251
|
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 2021; 18:280-296. [PMID: 33514910 DOI: 10.1038/s41571-020-00462-0] [Citation(s) in RCA: 1672] [Impact Index Per Article: 418.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFβ1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
252
|
Epigenetic Regulation and Nonepigenetic Mechanisms of Ferroptosis Drive Emerging Nanotherapeutics in Tumor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8854790. [PMID: 33574983 PMCID: PMC7864727 DOI: 10.1155/2021/8854790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
Currently, traditional cancer therapy still falls far short of expectations. However, a variety of invasive cancers that are resistant to chemotherapy (such as platinum drugs, one of the most applied antineoplastics in clinic) and targeted agents are susceptible to ferroptosis. Ferroptosis is a form of cell death that is driven by cell metabolism and iron-dependent lipid peroxidation. Ferroptosis inducers can eliminate the drug resistance of tumor cells in the mesenchymal state, effectively inhibit the drug resistance of acquired tumor cells, and optimize cancer efficacy. Research based on the epigenetic mechanism of ferroptosis is still in the stage of screening and verifying the regulatory effect, and there is no complete regulatory mechanism network. In this review, we expound on the epigenetic regulation and nonepigenetic mechanisms of ferroptosis and review the epigenetic-based mechanisms of tumor therapy potential and emerging nonepigenetic-based therapies (nanotherapeutics).
Collapse
|
253
|
Boutelle AM, Attardi LD. p53 and Tumor Suppression: It Takes a Network. Trends Cell Biol 2021; 31:298-310. [PMID: 33518400 DOI: 10.1016/j.tcb.2020.12.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The TP53 tumor suppressor is the most frequently mutated gene in human cancer. p53 suppresses tumorigenesis by transcriptionally regulating a network of target genes that play roles in various cellular processes. Though originally characterized as a critical regulator for responses to acute DNA damage (activation of apoptosis and cell cycle arrest), recent studies have highlighted new pathways and transcriptional targets downstream of p53 regulating genomic integrity, metabolism, redox biology, stemness, and non-cell autonomous signaling in tumor suppression. Here, we summarize our current understanding of p53-mediated tumor suppression, situating recent findings from mouse models and unbiased screens in the context of previous studies and arguing for the importance of the pleiotropic effects of the p53 transcriptional network in inhibiting cancer.
Collapse
Affiliation(s)
- Anthony M Boutelle
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
254
|
Metabolic Regulation of Ferroptosis in Cancer. BIOLOGY 2021; 10:biology10020083. [PMID: 33499222 PMCID: PMC7911352 DOI: 10.3390/biology10020083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Ferroptosis is a recently defined nonapoptotic form of cell death that is associated with various human diseases, including cancer. As ferroptosis is caused by an overdose of lipid peroxidation resulting from dysregulation of the cellular antioxidant system, it is inherently closely associated with cellular metabolism. Here, we provide an updated review of the recent studies that have shown mechanisms of metabolic regulation of ferroptosis in the context of cancer. Abstract Ferroptosis is a unique cell death mechanism that is executed by the excessive accumulation of lipid peroxidation in cells. The relevance of ferroptosis in multiple human diseases such as neurodegeneration, organ damage, and cancer is becoming increasingly evident. As ferroptosis is deeply intertwined with metabolic pathways such as iron, cyst(e)ine, glutathione, and lipid metabolism, a better understanding of how ferroptosis is regulated by these pathways will enable the precise utilization or prevention of ferroptosis for therapeutic uses. In this review, we present an update of the mechanisms underlying diverse metabolic pathways that can regulate ferroptosis in cancer.
Collapse
|
255
|
Lee J, Oh GH, Hong JA, Choi S, Choi HJ, Song JJ. Enhanced oncolytic adenoviral production by downregulation of death-domain associated protein and overexpression of precursor terminal protein. Sci Rep 2021; 11:856. [PMID: 33441685 PMCID: PMC7807022 DOI: 10.1038/s41598-020-79998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Adequate viral replication in tumor cells is the key to improving the anti-cancer effects of oncolytic adenovirus therapy. In this study, we introduced short hairpin RNAs against death-domain associated protein (Daxx), a repressor of adenoviral replication, and precursor terminal protein (pTP), an initiator of adenoviral genome replication, into adenoviral constructs to determine their contributions to viral replication. Both Daxx downregulation and pTP overexpression increased viral production in variety of human cancer cell lines, and the enhanced production of virus progeny resulted in more cell lysis in vitro, and tumor regression in vivo. We confirmed that increased virus production by Daxx silencing, or pTP overexpression, occurred using different mechanisms by analyzing levels of adenoviral protein expression and virus production. Specifically, Daxx downregulation promoted both virus replication and oncolysis in a consecutive manner by optimizing IVa2-based packaging efficiency, while pTP overexpression by increasing both infectious and total virus particles but their contribution to increased viral production may have been damaged to some extent by their another contribution to apoptosis and autophagy. Therefore, introducing both Daxx shRNA and pTP in virotherapy may be a suitable strategy to increase apoptotic tumor-cell death and to overcome poor viral replication, leading to meaningful reductions in tumor growth in vivo.
Collapse
Affiliation(s)
- Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
256
|
|
257
|
Jin Y, Gu W, Chen W. Sirt3 is critical for p53-mediated ferroptosis upon ROS-induced stress. J Mol Cell Biol 2020; 13:151-154. [PMID: 33377976 PMCID: PMC8104950 DOI: 10.1093/jmcb/mjaa074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ying Jin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.,Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
258
|
The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8810785. [PMID: 33425217 PMCID: PMC7772020 DOI: 10.1155/2020/8810785] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Ferroptosis is an atypical form of regulated cell death, which is different from apoptosis, necrosis, pyroptosis, and autophagy. Ferroptosis is characterized by iron-dependent oxidative destruction of cellular membranes following the antioxidant system's failure. The sensitivity of ferroptosis is tightly regulated by a series of biological processes, the metabolism of iron, amino acids, and polyunsaturated fatty acids, and the interaction of glutathione (GSH), NADPH, coenzyme Q10 (CoQ10), and phospholipids. Elevated oxidative stress (ROS) level is a hallmark of cancer, and ferroptosis serves as a link between nutrition metabolism and redox biology. Targeting ferroptosis may be an effective and selective way for cancer therapy. The underlying molecular mechanism of ferroptosis occurrence is still not enough. This review will briefly summarize the process of ferroptosis and introduce critical molecules in the ferroptotic cascade. Furthermore, we reviewed the occurrence and regulation of reduction-oxidation (redox) for ferroptosis in cancer metabolism. The role of the tumor suppressor and the epigenetic regulator in tumor cell ferroptosis will also be described. Finally, old drugs that can be repurposed to induce ferroptosis will be characterized, aiming for drug repurposing and novel drug combinations for cancer therapy more efficiently and economically.
Collapse
|
259
|
Kon N, Ou Y, Wang SJ, Li H, Rustgi AK, Gu W. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev 2020; 35:59-64. [PMID: 33303641 PMCID: PMC7778266 DOI: 10.1101/gad.340919.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Here, we showed that the acetylation-defective p53-4KR mice, lacking the ability of cell cycle arrest, senescence, apoptosis, and ferroptosis, were tumor prone but failed to develop early-onset tumors. By identifying a novel p53 acetylation site at lysine K136, we found that simultaneous mutations at all five acetylation sites (p53-5KR) diminished its remaining tumor suppression function. Moreover, the embryonic lethality caused by the deficiency of mdm2 was fully rescued in the background of p535KR/5KR , but not p534KR/4KR background. p53-4KR retained the ability to suppress mTOR function but this activity was abolished in p53-5KR cells. Notably, the early-onset tumor formation observed in p535KR/5KR and p53-null mice was suppressed upon the treatment of the mTOR inhibitor. These results suggest that p53-mediated mTOR regulation plays an important role in both embryonic development and tumor suppression, independent of cell cycle arrest, senescence, apoptosis, and ferroptosis.
Collapse
Affiliation(s)
- Ning Kon
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Yang Ou
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Shang-Jui Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
260
|
Chen S, Chen Y, Zhang Y, Kuang X, Liu Y, Guo M, Ma L, Zhang D, Li Q. Iron Metabolism and Ferroptosis in Epilepsy. Front Neurosci 2020; 14:601193. [PMID: 33424539 PMCID: PMC7793792 DOI: 10.3389/fnins.2020.601193] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a disease characterized by recurrent, episodic, and transient central nervous system (CNS) dysfunction resulting from an excessive synchronous discharge of brain neurons. It is characterized by diverse etiology, complex pathogenesis, and difficult treatment. In addition, most epileptic patients exhibit social cognitive impairment and psychological impairment. Iron is an essential trace element for human growth and development and is also involved in a variety of redox reactions in organisms. However, abnormal iron metabolism is associated with several neurological disorders, including hemorrhagic post-stroke epilepsy and post-traumatic epilepsy (PTE). Moreover, ferroptosis is also considered a new form of regulation of cell death, which is attributed to severe lipid peroxidation caused by the production of reactive oxygen species (ROS) and iron overload found in various neurological diseases, including epilepsy. Therefore, this review summarizes the study on iron metabolism and ferroptosis in epilepsy, in order to elucidate the correlation between iron and epilepsy. It also provides a novel method for the treatment, prevention, and research of epilepsy, to control epileptic seizures and reduce nerve injury after the epileptic seizure.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yongmin Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yukang Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xi Kuang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Health Vocational College, Haikou, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Rehabilitation, Hainan Cancer Hospital, Haikou, China
| | - Meiwen Guo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Lin Ma
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Daqi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| |
Collapse
|
261
|
Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab 2020; 32:920-937. [PMID: 33217331 DOI: 10.1016/j.cmet.2020.10.011] [Citation(s) in RCA: 822] [Impact Index Per Article: 164.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Acute or chronic cellular stress resulting from aberrant metabolic and biochemical processes may trigger a pervasive non-apoptotic form of cell death, generally known as ferroptosis. Ferroptosis is unique among the different cell death modalities, as it has been mostly linked to pathophysiological conditions and because several metabolic pathways, such as (seleno)thiol metabolism, fatty acid metabolism, iron handling, mevalonate pathway, and mitochondrial respiration, directly impinge on the cells' sensitivity toward lipid peroxidation and ferroptosis. Additionally, key cellular redox systems, such as selenium-dependent glutathione peroxidase 4 and the NAD(P)H/ferroptosis suppressor protein-1/ubiquinone axis, are at play that constantly surveil and neutralize oxidative damage to cellular membranes. Since this form of cell death emerges to be the root cause of a number of diseases and since it offers various pharmacologically tractable nodes for therapeutic intervention, there has been overwhelming interest in the last few years aiming for a better molecular understanding of the ferroptotic death process.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow 117997, Russia.
| |
Collapse
|
262
|
Wei X, Yi X, Zhu XH, Jiang DS. Posttranslational Modifications in Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8832043. [PMID: 33294126 PMCID: PMC7718049 DOI: 10.1155/2020/8832043] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Ferroptosis was first coined in 2012 to describe the form of regulated cell death (RCD) characterized by iron-dependent lipid peroxidation. To date, ferroptosis has been implicated in many diseases, such as carcinogenesis, degenerative diseases (e.g., Huntington's, Alzheimer's, and Parkinson's diseases), ischemia-reperfusion injury, and cardiovascular diseases. Previous studies have identified numerous targets involved in ferroptosis; for example, acyl-CoA synthetase long-chain family member 4 (ACSL4) and p53 induce while glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2 (AIFM2, also known as FSP1) inhibit ferroptosis. At least three major pathways (the glutathione-GPX4, FSP1-coenzyme Q10 (CoQ10), and GTP cyclohydrolase-1- (GCH1-) tetrahydrobiopterin (BH4) pathways) have been identified to participate in ferroptosis regulation. Recent advances have also highlighted the crucial roles of posttranslational modifications (PTMs) of proteins in ferroptosis. Here, we summarize the recently discovered knowledge regarding the mechanisms underlying ferroptosis, particularly the roles of PTMs in ferroptosis regulation.
Collapse
Affiliation(s)
- Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
263
|
SIRT3 Deficiency Sensitizes Angiotensin-II-Induced Renal Fibrosis. Cells 2020; 9:cells9112510. [PMID: 33233553 PMCID: PMC7699810 DOI: 10.3390/cells9112510] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Sirtuin 3 (SIRT3) has a crucial role in the cardiovascular diseases. Our previous study revealed that SIRT3 knockout (SIRT3KO) promoted cardiac pericyte–fibroblast transition. In this study, we investigated the involvement of pericyte and iron in angiotensin II (Ang-II)-mediated renal fibrosis in the SIRT3KO mice. Methods and Results: NG2-DsRed mice and NG2-DsRed-SIRT3 knockout (SIRT3KO) mice were infused with saline or Ang-II (1000 ng/kg/min) for 4 weeks. Renal fibrosis, iron content and reactive oxygen species (ROS) were measured. Masson’s trichrome staining showed that SIRT3KO enhanced Ang-II-induced renal fibrosis. Immunostaining showed that Ang-II treatment increased the number of NG2-DsRed+ cells in the kidney, and SIRT3KO further enhanced NG2-DsRed+ cells. Moreover, SIRT3KO promoted pericyte differentiation into fibroblasts as evidenced by co-staining NG2-DsRed/FSP-1. Furthermore, DsRed/FSP-1+ and DsRed/transforming growth factor-β1 (TGF-β1)+ fibroblasts were elevated by SIRT3KO after Ang-II infusion. Ang-II-induced collagen I and TGF-β1 expression was also enhanced in the SIRT3KO mice. SIRT3KO significantly exacerbated Ang-II-induced iron accumulation. This was accompanied by an increase in acetyl-p53, HO-1 and FPN expression. Further, SIRT3KO sensitized Ang-II-induced upregulation of p47phox and gp91phox together with increased ROS formation in the kidney. Conclusion: Our study suggests that SIRT3 deficiency sensitized Ang-II-induced renal fibrosis by the mechanisms involved in promoting differentiation of pericytes into fibroblasts, exacerbating iron overload and accelerating NADPH oxidase-derived ROS formation.
Collapse
|
264
|
Cui D, Dai X, Gong L, Chen X, Wang L, Xiong X, Zhao Y. DEPTOR is a direct p53 target that suppresses cell growth and chemosensitivity. Cell Death Dis 2020; 11:976. [PMID: 33184290 PMCID: PMC7661726 DOI: 10.1038/s41419-020-03185-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
DEP-domain containing mTOR-interacting protein (DEPTOR), a natural mTOR inhibitor, has essential roles in several processes, including cell growth, metabolism, apoptosis, and immunity. DEPTOR expression has been shown to be diversely controlled at transcriptional levels in cell- and context-specific manners. However, whether there is a general mechanism for the regulation of DEPTOR expression remains largely unknown. Here, we report that DEPTOR is a downstream target of the tumor suppressor, p53, whose activity is positively correlated with DEPTOR expression both in vitro in cell cultures and in vivo in mouse tissues. Mechanistically, p53 directly binds to the DEPTOR promoter and transactivates its expression. Depletion of the p53-binding site on the DEPTOR promoter by CRISPR-Cas9 technology decreases DEPTOR expression and promotes cell proliferation and survival by activating AKT signaling. Importantly, inhibition of AKT by small molecular inhibitors or genetic knockdown abrogates the induction of cell growth and survival induced by deletion of the p53-binding region on the DEPTOR promoter. Furthermore, p53, upon activation by the genotoxic agent doxorubicin, induces DEPTOR expression, leading to cancer cell resistance to doxorubicin. Together, DEPTOR is a direct p53 downstream target and contributes to p53-mediated inhibition of cell proliferation, survival, and chemosensitivity.
Collapse
Affiliation(s)
- Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Dai
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyuan Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Linchen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
265
|
The Regulation of Ferroptosis by Tumor Suppressor p53 and its Pathway. Int J Mol Sci 2020; 21:ijms21218387. [PMID: 33182266 PMCID: PMC7664917 DOI: 10.3390/ijms21218387] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor suppressor p53 plays a key role in tumor suppression. In addition to tumor suppression, p53 is also involved in many other biological and pathological processes, such as immune response, maternal reproduction, tissue ischemia/reperfusion injuries and neurodegenerative diseases. While it has been widely accepted that the role of p53 in regulation of cell cycle arrest, senescence and apoptosis contributes greatly to the function of p53 in tumor suppression, emerging evidence has implicated that p53 also exerts its tumor suppressive function through regulation of many other cellular processes, such as metabolism, anti-oxidant defense and ferroptosis. Ferroptosis is a unique iron-dependent form of programmed cell death driven by lipid peroxidation in cells. Ferroptosis has been reported to be involved in cancer, tissue ischemia/reperfusion injuries and neurodegenerative diseases. Recent studies have shown that ferroptosis can be regulated by p53 and its signaling pathway as well as tumor-associated mutant p53. Interestingly, the regulation of ferroptosis by p53 appears to be highly context-dependent. In this review, we summarize recent advances in the regulation of ferroptosis by p53 and its signaling pathway. Further elucidation of the role and molecular mechanism of p53 in ferroptosis regulation will yield new therapeutic strategies for cancer and other diseases, including neurodegenerative diseases and tissue ischemia/reperfusion injuries.
Collapse
|
266
|
Yu J, Wang JQ. Research mechanisms of and pharmaceutical treatments for ferroptosis in liver diseases. Biochimie 2020; 180:149-157. [PMID: 33166595 DOI: 10.1016/j.biochi.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated cell death (RCD) is a universal process in living organisms that is essential for tissue homeostasis or to the restoration of biological equilibrium following stress. Ferroptosis is a specific nonapoptotic cell death that is dependent on iron and is very different from other forms of RCD. Ferroptosis can affect the development of liver diseases such as drug-induced liver injury (DILI), liver fibrosis, and hepatocellular carcinoma (HCC) by regulating the level of intracellular iron, the production of intracellular reactive oxygen species, and lipid peroxides. In this review, we summarize the current knowledge of ferroptosis, in terms of discovery, history, characteristics, mechanism, and the factors regulating liver diseases. We discuss how these factors and signaling pathways change in the context of liver disease. Furthermore, we focus on delineating the roles of effective therapeutic drugs or compounds in liver disease. In summary, we discuss the role of ferroptosis in liver disease, providing a strategy and new ideas for preventing liver disease, finding new therapeutic targets, and reducing liver damage.
Collapse
Affiliation(s)
- Jun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian-Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
267
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
268
|
Functional interplay among thiol-based redox signaling, metabolism, and ferroptosis unveiled by a genetic variant of TP53. Proc Natl Acad Sci U S A 2020; 117:26804-26811. [PMID: 33055209 DOI: 10.1073/pnas.2009943117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The p53 tumor suppressor protein is a transcription factor and master stress response mediator, and it is subject to reduction-oxidation (redox)-dependent regulation. The P47S variant of TP53, which exists primarily in African-descent populations, associates with an elevated abundance of low molecular weight (LMW) thiols, including glutathione (GSH) and coenzyme A (CoA). Here we show that S47 and P47 cells exhibit distinct metabolic profiles, controlled by their different redox states and expression of Activating Transcription Factor-4 (ATF4). We find that S47 cells exhibit decreased catabolic glycolysis but increased use of the pentose phosphate pathway (PPP), and an enhanced abundance of the antioxidant, NADPH. We identify ATF4 as differentially expressed in P47 and S47 cells and show that ATF4 can reverse the redox status and rescue metabolism of S47 cells, as well as increase sensitivity to ferroptosis. This adaptive metabolic switch is rapid, reversible, and accompanied by thiol-mediated changes in the structures and activities of key glycolytic signaling pathway proteins, including GAPDH and G6PD. The results presented here unveil the important functional interplay among pathways regulating thiol-redox status, metabolic adaptation, and cellular responses to oxidative stress.
Collapse
|
269
|
Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2020; 12:599-620. [PMID: 33000412 PMCID: PMC8310547 DOI: 10.1007/s13238-020-00789-5] [Citation(s) in RCA: 1350] [Impact Index Per Article: 270.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
The cystine/glutamate antiporter SLC7A11 (also commonly known as xCT) functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers. Recent studies revealed that SLC7A11 overexpression promotes tumor growth partly through suppressing ferroptosis, a form of regulated cell death induced by excessive lipid peroxidation. However, cancer cells with high expression of SLC7A11 (SLC7A11high) also have to endure the significant cost associated with SLC7A11-mediated metabolic reprogramming, leading to glucose- and glutamine-dependency in SLC7A11high cancer cells, which presents potential metabolic vulnerabilities for therapeutic targeting in SLC7A11high cancer. In this review, we summarize diverse regulatory mechanisms of SLC7A11 in cancer, discuss ferroptosis-dependent and -independent functions of SLC7A11 in promoting tumor development, explore the mechanistic basis of SLC7A11-induced nutrient dependency in cancer cells, and conceptualize therapeutic strategies to target SLC7A11 in cancer treatment. This review will provide the foundation for further understanding SLC7A11 in ferroptosis, nutrient dependency, and tumor biology and for developing novel effective cancer therapies.
Collapse
|
270
|
Thompson LR, Oliveira TG, Hermann ER, Chowanadisai W, Clarke SL, Montgomery MR. Distinct TP53 Mutation Types Exhibit Increased Sensitivity to Ferroptosis Independently of Changes in Iron Regulatory Protein Activity. Int J Mol Sci 2020; 21:ijms21186751. [PMID: 32942535 PMCID: PMC7555626 DOI: 10.3390/ijms21186751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary “hotspot” mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.
Collapse
|
271
|
The Application of Ferroptosis in Diseases. Pharmacol Res 2020; 159:104919. [DOI: 10.1016/j.phrs.2020.104919] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
272
|
Lu D, Yang Z, Xia Q, Gao S, Sun S, Luo X, Li Z, Zhang X, Li X. ACADSB regulates ferroptosis and affects the migration, invasion, and proliferation of colorectal cancer cells. Cell Biol Int 2020; 44:2334-2343. [PMID: 32776663 DOI: 10.1002/cbin.11443] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most pressing health issues in today's society. As such, it is imperative that the scientific community devise effective methods to inhibit the proliferation and metastasis of CRC cells. Ferroptosis is a recently discovered regulatory cell death mode mainly manifested by dysregulation of cellular iron metabolism and mitochondrial lipid peroxidation. ACADSB is a member of the acyl-CoA dehydrogenase. This study finds that ACADSB is lowly expressed in CRC tissues. Its expression is negatively correlated with N- and M-stage CRC but positively correlated with the overall survival rate of CRC patients. In addition, it finds that ACADSB is found in the mitochondria of cells. Overexpression of ACADSB inhibits CRC cell migration, invasion, and proliferation, while ACADSB knockdown has the opposite effect. More importantly, the study finds that ACADSB negatively regulates expression of glutathione reductase and glutathione peroxidase 4, the two main enzymes responsible for clearing glutathione (GSH) in CRC cells. ACADSB overexpression enhances the concentration of malondialdehyde, Fe+ , superoxide dismutase, and lipid peroxidation in CRC cells, but reduces the concentration of GSH. This is significant, as all of these are important indicators of ferroptosis. Evaluating the data as a whole, this paper speculates that ACADSB affects CRC cell migration, invasion, and proliferation by regulating CRC cell ferroptosis.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhiyu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xiaoying Luo
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - XiuLei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
273
|
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 2020; 13:110. [PMID: 32778143 PMCID: PMC7418434 DOI: 10.1186/s13045-020-00946-7] [Citation(s) in RCA: 826] [Impact Index Per Article: 165.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, cancer immunotherapy based on immune checkpoint inhibitors (ICIs) has achieved considerable success in the clinic. However, ICIs are significantly limited by the fact that only one third of patients with most types of cancer respond to these agents. The induction of cell death mechanisms other than apoptosis has gradually emerged as a new cancer treatment strategy because most tumors harbor innate resistance to apoptosis. However, to date, the possibility of combining these two modalities has not been discussed systematically. Recently, a few studies revealed crosstalk between distinct cell death mechanisms and antitumor immunity. The induction of pyroptosis, ferroptosis, and necroptosis combined with ICIs showed synergistically enhanced antitumor activity, even in ICI-resistant tumors. Immunotherapy-activated CD8+ T cells are traditionally believed to induce tumor cell death via the following two main pathways: (i) perforin-granzyme and (ii) Fas-FasL. However, recent studies identified a new mechanism by which CD8+ T cells suppress tumor growth by inducing ferroptosis and pyroptosis, which provoked a review of the relationship between tumor cell death mechanisms and immune system activation. Hence, in this review, we summarize knowledge of the reciprocal interaction between antitumor immunity and distinct cell death mechanisms, particularly necroptosis, ferroptosis, and pyroptosis, which are the three potentially novel mechanisms of immunogenic cell death. Because most evidence is derived from studies using animal and cell models, we also reviewed related bioinformatics data available for human tissues in public databases, which partially confirmed the presence of interactions between tumor cell death and the activation of antitumor immunity.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
274
|
Targeting post-translational modification of transcription factors as cancer therapy. Drug Discov Today 2020; 25:1502-1512. [DOI: 10.1016/j.drudis.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
|
275
|
Eriksson SE, Ceder S, Bykov VJN, Wiman KG. p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 2020; 11:330-341. [PMID: 30892598 PMCID: PMC6734141 DOI: 10.1093/jmcb/mjz005] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
The TP53 tumor suppressor gene encodes a DNA-binding transcription factor that regulates multiple cellular processes including cell growth and cell death. The ability of p53 to bind to DNA and activate transcription is tightly regulated by post-translational modifications and is dependent on a reducing cellular environment. Some p53 transcriptional target genes are involved in regulation of the cellular redox homeostasis, e.g. TIGAR and GLS2. A large fraction of human tumors carry TP53 mutations, most commonly missense mutations that lead to single amino acid substitutions in the core domain. Mutant p53 proteins can acquire so called gain-of-function activities and influence the cellular redox balance in various ways, for instance by binding of the Nrf2 transcription factor, a major regulator of cellular redox state. The DNA-binding core domain of p53 has 10 cysteine residues, three of which participate in holding a zinc atom that is critical for p53 structure and function. Several novel compounds that refold and reactivate missense mutant p53 bind to specific p53 cysteine residues. These compounds can also react with other thiols and target components of the cellular redox system, such as glutathione. Dual targeting of mutant p53 and redox homeostasis may allow more efficient treatment of cancer.
Collapse
Affiliation(s)
- Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Sophia Ceder
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| |
Collapse
|
276
|
Sabapathy K, Lane DP. Understanding p53 functions through p53 antibodies. J Mol Cell Biol 2020; 11:317-329. [PMID: 30907951 PMCID: PMC6487784 DOI: 10.1093/jmcb/mjz010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
TP53 is the most frequently mutated gene across all cancer types. Our understanding of its functions has evolved since its discovery four decades ago. Initially thought to be an oncogene, it was later realized to be a critical tumour suppressor. A significant amount of our knowledge about p53 functions have come from the use of antibodies against its various forms. The early anti-p53 antibodies contributed to the recognition of p53 accumulation as a common feature of cancer cells and to our understanding of p53 DNA-binding and transcription activities. They led to the concept that conformational changes can facilitate p53’s activity as a growth inhibitory protein. The ensuing p53 conformational-specific antibodies further underlined p53’s conformational flexibility, collectively forming the basis for current efforts to generate therapeutic molecules capable of altering the conformation of mutant p53. A subsequent barrage of antibodies against post-translational modifications on p53 has clarified p53’s roles further, especially with respect to the mechanistic details and context-dependence of its activity. More recently, the generation of p53 mutation-specific antibodies have highlighted the possibility to go beyond the general framework of our comprehension of mutant p53—and promises to provide insights into the specific properties of individual p53 mutants. This review summarizes our current knowledge of p53 functions derived through the major classes of anti-p53 antibodies, which could be a paradigm for understanding other molecular events in health and disease.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), 8 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
277
|
Lieschke E, Wang Z, Kelly GL, Strasser A. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53. J Mol Cell Biol 2020; 11:212-223. [PMID: 30496435 PMCID: PMC6478126 DOI: 10.1093/jmcb/mjy077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Activation of the tumour suppressor p53 upon cellular stress can induce a number of different cellular processes. The diverse actions of these processes are critical for the protective function of p53 in preventing the development of cancer. However, it is still not fully understood which process(es) activated by p53 is/are critical for tumour suppression and how this might differ depending on the type of cells undergoing neoplastic transformation and the nature of the drivers of oncogenesis. Moreover, it is not clear why upon activation of p53 some cells undergo cell cycle arrest and senescence whereas others die by apoptosis. Here we discuss some of the cellular processes that are crucial for p53-mediated tumour suppression and the factors that could impact cell fate upon p53 activation. Finally, we describe therapies aimed either at activating wild-type p53 or at changing the behaviour of mutant p53 to unleash tumour growth suppressive processes for therapeutic benefit in malignant disease.
Collapse
Affiliation(s)
- Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
278
|
Ferroptosis in Liver Diseases: An Overview. Int J Mol Sci 2020; 21:ijms21144908. [PMID: 32664576 PMCID: PMC7404091 DOI: 10.3390/ijms21144908] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to the other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. Several pathways, including amino acid and iron metabolism, ferritinophagy, cell adhesion, p53, Keap1/Nrf2 and phospholipid biosynthesis, can modify susceptibility to ferroptosis. Through the decades, various diseases, including acute kidney injury; cancer; ischemia–reperfusion injury; and cardiovascular, neurodegenerative and hepatic disorders, have been associated with ferroptosis. In this review, we provide a comprehensive analysis of the main biological and biochemical mechanisms of ferroptosis and an overview of chemicals used as inducers and inhibitors. Then, we report the contribution of ferroptosis to the spectrum of liver diseases, acute or chronic. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common form of primary liver cancer.
Collapse
|
279
|
Mao L, Zhao T, Song Y, Lin L, Fan X, Cui B, Feng H, Wang X, Yu Q, Zhang J, Jiang K, Wang B, Sun C. The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis 2020; 11:518. [PMID: 32647111 PMCID: PMC7347946 DOI: 10.1038/s41419-020-2732-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent form of regulated cell death (RCD). It is morphologically and biochemically distinct from characteristics of other cell death. This modality has been intensively investigated in recent years due to its involvement in a wide array of pathologies, including cancer, neurodegenerative diseases, and acute kidney injury. Dysregulation of ferroptosis has also been linked to various liver diseases and its modification may provide a hopeful and attractive therapeutic concept. Indeed, targeting ferroptosis may prevent the pathophysiological progression of several liver diseases, such as hemochromatosis, nonalcoholic steatohepatitis, and ethanol-induced liver injury. On the contrary, enhancing ferroptosis may promote sorafenib-induced ferroptosis and pave the way for combination therapy in hepatocellular carcinoma. Glutathione peroxidase 4 (GPx4) and system xc- have been identified as key players to mediate ferroptosis pathway. More recently diverse signaling pathways have also been observed. The connection between ferroptosis and other forms of RCD is intricate and compelling, where discoveries in this field advance our understanding of cell survival and fate. In this review, we summarize the central molecular machinery of ferroptosis, describe the role of ferroptosis in non-cancer hepatic disease conditions and discuss the potential to manipulate ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Lihong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Lin Lin
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Binxin Cui
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Hongjuan Feng
- Department of Nutriology, Tianjin Third Central Hospital, Jintang Road 83, Hedong District, Tianjin, 300170, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Qingxiang Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
280
|
Xia X, Fan X, Zhao M, Zhu P. The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach. Curr Gene Ther 2020; 19:117-124. [PMID: 31264548 PMCID: PMC7046989 DOI: 10.2174/1566523219666190628152137] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ferroptosis is a newly discovered form of iron-dependent oxidative cell death characterized by lethal accumulation of lipid-based reactive oxygen species (ROS). It is distinct from other forms of cell death including apoptosis, necrosis, and autophagy in terms of morphology, biochemistry and genetics. DISCUSSION Ferroptosis can be induced by system xc- inhibitors or glutathione peroxidase 4 (GPx4) inhibitors, as well as drugs such as sorafenib, sulfasalazine (SAS), and artesunate (ART). Ferroptosis has been recently shown to be critical in regulating growth of tumors, such as hepatocellular carcinoma (HCC), renal cell carcinoma (RCC), non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic carcinoma, and diffuse large B cell lymphoma (DLBCL). Ferroptosis is also associated with resistance to chemotherapeutic drugs and the anti-tumor efficacy of immunotherapy. CONCLUSION This review summarizes the mechanism of ferroptosis and its relationship with different types of tumors, to advance our understanding of cell death and to find a novel approach for clinical cancer management.
Collapse
Affiliation(s)
- Xiaojun Xia
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease; National Clinical Research Center of Respiratory Disease, Guangzhou 510120, China
| | - Xiaoping Fan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410006, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| |
Collapse
|
281
|
Molecular Mechanisms of Ferroptosis and Its Role in Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9547127. [PMID: 32685102 PMCID: PMC7338975 DOI: 10.1155/2020/9547127] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
Ferroptosis is a new mode of cell death that is characterized by the excessive accumulation of iron and lipid peroxides. It has unique morphological changes and disparate biochemical features and plays an intricate role in many pathophysiological processes. A great deal of researches confirms that ferroptosis can be regulated by numerous molecules through different mechanisms, supporting great potentials for novel pharmacological therapeutics. Recently, several studies reveal that ferroptosis is also closely associated with the initiation and development of respiratory disease. Understanding the specific mechanism, the molecular trait of ferroptosis and their relationship with pulmonary disease could provide significant references regarding effective treatment of these obstinate disease.
Collapse
|
282
|
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells 2020; 9:cells9061505. [PMID: 32575749 PMCID: PMC7349567 DOI: 10.3390/cells9061505] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a new type of oxidative regulated cell death (RCD) driven by iron-dependent lipid peroxidation. As major sites of iron utilization and master regulators of oxidative metabolism, mitochondria are the main source of reactive oxygen species (ROS) and, thus, play a role in this type of RCD. Ferroptosis is, indeed, associated with severe damage in mitochondrial morphology, bioenergetics, and metabolism. Furthermore, dysregulation of mitochondrial metabolism is considered a biochemical feature of neurodegenerative diseases linked to ferroptosis. Whether mitochondrial dysfunction can, per se, initiate ferroptosis and whether mitochondrial function in ferroptosis is context-dependent are still under debate. Cancer cells accumulate high levels of iron and ROS to promote their metabolic activity and growth. Of note, cancer cell metabolic rewiring is often associated with acquired sensitivity to ferroptosis. This strongly suggests that ferroptosis may act as an adaptive response to metabolic imbalance and, thus, may constitute a new promising way to eradicate malignant cells. Here, we review the current literature on the role of mitochondria in ferroptosis, and we discuss opportunities to potentially use mitochondria-mediated ferroptosis as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Roberta Chirillo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Research Centre of Biochemistry and advanced Molecular Biology, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4105
| |
Collapse
|
283
|
Zhao Y, Li Y, Zhang R, Wang F, Wang T, Jiao Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther 2020; 13:5429-5441. [PMID: 32606760 PMCID: PMC7295539 DOI: 10.2147/ott.s254995] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 01/17/2023] Open
Abstract
Erastin was initially discovered as a small molecule compound that selectively kills tumor cells expressing ST and RASV12 and was later widely investigated as an inducer of ferroptosis. Ferroptosis is a recently discovered form of cell death caused by peroxidation induced by the accumulation of intracellular lipid reactive oxygen species (L-ROS) in an iron-dependent manner. Erastin can mediate ferroptosis through a variety of molecules including the cystine-glutamate transport receptor (system XC -), the voltage-dependent anion channel (VDAC), and p53. Erastin is able to enhance the sensitivity of chemotherapy and radiotherapy, suggesting a promising future in cancer therapy. We hope that this review will help to better understand the role of erastin in ferroptosis and lay the foundation for further research and the development of erastin-based cancer therapies in the future.
Collapse
Affiliation(s)
- Yuechen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Ruifeng Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Feng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
284
|
Wang M, Li S, Wang Y, Cheng H, Su J, Li Q. Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol 2020; 401:115110. [PMID: 32533954 DOI: 10.1016/j.taap.2020.115110] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Melanoma is characterized by high malignancy and early onset of metastasis. Epithelial-to-mesenchymal transition (EMT) is an early event during tumor metastasis. Tumor cells that develop EMT can escape apoptosis, but they are vulnerable to ferroptosis inducers. Gambogenic acid (GNA), a xanthone found in Gamboge, has cytotoxic effects in highly invasive melanoma cells. This study investigated the anti-melanoma effect and mechanism of action of GNA in TGF-β1-induced EMT melanoma cells. We found that GNA significantly inhibited the invasion, migration and EMT in melanoma cells, and these cells exhibited small mitochondrial wrinkling (an important feature of ferroptosis). An iron chelator, but not an apoptosis inhibitor or a necrosis inhibitor, abolished the inhibitory effects of GNA on proliferation, invasion and migration of TGF-β1-stimulated melanoma cells. GNA upregulated the expression of p53, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in the model cells, contributing to the mechanisms underlying GNA-induced ferroptosis. Collectively, our findings suggest that GNA induces ferroptosis in TGF-β1-stimulated melanoma cells via the p53/SLC7A11/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Shanshan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Youlin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, China; Key Laboratory of Chinese Medicial Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
285
|
Chen J, Yang X, Fang X, Wang F, Min J. [The role of ferroptosis in chronic diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:44-57. [PMID: 32621416 DOI: 10.3785/j.issn.1008-9292.2020.02.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. Emerging studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in the different disease context. Notably, it is shown that activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. As a result, the development of more efficacious ferroptosis agonists remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics. By contrast, in non-cancerous chronic diseases, including cardiovascular & cerebrovascular diseases and neurodegenerative diseases, ferroptosis functions as a risk factor to promote these diseases progression through triggering or accelerating tissue injury. As a matter of fact, blocking ferroptosis has been demonstrated to effectively prevent ischemia-reperfusion heart disease in preclinical animal models. Therefore, it is a promising field to develope potent ferroptosis inhibitors for preventing and treating cardiovascular & cerebrovascular diseases and neurodegenerative diseases. In this article, we summarize the most recent progress on ferroptosis in chronic diseases, and draw attention to the possible clinical impact of this recently emerged ferroptosis modalities.
Collapse
Affiliation(s)
- Junyi Chen
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiang Yang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuexian Fang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
286
|
Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc Natl Acad Sci U S A 2020; 117:10155-10164. [PMID: 32327603 DOI: 10.1073/pnas.1917946117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase (MPO)-mediated oxidative stress has been suggested to play an important role in the pathological dysfunction of epileptic brains. However, there is currently no robust brain-imaging tool to detect real-time endogenous hypochlorite (HClO) generation by MPO or a fluorescent probe for rapid high-throughput screening of antiepileptic agents that control the MPO-mediated chlorination stress. Herein, we report an efficient two-photon fluorescence probe (named HCP) for the real-time detection of endogenous HClO signals generated by MPO in the brain of kainic acid (KA)-induced epileptic mice, where HClO-dependent chlorination of quinolone fluorophore gives the enhanced fluorescence response. With this probe, we visualized directly the endogenous HClO fluxes generated by the overexpression of MPO activity in vivo and ex vivo in mouse brains with epileptic behaviors. Notably, by using HCP, we have also constructed a high-throughput screening approach to rapidly screen the potential antiepileptic agents to control MPO-mediated oxidative stress. Moreover, from this screen, we identified that the flavonoid compound apigenin can relieve the MPO-mediated oxidative stress and inhibit the ferroptosis of neuronal cells. Overall, this work provides a versatile fluorescence tool for elucidating the role of HClO generation by MPO in the pathology of epileptic seizures and for rapidly discovering additional antiepileptic agents to prevent and treat epilepsy.
Collapse
|
287
|
Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol 2020; 30:478-490. [PMID: 32413317 DOI: 10.1016/j.tcb.2020.02.009] [Citation(s) in RCA: 755] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Cell death is an essential feature of development in multicellular organisms, a critical driver of degenerative diseases, and can be harnessed for treating some cancers. Understanding the mechanisms governing cell death is critical for addressing its role in disease. Similarly, metabolism is essential for normal energy and biomolecule production, and goes awry in many diseases. Metabolism and cell death are tightly linked in the phenomenon of ferroptosis, a form of regulated cell death driven by peroxidation of phospholipids. Glutathione peroxidase 4 (GPX4) uses glutathione to protect cells from ferroptosis by eliminating phospholipid peroxides. Recent data have revealed glutathione/GPX4-independent axes for suppressing ferroptosis, and insight into the regulation of iron and mitochondria in ferroptosis. Ferroptosis has recently been implicated in multiple diseases, and functions as a tumor suppression mechanism. Ferroptosis induction is a promising approach in treating several conditions, including neoplastic diseases. Here, we summarize these recent advances.
Collapse
Affiliation(s)
- Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA.
| | - Xuejun Jiang
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA.
| |
Collapse
|
288
|
"Iron free" zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis 2020; 11:183. [PMID: 32170066 PMCID: PMC7070056 DOI: 10.1038/s41419-020-2384-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
Exposure to nanomaterials (NMs) is an emerging threat to human health, and the understanding of their intracellular behavior and related toxic effects is urgently needed. Ferroptosis is a newly discovered, iron-mediated cell death that is distinctive from apoptosis or other cell-death pathways. No evidence currently exists for the effect of “iron free” engineered NMs on ferroptosis. We showed by several approaches that (1) zinc oxide nanoparticles (ZnO NPs)-induced cell death involves ferroptosis; (2) ZnO NPs-triggered ferroptosis is associated with elevation of reactive oxygen species (ROS) and lipid peroxidation, along with depletion of glutathione (GSH) and downregulation of glutathione peroxidase 4 (GPx4); (3) ZnO NPs disrupt intracellular iron homeostasis by orchestrating iron uptake, storage and export; (4) p53 largely participates in ZnO NPs-induced ferroptosis; and (5) ZnO particle remnants and dissolved zinc ion both contribute to ferroptosis. In conclusion, our data provide a new mechanistic rationale for ferroptosis as a novel cell-death phenotype induced by engineered NMs.
Collapse
|
289
|
Cao J, Chen X, Jiang L, Lu B, Yuan M, Zhu D, Zhu H, He Q, Yang B, Ying M. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat Commun 2020; 11:1251. [PMID: 32144268 PMCID: PMC7060199 DOI: 10.1038/s41467-020-15109-y] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Ferroptosis is a newly characterized form of regulated cell death mediated by iron-dependent accumulation of lipid reactive oxygen species and holds great potential for cancer therapy. However, the molecular mechanisms underlying ferroptosis remain largely elusive. In this study, we define an integrative role of DJ-1 in ferroptosis. Inhibition of DJ-1 potently enhances the sensitivity of tumor cells to ferroptosis inducers both in vitro and in vivo. Metabolic analysis and metabolite rescue assay reveal that DJ-1 depletion inhibits the transsulfuration pathway by disrupting the formation of the S-adenosyl homocysteine hydrolase tetramer and impairing its activity. Consequently, more ferroptosis is induced when homocysteine generation is decreased, which might be the only source of glutathione biosynthesis when cystine uptake is blocked. Thus, our findings show that DJ-1 determines the response of cancer cells to ferroptosis, and highlight a candidate therapeutic target to potentially improve the effect of ferroptosis-based antitumor therapy.
Collapse
Affiliation(s)
- Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobing Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bin Lu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Difeng Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
290
|
Transcription factors in ferroptotic cell death. Cancer Gene Ther 2020; 27:645-656. [PMID: 32123318 DOI: 10.1038/s41417-020-0170-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Ferroptosis, a form of regulated cell death, is characterized by an excessive degree of iron accumulation and lipid peroxidation. Although it was originally identified only in cells expressing a mutant RAS oncogene, ferroptosis has also been found in normal cells following treatment by small molecules (e.g., erastin and RSL3) or drugs (e.g., sulfasalazine, sorafenib, and artesunate), which target antioxidant enzyme systems, especially the amino acid antiporter system xc- and the glutathione peroxidase GPX4. Dysfunctional ferroptosis is implicated in various physiological and pathological processes (e.g., metabolism, differentiation, and immunity). Targeting the ferroptotic network appears to a new treatment option for diseases or pathological conditions (e.g., cancer, neurodegeneration, and ischemia reperfusion injury). While the molecular machinery of ferroptosis remains largely unknown, several transcription factors (e.g., TP53, NFE2L2/NRF2, ATF3, ATF4, YAP1, TAZ, TFAP2C, SP1, HIF1A, EPAS1/HIF2A, BACH1, TFEB, JUN, HIC1, and HNF4A) play multiple roles in shaping ferroptosis sensitivity through either transcription-dependent or transcription-independent mechanisms. In this review, we summarize recent progress in understanding the transcriptional regulation underlying ferroptotic cell death, and discuss how it has provided new insights into cancer therapy.
Collapse
|
291
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
292
|
Wu Y, Zhang S, Gong X, Tam S, Xiao D, Liu S, Tao Y. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer 2020; 19:39. [PMID: 32103754 PMCID: PMC7045519 DOI: 10.1186/s12943-020-01157-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis, a novel form of regulated cell death, is different from other types of cell death in morphology, genetics and biochemistry. Increasing evidence indicates that ferroptosis has significant implications on cell death linked to cardiomyopathy, tumorigenesis, and cerebral hemorrhage to name a few. Here we summarize current literature on ferroptosis, including organelle dysfunction, signaling transduction pathways, metabolic reprogramming and epigenetic regulators in cancer progression. With regard to organelles, mitochondria-induced cysteine starvation, endoplasmic reticulum-related oxidative stress, lysosome dysfunction and golgi stress-related lipid peroxidation all contribute to induction of ferroptosis. Understanding the underlying mechanism in ferroptosis could provide insight into the treatment of various intractable diseases including cancers.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Siwei Zhang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoxiao Gong
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Samantha Tam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| | - Shuang Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
293
|
Venkatesh D, O'Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE, Kengmana ES, Aron AT, Klein AM, Csuka JM, Moon SH, Conrad M, Chang CJ, Lo DC, D'Alessandro A, Prives C, Stockwell BR. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 2020; 34:526-543. [PMID: 32079652 PMCID: PMC7111265 DOI: 10.1101/gad.334219.119] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Here, Venkatesh et al. investigated the p53-independent roles of MDMX and the MDM2–MDMX complex. They found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53, and that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2–MDMX complex regulates lipids through altering PPARα activity. MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2–MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2–MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2–MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.
Collapse
Affiliation(s)
- Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Nicholas A O'Brien
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Michael E Stokes
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denise E Dunn
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Everett S Kengmana
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Allegra T Aron
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | - Joleen M Csuka
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg 85764, Germany
| | - Christopher J Chang
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Donald C Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
294
|
Nguyen THP, Mahalakshmi B, Velmurugan BK. Functional role of ferroptosis on cancers, activation and deactivation by various therapeutic candidates-an update. Chem Biol Interact 2020; 317:108930. [DOI: 10.1016/j.cbi.2019.108930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
295
|
Bebber CM, Müller F, Prieto Clemente L, Weber J, von Karstedt S. Ferroptosis in Cancer Cell Biology. Cancers (Basel) 2020; 12:E164. [PMID: 31936571 PMCID: PMC7016816 DOI: 10.3390/cancers12010164] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
A major hallmark of cancer is successful evasion of regulated forms of cell death. Ferroptosis is a recently discovered type of regulated necrosis which, unlike apoptosis or necroptosis, is independent of caspase activity and receptor-interacting protein 1 (RIPK1) kinase activity. Instead, ferroptotic cells die following iron-dependent lipid peroxidation, a process which is antagonised by glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1). Importantly, tumour cells escaping other forms of cell death have been suggested to maintain or acquire sensitivity to ferroptosis. Therefore, therapeutic exploitation of ferroptosis in cancer has received increasing attention. Here, we systematically review current literature on ferroptosis signalling, cross-signalling to cellular metabolism in cancer and a potential role for ferroptosis in tumour suppression and tumour immunology. By summarising current findings on cell biology relevant to ferroptosis in cancer, we aim to point out new conceptual avenues for utilising ferroptosis in systemic treatment approaches for cancer.
Collapse
Affiliation(s)
- Christina M. Bebber
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 155b, 50931 Cologne, Germany; (C.M.B.); (F.M.); (L.P.C.); (J.W.)
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Fabienne Müller
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 155b, 50931 Cologne, Germany; (C.M.B.); (F.M.); (L.P.C.); (J.W.)
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Laura Prieto Clemente
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 155b, 50931 Cologne, Germany; (C.M.B.); (F.M.); (L.P.C.); (J.W.)
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Josephine Weber
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 155b, 50931 Cologne, Germany; (C.M.B.); (F.M.); (L.P.C.); (J.W.)
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 155b, 50931 Cologne, Germany; (C.M.B.); (F.M.); (L.P.C.); (J.W.)
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| |
Collapse
|
296
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX, Jiang X. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 2020; 27:242-254. [PMID: 31114026 PMCID: PMC7205875 DOI: 10.1038/s41418-019-0352-3] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023] Open
Abstract
The antimalarial drug artemisinin and its derivatives have been explored as potential anticancer agents, but their underlying mechanisms are controversial. In this study, we found that artemisinin compounds can sensitize cancer cells to ferroptosis, a new form of programmed cell death driven by iron-dependent lipid peroxidation. Mechanistically, dihydroartemisinin (DAT) can induce lysosomal degradation of ferritin in an autophagy-independent manner, increasing the cellular free iron level and causing cells to become more sensitive to ferroptosis. Further, by associating with cellular free iron and thus stimulating the binding of iron-regulatory proteins (IRPs) with mRNA molecules containing iron-responsive element (IRE) sequences, DAT impinges on IRP/IRE-controlled iron homeostasis to further increase cellular free iron. Importantly, in both in vitro and a mouse xenograft model in which ferroptosis was triggered in cancer cells by the inducible knockout of GPX4, we found that DAT can augment GPX4 inhibition-induced ferroptosis in a cohort of cancer cells that are otherwise highly resistant to ferroptosis. Collectively, artemisinin compounds can sensitize cells to ferroptosis by regulating cellular iron homeostasis. Our findings can be exploited clinically to enhance the effect of future ferroptosis-inducing cancer therapies.
Collapse
Affiliation(s)
- Guo-Qing Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Fahad A Benthani
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Jiao Wu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA.
| |
Collapse
|
297
|
Zhou Z, Ye TJ, DeCaro E, Buehler B, Stahl Z, Bonavita G, Daniels M, You M. Intestinal SIRT1 Deficiency Protects Mice from Ethanol-Induced Liver Injury by Mitigating Ferroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:82-92. [PMID: 31610175 DOI: 10.1016/j.ajpath.2019.09.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Aberrant liver sirtuin 1 (SIRT1), a mammalian NAD+-dependent protein deacetylase, is implicated in the pathogenesis of alcoholic liver disease (ALD). However, the role of intestinal SIRT1 in ALD is presently unknown. This study investigated the involvement of intestine-specific SIRT1 in ethanol-induced liver dysfunction in mice. Ethanol feeding studies were performed on knockout mice with intestinal-specific SIRT1 deletion [SIRT1i knockout (KO)] and flox control [wild-type (WT)] mice with a chronic-plus-binge ethanol feeding protocol. After ethanol administration, hepatic inflammation and liver injury were substantially attenuated in the SIRT1iKO mice compared with the WT mice, suggesting that intestinal SIRT1 played a detrimental role in the ethanol-induced liver injury. Mechanistically, the hepatic protective effect of intestinal SIRT1 deficiency was attributable to ameliorated dysfunctional iron metabolism, increased hepatic glutathione contents, and attenuated lipid peroxidation, along with inhibition of a panel of genes implicated in the ferroptosis process in the livers of ethanol-fed mice. This study demonstrates that ablation of intestinal SIRT1 protected mice from the ethanol-induced inflammation and liver damage. The protective effects of intestinal SIRT1 deficiency are mediated, at least partially, by mitigating hepatic ferroptosis. Targeting intestinal SIRT1 or dampening hepatic ferroptosis signaling may have therapeutic potential for ALD in humans.
Collapse
Affiliation(s)
- Zhou Zhou
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ting Jie Ye
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio; Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Elizabeth DeCaro
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Brian Buehler
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Zachary Stahl
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Gregory Bonavita
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Michael Daniels
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Min You
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
298
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
299
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
300
|
Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ. p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Rep 2019; 22:569-575. [PMID: 29346757 DOI: 10.1016/j.celrep.2017.12.077] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/15/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
How cancer cells respond to nutrient deprivation remains poorly understood. In certain cancer cells, deprivation of cystine induces a non-apoptotic, iron-dependent form of cell death termed ferroptosis. Recent evidence suggests that ferroptosis sensitivity may be modulated by the stress-responsive transcription factor and canonical tumor suppressor protein p53. Using CRISPR/Cas9 genome editing, small-molecule probes, and high-resolution, time-lapse imaging, we find that stabilization of wild-type p53 delays the onset of ferroptosis in response to cystine deprivation. This delay requires the p53 transcriptional target CDKN1A (encoding p21) and is associated with both slower depletion of intracellular glutathione and a reduced accumulation of toxic lipid-reactive oxygen species (ROS). Thus, the p53-p21 axis may help cancer cells cope with metabolic stress induced by cystine deprivation by delaying the onset of non-apoptotic cell death.
Collapse
Affiliation(s)
- Amy Tarangelo
- Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Leslie Magtanong
- Department of Biology, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Kathryn T Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Yang Li
- Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA; Department of Radiation Oncology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA; Department of Radiation Oncology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Laura D Attardi
- Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA; Department of Radiation Oncology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Scott J Dixon
- Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA; Department of Biology, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|