251
|
Li Z, Shen Y, Wang Y, Zhu L, Zhu C, Qian C, Sun M, Oupicky D. Perfluorocarbon Nanoemulsions for Combined Pulmonary siRNA Treatment of Lung Metastatic Osteosarcoma. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhaoting Li
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Yuexin Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Yixin Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Lianghan Zhu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Chenfei Zhu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Chenggen Qian
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Minjie Sun
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - David Oupicky
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha, NE 68198 USA
| |
Collapse
|
252
|
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019; 25:2392-2402. [PMID: 30463850 PMCID: PMC6467754 DOI: 10.1158/1078-0432.ccr-18-3200] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a key pillar of cancer treatment. To build upon the recent successes of immunotherapy, intense research efforts are aimed at a molecular understanding of antitumor immune responses, identification of biomarkers of immunotherapy response and resistance, and novel strategies to circumvent resistance. These studies are revealing new insight into the intricacies of tumor cell recognition by the immune system, in large part through MHCs. Although tumor cells widely express MHC-I, a subset of tumors originating from a variety of tissues also express MHC-II, an antigen-presenting complex traditionally associated with professional antigen-presenting cells. MHC-II is critical for antigen presentation to CD4+ T lymphocytes, whose role in antitumor immunity is becoming increasingly appreciated. Accumulating evidence demonstrates that tumor-specific MHC-II associates with favorable outcomes in patients with cancer, including those treated with immunotherapies, and with tumor rejection in murine models. Herein, we will review current research regarding tumor-enriched MHC-II expression and regulation in a range of human tumors and murine models, and the possible therapeutic applications of tumor-specific MHC-II.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Rebecca S Cook
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee.
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
253
|
Barilla RM, Diskin B, Caso RC, Lee KB, Mohan N, Buttar C, Adam S, Sekendiz Z, Wang J, Salas RD, Cassini MF, Karlen J, Sundberg B, Akbar H, Levchenko D, Gakhal I, Gutierrez J, Wang W, Hundeyin M, Torres-Hernandez A, Leinwand J, Kurz E, Rossi JAK, Mishra A, Liria M, Sanchez G, Panta J, Loke P, Aykut B, Miller G. Specialized dendritic cells induce tumor-promoting IL-10 +IL-17 + FoxP3 neg regulatory CD4 + T cells in pancreatic carcinoma. Nat Commun 2019; 10:1424. [PMID: 30926808 PMCID: PMC6441038 DOI: 10.1038/s41467-019-09416-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
The drivers and the specification of CD4+ T cell differentiation in the tumor microenvironment and their contributions to tumor immunity or tolerance are incompletely understood. Using models of pancreatic ductal adenocarcinoma (PDA), we show that a distinct subset of tumor-infiltrating dendritic cells (DC) promotes PDA growth by directing a unique TH-program. Specifically, CD11b+CD103- DC predominate in PDA, express high IL-23 and TGF-β, and induce FoxP3neg tumor-promoting IL-10+IL-17+IFNγ+ regulatory CD4+ T cells. The balance between this distinctive TH program and canonical FoxP3+ TREGS is unaffected by pattern recognition receptor ligation and is modulated by DC expression of retinoic acid. This TH-signature is mimicked in human PDA where it is associated with immune-tolerance and diminished patient survival. Our data suggest that CD11b+CD103- DC promote CD4+ T cell tolerance in PDA which may underscore its resistance to immunotherapy.
Collapse
Affiliation(s)
- Rocky M Barilla
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Raul Caso Caso
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Ki Buom Lee
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Navyatha Mohan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Chandan Buttar
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Salma Adam
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Zennur Sekendiz
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Junjie Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Ruben D Salas
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Marcelo F Cassini
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Jason Karlen
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Belen Sundberg
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Hashem Akbar
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Dmitry Levchenko
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Inderdeep Gakhal
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Johana Gutierrez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Joshua Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Emma Kurz
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Juan A Kochen Rossi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Ankita Mishra
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Miguel Liria
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Gustavo Sanchez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Jyoti Panta
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Berk Aykut
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
254
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
255
|
Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. Int J Mol Sci 2019; 20:ijms20030676. [PMID: 30764482 PMCID: PMC6387440 DOI: 10.3390/ijms20030676] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Systemic and local chronic inflammation might enhance the risk of pancreatic ductal adenocarcinoma (PDAC), and PDAC-associated inflammatory infiltrate in the tumor microenvironment concurs in enhancing tumor growth and metastasis. Inflammation is closely correlated with immunity, the same immune cell populations contributing to both inflammation and immune response. In the PDAC microenvironment, the inflammatory cell infiltrate is unbalanced towards an immunosuppressive phenotype, with a prevalence of myeloid derived suppressor cells (MDSC), M2 polarized macrophages, and Treg, over M1 macrophages, dendritic cells, and effector CD4⁺ and CD8⁺ T lymphocytes. The dynamic and continuously evolving cross-talk between inflammatory and cancer cells might be direct and contact-dependent, but it is mainly mediated by soluble and exosomes-carried cytokines. Among these, tumor necrosis factor alpha (TNFα) plays a relevant role in enhancing cancer risk, cancer growth, and cancer-associated cachexia. In this review, we describe the inflammatory cell types, the cytokines, and the mechanisms underlying PDAC risk, growth, and progression, with particular attention on TNFα, also in the light of the potential risks or benefits associated with anti-TNFα treatments.
Collapse
|
256
|
Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGF–neuropilin interactions: a promising antitumor strategy. Drug Discov Today 2019; 24:656-664. [PMID: 30315890 DOI: 10.1016/j.drudis.2018.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Kewen Peng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
257
|
Hernandez-Barco YG, Bardeesy N, Ting DT. No Cell Left Unturned: Intraductal Papillary Mucinous Neoplasm Heterogeneity. Clin Cancer Res 2019; 25:2027-2029. [PMID: 30642914 DOI: 10.1158/1078-0432.ccr-18-3877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 12/30/2022]
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a pancreatic cancer precursor lesion with established genetic features, but the cellular ecosystem of these tumors remains to be fully characterized. This study utilizes single-cell RNA sequencing to describe the dynamic landscape of epithelial, immune, and stromal cells during IPMN progression to invasive cancer.See related article by Bernard et al., p. 2194.
Collapse
Affiliation(s)
- Yasmin G Hernandez-Barco
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital Division of Gastroenterology, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
258
|
Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li SP, Martin RCG. Evaluating the Regulatory Immunomodulation Effect of Irreversible Electroporation (IRE) in Pancreatic Adenocarcinoma. Ann Surg Oncol 2019; 26:800-806. [PMID: 30610562 DOI: 10.1245/s10434-018-07144-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irreversible electroporation (IRE) has been demonstrated as an effective local method for locally advanced (stage 3) pancreatic adenocarcinoma. Immune regulatory T cells (Tregs) induce immunosuppression of tumors by inhibiting patients' anti-tumor adaptive immune response. This study aimed to evaluate the immunomodulation effect of IRE to identify an ideal time point for potential adjuvant immunotherapy. METHODS This study prospectively evaluated an institutional review board-approved study of patients undergoing either in situ IRE or pancreatectomy. Patient blood samples were collected at different time points (before surgery [preOP] and on postoperative day [POD] 1, POD3, and POD5). Peripheral blood mononuclear cells (PBMCs) were isolated and evaluated for three different CD4 + Treg subsets (CD25 + CD4 +, CD4 + CD25 + FoxP3 +, CD4 + CD25 + FoxP3 -) by flow cytometry and analyzed for median fold change (MFC) between each two consecutive time points (MFC = log2(T2/T1)). RESULTS The study analyzed 15 patients with in situ IRE (n = 11) or pancreatectomy (PAN) (n = 4). In both groups, CD25 + CD4 + Tregs decreased on POD1 followed by a steady increase in pancreatectomy, whereas the trend in the IRE group reversed between D3 and D5 (MFC: IRE [- 0.01], PAN [+ 0.39]). For each period, CD4 + CD25 + FoxP3 + Tregs showed the most dramatic inverse effect, with D3 to D5 showing the most change (MFC: IRE [- 0.18], PAN [+ 0.39]). Also, CD4 + CD25 + FoxP3 - Tregs showed an inverse effect between D3 and D5 (MFC: IRE [- 0.25], PAN [+ 0.49]). Altogether, the Treg trend was inversely affected by the in situ IRE procedure, with the greatest cumulative significant change for all three Treg subsets between D3 and D5 (MFC ± SEM: IRE [- 0.24 ± 0.05], PAN [+ 0.37 ± 0.02]; p = 0.016). CONCLUSIONS The study data suggest that in situ IRE procedure-mediated Treg attenuation between POD3 and POD5 can provide a clinical window of opportunity for potentiating clinical efficacy in combination with immunotherapy.
Collapse
Affiliation(s)
- Harshul Pandit
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Young K Hong
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jack Rostas
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zachary Pulliam
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Su Ping Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA. .,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
259
|
Zhou R, Zhang J, Zeng D, Sun H, Rong X, Shi M, Bin J, Liao Y, Liao W. Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I-III colon cancer. Cancer Immunol Immunother 2018; 68:433-442. [PMID: 30564892 PMCID: PMC6426802 DOI: 10.1007/s00262-018-2289-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
Abstract
Tumour-infiltrating immune cells are a source of important prognostic information for patients with resectable colon cancer. We developed a novel immune model based on systematic assessments of the immune landscape inferred from bulk tumor transcriptomes of stage I–III colon cancer patients. The “Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)” algorithm was used to estimate the fraction of 22 immune cell types from six microarray public datasets. The random forest method and least absolute shrinkage and selection operator model were then used to establish immunoscores for diagnosis and prognosis. By comparing immune cell compositions in samples of 870 colon cancer patients and 70 normal controls, we constructed a diagnostic model, designated the diagnostic immune risk score (dIRS), that showed high specificity and sensitivity in both the training [area under the curve (AUC) = 0.98, p < 0.001] and validation (AUC 0.96, p < 0.001) sets. We also established a prognostic immune risk score (pIRS) that was found to be an independent prognostic factor for relapse-free survival in every series (training: HR 2.23; validation: HR 1.65; entire: HR 2.01; p < 0.001 for all), which showed better prognostic value than TNM stage. In addition, integration of the pIRS with clinical characteristics in a composite nomogram showed improved accuracy of relapse risk prediction, providing a higher net benefit than TNM stage, with well-fitted calibration curves. The proposed dIRS and pIRS models represent promising novel signatures for the diagnosis and prognosis prediction of colon cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
260
|
Parente P, Parcesepe P, Covelli C, Olivieri N, Remo A, Pancione M, Latiano TP, Graziano P, Maiello E, Giordano G. Crosstalk between the Tumor Microenvironment and Immune System in Pancreatic Ductal Adenocarcinoma: Potential Targets for New Therapeutic Approaches. Gastroenterol Res Pract 2018; 2018:7530619. [PMID: 30662458 PMCID: PMC6312626 DOI: 10.1155/2018/7530619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease for which radical surgery and chemotherapy represent the only curative options for a small proportion of patients. Recently, FOLFIRINOX and nab-paclitaxel plus gemcitabine have improved the survival of metastatic patients but prognosis remains poor. A pancreatic tumor microenvironment is a dynamic milieu of cellular and acellular elements, and it represents one of the major limitations to chemotherapy efficacy. The continued crosstalk between cancer cells and the surrounding microenvironment causes immunosuppression within pancreatic immune infiltrate increasing tumor aggressiveness. Several potential targets have been identified among tumor microenvironment components, and different therapeutic approaches are under investigation. In this article, we provide a qualitative literature review about the crosstalk between the tumor microenvironment components and immune system in pancreatic cancer. Finally, we discuss potential therapeutic strategies targeting the tumor microenvironment and we show the ongoing trials.
Collapse
Affiliation(s)
- Paola Parente
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Pietro Parcesepe
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Claudia Covelli
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Nunzio Olivieri
- Biology Department, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | - Andrea Remo
- “Mater Salutis” Hospital, ULSS 9, Via C. Gianella 1, 37045 Legnago, Verona, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Tiziana Pia Latiano
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Paolo Graziano
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Evaristo Maiello
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Guido Giordano
- Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
261
|
Wang WH, Xu HY, Zhao ZM, Zhang GM, Lin FW. Dynamic and significant changes of T-cell subgroups in breast cancer patients during surgery and chemotherapy. Int Immunopharmacol 2018; 65:279-283. [DOI: 10.1016/j.intimp.2018.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
|
262
|
Immunotherapy, Radiotherapy, and Hyperthermia: A Combined Therapeutic Approach in Pancreatic Cancer Treatment. Cancers (Basel) 2018; 10:cancers10120469. [PMID: 30486519 PMCID: PMC6316720 DOI: 10.3390/cancers10120469] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) has the highest mortality rate amongst all other cancers in both men and women, with a one-year relative survival rate of 20%, and a five-year relative survival rate of 8% for all stages of PC combined. The Whipple procedure, or pancreaticoduodenectomy, can increase survival for patients with resectable PC, however, less than 20% of patients are candidates for surgery at time of presentation. Most of the patients are diagnosed with advanced PC, often with regional and distant metastasis. In these advanced cases, chemotherapy and radiation have shown limited tumor control, and PC continues to be refractory to treatment and results in a poor survival outcome. In recent years, there has been intensive research on checkpoint inhibitor immunotherapy for PC, however, PC is characterized with dense stromal tissue and a tumor microenvironment (TME) that is highly immunosuppressive, which makes immunotherapy less effective. Interestingly, when immunotherapy is combined with radiation therapy (RT) and loco-regional hyperthermia (HT), it has demonstrated enhanced tumor responses. HT improves tumor killing via a variety of mechanisms, targeting both the tumor and the TME. Targeted HT raises the temperature of the tumor and surrounding tissues to 42–43 °C and makes the tumor more immunoresponsive. HT can also modulate the immune system of the TME by inducing and synthesizing heat shock proteins (HSP), which also activate an anti-tumor response. It is well known that HT can enhance RT-induced DNA damage in cancer cells and simultaneously help to oxygenate hypoxic regions. Thus, it is envisaged that combined HT and RT might have immunomodulatory effects in the PC-TME, making PC more responsive to immunotherapies. Moreover, the combined tripartite approach of immunotherapy, RT, and HT could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the immunotherapeutic effect of overall individual therapies to treat local and metastatic PC. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than monotherapy or dual therapy to treat and increase the survival of the PC patients.
Collapse
|
263
|
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, Huang X, Wu X, Li Y, Li GY, Zeng ZY, Xiong W. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer 2018; 17:168. [PMID: 30477520 PMCID: PMC6260778 DOI: 10.1186/s12943-018-0913-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that on one hand, tumors need to obtain a sufficient energy supply, and on the other hand they must evade the body’s immune surveillance. Because of their metabolic reprogramming characteristics, tumors can modify the physicochemical properties of the microenvironment, which in turn affects the biological characteristics of the cells infiltrating them. Regulatory T cells (Tregs) are a subset of T cells that regulate immune responses in the body. They exist in large quantities in the tumor microenvironment and exert immunosuppressive effects. The main effect of tumor microenvironment on Tregs is to promote their differentiation, proliferation, secretion of immunosuppressive factors, and chemotactic recruitment to play a role in immunosuppression in tumor tissues. This review focuses on cell metabolism reprogramming and the most significant features of the tumor microenvironment relative to the functional effects on Tregs, highlighting our understanding of the mechanisms of tumor immune evasion and providing new directions for tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-An Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yong-Zhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Chun-Mei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xi Huang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gui-Yuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Zhao-Yang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
264
|
Wang HC, Hung WC, Chen LT, Pan MR. From Friend to Enemy: Dissecting the Functional Alteration of Immunoregulatory Components during Pancreatic Tumorigenesis. Int J Mol Sci 2018; 19:E3584. [PMID: 30428588 PMCID: PMC6274888 DOI: 10.3390/ijms19113584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of approximately 8%. More than 80% of patients are diagnosed at an unresectable stage due to metastases or local extension. Immune system reactivation in patients by immunotherapy may eliminate tumor cells and is a new strategy for cancer treatment. The anti-CTLA-4 antibody ipilimumab and anti-PD-1 antibodies pembrolizumab and nivolumab have been approved for cancer therapy in different countries. However, the results of immunotherapy on PDAC are unsatisfactory. The low response rate may be due to poor immunogenicity with low tumor mutational burden in pancreatic cancer cells and desmoplasia that prevents the accumulation of immune cells in tumors. The immunosuppressive tumor microenvironment in PDAC is important in tumor progression and treatment resistance. Switching from an immune tolerance to immune activation status is crucial to overcome the inability of self-defense in cancer. Therefore, thoroughly elucidation of the roles of various immune-related factors, tumor microenvironment, and tumor cells in the development of PDAC may provide appropriate direction to target inflammatory pathway activation as a new therapeutic strategy for preventing and treating this cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
265
|
Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M, Taunk PS, Wu N, Su W, Wu J, Ahsan A, Kurz E, Chen T, Yaboh I, Li F, Gutierrez J, Diskin B, Hundeyin M, Reilly M, Lich JD, Harris PA, Mahajan MK, Thorpe JH, Nassau P, Mosley JE, Leinwand J, Kochen Rossi JA, Mishra A, Aykut B, Glacken M, Ochi A, Verma N, Kim JI, Vasudevaraja V, Adeegbe D, Almonte C, Bagdatlioglu E, Cohen DJ, Wong KK, Bertin J, Miller G. RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer. Cancer Cell 2018; 34:757-774.e7. [PMID: 30423296 PMCID: PMC6836726 DOI: 10.1016/j.ccell.2018.10.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance and immunotherapeutic resistance. We discovered upregulation of receptor-interacting serine/threonine protein kinase 1 (RIP1) in tumor-associated macrophages (TAMs) in PDA. To study its role in oncogenic progression, we developed a selective small-molecule RIP1 inhibitor with high in vivo exposure. Targeting RIP1 reprogrammed TAMs toward an MHCIIhiTNFα+IFNγ+ immunogenic phenotype in a STAT1-dependent manner. RIP1 inhibition in TAMs resulted in cytotoxic T cell activation and T helper cell differentiation toward a mixed Th1/Th17 phenotype, leading to tumor immunity in mice and in organotypic models of human PDA. Targeting RIP1 synergized with PD1-and inducible co-stimulator-based immunotherapies. Tumor-promoting effects of RIP1 were independent of its co-association with RIP3. Collectively, our work describes RIP1 as a checkpoint kinase governing tumor immunity.
Collapse
Affiliation(s)
- Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Jill M Marinis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Allison M Beal
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Shivraj Savadkar
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Yue Wu
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Mohammed Khan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Pardeep S Taunk
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Nan Wu
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Wenyu Su
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Jingjing Wu
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Aarif Ahsan
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Emma Kurz
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Ting Chen
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Inedouye Yaboh
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Fei Li
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Johana Gutierrez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Michael Reilly
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - John D Lich
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Philip A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Mukesh K Mahajan
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - James H Thorpe
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Pamela Nassau
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Julie E Mosley
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Joshua Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Juan A Kochen Rossi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Ankita Mishra
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Berk Aykut
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Michael Glacken
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Atsuo Ochi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Narendra Verma
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jacqueline I Kim
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA
| | - Varshini Vasudevaraja
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Dennis Adeegbe
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Christina Almonte
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ece Bagdatlioglu
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Deirdre J Cohen
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Kwok-Kin Wong
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 435 East 30th Street, 4th Floor, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
266
|
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory reaction that includes immune cells, fibroblasts, extracellular matrix, vascular and lymphatic vessels, and nerves. Overwhelming evidence indicates that the pancreatic cancer microenvironment regulates cancer initiation, progression, and maintenance. Pancreatic cancer treatment has progressed little over the past several decades, and the prognosis remains one of the worst for any cancer. The contribution of the microenvironment to carcinogenesis is a key area of research, offering new potential targets for treating the disease. Here, we explore the composition of the pancreatic cancer stroma, discuss the network of interactions between different components, and describe recent attempts to target the stroma therapeutically. We also discuss current areas of active research related to the tumor microenvironment.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
267
|
Deng G. Tumor-infiltrating regulatory T cells: origins and features. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:81-87. [PMID: 30498624 PMCID: PMC6261843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
Tumor cells evolve multiple sophisticated mechanisms to escape immune surveillance, one of which is to establish tolerogenic microenvironment by recruiting certain immune suppressive cells such as regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs). Tregs are subpopulation of CD4+ T cells, which specialize in suppressing immune responses and preventing autoimmune damage to collateral tissue. Emerging evidence suggests that Treg cell number increases in various types of cancer, which correlates with tumor grade and poor patient prognosis. This review will focus on discussion of the origins and features of tumor-infiltrating Treg cells. Ultimately, these features may provide insight into potential therapeutic intervention by targeting Treg cells to invigorate immune response against tumor.
Collapse
Affiliation(s)
- Guoping Deng
- Department of Immunology, Peking University Health Science Center Beijing 100191, China
| |
Collapse
|
268
|
Sung GH, Chang H, Lee JY, Song SY, Kim HS. Pancreatic-cancer-cell-derived trefoil factor 2 impairs maturation and migration of human monocyte-derived dendritic cells in vitro. Anim Cells Syst (Seoul) 2018; 22:368-381. [PMID: 30533259 PMCID: PMC6282439 DOI: 10.1080/19768354.2018.1527721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a challenging disease with a high mortality rate. While the importance of crosstalk between cancer and immune cells has been well documented, the understanding of this complex molecular network is incomplete. Thus, identification of the secreted proteins contributing to the immunosuppressive microenvironment in pancreatic cancer is crucial for effective diagnosis and/or therapy. We utilized a public microarray dataset (GSE16515) from the Gene Expression Omnibus database to identify genes for secreted proteins in pancreatic cancer. RT-PCR and ELISA of the pancreatic cancer cell lines validated the cellular origin of the selected genes. For functional assay of the selected proteins, we utilized human-monocyte-derived dendritic cells (DCs). From the list of the secreted proteins, trefoil factor 2 (TFF2) was further examined as a potential chemokine/cytokine. While TFF2 did not significantly affect the phenotypic maturation and the allostimulatory capacity of DCs, TFF2 preferentially attracted immature (but not mature) DCs and inhibited their endocytic activity. Our data suggest that TFF2 from pancreatic cancer cells may attract immature DCs and affect the initial stage of DC maturation, thereby contributing to the induction of immune tolerance against pancreatic cancer.
Collapse
Affiliation(s)
- Gi-Ho Sung
- Institute for Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do, Republic of Korea
| | - Hyun Chang
- Hematology and Medical Oncology, International St Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Ji-Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Si Young Song
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Soo Kim
- Institute for Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| |
Collapse
|
269
|
Zhou X, Zhao S, He Y, Geng S, Shi Y, Wang B. Precise Spatiotemporal Interruption of Regulatory T-cell-Mediated CD8 + T-cell Suppression Leads to Tumor Immunity. Cancer Res 2018; 79:585-597. [PMID: 30254146 DOI: 10.1158/0008-5472.can-18-1250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/12/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
Tumors can develop despite the presence of competent host immunity via a complex system of immune evasion. One of the most studied factors originating from the host is immune suppression by regulatory T cells (Treg). Ample laboratory and clinical evidence suggests that Treg ablation leads to robust antitumor immune activation. However, how Tregs specifically achieve their suppression in the context of tumor progression is not entirely clear, particularly with regard to the timing and location where Treg inhibition takes place. In this work, we report that Tregs migrate to tumor-draining lymph nodes (TDLN) and block expression of sphingosine-1-phosphate receptor 1 (S1P1) on CD8+ T cells. This event trapped the CD8+ T cells in the TDLN and served as a facilitating factor for tumor growth. Intriguingly, minimalistic depletion of Tregs in TDLN in a short window following tumor inoculation was sufficient to restore CD8+ T-cell activities, which resulted in significant tumor reduction. Similar treatments outside this time frame had no such effect. Our work therefore reveals a subtle feature in tumor biology whereby Tregs appear to be driven by newly established tumors for a programmed encounter with newly activated CD8+ T cells in TDLN. Our results suggest the possibility that clinical interception of this step can be tested as a new strategy of cancer therapy, with expected high efficacy and low systemic side effects. SIGNIFICANCE: These findings reveal a strong tumor suppressive effect invoked by minimal blockade of tumor draining lymph node regulatory T cells during early versus late tumorigenesis.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shushu Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue He
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Biodynamics Optical Imaging Center, Peking University, Beijing, China
| | - Yan Shi
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
270
|
Maxwell R, Luksik AS, Garzon-Muvdi T, Hung AL, Kim ES, Wu A, Xia Y, Belcaid Z, Gorelick N, Choi J, Theodros D, Jackson CM, Mathios D, Ye X, Tran PT, Redmond KJ, Brem H, Pardoll DM, Kleinberg LR, Lim M. Contrasting impact of corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located within or outside the central nervous system. Oncoimmunology 2018; 7:e1500108. [PMID: 30524891 PMCID: PMC6279341 DOI: 10.1080/2162402x.2018.1500108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade targeting programmed cell death protein 1 (PD-1) is emerging as an important treatment strategy in a growing list of cancers, yet its clinical benefits are limited to a subset of patients. Further investigation of tumor-intrinsic predictors of response and how extrinsic factors, such as iatrogenic immunosuppression caused by conventional therapies, impact the efficacy of anti-PD-1 therapy are paramount. Given the widespread use of corticosteroids in cancer management and their immunosuppressive nature, this study sought to determine how corticosteroids influence anti-PD-1 responses and whether their effects were dependent on tumor location within the periphery versus central nervous system (CNS), which may have a more limiting immune environment. In well-established anti-PD-1-responsive murine tumor models, corticosteroid therapy resulted in systemic immune effects, including severe and persistent reductions in peripheral CD4+ and CD8 + T cells. Corticosteroid treatment was found to diminish the efficacy of anti-PD-1 therapy in mice bearing peripheral tumors with responses correlating with peripheral CD8/Treg ratio changes. In contrast, in mice bearing intracranial tumors, corticosteroids did not abrogate the benefits conferred by anti-PD-1 therapy. Despite systemic immune changes, anti-PD-1-mediated antitumor immune responses remained intact during corticosteroid treatment in mice bearing intracranial tumors. These findings suggest that anti-PD-1 responses may be differentially impacted by concomitant corticosteroid use depending on tumor location within or outside the CNS. As an immune-specialized site, the CNS may potentially play a protective role against the immunosuppressive effects of corticosteroids, thus sustaining antitumor immune responses mediated by PD-1 blockade.
Collapse
Affiliation(s)
- Russell Maxwell
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Andrew S Luksik
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | | | - Alice L Hung
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Eileen S Kim
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Adela Wu
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Zineb Belcaid
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Noah Gorelick
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Debebe Theodros
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | | | | | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins Hospital, Baltimore, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| |
Collapse
|
271
|
Munn DH, Sharma MD, Johnson TS. Treg Destabilization and Reprogramming: Implications for Cancer Immunotherapy. Cancer Res 2018; 78:5191-5199. [PMID: 30181177 DOI: 10.1158/0008-5472.can-18-1351] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/19/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022]
Abstract
Regulatory T cells (Tregs) are an important contributor to the immunosuppressive tumor microenvironment. To date, however, they have been difficult to target for therapy. One emerging new aspect of Treg biology is their apparent functional instability in the face of certain acute proinflammatory signals such as IL6 and IFNγ. Under the right conditions, these signals can cause a rapid loss of suppressor activity and reprogramming of the Tregs into a proinflammatory phenotype. In this review, we propose the hypothesis that this phenotypic modulation does not reflect infidelity to the Treg lineage, but rather represents a natural, physiologic response of Tregs during beneficial inflammation. In tumors, however, this inflammation-induced Treg destabilization is actively opposed by dominant stabilizing factors such as indoleamine 2,3-dioxygenase and the PTEN phosphatase pathway in Tregs. Under such conditions, tumor-associated Tregs remain highly suppressive and inhibit cross-presentation of tumor antigens released by dying tumor cells. Interrupting these Treg stabilizing pathways can render tumor-associated Tregs sensitive to rapid destabilization during immunotherapy, or during the wave of cell death following chemotherapy or radiation, thus enhancing antitumor immune responses. Understanding the emerging pathways of Treg stabilization and destabilization may reveal new molecular targets for therapy. Cancer Res; 78(18); 5191-9. ©2018 AACR.
Collapse
Affiliation(s)
- David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia. .,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Madhav D Sharma
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Theodore S Johnson
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
272
|
Oweida A, Hararah MK, Phan A, Binder D, Bhatia S, Lennon S, Bukkapatnam S, Van Court B, Uyanga N, Darragh L, Kim HM, Raben D, Tan AC, Heasley L, Clambey E, Nemenoff R, Karam SD. Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clin Cancer Res 2018; 24:5368-5380. [PMID: 30042205 DOI: 10.1158/1078-0432.ccr-18-1038] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
Abstract
Purpose: Radiotherapy (RT) can transform the immune landscape and render poorly immunogenic tumors sensitive to PD-L1 inhibition. Here, we established that the response to combined RT and PD-L1 inhibition is transient and investigated mechanisms of resistance.Experimental Design: Mechanisms of resistance to RT and PD-L1 blockade were investigated in orthotopic murine head and neck squamous cell carcinoma (HNSCC) tumors using mass cytometry and whole-genome sequencing. Mice were treated with anti-PD-L1 or anti-TIM-3 alone and in combination with and without RT. Tumor growth and survival were assessed. Flow cytometry was used to assess phenotypic and functional changes in intratumoral T-cell populations. Depletion of regulatory T cells (Treg) was performed using anti-CD25 antibody.Results: We show that the immune checkpoint receptor, TIM-3, is upregulated on CD8 T cells and Tregs in tumors treated with RT and PD-L1 blockade. Treatment with anti-TIM-3 concurrently with anti-PD-L1 and RT led to significant tumor growth delay, enhanced T-cell cytotoxicity, decreased Tregs, and improved survival in orthotopic models of HNSCC. Despite this treatment combination, the response was not durable, and analysis of relapsed tumors revealed resurgence of Tregs. Targeted Treg depletion, however, restored antitumor immunity in mice treated with RT and dual immune checkpoint blockade and resulted in tumor rejection and induction of immunologic memory.Conclusions: These data reveal multiple layers of immune regulation that can promote tumorigenesis and the therapeutic potential of sequential targeting to overcome tumor resistance mechanisms. We propose that targeted Treg inhibitors may be critical for achieving durable tumor response with combined radiotherapy and immunotherapy. Clin Cancer Res; 24(21); 5368-80. ©2018 AACR.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Mohammad K Hararah
- Department of Otolaryngology and Head and Neck Surgery, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Andy Phan
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - David Binder
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Shelby Lennon
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Nomin Uyanga
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Hyun Min Kim
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Aik Choon Tan
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Lynn Heasley
- Department of Craniofacial Biology, University of Colorado Denver, Aurora, Colorado
| | - Eric Clambey
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Raphael Nemenoff
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
273
|
Mirlekar B, Michaud D, Searcy R, Greene K, Pylayeva-Gupta Y. IL35 Hinders Endogenous Antitumor T-cell Immunity and Responsiveness to Immunotherapy in Pancreatic Cancer. Cancer Immunol Res 2018; 6:1014-1024. [PMID: 29980536 DOI: 10.1158/2326-6066.cir-17-0710] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/24/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Although successes in cancer immunotherapy have generated considerable excitement, this form of treatment has been largely ineffective in patients with pancreatic ductal adenocarcinoma (PDA). Mechanisms that contribute to the poor antitumor immune response in PDA are not well understood. Here, we demonstrated that cytokine IL35 is a major immunosuppressive driver in PDA and potentiates tumor growth via the suppression of endogenous antitumor T-cell responses. The growth of pancreatic tumors in mice deficient for IL35 was significantly reduced. An analysis of tumor-infiltrating immune cells revealed a role for IL35 in the expansion of regulatory T cells and the suppression of CD4+ effector T cells. We also detected a robust increase in both the infiltration and activation of cytotoxic CD8+ T cells, suggesting that targeting IL35 may be an effective strategy to convert PDA from an immunologically "cold" to "hot" tumor. Although PDA is typically resistant to anti-PD-1 immunotherapy, we demonstrated robust synergistic reduction in tumor growth when IL35 deficiency was combined with anti-PD-1 treatment. These findings provide new insight into the function of IL35 in the pathogenesis of pancreatic cancer and underscore the potential significance of IL35 as a therapeutic target for use in combination immunotherapy approaches in this deadly malignancy. Cancer Immunol Res; 6(9); 1014-24. ©2018 AACR.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Daniel Michaud
- The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Ryan Searcy
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Kevin Greene
- The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Pathology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina. .,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
274
|
Ezzelarab MB. Regulatory T cells from allo- to xenotransplantation: Opportunities and challenges. Xenotransplantation 2018; 25:e12415. [DOI: 10.1111/xen.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed B. Ezzelarab
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
275
|
Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018; 4:418-428. [PMID: 29860986 PMCID: PMC6028935 DOI: 10.1016/j.trecan.2018.04.001] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is the third-leading cause of cancer mortality in the USA, recently surpassing breast cancer. A key component of pancreatic cancer's lethality is its acquired immune privilege, which is driven by an immunosuppressive microenvironment, poor T cell infiltration, and a low mutational burden. Although immunotherapies such as checkpoint blockade or engineered T cells have yet to demonstrate efficacy, a growing body of evidence suggests that orthogonal combinations of these and other strategies could unlock immunotherapy in pancreatic cancer. In this Review article, we discuss promising immunotherapies currently under investigation in pancreatic cancer and provide a roadmap for the development of prevention vaccines for this and other cancers.
Collapse
Affiliation(s)
- Alexander H Morrison
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Katelyn T Byrne
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Robert H Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
276
|
Ahrends T, Borst J. The opposing roles of CD4 + T cells in anti-tumour immunity. Immunology 2018; 154:582-592. [PMID: 29700809 PMCID: PMC6050207 DOI: 10.1111/imm.12941] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy focuses mainly on anti-tumour activity of CD8+ cytotoxic T lymphocytes (CTLs). CTLs can directly kill all tumour cell types, provided they carry recognizable antigens. However, CD4+ T cells also play important roles in anti-tumour immunity. CD4+ T cells can either suppress or promote the anti-tumour CTL response, either in secondary lymphoid organs or in the tumour. In this review, we highlight opposing mechanisms of conventional and regulatory T cells at both sites. We outline how current cancer immunotherapy strategies affect both subsets and how selective modulation of each subset is important to maximize the clinical response of cancer patients.
Collapse
Affiliation(s)
- Tomasz Ahrends
- Division of Tumour Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jannie Borst
- Division of Tumour Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
277
|
Ghraieb A, Keren A, Ginzburg A, Ullmann Y, Schrum AG, Paus R, Gilhar A. iNKT cells ameliorate human autoimmunity: Lessons from alopecia areata. J Autoimmun 2018; 91:61-72. [PMID: 29680372 DOI: 10.1016/j.jaut.2018.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/31/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023]
Abstract
Alopecia areata (AA) is understood to be a CD8+/NKG2D+ T cell-dependent autoimmune disease. Here, we demonstrate that human AA pathogenesis of is also affected by iNKT10 cells, an unconventional T cell subtype whose number is significantly increased in AA compared to healthy human skin. AA lesions can be rapidly induced in healthy human scalp skin xenotransplants on Beige-SCID mice by intradermal injections of autologous healthy-donor PBMCs pre-activated with IL-2. We show that in this in vivo model, the development of AA lesions is prevented by recognized the iNKT cell activator, α-galactosylceramide (α-GalCer), which stimulates iNKT cells to expand and produce IL-10. Moreover, in pre-established humanized mouse AA lesions, hair regrowth is promoted by α-GalCer treatment through a process requiring both effector-memory iNKT cells, which can interact directly with CD8+/NKG2D+ T cells, and IL-10. This provides the first in vivo evidence in a humanized model of autoimmune disease that iNKT10 cells are key disease-protective lymphocytes. Since these regulatory NKT cells can both prevent the development of AA lesions and promote hair re-growth in established AA lesions, targeting iNKT10 cells may have preventive and therapeutic potential also in other autoimmune disorders related to AA.
Collapse
Affiliation(s)
- Amal Ghraieb
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Alex Ginzburg
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Yehuda Ullmann
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Adam G Schrum
- Departments of Molecular Microbiology & Immunology, Surgery, and Bioengineering, Schools of Medicine and Engineering, University of Missouri, Columbia, MO, USA
| | - Ralf Paus
- Dermatology Research Centre, University of Manchester, MAHSC and NIHR Manchester Biomedical Research Centre, Manchester, UK; Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel.
| |
Collapse
|
278
|
Autologous tumor cells/bacillus Calmette-Guérin/formalin-based novel breast cancer vaccine induces an immune antitumor response. Oncotarget 2018; 9:20222-20238. [PMID: 29755647 PMCID: PMC5945537 DOI: 10.18632/oncotarget.25044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Autologous cancer cell vaccines represent a multivalent patient-specific treatment. Studies have demonstrated that these immunotherapies should be combined with immunomodulators to improve results. We tested in breast cancer the antitumor effects of a 200 µg autologous tumor cells homogenate combined with 0.0625 mg of bacillus Calmette-Guérin (BCG), and 0.02% formalin. We used a 4T1 murine model of BALB/c receiving four weekly injections of either this vaccine or control treatments. The control treatments were either Phosphate Buffer Saline, BCG treated with formalin, or the tumor cells homogenate plus BCG alone. We found that mice treated with the vaccine had the lowest tumor growth rate and mitosis percentage. The vaccinated group also showed a marked increase in infiltration of antitumor cells (natural killer, CD8+ T and CD4+ Th1 cells), as well as a decrease of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Additionally, we also observed a possible activation of the immune memory response as indicated by plasma cell tumor infiltration. Our results demonstrate that our proposed breast cancer vaccine induces a potent antitumor effect in 4T1 tumor-bearing mice. Its effectiveness, low cost and simple preparation method, makes it a promising treatment candidate for personalized breast cancer immunotherapy.
Collapse
|
279
|
Hibino S, Chikuma S, Kondo T, Ito M, Nakatsukasa H, Omata-Mise S, Yoshimura A. Inhibition of Nr4a Receptors Enhances Antitumor Immunity by Breaking Treg-Mediated Immune Tolerance. Cancer Res 2018; 78:3027-3040. [PMID: 29559474 DOI: 10.1158/0008-5472.can-17-3102] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/17/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Enhanced infiltration of regulatory T cells (Treg) into tumor tissue is detrimental to patients with cancer and is closely associated with poor prognosis as they create an immunosuppressive state that suppresses antitumor immune responses. Therefore, breaking Treg-mediated immune tolerance is important when considering cancer immunotherapy. Here, we show that the Nr4a nuclear receptors, key transcription factors maintaining Treg genetic programs, contribute to Treg-mediated suppression of antitumor immunity in the tumor microenvironment. Mice lacking Nr4a1 and Nr4a2 genes specifically in Tregs showed resistance to tumor growth in transplantation models without exhibiting any severe systemic autoimmunity. The chemotherapeutic agent camptothecin and a common cyclooxygenase-2 inhibitor were found to inhibit transcriptional activity and induction of Nr4a factors, and they synergistically exerted antitumor effects. Genetic inactivation or pharmacologic inhibition of Nr4a factors unleashed effector activities of CD8+ cytotoxic T cells and evoked potent antitumor immune responses. These findings demonstrate that inactivation of Nr4a in Tregs breaks immune tolerance toward cancer, and pharmacologic modulation of Nr4a activity may be a novel cancer treatment strategy targeting the immunosuppressive tumor microenvironment.Significance: This study reveals the role of Nr4a transcription factors in Treg-mediated tolerance to antitumor immunity, with possible therapeutic implications for developing effective anticancer therapies. Cancer Res; 78(11); 3027-40. ©2018 AACR.
Collapse
Affiliation(s)
- Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Setsuko Omata-Mise
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
280
|
Mair F, Prlic M. OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytometry A 2018; 93:402-405. [PMID: 29356334 DOI: 10.1002/cyto.a.23331] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/07/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023]
Abstract
This work describes the first 30-parameter immunophenotyping of the human dendritic cell (DC) compartment using fluorescent-based flow cytometry. The optimized panel allows for simultaneous detection of 21 myeloid-centric markers distinguishing all canonical DC subsets, with parallel enumeration of monocytes, T and B cells as well as NK cells. Thus, this panel will be useful for extensive phenotyping of immune cells from a variety of human samples limited in size.
Collapse
Affiliation(s)
- Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
281
|
Chao JL, Savage PA. Unlocking the Complexities of Tumor-Associated Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:415-421. [PMID: 29311383 PMCID: PMC5763514 DOI: 10.4049/jimmunol.1701188] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
Regulatory T (Treg) cells are found at elevated densities in many human cancers and are thought to be a major barrier to the generation of robust antitumor T cell responses. In this review, we discuss recent advances in the understanding of tumor-associated Treg cell diversity and function. Emerging evidence indicates that the transcriptional program of Treg cells infiltrating human cancers may represent a composite program blending a tissue-associated expression signature with an additional tumor-specific signature common to Treg cells from multiple cancer types. Studies in mouse models have defined unique molecular pathways required for Treg cell function in the tumor context that can be manipulated to selectively dampen intratumoral Treg cell activity. Finally, an expanding body of work has revealed diverse functions for Treg cells in nonlymphoid tissues that are unrelated to immune suppression, suggesting a need to explore functions of intratumoral Treg cells beyond the regulation of antitumor immunity.
Collapse
Affiliation(s)
- Jaime L Chao
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
282
|
Kim M, Nitschké M, Sennino B, Murer P, Schriver BJ, Bell A, Subramanian A, McDonald CE, Wang J, Cha H, Bourgeois-Daigneault MC, Kirn DH, Bell JC, De Silva N, Breitbach CJ, McDonald DM. Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms. Cancer Res 2017; 78:922-937. [PMID: 29259007 DOI: 10.1158/0008-5472.can-15-3308] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022]
Abstract
Oncolytic viruses pose many questions in their use in cancer therapy. In this study, we assessed the potential of mpJX-594 (mouse-prototype JX-594), a replication-competent vaccinia virus administered by intravenous injection, to target the tumor vasculature, produce immune activation and tumor cell killing more widespread than the infection, and suppress invasion and metastasis. These actions were examined in RIP-Tag2 transgenic mice with pancreatic neuroendocrine tumors that developed spontaneously and progressed as in humans. mpJX-594 initially infected tumor vascular endothelial cells, leading to vascular pruning and prolonged leakage in tumors but not in normal organs; parallel effects were observed in U87 gliomas. Viral infection spread to tumor cells, where tumor cell killing was much more widespread than the infection. Widespread tumor cell killing at 5 days was prevented by depletion of CD8+ T lymphocytes and did not require GM-CSF, as mpJX-594 variants that expressed human, mouse, or no GM-CSF produced equivalent amounts of killing. The antivascular, antitumor, and antimetastatic effects of mpJX-594 were amplified by concurrent or sequential administration of sunitinib, a multitargeted receptor tyrosine kinase inhibitor. These effects were not mimicked by selective inhibition of VEGFR2 despite equivalent vascular pruning, but were accompanied by suppression of regulatory T cells and greater influx of activated CD8+ T cells. Together, our results showed that mpJX-594 targets tumor blood vessels, spreads secondarily to tumor cells, and produces widespread CD8+ T-cell-dependent tumor cell killing in primary tumors and metastases, and that these effects can be amplified by coadministration of sunitinib.Significance: These findings reveal multiple unrecognized features of the antitumor properties of oncolytic vaccinia viruses, all of which can be amplified by the multitargeted kinase inhibitor sunitinib. Cancer Res; 78(4); 922-37. ©2017 AACR.
Collapse
Affiliation(s)
- Minah Kim
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Maximilian Nitschké
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Barbara Sennino
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Patrizia Murer
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Brian J Schriver
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Alexander Bell
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Aishwarya Subramanian
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Corry E McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Jiahu Wang
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Howard Cha
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California
| | | | - David H Kirn
- SillaJen Biotherapeutics Inc., San Francisco, California
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Naomi De Silva
- SillaJen Biotherapeutics Inc., San Francisco, California
| | | | - Donald M McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
283
|
Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C, Purrello M. Asymmetric RNA Distribution among Cells and Their Secreted Exosomes: Biomedical Meaning and Considerations on Diagnostic Applications. Front Mol Biosci 2017; 4:66. [PMID: 29046875 PMCID: PMC5632685 DOI: 10.3389/fmolb.2017.00066] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Over the past few years, exosomes and their RNA cargo have been extensively studied because of the fascinating biological roles they play in cell-to-cell communication, including the signal exchange among cancer, stromal, and immune cells, leading to modifications of tumor microenvironment. RNAs, especially miRNAs, stored within exosomes, seem to be among the main determinants of such signaling: their sorting into exosomes appears to be cell-specific and related to cellular physiopathology. Accordingly, the identification of exosomal miRNAs in body fluids from pathological patients has become one of the most promising activity in the field of biomarker discovery. Several analyses on the qualitative and quantitative distribution of RNAs between cells and their secreted exosomes have given rise to questions on whether and how accurately exosomal RNAs would represent the transcriptomic snapshot of the physiological and pathological status of secreting cells. Although the exact molecular mechanisms of sorting remain quite elusive, many papers have reported an evident asymmetric quantitative distribution of RNAs between source cells and their exosomes. This phenomenon could depend both on passive and active sorting mechanisms related to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c) removal of RNAs not critical or even detrimental for normal or diseased cells. These observations represent very critical issues in the exploitation of exosomal miRNAs as cancer biomarkers. In this review, we will discuss how much the exosomal and corresponding donor cell transcriptomes match each other, to better understand the actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a diseased status of the cells.
Collapse
Affiliation(s)
- Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy.,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Rosalia Battaglia
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Duilia Brex
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Angela Caponnetto
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Davide Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| |
Collapse
|