investigation as a biomarker for immunotherapy. In this review, we highlight published results from preclinical and clinical studies to date supporting a relationship between the gut microbiome and antitumor efficacy of immune checkpoint inhibitors. Despite the promising and hypothesis-generating findings that have been produced in this arena to date, there remain some inconsistencies amongst present data that may need to be resolved to contribute to further development. Among these, a better understanding of the immunomodulatory function of the microbiome, standardization in sampling, sequencing techniques, and data analysis, and ensuring uniformity across various aspects of study design are warranted in conducting future prospective studies seeking to validate the gut microbiome as a potential biomarker of response to checkpoint blockade.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medicine, Division of Hematology/Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Alexander Chehrazi-Raffle
- Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson St, Torrance, CA 90509 USA
| | - Veronica Placencio-Hickok
- Department of Medicine, Division of Hematology/Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Michelle Guan
- Department of Medicine, Division of Hematology/Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Andrew Hendifar
- Department of Medicine, Division of Hematology/Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Ravi Salgia
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Building 51, Room 101, 1500 E Duarte St, Duarte, CA 91010 USA
| |
Collapse
|
258
|
Abstract
Intestinal homeostasis requires microbial recognition that results in appropriate responses to commensals and pathogens. In this issue of Immunity, Price et al. (2018) map the in vivo expression of five toll-like receptors (TLR) in intestinal epithelia, revealing distinct spatio-temporal expression patterns that shape responses to TLR ligands.
Collapse
Affiliation(s)
- Andrea A Hill
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gretchen E Diehl
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
259
|
Abstract
Checkpoint inhibitor-based immunotherapies that target cytotoxic T lymphocyte antigen 4 (CTLA4) or the programmed cell death 1 (PD1) pathway have achieved impressive success in the treatment of different cancer types. Yet, only a subset of patients derive clinical benefit. It is thus critical to understand the determinants driving response, resistance and adverse effects. In this Review, we discuss recent work demonstrating that immune checkpoint inhibitor efficacy is affected by a combination of factors involving tumour genomics, host germline genetics, PD1 ligand 1 (PDL1) levels and other features of the tumour microenvironment, as well as the gut microbiome. We focus on recently identified molecular and cellular determinants of response. A better understanding of how these variables cooperate to affect tumour-host interactions is needed to optimize the implementation of precision immunotherapy.
Collapse
Affiliation(s)
- Jonathan J Havel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
260
|
Gharaibeh RZ, Jobin C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 2019; 68:385-388. [PMID: 30530851 PMCID: PMC6580757 DOI: 10.1136/gutjnl-2018-317220] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA,Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA,Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
261
|
Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, Michiels S. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol 2019; 37:559-569. [PMID: 30650045 PMCID: PMC7010425 DOI: 10.1200/jco.18.01010] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of the current study was to conduct a pooled analysis of studies that have investigated the prognostic value of tumor-infiltrating lymphocytes (TILs) in early-stage triple negative breast cancer (TNBC). METHODS Participating studies had evaluated the percentage infiltration of stromally located TILs (sTILs) that were quantified in the same manner in patient diagnostic samples of early-stage TNBC treated with anthracycline-based chemotherapy with or without taxanes. Cox proportional hazards regression models stratified by trial were used for invasive disease-free survival (iDFS; primary end point), distant disease-free survival (D-DFS), and overall survival (OS), fitting sTILs as a continuous variable adjusted for clinicopathologic factors. RESULTS We collected individual data from 2,148 patients from nine studies. Average age was 50 years (range, 22 to 85 years), and 33% of patients were node negative. The average value of sTILs was 23% (standard deviation, 20%), and 77% of patients had 1% or more sTILs. sTILs were significantly lower with older age ( P = .001), larger tumor size ( P = .01), more nodal involvement ( P = .02), and lower histologic grade ( P = .001). A total of 736 iDFS and 548 D-DFS events and 533 deaths were observed. In the multivariable model, sTILs added significant independent prognostic information for all end points (likelihood ratio χ2, 48.9 iDFS; P < .001; χ2, 55.8 D-DFS; P < .001; χ2, 48.5 OS; P < .001). Each 10% increment in sTILs corresponded to an iDFS hazard ratio of 0.87 (95% CI, 0.83 to 0.91) for iDFS, 0.83 (95% CI, 0.79 to 0.88) for D-DFS, and 0.84 (95% CI, 0.79 to 0.89) for OS. In node-negative patients with sTILs ≥ 30%, 3-year iDFS was 92% (95% CI, 89% to 98%), D-DFS was 97% (95% CI, 95% to 99%), and OS was 99% (95% CI, 97% to 100%). CONCLUSION This pooled data analysis confirms the strong prognostic role of sTILs in early-stage TNBC and excellent survival of patients with high sTILs after adjuvant chemotherapy and supports the integration of sTILs in a clinicopathologic prognostic model for patients with TNBC. This model can be found at www.tilsinbreastcancer.org .
Collapse
Affiliation(s)
- Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Damien Drubay
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Sylvia Adams
- New York University School of Medicine, New York, NY
| | - Giancarlo Pruneri
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico–Isituto Nazionale dei Tumori, Universita degli Studi di Milano, Milan, Italy
| | - Prudence A. Francis
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Maria Vittoria Dieci
- University of Padova, Padova, Italy
- Veneto Insitute of Oncology–IOV-IRCCS, Padua, Italy
| | | | | | | | | | | | - Christos Sotiriou
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | - Fabrice Andre
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | | | - Roberto Salgado
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
- GZA, Antwerp, Belgium
| | - Stefan Michiels
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| |
Collapse
|
262
|
Ambrosio MR, Vernillo R, De Carolis S, Carducci A, Mundo L, Ginori A, Rocca BJ, Nardone V, Lucenti Fei A, Carfagno T, Lazzi S, Cricca M, Tosi P. Putative Role of Circulating Human Papillomavirus DNA in the Development of Primary Squamous Cell Carcinoma of the Middle Rectum: A Case Report. Front Oncol 2019; 9:93. [PMID: 30847303 PMCID: PMC6394246 DOI: 10.3389/fonc.2019.00093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Here we present the case of a patient affected by rectal squamous cell carcinoma in which we demonstrated the presence of Human Papillomavirus (HPV) by a variety of techniques. Collectively, the virus was detected not only in the tumor but also in some regional lymph nodes and in non-neoplastic mucosa of the upper tract of large bowel. By contrast, it was not identifiable in its common sites of entry, namely oral and ano-genital region. We also found HPV DNA in the plasma-derived exosome. Next, by in vitro studies, we confirmed the capability of HPV DNA-positive exosomes, isolated from the supernatant of a HPV DNA positive cell line (CaSki), to transfer its DNA to human colon cancer and normal cell lines. In the stroma nearby the tumor mass we were able to demonstrate the presence of virus DNA in the stromal compartment, supporting its potential to be transferred from epithelial cells to the stromal ones. Thus, this case report favors the notion that human papillomavirus DNA can be vehiculated by exosomes in the blood of neoplastic patients and that it can be transferred, at least in vitro, to normal and neoplastic cells. Furthermore, we showed the presence of viral DNA and RNA in pluripotent stem cells of non-tumor tissue, suggesting that after viral integration (as demonstrated by p16 and RNA in situ hybridization positivity), stem cells might have been activated into cancer stem cells inducing neoplastic transformation of normal tissue through the inactivation of p53, p21, and Rb. It is conceivable that the virus has elicited its oncogenic effect in this specific site and not elsewhere, despite its wide anatomical distribution in the patient, for a local condition of immune suppression, as demonstrated by the increase of T-regulatory (CD4/CD25/FOXP3 positive) and T-exhausted (CD8/PD-1positive) lymphocytes and the M2 polarization (high CD163/CD68 ratio) of macrophages in the neoplastic microenvironment. It is noteworthy that our findings depicted a static picture of a long-lasting dynamic process that might evolve in the development of tumors in other anatomical sites.
Collapse
Affiliation(s)
| | - Remo Vernillo
- Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sabrina De Carolis
- Center of Applied Biomedical Research (CRBA), S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | | | | | | - Alessandra Lucenti Fei
- Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | |
Collapse
|
263
|
Analyses of the possible anti-tumor effect of yokukansan. J Nat Med 2019; 73:468-479. [PMID: 30739283 DOI: 10.1007/s11418-019-01283-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 02/08/2023]
Abstract
The Kampo medicine yokukansan (YKS) has a wide variety of properties such as anxiolytic, anti-inflammatory and analgesic effects, and is also thought to regulate tumor suppression. In this study, we investigated the anti-tumor effect of YKS. We used Lewis lung carcinoma (LLC)-bearing mice that were fed food pellets containing YKS and then performed a fecal microbiota analysis, a microarray analysis for microRNAs (miRNAs) and an in vitro anti-tumor assay. The fecal microbiota analysis revealed that treatment with YKS partly reversed changes in the microbiota composition due to LLC implantation. Furthermore, a miRNA array analysis using blood serum showed that treatment with YKS restored the levels of miR-133a-3p/133b-3p, miR-1a-3p and miR-342-3p following LLC implantation to normal levels. A TargetScan analysis revealed that the epidermal growth factor receptor 1 signaling pathway is one of the major target pathways for these miRNAs. Furthermore, treatment with YKS restored the levels of miR-200b-3p and miR-200c-3p, a recognized mediator of cancer progression and controller of emotion, in the hypothalamus of mice bearing LLC. An in vitro assay revealed that a mixture of pachymic acid, saikosaponins a and d and isoliquiritigenin, which are all contained in YKS, exerted direct and additive anti-tumor effects. The present findings constitute novel evidence that YKS may exert an anti-tumor effect by reversing changes in the fecal microbiota and miRNAs circulating in the blood serum and hypothalamus, and the compounds found in YKS could have direct and additive anti-tumor effects.
Collapse
|
264
|
Kovács T, Mikó E, Vida A, Sebő É, Toth J, Csonka T, Boratkó A, Ujlaki G, Lente G, Kovács P, Tóth D, Árkosy P, Kiss B, Méhes G, Goedert JJ, Bai P. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep 2019; 9:1300. [PMID: 30718646 PMCID: PMC6361949 DOI: 10.1038/s41598-018-37664-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies showed that changes to the gut microbiome alters the microbiome-derived metabolome, potentially promoting carcinogenesis in organs that are distal to the gut. In this study, we assessed the relationship between breast cancer and cadaverine biosynthesis. Cadaverine treatment of Balb/c female mice (500 nmol/kg p.o. q.d.) grafted with 4T1 breast cancer cells ameliorated the disease (lower mass and infiltration of the primary tumor, fewer metastases, and lower grade tumors). Cadaverine treatment of breast cancer cell lines corresponding to its serum reference range (100–800 nM) reverted endothelial-to-mesenchymal transition, inhibited cellular movement and invasion, moreover, rendered cells less stem cell-like through reducing mitochondrial oxidation. Trace amino acid receptors (TAARs), namely, TAAR1, TAAR8 and TAAR9 were instrumental in provoking the cadaverine-evoked effects. Early stage breast cancer patients, versus control women, had reduced abundance of the CadA and LdcC genes in fecal DNA, both responsible for bacterial cadaverine production. Moreover, we found low protein expression of E. coli LdcC in the feces of stage 1 breast cancer patients. In addition, higher expression of lysine decarboxylase resulted in a prolonged survival among early-stage breast cancer patients. Taken together, cadaverine production seems to be a regulator of early breast cancer.
Collapse
Affiliation(s)
- Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - Judit Toth
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gréta Lente
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Dezső Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Borbála Kiss
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - James J Goedert
- National Cancer Institute, National Institutes of Health, Bethesda, 20982 MD, USA
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary. .,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary. .,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
265
|
Katayama Y, Yamada T, Tanimura K, Yoshimura A, Takeda T, Chihara Y, Tamiya N, Kaneko Y, Uchino J, Takayama K. Impact of bowel movement condition on immune checkpoint inhibitor efficacy in patients with advanced non-small cell lung cancer. Thorac Cancer 2019; 10:526-532. [PMID: 30666802 PMCID: PMC6397896 DOI: 10.1111/1759-7714.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
Background Cancer immunotherapy is under development as a promising alternative strategy for treating advanced non‐small cell lung cancer (NSCLC). However, the development of novel biomarkers to optimize the use of immune checkpoint inhibitors (ICIs) is still ongoing. Gut microbiota are known to regulate a host's immunity and are associated with the response to ICIs in melanoma. Therefore, we analyzed the association between ICI treatment efficacy and bowel movement condition in patients with NSCLC. Methods This retrospective study analyzed patients with advanced NSCLC who were treated with ICIs between December 2015 and March 2018 at University Hospital Kyoto Prefectural University of Medicine in Kyoto, Japan. The association between stool abnormalities and ICI efficacy was investigated. We defined patients with constipation or those who used a laxative as the stool abnormality group. Results We retrospectively enrolled 40 patients with advanced NSCLC who were treated with ICIs. The median age was 69.5 years; 20 patients had a stool abnormality and 20 patients did not. The disease control rates were lower in NSCLC patients with stool abnormalities than in those without stool abnormalities (20% vs. 77.8%, respectively; P = 0.0016). The time to treatment failure with ICI treatment was shorter in NSCLC patients with stool abnormalities compared with those without stool abnormalities (P = 0.003; odds ratio, 3.09; 95% confidence interval 1.41–6.78). Conclusion Stool abnormality might be a predictive biomarker for the clinical benefit of ICI treatment in patients with NSCLC. Further investigations are warranted to validate our findings.
Collapse
Affiliation(s)
- Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Tanimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji, Japan
| | - Yusuke Chihara
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuyo Tamiya
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
266
|
Yuan M, Li D, Zhang Z, Sun H, An M, Wang G. Endometriosis induces gut microbiota alterations in mice. Hum Reprod 2019; 33:607-616. [PMID: 29462324 DOI: 10.1093/humrep/dex372] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION What happens to the gut microbiota during development of murine endometriosis? SUMMARY ANSWER Mice with the persistence of endometrial lesions for 42 days develop a distinct composition of gut microbiota. WHAT IS KNOWN ALREADY Disorders in the immune system play fundamental roles in changing the intestinal microbiota. No study has used high-throughput DNA sequencing to show how endometriosis changes the gut microbiota, although endometriosis is accompanied by abnormal cytokine expression and immune cell dysfunction. STUDY DESIGN, SIZE, DURATION This study includes a prospective and randomized experiment on an animal endometriosis model induced via the intraperitoneal injection of endometrial tissues. PARTICIPANTS/MATERIALS, SETTING, METHODS The mice were divided into endometriosis and mock groups and were sacrificed at four different time points for model confirmation and fecal sample collection. To detect gut microbiota, 16S ribosomal-RNA gene sequencing was performed. Alpha diversity was used to analyze the complexity and species diversity of the samples through six indices. Beta diversity analysis was utilized to evaluate the differences in species complexity. Principal coordinate analysis and unweighted pair-group method with arithmetic means clustering were performed to determine the clustering features. The microbial features differentiating the fecal microbiota were characterized by linear discriminant analysis effect size method. MAIN RESULTS AND THE ROLE OF CHANCE The endometriosis and mock mice shared similar diversity and richness of gut microbiota. However, different compositions of gut microbiota were detected 42 days after the modeling. Among the discriminative concrete features, the Firmicutes/Bacteroidetes ratio was elevated in mice with endometriosis, indicating that endometriosis may induce dysbiosis. Bifidobacterium, which is known as a commonly used probiotic, was also increased in mice with endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION More control groups should be further studied to clarify the specificity of the dysbiosis induced by endometriosis. This study was performed only on mice. Thus, additional data acquired from patients with endometriosis are needed in future research. We only detected the changes of gut microbiota at 42 days after the modeling, while the long-term effect of endometriosis on gut microbiota remains poorly understood. Moreover, we only revealed a single effect of endometriosis on gut microbiota. WIDER IMPLICATIONS OF THE FINDINGS This study provided the first comprehensive data on the association of endometriosis and gut microbiota from high-throughput sequencing technology. The gut microbiota changed with the development of endometriosis in a murine model. The communication between the host and the gut microbiota is bidirectional, and further studies should be performed to clarify their relationship. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Grant (81571417) from the National Science Foundation of China and Grant (2015GSF118092) from the Technology Development Plan of Shandong Province. The authors report no conflict of interest.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Dong Li
- Cryomedicine Lab, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Zhe Zhang
- Department of Gynecology, The Central Hospital of Zibo, No. 54 Gongqingtuanxi Road, Zibo, Shandong 255036, China
| | - Huihui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Min An
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| |
Collapse
|
267
|
Zhang S, Yang Y, Weng W, Guo B, Cai G, Ma Y, Cai S. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:14. [PMID: 30630498 PMCID: PMC6327560 DOI: 10.1186/s13046-018-0985-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
Background Emerging evidence suggests a potential relationship between gut microbiota and the host response to chemotherapeutic drugs including 5-fluorouracil (5-Fu). Fusobacterium nucleatum (Fn) has been linked to the initiation and progression of colorectal cancer (CRC). Unfortunately, little was known about the relationship between Fn infection and chemotherapeutic efficacy. Here, we investigate the potential relationship between Fn infection and chemotherapeutic efficacy of 5-Fu in CRC. Methods Differentially expressed genes of CRC cell lines induced by Fn infection were analyzed based on a whole genome microarray analysis Then, we explored the relationship between upregulation of BIRC3 induced by Fn infection and chemoresistance to 5-Fu in vitro and in vivo. Furthermore, we dissected the mechanisms involved in Fn-induced BIRC3 expression. Finally, we investigated the clinical relevance of Fn infection, BIRC3 protein expression and chemoresistance to 5-Fu treatment in CRC patients. Results BIRC3 was the most upregulated gene induced by Fn infection via the TLR4/NF-κB pathway in CRC cells; Fn infection reduced the chemosensitivity of CRC cells to 5-Fu through upregulation of BIRC3 in vitro and in vivo. High Fn abundance correlated with chemoresistance in advanced CRC patients who received standard 5-Fu-based adjuvant chemotherapy after radical surgery. Conclusions Our evidence suggests that Fn and BIRC3 may serve as promising therapeutic targets for reducing chemoresistance to 5-Fu treatment in advanced CRC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0985-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.,Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bomin Guo
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
268
|
Astudillo-de la Vega H, Alonso-Luna O, Ali-Pérez J, López-Camarillo C, Ruiz-Garcia E. Oncobiome at the Forefront of a Novel Molecular Mechanism to Understand the Microbiome and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1168:147-156. [PMID: 31713170 DOI: 10.1007/978-3-030-24100-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microbiome comprises all the genetic material within a microbiota, that represents tenfold higher than that of our cells. The microbiota it includes a wide variety of microorganisms such as bacteria, viruses, protozoans, fungi, and archaea, and this ecosystem is personalized in any body space of every individual. Balanced microbial communities can positively contribute to training the immune system and maintaining immune homeostasis. Dysbiosis is a change in the normal microbiome composition that can initiate chronic inflammation, epithelial barrier breaches, and overgrowth of harmful bacteria. The next-generation sequencing methods have revolutionized the study of the microbiome. Bioinformatic tools to manage large volumes of new information, it became possible to assess species diversity and measure dynamic fluctuations in microbial communities. The burden of infections that are associated to human cancer is increasing but is underappreciated by the cancer research community. The rich content in microbes of normal and tumoral tissue reflect could be defining diverse physiological or pathological states. Genomic research has emerged a new focus on the interplay between the human microbiome and carcinogenesis and has been termed the 'oncobiome'. The interactions among the microbiota in all epithelium, induce changes in the host immune interactions and can be a cause of cancer. Microbes have been shown to have systemic effects on the host that influence the efficacy of anticancer drugs. Metagenomics allows to investigate the composition of microbial community. Metatranscriptome analysis applies RNA sequencing to microbial samples to determine which species are present. Cancer can be caused by changes in the microbiome. The roles of individual microbial species in cancer progression have been identified long ago for various tissue types. The identification of microbiomes of drug resistance in the treatment of cancer patients has been the subject of numerous microbiome studies. The complexity of cancer genetic alterations becomes irrelevant in certain cancers to explain the origin, the cause or the oncogenic maintenance by the oncogene addiction theory.
Collapse
Affiliation(s)
- H Astudillo-de la Vega
- Translational Research Laboratory in Cancer & Celullar Therapy, Hospital de Oncologia, Siglo XXI, IMSS, Mexico City, Mexico.
| | - O Alonso-Luna
- Laboratorio de NGS, Nanopharmacia Diagnostica de la Ciudad de Mexico, Mexico City, Mexico
| | - J Ali-Pérez
- Laboratorio de Oncogenomica, Nanopharmacia Diagnostica de la Ciudad de Mexico, Mexico City, Mexico
| | - C López-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Mexico City, Mexico
| | - E Ruiz-Garcia
- Department of Gastrointestinal Medical Oncology & Translational Medicine Laboratory, Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
269
|
Malik SS, Masood N, Fatima I, Kazmi Z. Microbial-Based Cancer Therapy: Diagnostic Tools and Therapeutic Strategies. MICROORGANISMS FOR SUSTAINABILITY 2019:53-82. [DOI: 10.1007/978-981-13-8844-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
270
|
Rahmatika D, Kuroda N, Min Z, Nainu F, Nagaosa K, Nakanishi Y. Inhibitory effects of viral infection on cancer development. Virology 2018; 528:48-53. [PMID: 30576859 DOI: 10.1016/j.virol.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022]
Abstract
Immune responses evoked on viral infections prevent the dissemination of infection that otherwise leads to the development of diseases in host organisms. In the present study, we investigated whether viral infection influences tumorigenesis in cancer-bearing animals using a Drosophila model of cancer. Cancer was induced in the posterior part of wing imaginal discs through the simultaneous inhibition of apoptosis and cell-cycle checkpoints. The larvae and embryos of cancer-induced flies were infected with Drosophila C virus, a natural pathogen to Drosophila, and larval wing discs and adult wings were morphologically examined for cancer characteristics relative to uninfected controls. We found that viral infections brought about an approximately 30% reduction in the rate of cancer development in both wing discs and wings. These inhibitory effects were not observed when growth-defective virus was used to infect animals. These results indicate that productive viral infections repress tumorigenesis in Drosophila.
Collapse
Affiliation(s)
- Dini Rahmatika
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Nanae Kuroda
- School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Zhang Min
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan 90245, Indonesia
| | - Kaz Nagaosa
- Section of Food Sciences, Institute of Regional Innovation, Hirosaki University, Yanagawa, Aomori 038-0012, Japan
| | - Yoshinobu Nakanishi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
271
|
Gaines S, Shao C, Hyman N, Alverdy JC. Gut microbiome influences on anastomotic leak and recurrence rates following colorectal cancer surgery. Br J Surg 2018; 105:e131-e141. [PMID: 29341151 DOI: 10.1002/bjs.10760] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pathogenesis of colorectal cancer recurrence after a curative resection remains poorly understood. A yet-to-be accounted for variable is the composition and function of the microbiome adjacent to the tumour and its influence on the margins of resection following surgery. METHODS PubMed was searched for historical as well as current manuscripts dated between 1970 and 2017 using the following keywords: 'colorectal cancer recurrence', 'microbiome', 'anastomotic leak', 'anastomotic failure' and 'mechanical bowel preparation'. RESULTS There is a substantial and growing body of literature to demonstrate the various mechanisms by which environmental factors act on the microbiome to alter its composition and function with the net result of adversely affecting oncological outcomes following surgery. Some of these environmental factors include diet, antibiotic use, the methods used to prepare the colon for surgery and the physiological stress of the operation itself. CONCLUSION Interrogating the intestinal microbiome using next-generation sequencing technology has the potential to influence cancer outcomes following colonic resection.
Collapse
Affiliation(s)
- S Gaines
- Department of Surgery, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 6090 Chicago, Illinois 60025, USA
| | - C Shao
- Department of Surgery, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 6090 Chicago, Illinois 60025, USA
| | - N Hyman
- Department of Surgery, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 6090 Chicago, Illinois 60025, USA
| | - J C Alverdy
- Department of Surgery, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 6090 Chicago, Illinois 60025, USA
| |
Collapse
|
272
|
Jiang C, Wang H, Xia C, Dong Q, Chen E, Qiu Y, Su Y, Xie H, Zeng L, Kuang J, Ao F, Gong X, Li J, Chen T. A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer 2018; 125:1081-1090. [PMID: 30521105 DOI: 10.1002/cncr.31907] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The objective of this study was to evaluate the effect of a probiotic combination on the severity of oral mucositis (OM), which is a common, unpreventable complication induced by radiochemotherapy in patients with nasopharyngeal carcinoma who undergo concurrent radiochemotherapy (CCRT). METHODS Eligible patients (n = 99) with locally advanced nasopharyngeal carcinoma who were undergoing CCRT were randomly assigned (2:1) to receive a probiotic combination or placebo during radiochemotherapy, and the incidence of severe OM (grade 3 or higher) was the primary endpoint. RESULTS Patients taking the probiotic combination showed a significant reduction in the severity of OM. The incidences of grade 0, 1, 2, and 3 OM in the placebo group and the probiotic combination group were 0% and 12.07%, 0% and 55.17%, 54.29% and 17.24%, and 45.71% and 15.52%, respectively. Furthermore, CCRT greatly lowered the number of immune cells, whereas the probiotic combination markedly lowered the reduction rates of CD4+ T cells (76.59% vs 52.85%; P < .05), CD8+ T cells (62.94% vs 29.76%; P < .05), and CD3+ T cells (69.72% vs 45.49%; P < .05) in an A-CCRT-P (after treatment with radiotherapy plus chemotherapy plus the probiotic combination) group. High-throughput sequencing results indicated that CCRT had obviously disturbed the intestinal diversity of patients in an A-CCRT (after treatment with radiotherapy plus chemotherapy plus a placebo) group, whereas the probiotic combination distinctly restored the microbial diversity in the A-CCRT-P group toward that of healthy people and a B-CCRT-P (before the treatment of radiotherapy plus chemotherapy plus the probiotic combination) group. CONCLUSIONS A probiotic combination significantly enhances the immune response of patients and reduces the severity of OM through modification of gut microbiota.
Collapse
Affiliation(s)
- Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China.,Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Huan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Chaofei Xia
- Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Qing Dong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - En Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Yang Qiu
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Yong Su
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Honghui Xie
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Lei Zeng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Jie Kuang
- School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Fan Ao
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Xiaochang Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China.,Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
273
|
Eggermont AMM, Crittenden M, Wargo J. Combination Immunotherapy Development in Melanoma. Am Soc Clin Oncol Educ Book 2018; 38:197-207. [PMID: 30231333 DOI: 10.1200/edbk_201131] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma has been the most important cancer to drive immunotherapy development of solid tumors. Since 2010, immunotherapy has been revolutionized by the concept of breaking tolerance. It represents a major paradigm shift and marks the beginning of a new era. The impact of the first immune checkpoint inhibitors, anti-CTLA-4 and anti-PD-1/anti-PD-L1, is unprecedented. In 7 years, it transformed advanced-stage melanoma into a curable disease in over 50% of patients. Another major step has been the development of the combination of BRAF inhibitors plus MEK inhibitors in the treatment of BRAF-mutant melanomas. For the treatment of advanced disease, approvals were obtained for the immune checkpoint inhibitors ipilimumab (2011), nivolumab (2014), pembrolizumab (2014), the combination ipilimumab plus nivolumab (2015), and the oncolytic virus vaccine laherparepvec (2015). The combination dabrafenib plus trametinib for BRAF-mutant melanoma was approved in 2014, with similar success for other BRAF plus MEK inhibitor combinations. Because of its unique therapeutic index (high efficacy and low toxicity) anti-PD-1 agents (nivolumab and pembrolizumab) have now been placed at the center of practically all combination therapy development strategies in melanoma. Anti-PD-1 agents are the central molecule for combinations with a great variety of other immunotherapeutics such as immune checkpoint inhibitors, agonists, IDO inhibitors, macrophage polarizing agents, monoclonal antibodies, vaccines, targeted agents, chemotherapeutics, radiation therapy, and even microbiome modulators.
Collapse
Affiliation(s)
- Alexander M M Eggermont
- From the Gustave Roussy Cancer Institute and University Paris-Saclay, Villejuif, France; Earle A. Chiles Research Institute, Portland, OR; The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marka Crittenden
- From the Gustave Roussy Cancer Institute and University Paris-Saclay, Villejuif, France; Earle A. Chiles Research Institute, Portland, OR; The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer Wargo
- From the Gustave Roussy Cancer Institute and University Paris-Saclay, Villejuif, France; Earle A. Chiles Research Institute, Portland, OR; The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
274
|
|
275
|
Dutta A, Uno H, Lorenz DR, Wolinsky SM, Gabuzda D. Low T-cell subsets prior to development of virus-associated cancer in HIV-seronegative men who have sex with men. Cancer Causes Control 2018; 29:1131-1142. [PMID: 30315476 PMCID: PMC6245112 DOI: 10.1007/s10552-018-1090-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023]
Abstract
Immunological parameters that influence susceptibility to virus-associated cancers in HIV-seronegative individuals are unclear. We conducted a case-control cohort study of immunological parameters associated with development of incident virus-associated cancers among 532 HIV-seronegative men who have sex with men (MSM) enrolled in the Multicenter AIDS Cohort Study (MACS) with median (IQR) 21 (8-26) years of follow-up. Thirty-two incident virus-associated cancers (anal cancer, non-Hodgkin lymphoma, liver cancer, other cancers with etiologies linked to human papillomavirus, Epstein-Barr virus, hepatitis B virus, or human herpesvirus-8) were identified among 3,408 HIV-seronegative men in the MACS during 1984-2010. Cases were matched for demographics, smoking, and follow-up to 500 controls without cancer. Mixed-effects and Cox regression models were used to examine associations between nadir or recent CD4, CD8, and white blood cell (WBC) counts or CD4:CD8 ratios and subsequent diagnosis of virus-associated cancers. Men with incident virus-associated cancers had lower CD4 and WBC counts over a 6-year window prior to diagnosis compared to men without cancer (p = 0.001 and 0.03, respectively). Low CD4 cell count and nadir, CD4 count-nadir differential, and CD4:CD8 ratio nadir were associated with increased 2-year risk of incident virus-associated cancers in models adjusted for demographics and smoking (hazard ratios 1.2-1.3 per 100 or 0.1 unit decrease, respectively; p < 0.01). Other associated factors included heavy smoking and past or current hepatitis B virus infection. These findings show that low CD4 cell counts, CD4 nadir, and CD4:CD8 cell ratios are independent predictors for subsequent risk of virus-associated cancers in HIV-seronegative MSM.
Collapse
Affiliation(s)
- Anupriya Dutta
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Hajime Uno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
276
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
277
|
Finn OJ. A Believer's Overview of Cancer Immunosurveillance and Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2018; 200:385-391. [PMID: 29311379 DOI: 10.4049/jimmunol.1701302] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
The field of tumor immunology has grown around the idea that one of the important roles of the immune system is to eliminate cancer. This idea was difficult to reconcile with the accepted notion that the immune system evolved to distinguish self from nonself and therefore tumors derived from self-tissues would not be recognized. Lack of appropriate animal models prevented experimental testing of cancer immunosurveillance. This changed with the realization that the immune system evolved to recognize danger and with the advent of mouse models deficient in one or more immune function, which showed predicted increases in susceptibility to cancer. Simultaneously, technical advances that enabled the study of the human immune system provided data for the existence of tumor-specific T cells and Abs and led to molecular identification of tumor Ags, fully validating the cancer immunosurveillance hypothesis. Immunotherapy designed to strengthen cancer immunosurveillance has achieved unprecedented clinical successes.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232
| |
Collapse
|
278
|
Marijt KA, Blijleven L, Verdegaal EME, Kester MG, Kowalewski DJ, Rammensee HG, Stevanović S, Heemskerk MHM, van der Burg SH, van Hall T. Identification of non-mutated neoantigens presented by TAP-deficient tumors. J Exp Med 2018; 215:2325-2337. [PMID: 30115740 PMCID: PMC6122969 DOI: 10.1084/jem.20180577] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022] Open
Abstract
A hybrid forward-reversed immunological screen is performed to identify 16 novel HLA-A2 presented cancer antigens. These peptides are selectively presented by immune-escaped cancer cells with defects in the peptide transporter TAP. In contrast to mutated neoantigens, these “self” neoantigens are universally presented across different cancer types. Most T cell–based immunotherapies of cancer depend on intact antigen presentation by HLA class I molecules (HLA-I). However, defects in the antigen-processing machinery can cause downregulation of HLA-I, rendering tumor cells resistant to CD8+ T cells. Previously, we demonstrated that a unique category of cancer antigens is selectively presented by tumor cells deficient for the peptide transporter TAP, enabling a specific attack of such tumors without causing immunopathology in mouse models. With a novel combinatorial screening approach, we now identify 16 antigens of this category in humans. These HLA-A*02:01 presented peptides do not derive from the mutanome of cancers, but are of “self” origin and therefore constitute universal neoantigens. Indeed, CD8+ T cells specific for the leader peptide of the ubiquitously expressed LRPAP1 protein recognized TAP-deficient, HLA-Ilow lymphomas, melanomas, and renal and colon carcinomas, but not healthy counterparts. In contrast to personalized mutanome-targeted therapies, these conserved neoantigens and their cognate receptors can be exploited for immune-escaped cancers across diverse histological origins.
Collapse
Affiliation(s)
- Koen A Marijt
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura Blijleven
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Els M E Verdegaal
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Michel G Kester
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniel J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium, German Cancer Research Center, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium, German Cancer Research Center, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium, German Cancer Research Center, Tübingen, Germany
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
279
|
Pang X, Tang YJ, Ren XH, Chen QM, Tang YL, Liang XH. Microbiota, Epithelium, Inflammation, and TGF-β Signaling: An Intricate Interaction in Oncogenesis. Front Microbiol 2018; 9:1353. [PMID: 29997586 PMCID: PMC6029488 DOI: 10.3389/fmicb.2018.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Microbiota has been widely considered to play a critical role in human carcinogenesis. Recent evidence demonstrated that microbiota, epithelial barrier and inflammation has made up a tightly interdependent triangle during the process of carcinogenesis. Hence, we discussed the triangle relationship of microbiota dysbiosis, epithelial barrier dysfunction and dysregulated immune responses to elucidate the mechanisms by which microbiota induces carcinogenesis, especially highlighting the reciprocal crosstalk between transforming growth factor-β signaling and every side of the tumorigenic triangle. This sophisticated interaction will provide insight into the basic mechanisms of carcinogenesis and may bring new hope to cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
280
|
Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, Rouche JA, Zitvogel L, Zalcman G, Albiges L, Escudier B, Routy B. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 2018; 29:1437-1444. [PMID: 29617710 PMCID: PMC6354674 DOI: 10.1093/annonc/mdy103] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background The composition of gut microbiota affects antitumor immune responses, preclinical and clinical outcome following immune checkpoint inhibitors (ICI) in cancer. Antibiotics (ATB) alter gut microbiota diversity and composition leading to dysbiosis, which may affect effectiveness of ICI. Patients and methods We examined patients with advanced renal cell carcinoma (RCC) and non-small-cell lung cancer (NSCLC) treated with anti-programmed cell death ligand-1 mAb monotherapy or combination at two academic institutions. Those receiving ATB within 30 days of beginning ICI were compared with those who did not. Objective response, progression-free survival (PFS) determined by RECIST1.1 and overall survival (OS) were assessed. Results Sixteen of 121 (13%) RCC patients and 48 of 239 (20%) NSCLC patients received ATB. The most common ATB were β-lactam or quinolones for pneumonia or urinary tract infections. In RCC patients, ATB compared with no ATB was associated with increased risk of primary progressive disease (PD) (75% versus 22%, P < 0.01), shorter PFS [median 1.9 versus 7.4 months, hazard ratio (HR) 3.1, 95% confidence interval (CI) 1.4-6.9, P < 0.01], and shorter OS (median 17.3 versus 30.6 months, HR 3.5, 95% CI 1.1-10.8, P = 0.03). In NSCLC patients, ATB was associated with similar rates of primary PD (52% versus 43%, P = 0.26) but decreased PFS (median 1.9 versus 3.8 months, HR 1.5, 95% CI 1.0-2.2, P = 0.03) and OS (median 7.9 versus 24.6 months, HR 4.4, 95% CI 2.6-7.7, P < 0.01). In multivariate analyses, the impact of ATB remained significant for PFS in RCC and for OS in NSCLC. Conclusion ATB were associated with reduced clinical benefit from ICI in RCC and NSCLC. Modulatation of ATB-related dysbiosis and gut microbiota composition may be a strategy to improve clinical outcomes with ICI.
Collapse
Affiliation(s)
- L Derosa
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015; Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - M D Hellmann
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA; Parker Institute for Cancer Immunotherapy, New York, USA
| | - M Spaziano
- Cardiology Division, Department of Medicine, McGill University, Montreal, Canada
| | - D Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - M Fidelle
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015; Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - H Rizvi
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, USA
| | - N Long
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - K C Arbour
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J E Chaft
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - J A Rouche
- Department of Imaging, Gustave Roussy, Villejuif, France
| | - L Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015; Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - G Zalcman
- Thoracic Oncology Department-CIC1425/CLIP2 Paris-Nord, Hospital Bichat-Claude Bernard, AP-HP, University Paris-Diderot, Paris, France
| | - L Albiges
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Immunologie Intégrative des Tumeurs et Génétique Oncologique, GRCC, Villejuif, France
| | - B Escudier
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Immunologie Intégrative des Tumeurs et Génétique Oncologique, GRCC, Villejuif, France
| | - B Routy
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015; Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.
| |
Collapse
|
281
|
Wu P, Zhang G, Zhao J, Chen J, Chen Y, Huang W, Zhong J, Zeng J. Profiling the Urinary Microbiota in Male Patients With Bladder Cancer in China. Front Cell Infect Microbiol 2018; 8:167. [PMID: 29904624 PMCID: PMC5990618 DOI: 10.3389/fcimb.2018.00167] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 01/26/2023] Open
Abstract
Mounting evidence indicates that microbiome plays an important role in the development and progression of cancer. The dogma that urine in healthy individuals must be sterile has been overturned. Dysbiosis of the urinary microbiome has been revealed responsible for various urological disorders, including prostate cancer. The link between chronic inflammation, microbiome and solid tumors has been established for various neoplastic diseases. However, a detailed and comprehensive analysis of urinary microenvironment of bladder cancer has not been yet reported. We performed this study to characterize the potential urinary microbial community possibly associated with bladder cancer. Mid-stream urine was collected from 31 male patients with bladder cancer and 18 non-neoplastic controls. DNA was extracted from urine pellet samples and processed for high throughput 16S rRNA amplicon sequencing of the V4 region using Illumina MiSeq. Sequencing reads were filtered using QIIME and clustered using UPARSE. We observed increased bacterial richness (Observed Species, Chao 1 and Ace indexes; cancer vs. control; 120.0 vs. 56.0; 134.5 vs. 68.3; and 139.6 vs. 72.9, respectively), enrichment of some bacterial genera (e.g., Acinetobacter, Anaerococcus, and Sphingobacterium) and decrease of some bacterial genera (e.g., Serratia, Proteus, and Roseomonas) in cancer group when compared to non-cancer group. Significant difference in beta diversity was found between cancer and non-cancer group, among different risk level, but not among different tumor grade. Enrichment of Herbaspirillum, Porphyrobacter, and Bacteroides was observed in cancer patients with high risk of recurrence and progression, which means these genera maybe potential biomarkers for risk stratification. The PICRUSt showed that various functional pathways were enriched in cancer group, including Staphylococcus aureus infection, glycerolipid metabolism and retinol metabolism. To our knowledge, we performed the most comprehensive study to date to characterize the urinary microbiome associated with bladder cancer. A better understanding of the role of microbiome in the development and progression of bladder cancer could pave a new way for exploring new therapeutic options and biomarkers.
Collapse
Affiliation(s)
- Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guihao Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiawei Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weina Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialei Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiarong Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
282
|
Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev 2018; 280:126-148. [PMID: 29027218 DOI: 10.1111/imr.12574] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunogenicity of cancer cells is an emerging determinant of anti-cancer immunotherapy. Beyond developing immunostimulatory regimens like dendritic cell-based vaccines, immune-checkpoint blockers, and adoptive T-cell transfer, investigators are beginning to focus on the immunobiology of dying cancer cells and its relevance for the success of anticancer immunotherapies. It is currently accepted that cancer cells may die in response to anti-cancer therapies through regulated cell death programs, which may either repress or increase their immunogenic potential. In particular, the induction of immunogenic cancer cell death (ICD), which is hallmarked by the emission of damage-associated molecular patterns (DAMPs); molecules analogous to pathogen-associated molecular patterns (PAMPs) acting as danger signals/alarmins, is of great relevance in cancer therapy. These ICD-associated danger signals favor immunomodulatory responses that lead to tumor-associated antigens (TAAs)-directed T-cell immunity, which paves way for the removal of residual, treatment-resistant cancer cells. It is also emerging that cancer cells succumbing to ICD can orchestrate "altered-self mimicry" i.e. mimicry of pathogen defense responses, on the levels of nucleic acids and/or chemokines (resulting in type I interferon/IFN responses or pathogen response-like neutrophil activity). In this review, we exhaustively describe the main molecular, immunological, preclinical, and clinical aspects of immunosuppressive cell death or ICD (with respect to apoptosis, necrosis and necroptosis). We also provide an extensive historical background of these fields, with special attention to the self/non-self and danger models, which have shaped the field of cell death immunology.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
283
|
Bloy N, Garcia P, Laumont CM, Pitt JM, Sistigu A, Stoll G, Yamazaki T, Bonneil E, Buqué A, Humeau J, Drijfhout JW, Meurice G, Walter S, Fritsche J, Weinschenk T, Rammensee HG, Melief C, Thibault P, Perreault C, Pol J, Zitvogel L, Senovilla L, Kroemer G. Immunogenic stress and death of cancer cells: Contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol Rev 2018; 280:165-174. [PMID: 29027230 DOI: 10.1111/imr.12582] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer cells are subjected to constant selection by the immune system, meaning that tumors that become clinically manifest have managed to subvert or hide from immunosurveillance. Immune control can be facilitated by induction of autophagy, as well as by polyploidization of cancer cells. While autophagy causes the release of ATP, a chemotactic signal for myeloid cells, polyploidization can trigger endoplasmic reticulum stress with consequent exposure of the "eat-me" signal calreticulin on the cell surface, thereby facilitating the transfer of tumor antigens into dendritic cells. Hence, both autophagy and polyploidization cause the emission of adjuvant signals that ultimately elicit immune control by CD8+ T lymphocytes. We investigated the possibility that autophagy and polyploidization might also affect the antigenicity of cancer cells by altering the immunopeptidome. Mass spectrometry led to the identification of peptides that were presented on major histocompatibility complex (MHC) class I molecules in an autophagy-dependent fashion or that were specifically exposed on the surface of polyploid cells, yet lost upon passage of such cells through immunocompetent (but not immunodeficient) mice. However, the preferential recognition of autophagy-competent and polyploid cells by the innate and cellular immune systems did not correlate with the preferential recognition of such peptides in vivo. Moreover, vaccination with such peptides was unable to elicit tumor growth-inhibitory responses in vivo. We conclude that autophagy and polyploidy increase the immunogenicity of cancer cells mostly by affecting their adjuvanticity rather than their antigenicity.
Collapse
Affiliation(s)
- Norma Bloy
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France
| | - Pauline Garcia
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Institut Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan M Pitt
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Gustave Roussy Cancer Campus, Villejuif, France
| | - Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Gautier Stoll
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Takahiro Yamazaki
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Aitziber Buqué
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Institut Gustave Roussy Cancer Campus, Villejuif, France
| | - Juliette Humeau
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University, Leiden, The Netherlands.,Medical Center, Leiden, The Netherlands
| | - Guillaume Meurice
- Bioinformatic Core Facility, UMS AMMICA, INSERM US23, CNRS UMS3665, Gustave Roussy, Villejuif, France
| | | | | | - Toni Weinschenk
- Immatics US, Houston, TX, USA.,Immatics Biotechnologies, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Division of Hematology, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Jonathan Pol
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Institut Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Laura Senovilla
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Guido Kroemer
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
284
|
Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, Berretta M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine. Oncotarget 2018; 9:24837-24856. [PMID: 29872510 PMCID: PMC5973856 DOI: 10.18632/oncotarget.24984] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
Culinary and medicinal mushrooms are widely used in Asian countries, both as dietary supplements and as nutraceutical foods. They have recently become popular in Europe, as well, for their nutritional and health benefits. In particular, epidemiological studies conducted in Asia suggest that mushroom intake, together with other phytotherapy substances, protects against cancer, specifically gastrointestinal (GI) and breast cancers. Most of the data come from in vitro studies and in vivo experimental animal models. Therefore, in order to translate the updated knowledge to clinical research (i.e., from bench to bedside) a systematic translational research program should be initiated. Future randomized controlled trials comparing the effects of G. frondosa and G. lucidum on conventional treatment outcomes are warranted. The purpose of this review was to describe the emerging mechanisms of action of the mushrooms' anticancer functions which makes their use in clinical practice so promising. Clinical effects of mycotherapy (specifically, the use of Ganoderma lucidum and Grifola frondosa) on long-term survival, tumor response, host immune functions, inflammation, and QoL in cancer patients were also addressed. Adverse events associated with mycotherapy were also investigated. Emerging data point to a potential role of G. lucidum for modulating the carcinogenic potential of GI microbiota, which suggests a new complementary and integrated approach to breast cancer treatment.
Collapse
Affiliation(s)
- Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | | | - Vincenzo Quagliariello
- Department of Abdominal Oncology, National Cancer Institute, IRCCS - Foundation G. Pascale, Naples, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, Italy
| | | | | | - Massimiliano Berretta
- Department of Medical Oncology, National Cancer Institute, IRCCS, Aviano (PN), Italy
| |
Collapse
|
285
|
Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Front Immunol 2018; 9:946. [PMID: 29780391 PMCID: PMC5945998 DOI: 10.3389/fimmu.2018.00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer research has seen unprecedented advances over the past several years, with tremendous insights gained into mechanisms of response and resistance to cancer therapy. Central to this has been our understanding of crosstalk between the tumor and the microenvironment, with the recognition that complex interactions exist between tumor cells, stromal cells, overall host immunity, and the environment surrounding the host. This is perhaps best exemplified in cancer immunotherapy, where numerous studies across cancer types have illuminated our understanding of the genomic and immune factors that shape responses to therapy. In addition to their individual contributions, it is now clear that there is a complex interplay between genomic/epigenomic alterations and tumor immune responses that impact cellular plasticity and therapeutic responses. In addition to this, it is also now apparent that significant heterogeneity exists within tumors-both at the level of genomic mutations as well as tumor immune responses-thus contributing to heterogeneous clinical responses. Beyond the tumor microenvironment, overall host immunity plays a major role in mediating clinical responses. The gut microbiome plays a central role, with recent evidence revealing that the gut microbiome influences the overall immune set-point, through diverse effects on local and systemic inflammatory processes. Indeed, quantifiable differences in the gut microbiome have been associated with disease and treatment outcomes in patients and pre-clinical models, though precise mechanisms of microbiome-immune interactions are yet to be elucidated. Complexities are discussed herein, with a discussion of each of these variables as they relate to treatment response.
Collapse
Affiliation(s)
- Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
286
|
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered to be the strongest curative immunotherapy for various malignancies (primarily, but not limited to, haematologic malignancies). However, application of allo-HSCT is limited owing to its life-threatening major complications, such as graft-versus-host disease (GVHD), relapse and infections. Recent advances in large-scale DNA sequencing technology have facilitated rapid identification of the microorganisms that make up the microbiota and evaluation of their interactions with host immunity in various diseases, including cancer. This has resulted in renewed interest regarding the role of the intestinal flora in patients with haematopoietic malignancies who have received an allo-HSCT and in whether the microbiota affects clinical outcomes, including GVHD, relapse, infections and transplant-related mortality. In this Review, we discuss the potential role of intestinal microbiota in these major complications after allo-HSCT, summarize clinical trials evaluating the microbiota in patients who have received allo-HSCT and discuss how further studies of the microbiota could inform the development of strategies that improve outcomes of allo-HSCT.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Medical College of Cornell University, New York, New York, USA
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
287
|
Guipaud O, Jaillet C, Clément-Colmou K, François A, Supiot S, Milliat F. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br J Radiol 2018; 91:20170762. [PMID: 29630386 DOI: 10.1259/bjr.20170762] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.
Collapse
Affiliation(s)
- Olivier Guipaud
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Cyprien Jaillet
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Karen Clément-Colmou
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Agnès François
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Stéphane Supiot
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Fabien Milliat
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| |
Collapse
|
288
|
Buono R, Longo VD. Starvation, Stress Resistance, and Cancer. Trends Endocrinol Metab 2018; 29:271-280. [PMID: 29463451 PMCID: PMC7477630 DOI: 10.1016/j.tem.2018.01.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer cells are characterized by dysregulation in signal transduction and metabolic pathways leading to increased glucose uptake, altered mitochondrial function, and the evasion of antigrowth signals. Fasting and fasting-mimicking diets (FMDs) provide a particularly promising intervention to promote differential effects in normal and malignant cells. These effects are caused in part by the reduction in IGF-1, insulin, and glucose and the increase in IGFBP1 and ketone bodies, which generate conditions that force cancer cells to rely more on metabolites and factors that are limited in the blood, thus resulting in cell death. Here we discuss the cellular and animal experiments demonstrating the differential effects of fasting on normal and cancer cells and the mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Roberta Buono
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
289
|
Yin J, Ren W, Huang X, Li T, Yin Y. Protein restriction and cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:256-262. [PMID: 29596961 DOI: 10.1016/j.bbcan.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/02/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers.
Collapse
Affiliation(s)
- Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xingguo Huang
- Department of Animal science, Hunan Agriculture University, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
290
|
Goodman B, Gardner H. The microbiome and cancer. J Pathol 2018; 244:667-676. [PMID: 29377130 DOI: 10.1002/path.5047] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Humans coexist with a vast bacterial, fungal and viral microbiome with which we have coevolved for millions of years. Several long recognized epidemiological associations between particular bacteria and cancer are now understood at the molecular level. At the same time, the arrival of next-generation sequencing technology has permitted a thorough exploration of microbiomes such as that of the human gut, enabling observation of taxonomic and metabolomic relationships between the microbiome and cancer. These studies have revealed causal mechanisms for both microbes within tumours and microbes in other host niches separated from tumours, mediated through direct and immunological mechanisms. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
291
|
Kather JN, Halama N, Jaeger D. Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Semin Cancer Biol 2018; 52:189-197. [PMID: 29501787 DOI: 10.1016/j.semcancer.2018.02.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a common and lethal disease with a high therapeutic need. For most patients with metastatic CRC, chemotherapy is the only viable option. Currently, immunotherapy is restricted to the particular genetic subgroup of mismatch-repair deficient (MMRd)/microsatellite instable (MSI) CRC. Anti-PD1 therapy was recently FDA-approved as a second-line treatment in this subgroup. However, in a metastatic setting, these MMRd/MSI tumors are vastly outnumbered by mismatch-repair proficient (MMRp)/microsatellite stable (MSS) tumors. These MMRp/MSS tumors do not meaningfully respond to any traditional immunotherapy approach including checkpoint blockade, adoptive cell transfer and vaccination. This resistance to immunotherapy is due to a complex tumor microenvironment that counteracts antitumor immunity through a combination of poorly antigenic tumor cells and an immunosuppressive tumor microenvironment. To find ways of overcoming immunotherapy resistance in the majority of CRC patients, it is necessary to analyze the immunological makeup in an in-depth and personalized way and in the context of their tumor genetic makeup. Flexible, biomarker-guided early-phase immunotherapy trials are needed to optimize this workflow. In this review, we detail key mechanisms for immune evasion and emerging immune biomarkers for personalized immunotherapy in CRC. Also, we present a template for biomarker-guided clinical trials that are needed to move new immunotherapy approaches closer to clinical application.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dirk Jaeger
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
292
|
Hopkins A, Jaffee E. Pancreatic cancer: Next-generation algorithms for neoantigen selection. Nat Rev Gastroenterol Hepatol 2018; 15:135-136. [PMID: 29317775 PMCID: PMC6487638 DOI: 10.1038/nrgastro.2017.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Predicting clinical outcomes in cancer using neoantigen burden is imperfect because current algorithms use only the binding affinity of putative neoantigens to HLA. A new study models pancreatic tumour response through a deeper understanding of tumour immunology, providing new tools for identifying neoantigens and characteristics that define their quality.
Collapse
|
293
|
Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 2018; 11:31. [PMID: 29482595 PMCID: PMC6389077 DOI: 10.1186/s13045-018-0578-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immunotherapy, especially checkpoint inhibitor-based immunotherapy, has provided novel and powerful weapons against cancer. Because only a subset of cancer patients exhibit durable responses, further exploration of the mechanisms underlying the resistance to immunotherapy in the bulk of cancer patients is merited. Such efforts may help to identify which patients could benefit from immune checkpoint blockade. Given the existence of a great number of pathways by which cancer can escape immune surveillance, and the complexity of tumor-immune system interaction, development of various combination therapies, including those that combine with conventional therapies, would be necessary. In this review, we summarize the current understanding of the mechanisms by which resistance to checkpoint blockade immunotherapy occurs, and outline how actionable combination strategies may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weidong Han
- Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
294
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
295
|
|
296
|
Yu Q, Jia A, Li Y, Bi Y, Liu G. Microbiota regulate the development and function of the immune cells. Int Rev Immunol 2018; 37:79-89. [PMID: 29425062 DOI: 10.1080/08830185.2018.1429428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
Collapse
Affiliation(s)
- Qing Yu
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Anna Jia
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Yan Li
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Yujing Bi
- b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Guangwei Liu
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
297
|
Allard B, Aspeslagh S, Garaud S, Dupont FA, Solinas C, Kok M, Routy B, Sotiriou C, Stagg J, Buisseret L. Immuno-oncology-101: overview of major concepts and translational perspectives. Semin Cancer Biol 2018; 52:1-11. [PMID: 29428479 DOI: 10.1016/j.semcancer.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is demonstrating impressive clinical benefit in different malignancies and clinical oncologists are increasingly turning their attention to immune-oncology. It is now well recognized that innate and adaptive immune cells infiltrating tumors are associated with clinical outcomes and responses to treatments, and can be harnessed to patients' benefit. Considerable advances have also been made in understanding how cancers escape from immune attack. Targeting of immunological escape processes regulated by the expression of immune checkpoint receptors and ligands and the down-modulation of tumor antigen presentation is the basis of immuno-oncology treatments. Despite recent achievements, there remain a number of unresolved issues in order to successfully implement cancer immunotherapy in many cancers. Importantly, clinical biomarkers are still needed for better optimization of emerging combination immunotherapies and better treatment tailoring. In this review, we summarize the function of innate and adaptive immune cells in anti-tumor immunity and the general mechanisms exploited by tumor cells to escape and inhibit immune responses as well as therapeutic strategies developed to overcome these mechanisms and discuss emerging biomarkers in immuno-oncology.
Collapse
Affiliation(s)
- B Allard
- University of Montreal Hospital Research Centre, Montréal, Québec, Canada; Montreal Cancer Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - S Aspeslagh
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - S Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - F A Dupont
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - C Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - M Kok
- Department of Medical Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B Routy
- University of Montreal Hospital Research Centre, Montréal, Québec, Canada; Montreal Cancer Institute, Montreal, Quebec, Canada
| | - C Sotiriou
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - J Stagg
- University of Montreal Hospital Research Centre, Montréal, Québec, Canada; Montreal Cancer Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - L Buisseret
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
298
|
Metagenomics Biomarkers Selected for Prediction of Three Different Diseases in Chinese Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2936257. [PMID: 29568746 PMCID: PMC5820663 DOI: 10.1155/2018/2936257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/14/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
The dysbiosis of human microbiome has been proven to be associated with the development of many human diseases. Metagenome sequencing emerges as a powerful tool to investigate the effects of microbiome on diseases. Identification of human gut microbiome markers associated with abnormal phenotypes may facilitate feature selection for multiclass classification. Compared with binary classifiers, multiclass classification models deploy more complex discriminative patterns. Here, we developed a pipeline to address the challenging characterization of multilabel samples. In this study, a total of 300 biomarkers were selected from the microbiome of 806 Chinese individuals (383 controls, 170 with type 2 diabetes, 130 with rheumatoid arthritis, and 123 with liver cirrhosis), and then logistic regression prediction algorithm was applied to those markers as the model intrinsic features. The estimated model produced an F1 score of 0.9142, which was better than other popular classification methods, and an average receiver operating characteristic (ROC) of 0.9475 showed a significant correlation between these selected biomarkers from microbiome and corresponding phenotypes. The results from this study indicate that machine learning is a vital tool in data mining from microbiome in order to identify disease-related biomarkers, which may contribute to the application of microbiome-based precision medicine in the future.
Collapse
|
299
|
Mitsuhashi A, Okuma Y. Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with non-invasive biomarkers in cancer patients. Clin Transl Oncol 2018; 20:966-974. [PMID: 29313208 DOI: 10.1007/s12094-017-1827-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/27/2017] [Indexed: 01/05/2023]
Abstract
Antibodies against immune checkpoint inhibitors such as anti-programmed cell death protein 1 (PD-1) and anti-programmed death ligand 1 (PD-L1) play a key role in the treatment of advanced lung cancer. To examine the clinical benefits of these agents, preclinical and clinical studies have been conducted to identify definitive biomarkers associated with cancer status. Analysis of the blood and feces of tumor patients has attracted attention in recent studies attempting to identify non-invasive biomarkers such as cytokines, soluble PD-L1, peripheral blood mononuclear cells, and gut microbiota. These factors are believed to interact with each other to produce synergistic effects and contribute to the formation of the tumor immune microenvironment through the seven steps of the cancer immunity cycle. The immunogram was first introduced as a novel indicator to define the immunity status of cancer patients. In this review, we discuss the progress in the identification of predictive biomarkers as well as future prospects for anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- A Mitsuhashi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome 3-18-22, Bunkyo, Tokyo, 113-8677, Japan
| | - Y Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome 3-18-22, Bunkyo, Tokyo, 113-8677, Japan.
| |
Collapse
|
300
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Innate Immune Receptors in the Regulation of Tumor Immunity. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|