251
|
Mazilina MA, Komarova EM, Baranov VS. RNA in Human Sperm and Some Problems of Male Fertility. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
252
|
Matsui Y, Zhang Y, Paulson RF, Lai ZC. Dual Role of a C-Terminally Truncated Isoform of Large Tumor Suppressor Kinase 1 in the Regulation of Hippo Signaling and Tissue Growth. DNA Cell Biol 2018; 38:91-106. [PMID: 30461308 DOI: 10.1089/dna.2018.4340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The considerable amount of experimental evidence has defined the Hippo pathway as a tumor suppressive pathway and increased expression and/or activity of its oncogenic effectors is frequently observed in cancer. However, clinical studies have failed to attribute cancer development and progression to mutations in the pathway. In explaining this conundrum, we investigated the expression and functions of a C-terminally truncated isoform of large tumor suppressor kinase 1 (LATS1) called short LATS1 (sLATS1) in human cell lines and Drosophila. Intriguingly, through overexpression of sLATS1, we demonstrated that sLATS1 either activates or suppresses the activity of Yes-associated protein (YAP), one of the effectors of the Hippo pathway, in a cell type-specific manner. The activation is mediated through inhibition of full-length LATS1, whereas suppression of YAP is accomplished through sLATS1-YAP interaction. In HEK293T cells, the former mechanism may affect the cellular response more dominantly, whereas in U2OS cells and developing tissues in Drosophila, the latter mechanism may be solely carried out. Finally, to find the clinical relevance of this molecule, we examined the expression of sLATS1 in breast cancer patients. The transcriptome analysis showed that the ratio of sLATS1 to LATS1 was increased in tumor tissues comparing to their adjacent normal tissues.
Collapse
Affiliation(s)
- Yurika Matsui
- 1 Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park , Pennsylvania
| | - Yifan Zhang
- 2 Department of Biology, The Pennsylvania State University , University Park, Pennsylvania
| | - Robert F Paulson
- 3 Department of Veterinary and Biomedical Sciences, and The Pennsylvania State University , University Park, Pennsylvania
| | - Zhi-Chun Lai
- 1 Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park , Pennsylvania.,2 Department of Biology, The Pennsylvania State University , University Park, Pennsylvania.,4 Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
253
|
Identification and Characterization of Transcripts Regulated by Circadian Alternative Polyadenylation in Mouse Liver. G3-GENES GENOMES GENETICS 2018; 8:3539-3548. [PMID: 30181259 PMCID: PMC6222568 DOI: 10.1534/g3.118.200559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynamic control of gene expression is a hallmark of the circadian system. In mouse liver, approximately 5–20% of RNAs are expressed rhythmically, and over 50% of mouse genes are rhythmically expressed in at least one tissue. Recent genome-wide analyses unveiled that, in addition to rhythmic transcription, various post-transcriptional mechanisms play crucial roles in driving rhythmic gene expression. Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism that changes the 3′-ends of transcripts by alternating poly(A) site usage. APA can thus result in changes in RNA processing, such as mRNA localization, stability, translation efficiency, and sometimes even in the localization of the encoded protein. It remains unclear, however, if and how APA is regulated by the circadian clock. To address this, we used an in silico approach and demonstrated in mouse liver that 57.4% of expressed genes undergo APA and each gene has 2.53 poly(A) sites on average. Among all expressed genes, 2.9% of genes alternate their poly(A) site usage with a circadian (i.e., approximately 24 hr) period. APA transcripts use distal sites with canonical poly(A) signals (PASs) more frequently; however, circadian APA transcripts exhibit less distinct usage preference between proximal and distal sites and use proximal sites more frequently. Circadian APA transcripts also harbor longer 3′UTRs, making them more susceptible to post-transcriptional regulation. Overall, our study serves as a platform to ultimately understand the mechanisms of circadian APA regulation.
Collapse
|
254
|
Thorne JL, Battaglia S, Baxter DE, Hayes JL, Hutchinson SA, Jana S, Millican-Slater RA, Smith L, Teske MC, Wastall LM, Hughes TA. MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:996-1006. [DOI: 10.1016/j.bbagrm.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/09/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
|
255
|
Fu Y, Chen L, Chen C, Ge Y, Kang M, Song Z, Li J, Feng Y, Huo Z, He G, Hou M, Chen S, Xu A. Crosstalk between alternative polyadenylation and miRNAs in the regulation of protein translational efficiency. Genome Res 2018; 28:1656-1663. [PMID: 30228199 PMCID: PMC6211650 DOI: 10.1101/gr.231506.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/11/2018] [Indexed: 11/24/2022]
Abstract
3' UTRs play important roles in the gene regulation network via their influence on mRNA stability, translational efficiency, and subcellular localization. For a given gene, 3' UTRs of different lengths generated by alternative polyadenylation (APA) may result in functional differences in regulation. The mechanistic details of how length changes of 3' UTRs alter gene function remain unclear. By combining APA sequencing and polysome profiling, we observed that mRNA isoforms with shorter 3' UTRs were bound with more polysomes in six cell lines but not in NIH3T3 cells, suggesting that changing 3' UTRs to shorter isoforms may lead to a higher gene translational efficiency. By interfering with the expression of TNRC6A and analyzing AGO2-PAR-CLIP data, we revealed that the APA effect on translational efficiency was mainly regulated by miRNAs, and this regulation was cell cycle dependent. The discrepancy between NIH3T3 and other cell lines was due to contact inhibition of NIH3T3. Thus, the crosstalk between APA and miRNAs may be needed for the regulation of protein translational efficiency.
Collapse
Affiliation(s)
- Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Liutao Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Chengyong Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Yutong Ge
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Mingjing Kang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zili Song
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jingwen Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Yuchao Feng
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhanfeng Huo
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Guopei He
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Mengmeng Hou
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
256
|
Xiang Y, Ye Y, Zhang Z, Han L. Maximizing the Utility of Cancer Transcriptomic Data. Trends Cancer 2018; 4:823-837. [PMID: 30470304 DOI: 10.1016/j.trecan.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Transcriptomic profiling has been applied to large numbers of cancer samples, by large-scale consortia, including The Cancer Genome Atlas, International Cancer Genome Consortium, and Cancer Cell Line Encyclopedia. Advances in mining cancer transcriptomic data enable us to understand the endless complexity of the cancer transcriptome and thereby to discover new biomarkers and therapeutic targets. In this paper, we review computational resources for deep mining of transcriptomic data to identify, quantify, and determine the functional effects and clinical utility of transcriptomic events, including noncoding RNAs, post-transcriptional regulation, exogenous RNAs, and transcribed genetic variants. These approaches can be applied to other complex diseases, thereby greatly leveraging the impact of this work.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
257
|
Cai Y, Wan J. Competing Endogenous RNA Regulations in Neurodegenerative Disorders: Current Challenges and Emerging Insights. Front Mol Neurosci 2018; 11:370. [PMID: 30344479 PMCID: PMC6182084 DOI: 10.3389/fnmol.2018.00370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
The past decade has witnessed exciting breakthroughs that have contributed to the richness and complexity of a burgeoning modern RNA world, and one particular breakthrough-the competing endogenous RNA (ceRNA) hypothesis-has been described as the "Rosetta Stone" for decoding the RNA language used in regulating RNA crosstalk and modulating biological functions. The proposed far-reaching mechanism unites diverse RNA species and provides new insights into previously unrecognized RNA-RNA interactions and RNA regulatory networks that perhaps determine gene expression in an organized, hierarchical manner. The recently uncovered ceRNA regulatory loops and networks have emphasized the power of ceRNA regulation in a wide range of developmental stages and pathological contexts, such as in tumorigenesis and neurodegenerative disorders. Although the ceRNA hypothesis drastically enhanced our understanding of RNA biology, shortly after the hypothesis was proposed, disputes arose in relation mainly to minor discrepancies in the reported effects of ceRNA regulation under physiological conditions, and this resulted in ceRNA regulation becoming an extensively studied and fast-growing research field. Here, we focus on the evidence supporting ceRNA regulation in neurodegenerative disorders and address three critical points related to the ceRNA regulatory mechanism: the microRNA (miRNA) and ceRNA hierarchies in cross-regulations; the balance between destabilization and stable binding in ceRNA-miRNA interactions; and the true extent to which ceRNA regulatory mechanisms are involved in both health and disease, and the experimental shortcomings in current ceRNA studies.
Collapse
Affiliation(s)
- Yifei Cai
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
258
|
Araki S, Nakayama Y, Sano O, Nakao S, Shimizu-Ogasawara M, Toyoshiba H, Nakanishi A, Aparicio S. Decoding Transcriptome Dynamics of Genome-Encoded Polyadenylation and Autoregulation with Small-Molecule Modulators of Alternative Polyadenylation. Cell Chem Biol 2018; 25:1470-1484.e5. [PMID: 30293940 DOI: 10.1016/j.chembiol.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/19/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
Alternative polyadenylation (APA) plays a critical role in regulating gene expression. However, the balance between genome-encoded APA processing and autoregulation by APA modulating RNA binding protein (RBP) factors is not well understood. We discovered two potent small-molecule modulators of APA (T4 and T5) that promote distal-to-proximal (DtoP) APA usage in multiple transcripts. Monotonically responsive APA events, induced by short exposure to T4 or T5, were defined in the transcriptome, allowing clear isolation of the genomic sequence features and RBP motifs associated with DtoP regulation. We found that longer vulnerable introns, enriched with distinctive A-rich motifs, were preferentially affected by DtoP APA, thus defining a core set of genes with genomically encoded DtoP regulation. Through APA response pattern and compound-small interfering RNA epistasis analysis of APA-associated RBP factors, we further demonstrated that DtoP APA usage is partly modulated by altered autoregulation of polyadenylate binding nuclear protein-1 signaling.
Collapse
Affiliation(s)
- Shinsuke Araki
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yusuke Nakayama
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Sano
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoichi Nakao
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mari Shimizu-Ogasawara
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyoshi Toyoshiba
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakanishi
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Samuel Aparicio
- Molecular Oncology, BC Cancer Agency, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
259
|
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018; 17:751-767. [DOI: 10.1038/nrd.2018.132] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
260
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
261
|
|
262
|
Chen X, Zhang JX, Luo JH, Wu S, Yuan GJ, Ma NF, Feng Y, Cai MY, Chen RX, Lu J, Jiang LJ, Chen JW, Jin XH, Liu HL, Chen W, Guan XY, Kang TB, Zhou FJ, Xie D. CSTF2-induced shortening of the RAC1 3'UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res 2018; 78:5848-5862. [PMID: 30143523 DOI: 10.1158/0008-5472.can-18-0822] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Xin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Gang-Jun Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning-Fang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Yong Feng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ri-Xin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Lu
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Liu
- CapitalBio Genomics Co., Ltd, Dongguan, Guangdong, China
| | - Wei Chen
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tie-Bang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
263
|
Xue Z, Warren RL, Gibb EA, MacMillan D, Wong J, Chiu R, Hammond SA, Yang C, Nip KM, Ennis CA, Hahn A, Reynolds S, Birol I. Recurrent tumor-specific regulation of alternative polyadenylation of cancer-related genes. BMC Genomics 2018; 19:536. [PMID: 30005633 PMCID: PMC6045855 DOI: 10.1186/s12864-018-4903-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023] Open
Abstract
Background Alternative polyadenylation (APA) results in messenger RNA molecules with different 3′ untranslated regions (3’ UTRs), affecting the molecules’ stability, localization, and translation. APA is pervasive and implicated in cancer. Earlier reports on APA focused on 3’ UTR length modifications and commonly characterized APA events as 3’ UTR shortening or lengthening. However, such characterization oversimplifies the processing of 3′ ends of transcripts and fails to adequately describe the various scenarios we observe. Results We built a cloud-based targeted de novo transcript assembly and analysis pipeline that incorporates our previously developed cleavage site prediction tool, KLEAT. We applied this pipeline to elucidate the APA profiles of 114 genes in 9939 tumor and 729 tissue normal samples from The Cancer Genome Atlas (TCGA). The full set of 10,668 RNA-Seq samples from 33 cancer types has not been utilized by previous APA studies. By comparing the frequencies of predicted cleavage sites between normal and tumor sample groups, we identified 77 events (i.e. gene-cancer type pairs) of tumor-specific APA regulation in 13 cancer types; for 15 genes, such regulation is recurrent across multiple cancers. Our results also support a previous report showing the 3’ UTR shortening of FGF2 in multiple cancers. However, over half of the events we identified display complex changes to 3’ UTR length that resist simple classification like shortening or lengthening. Conclusions Recurrent tumor-specific regulation of APA is widespread in cancer. However, the regulation pattern that we observed in TCGA RNA-seq data cannot be described as straightforward 3’ UTR shortening or lengthening. Continued investigation into this complex, nuanced regulatory landscape will provide further insight into its role in tumor formation and development. Electronic supplementary material The online version of this article (10.1186/s12864-018-4903-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuyi Xue
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Ewan A Gibb
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Daniel MacMillan
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Johnathan Wong
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Readman Chiu
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - S Austin Hammond
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Chen Yang
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Ka Ming Nip
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Catherine A Ennis
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Abigail Hahn
- Institute for Systems Biology, Seattle, 98109, WA, USA
| | | | - Inanc Birol
- BC Cancer Agency, Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
264
|
Zhu Y, Vaughn JC. Experimental Verification and Evolutionary Origin of 5'-UTR Polyadenylation Sites in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:969. [PMID: 30026753 PMCID: PMC6041940 DOI: 10.3389/fpls.2018.00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Messenger RNA (mRNA) polyadenylation is an indispensable step during post-transcriptional pre-mRNA processing for most genes in eukaryotes. The usage of one poly(A) site over another is known as alternative polyadenylation (APA). APA has been implicated in gene expression regulation through its role of selecting the ends of a transcript. Recent studies of polyadenylation profiles in the Arabidopsis database unexpectedly predicted that a portion of the poly(A) sites are located in the 5'-UTR, which remains to be experimentally verified. We selected 16 genes from a dataset of 744, based on criteria designed to minimize problems in interpretation. Here, we experimentally verify 5'-UTR-APA in Arabidopsis for 10 of the 16 selected genes, and show for the first time existence of independent polyadenylated 5'-UTR transcripts, arising due to alternative polyadenylation. We used 3'-RACE and sequencing to validate poly(A) sites and northern blot to show that the observed short upstream transcripts do not arise from the 3'-end of a previously unrecognized convergent gene. Evidence is reported showing that two of the independent upstream open reading frame (uORF) transcripts studied, one containing a complex dual uORF, very likely arose by exon shuffling following duplication of the 5'-end from the downstream major open reading frame (mORF). Finally, results are presented to show that the uORF in this gene may encode two short functional proteins, based on observation of amino acid sequence conservation encoded by the dual uORFs.
Collapse
|
265
|
Romo L, Ashar-Patel A, Pfister E, Aronin N. Alterations in mRNA 3' UTR Isoform Abundance Accompany Gene Expression Changes in Human Huntington's Disease Brains. Cell Rep 2018; 20:3057-3070. [PMID: 28954224 DOI: 10.1016/j.celrep.2017.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
The huntingtin gene has two mRNA isoforms that differ in their 3' UTR length. The relationship of these isoforms with Huntington's disease is not established. We provide evidence that the abundance of huntingtin 3' UTR isoforms differs between patient and control neural stem cells, fibroblasts, motor cortex, and cerebellum. Huntingtin 3' UTR isoforms, including a mid-3' UTR isoform, have different localizations, half-lives, polyA tail lengths, microRNA sites, and RNA-binding protein sites. Isoform shifts in Huntington's disease motor cortex are not limited to huntingtin; 11% of alternatively polyadenylated genes change the abundance of their 3' UTR isoforms. Altered expression of RNA-binding proteins may be associated with aberrant isoform abundance; knockdown of the RNA-binding protein CNOT6 in control fibroblasts leads to huntingtin isoform differences similar to those in disease fibroblasts. These findings demonstrate that mRNA 3' UTR isoform changes are a feature of molecular pathology in the Huntington's disease brain.
Collapse
Affiliation(s)
- Lindsay Romo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Ami Ashar-Patel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Edith Pfister
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
266
|
Xu C, Zhang J. Alternative Polyadenylation of Mammalian Transcripts Is Generally Deleterious, Not Adaptive. Cell Syst 2018; 6:734-742.e4. [PMID: 29886108 DOI: 10.1016/j.cels.2018.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/27/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
Alternative polyadenylation (APA) produces from the same gene multiple mature RNAs with varying 3' ends. Although APA is commonly believed to generate beneficial functional diversity and be adaptive, we hypothesize that most genes have one optimal polyadenylation site and that APA is caused largely by deleterious polyadenylation errors. The error hypothesis, but not the adaptive hypothesis, predicts that, as the expression level of a gene increases, its polyadenylation diversity declines, relative use of the major (presumably optimal) polyadenylation site increases, and that of each minor (presumably nonoptimal) site decreases. It further predicts that the number of polyadenylation signals per gene is smaller than the random expectation and that polyadenylation signals for major but not minor sites are under purifying selection. All of these predictions are confirmed in mammals, suggesting that numerous defective RNAs are produced in normal cells, many phenotypic variations at the molecular level are nonadaptive, and cellular life is noisier than is appreciated.
Collapse
Affiliation(s)
- Chuan Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Ecology and Evolutionary Biology, University of Michigan, 4018 Biological Science Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, 4018 Biological Science Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
267
|
NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene 2018; 37:4887-4900. [PMID: 29780166 DOI: 10.1038/s41388-018-0280-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and involved in many diseases, including cancer. CFIm25, a subunit of the cleavage factor I encoded by NUDT21, is required for 3'RNA cleavage and polyadenylation. Although it has been recently reported to be involved in glioblastoma tumor suppression, its roles and the underlying functional mechanism remain unclear in other types of cancer. In this study, we characterized NUDT21 in hepatocellular carcinoma (HCC). Reduced expression of NUDT21 was observed in HCC tissue compared to adjacent non-tumorous compartment. HCC patients with lower NUDT21 expression have shorter overall and disease-free survival times than those with higher NUDT21 expression after surgery. Knockdown of NUDT21 promotes HCC cell proliferation, metastasis, and tumorigenesis, whereas forced expression of NUDT21 exhibits the opposite effects. We then performed global APA site profiling analysis in HCC cells and identified considerable number of genes with shortened 3'UTRs upon the modulation of NUDT21 expression. In particular, we further characterized the NUDT21-regulated genes PSMB2 and CXXC5. We found NUDT21 knockdown increases usage of the proximal polyadenylation site in the PSMB2 and CXXC5 3' UTRs, resulting in marked increase in the expression of PSMB2 and CXXC5. Moreover, knockdown of PSMB2 or CXXC5 suppresses HCC cell proliferation and invasion. Taken together, our study demonstrated that NUDT21 inhibits HCC proliferation, metastasis and tumorigenesis, at least in part, by suppressing PSMB2 and CXXC5, and thereby provided a new insight into understanding the connection of HCC suppression and APA machinery.
Collapse
|
268
|
Cell Cycle Regulation by Alternative Polyadenylation of CCND1. Sci Rep 2018; 8:6824. [PMID: 29717174 PMCID: PMC5931507 DOI: 10.1038/s41598-018-25141-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Global shortening of 3′UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.
Collapse
|
269
|
Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat Commun 2018; 9:1716. [PMID: 29712909 PMCID: PMC5928244 DOI: 10.1038/s41467-018-04112-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Alternative cleavage and polyadenylation (ApA) is known to alter untranslated region (3'UTR) length but can also recognize intronic polyadenylation (IpA) signals to generate transcripts that lose part or all of the coding region. We analyzed 46 3'-seq and RNA-seq profiles from normal human tissues, primary immune cells, and multiple myeloma (MM) samples and created an atlas of 4927 high-confidence IpA events represented in these cell types. IpA isoforms are widely expressed in immune cells, differentially used during B-cell development or in different cellular environments, and can generate truncated proteins lacking C-terminal functional domains. This can mimic ectodomain shedding through loss of transmembrane domains or alter the binding specificity of proteins with DNA-binding or protein-protein interaction domains. MM cells display a striking loss of IpA isoforms expressed in plasma cells, associated with shorter progression-free survival and impacting key genes in MM biology and response to lenalidomide.
Collapse
|
270
|
Ha KCH, Blencowe BJ, Morris Q. QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol 2018; 19:45. [PMID: 29592814 PMCID: PMC5874996 DOI: 10.1186/s13059-018-1414-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Alternative polyadenylation (APA) affects most mammalian genes. The genome-wide investigation of APA has been hampered by an inability to reliably profile it using conventional RNA-seq. We describe 'Quantification of APA' (QAPA), a method that infers APA from conventional RNA-seq data. QAPA is faster and more sensitive than other methods. Application of QAPA reveals discrete, temporally coordinated APA programs during neurogenesis and that there is little overlap between genes regulated by alternative splicing and those by APA. Modeling of these data uncovers an APA sequence code. QAPA thus enables the discovery and characterization of programs of regulated APA using conventional RNA-seq.
Collapse
Affiliation(s)
- Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5A 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5A 1A8, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5A 1A8, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada. .,Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada. .,Vector Institute, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
271
|
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1474. [PMID: 29582564 DOI: 10.1002/wrna.1474] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/24/2022]
Abstract
Genome Wide Association Studies (GWAS) have mapped thousands of genetic variants associated with complex disease risk and regulating quantitative traits, thus exploiting an unprecedented high-resolution genetic characterization of the human genome. A small fraction (3.7%) of the identified associations is located in untranslated regions (UTRs), and the molecular mechanism has been elucidated for few of them. Genetic variations at UTRs may modify regulatory elements affecting the interaction of the UTRs with proteins and microRNAs. The overall functional consequences include modulation of messenger RNA (mRNA) transcription, secondary structure, stability, localization, translation, and access to regulators like microRNAs (miRNAs) and RNA-binding proteins (RBPs). Alterations of these regulatory mechanisms are known to modify molecular pathways and cellular processes, potentially leading to disease processes. Here, we analyze some examples of genetic risk variants mapping in the UTR regulatory elements. We describe a recently identified genetic variant localized in the 3'UTR of the TNFSF13B gene, associated with autoimmunity risk and responsible of an increased stability and translation of TNFSF13B mRNA. We discuss how the correct use and interpretation of public GWAS repositories could lead to a better understanding of etiopathogenetic mechanisms and the generation of robust biological hypothesis as starting point for further functional studies. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, Maryland
| | - Michael B Whalen
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
272
|
Lin XT, Zheng XB, Fan DJ, Yao QQ, Hu JC, Lian L, Wu XJ, Lan P, He XS. MicroRNA-143 Targets ATG2B to Inhibit Autophagy and Increase Inflammatory Responses in Crohn's Disease. Inflamm Bowel Dis 2018; 24:781-791. [PMID: 29562274 DOI: 10.1093/ibd/izx075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including Crohn's disease (CD). Genetic analyses have found that microRNA (miRNA) levels are altered in the intestinal tissues of CD patients. METHODS The Sequencing Alternative Poly-Adenylation Sites (SAPAS) method was used to compare the 3' end of the total mRNA sequence of 3 surgical specimens of CD patients (including inflamed tissues and corresponding noninflamed tissues in each case). The levels of autophagy-related 2B (ATG2B), LC3, and miR-143 were compared between inflamed tissues and noninflamed tissues using immunoblot and quantitative reverse transcription polymerase chain reaction. Luciferase assays were used to verify the interactions between miR-143 and ATG2B. Autophagy was measured by immunoblot analyses of LC3 and transmission electron microscopy. Inflammatory cytokines and IκBα were analyzed to evaluate the effect of miR-143 on inflammatory response. RESULTS The tandem repeat 3'-UTR of ATG2B was longer in inflamed tissues than in corresponding noninflamed tissues and contained an miR-143 target site. miR-143 expression was elevated, whereas ATG2B and LC3-II were downregulated in inflamed tissues. The direct interaction between miR-143 and ATG2B was verified by a 3'-UTR dual-luciferase reporter assay. Constitutive expression of miR-143 or depletion of ATG2B in cultured intestinal epithelial cells inhibited autophagy, reduced IκBα levels, and increased inflammatory responses. CONCLUSIONS miR-143 may induce bowel inflammation by regulating ATG2B and autophagy, suggesting that miR-143 might play a critical role in the development of CD. Therefore, miR-143 could be a promising novel target for gene therapy in CD patients.
Collapse
Affiliation(s)
- Xu-Tao Lin
- Department of Gastrointestinal Endoscopy, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Bin Zheng
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - De-Jun Fan
- Department of Gastrointestinal Endoscopy, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Qiong Yao
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Cong Hu
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Lian
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Sheng He
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
273
|
Chen M, Lyu G, Han M, Nie H, Shen T, Chen W, Niu Y, Song Y, Li X, Li H, Chen X, Wang Z, Xia Z, Li W, Tian XL, Ding C, Gu J, Zheng Y, Liu X, Hu J, Wei G, Tao W, Ni T. 3' UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Res 2018; 28:285-294. [PMID: 29440281 PMCID: PMC5848608 DOI: 10.1101/gr.224451.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Abstract
Cellular senescence has been viewed as a tumor suppression mechanism and also as a contributor to individual aging. Widespread shortening of 3' untranslated regions (3' UTRs) in messenger RNAs (mRNAs) by alternative polyadenylation (APA) has recently been discovered in cancer cells. However, the role of APA in the process of cellular senescence remains elusive. Here, we found that hundreds of genes in senescent cells tended to use distal poly(A) (pA) sites, leading to a global lengthening of 3' UTRs and reduced gene expression. Genes that harbor longer 3' UTRs in senescent cells were enriched in senescence-related pathways. Rras2, a member of the Ras superfamily that participates in multiple signal transduction pathways, preferred longer 3' UTR usage and exhibited decreased expression in senescent cells. Depletion of Rras2 promoted senescence, while rescue of Rras2 reversed senescence-associated phenotypes. Mechanistically, splicing factor TRA2B bound to a core "AGAA" motif located in the alternative 3' UTR of Rras2, thereby reducing the RRAS2 protein level and causing senescence. Both proximal and distal poly(A) signals showed strong sequence conservation, highlighting the vital role of APA regulation during evolution. Our results revealed APA as a novel mechanism in regulating cellular senescence.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Miao Han
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Hongbo Nie
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Yichi Niu
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Yifan Song
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Xueping Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Huan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Xinyu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ziyue Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Zheng Xia
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiao-Li Tian
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, 330031 China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jun Gu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yufang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Xinhua Liu
- School of Pharmacy, Fudan University, Shanghai, 201203 China
| | - Jinfeng Hu
- School of Pharmacy, Fudan University, Shanghai, 201203 China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438 China
| |
Collapse
|
274
|
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, Li J, Xia R. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. THE NEW PHYTOLOGIST 2018; 217:1535-1550. [PMID: 29218722 DOI: 10.1111/nph.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play vital regulatory roles in plant growth and development. Little is known about these small RNAs in litchi (Litchi chinensis), an economically important fruit crop widely cultivated in Southeast Asia. We profiled the litchi small RNA population with various deep-sequencing techniques and in-depth bioinformatic analyses. The genome-wide identification of miRNAs, their target genes, and phasiRNA-generating (PHAS) genes/loci showed that the function of miR482/2118 has expanded, relative to its canonical function. We also discovered that, for 29 PHAS loci, miRNA-mediated phasiRNA production was coupled with alternative splicing (AS) and alternative polyadenylation (APA). Most of these loci encoded long noncoding RNAs. An miR482/2118 targeted locus gave rise to four main transcript isoforms through AS/APA, and diverse phasiRNAs generated from these isoforms appeared to target long terminal repeat (LTR) retrotransposons and other unrelated genes. This coupling enables phasiRNA production from different exons of noncoding PHAS genes and yields diverse phasiRNA populations, both broadening and altering the range of downstream phasiRNA-regulated genes. Our results reveal the diversity of miRNA and phasiRNA in litchi, and demonstrate AS/APA as a new layer of regulation in small RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Wuqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zeng
- Modern Education and Technology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
275
|
Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Front Neurosci 2018. [PMID: 29535594 PMCID: PMC5834764 DOI: 10.3389/fnins.2018.00075] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene (HTT). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant HTT include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system. Here, we demonstrate that the CAG repeat tract can be precisely excised from the HTT gene with the use of the paired Cas9 nickase strategy. As a model, we used HD patient-derived fibroblasts with varied numbers of CAG repeats. The repeat excision inactivated the HTT gene and abrogated huntingtin synthesis in a CAG repeat length-independent manner. Because Cas9 nickases are known to be safe and specific, our approach provides an attractive treatment tool for HD that can be extended to other polyQ disorders.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
276
|
AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. Int J Mol Sci 2018; 19:ijms19020597. [PMID: 29462998 PMCID: PMC5855819 DOI: 10.3390/ijms19020597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.
Collapse
|
277
|
Rot G, Wang Z, Huppertz I, Modic M, Lenče T, Hallegger M, Haberman N, Curk T, von Mering C, Ule J. High-Resolution RNA Maps Suggest Common Principles of Splicing and Polyadenylation Regulation by TDP-43. Cell Rep 2018; 19:1056-1067. [PMID: 28467899 PMCID: PMC5437728 DOI: 10.1016/j.celrep.2017.04.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 11/05/2022] Open
Abstract
Many RNA-binding proteins (RBPs) regulate both alternative exons and poly(A) site selection. To understand their regulatory principles, we developed expressRNA, a web platform encompassing computational tools for integration of iCLIP and RNA motif analyses with RNA-seq and 3′ mRNA sequencing. This reveals at nucleotide resolution the “RNA maps” describing how the RNA binding positions of RBPs relate to their regulatory functions. We use this approach to examine how TDP-43, an RBP involved in several neurodegenerative diseases, binds around its regulated poly(A) sites. Binding close to the poly(A) site generally represses, whereas binding further downstream enhances use of the site, which is similar to TDP-43 binding around regulated exons. Our RNAmotifs2 software also identifies sequence motifs that cluster together with the binding motifs of TDP-43. We conclude that TDP-43 directly regulates diverse types of pre-mRNA processing according to common position-dependent principles. TDP-43 regulates competing poly(A) sites in a highly position-dependent manner expressRNA is a new platform for analysis of alternative polyadenylation and splicing RNAmotifs2 is a cluster motif analysis platform integrated with expressRNA Regulation of pre-mRNA processing might follow common position-dependent principles
Collapse
Affiliation(s)
- Gregor Rot
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, Winterthurerstrasse 190, 8057 Zurich, Switzerland; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Zhen Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institut de Biologie de l'ENS (IBENS), 46 rue d'Ulm, Paris 75005, France
| | - Ina Huppertz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Miha Modic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Tina Lenče
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Martina Hallegger
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nejc Haberman
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1001 Ljubljana, Slovenia
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
278
|
Torres M, Becquet D, Franc JL, François-Bellan AM. Circadian processes in the RNA life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1467. [PMID: 29424086 DOI: 10.1002/wrna.1467] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Manon Torres
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Denis Becquet
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Franc
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
279
|
West SM, Mecenas D, Gutwein M, Aristizábal-Corrales D, Piano F, Gunsalus KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline. Genome Biol 2018; 19:8. [PMID: 29368663 PMCID: PMC5784609 DOI: 10.1186/s13059-017-1369-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The 3' untranslated regions (UTRs) of mRNAs play a major role in post-transcriptional regulation of gene expression. Selection of transcript cleavage and polyadenylation sites is a dynamic process that produces multiple transcript isoforms for the same gene within and across different cell types. Using LITE-Seq, a new quantitative method to capture transcript 3' ends expressed in vivo, we have characterized sex- and cell type-specific transcriptome-wide changes in gene expression and 3'UTR diversity in Caenorhabditis elegans germline cells undergoing proliferation and differentiation. RESULTS We show that nearly half of germline transcripts are alternatively polyadenylated, that differential regulation of endogenous 3'UTR variants is common, and that alternative isoforms direct distinct spatiotemporal protein expression patterns in vivo. Dynamic expression profiling also reveals temporal regulation of X-linked gene expression, selective stabilization of transcripts, and strong evidence for a novel developmental program that promotes nucleolar dissolution in oocytes. We show that the RNA-binding protein NCL-1/Brat is a posttranscriptional regulator of numerous ribosome-related transcripts that acts through specific U-rich binding motifs to down-regulate mRNAs encoding ribosomal protein subunits, rRNA processing factors, and tRNA synthetases. CONCLUSIONS These results highlight the pervasive nature and functional potential of patterned gene and isoform expression during early animal development.
Collapse
Affiliation(s)
- Sean M West
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Desirea Mecenas
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Michelle Gutwein
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - David Aristizábal-Corrales
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Fabio Piano
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA.
- Center for Genomics & Systems Biology, NYU Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Kristin C Gunsalus
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA.
- Center for Genomics & Systems Biology, NYU Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
280
|
Deng Z, Zhang S, Gu S, Ni X, Zeng W, Li X. Useful Bicistronic Reporter System for Studying Poly(A) Site-Defining cis Elements and Regulation of Alternative Polyadenylation. Int J Mol Sci 2018; 19:E279. [PMID: 29342112 PMCID: PMC5796225 DOI: 10.3390/ijms19010279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Zhongyuan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xinzhi Ni
- United States Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA.
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
281
|
Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 2018; 31:150-165. [PMID: 29186297 DOI: 10.1093/ajh/hpx197] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge. miR-21 is the most prominent ncRNA associated with hypertension and atherosclerotic disease due to its role as a "mechano-miR", responding to arterial shear stresses. "Immuno-miRs", such as miR-155 and miR-223, affect cardiovascular disease (CVD) via regulation of hematopoietic cell differentiation, chemotaxis, and activation in response to many pro-atherogenic stimuli. "Myo-miRs", such as miR-1 and miR-133, affect cardiac muscle plasticity and remodeling in response to mechanical overload. This in-depth review analyzes observational and experimental reports of ncRNAs in CVD, including future applications of ncRNA-based strategies in diagnosis, prediction (e.g., survival and response to small molecule therapy), and biologic therapy.
Collapse
Affiliation(s)
- Roopesh S Gangwar
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
282
|
Antisense transcription regulates the expression of sense gene via alternative polyadenylation. Protein Cell 2017; 9:540-552. [PMID: 29273853 PMCID: PMC5966356 DOI: 10.1007/s13238-017-0497-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/27/2017] [Indexed: 01/23/2023] Open
Abstract
Natural antisense transcripts (NAT) and alternative polyadenylation (APA) of messenger RNA (mRNA) are important contributors of transcriptome complexity, each playing a critical role in multiple biological processes. However, whether they have crosstalk and function collaboratively is unclear. We discovered that APA enriched in human sense-antisense (S-AS) gene pairs, and finally focused on RNASEH2C-KAT5 S-AS pair for further study. In cis but not in trans over-expression of the antisense KAT5 gene promoted the usage of distal polyA (pA) site in sense gene RNASEH2C, which generated longer 3' untranslated region (3'UTR) and produced less protein, accompanying with slowed cell growth. Mechanistically, elevated Pol II occupancy coupled with SRSF3 could explain the higher usage of distal pA site. Finally, NAT-mediated downregulation of sense gene's protein level in RNASEH2C-KAT5 pair was specific for human rather than mouse, which lacks the distal pA site of RNASEH2C. We provided the first evidence to support that certain gene affected phenotype may not by the protein of its own, but by affecting the expression of its overlapped gene through APA, implying an unexpected view for understanding the link between genotype and phenotype.
Collapse
|
283
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
284
|
Fontes MM, Guvenek A, Kawaguchi R, Zheng D, Huang A, Ho VM, Chen PB, Liu X, O'Dell TJ, Coppola G, Tian B, Martin KC. Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation. Sci Rep 2017; 7:17377. [PMID: 29234016 PMCID: PMC5727029 DOI: 10.1038/s41598-017-17407-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Long-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences. Changes in the 3'UTR composition of mRNAs can alter gene expression by regulating transcript localization, stability and/or translation, while changes in the coding sequences lead to mRNAs encoding distinct proteins. Using specialized 3' end deep sequencing methods, we undertook a comprehensive analysis of APA following induction of long-term potentiation (LTP) of mouse hippocampal CA3-CA1 synapses. We identified extensive LTP-induced APA changes, including a general trend of 3'UTR shortening and activation of intronic APA isoforms. Comparison with transcriptome profiling indicated that most APA regulatory events were uncoupled from changes in transcript abundance. We further show that specific APA regulatory events can impact expression of two molecules with known functions during LTP, including 3'UTR APA of Notch1 and intronic APA of Creb1. Together, our results reveal that activity-dependent APA provides an important layer of gene regulation during learning and memory.
Collapse
Affiliation(s)
- Mariana M Fontes
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alden Huang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria M Ho
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Kelsey C Martin
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
285
|
Kim M, Kogan N, Slack FJ. Cis-acting elements in its 3' UTR mediate post-transcriptional regulation of KRAS. Oncotarget 2017; 7:11770-84. [PMID: 26930719 PMCID: PMC4914247 DOI: 10.18632/oncotarget.7599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple RNA-binding proteins and non-coding RNAs, such as microRNAs (miRNAs), are involved in post-transcriptional gene regulation through recognition motifs in the 3' untranslated region (UTR) of their target genes. The KRAS gene encodes a key signaling protein, and its messenger RNA (mRNA) contains an exceptionally long 3' UTR; this suggests that it may be subject to a highly complex set of regulatory processes. However, 3' UTR-dependent regulation of KRAS expression has not been explored in detail. Using extensive deletion and mutational analyses combined with luciferase reporter assays, we have identified inhibitory and stabilizing cis-acting regions within the KRAS 3' UTR that may interact with miRNAs and RNA-binding proteins, such as HuR. Particularly, we have identified an AU-rich 49-nt fragment in the KRAS 3' UTR that is required for KRAS 3' UTR reporter repression. This element contains a miR-185 complementary element, and we show that overexpression of miR-185 represses endogenous KRAS mRNA and protein in vitro. In addition, we have identified another 49-nt fragment that is required to promote KRAS 3' UTR reporter expression. These findings indicate that multiple cis-regulatory motifs in the 3' UTR of KRAS finely modulate its expression, and sequence alterations within a binding motif may disrupt the precise functions of trans-regulatory factors, potentially leading to aberrant KRAS expression.
Collapse
Affiliation(s)
- Minlee Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Nicole Kogan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Current address: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frank J Slack
- Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
286
|
Liu X, Freitas J, Zheng D, Oliveira MS, Hoque M, Martins T, Henriques T, Tian B, Moreira A. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2017; 23:1807-1816. [PMID: 28851752 PMCID: PMC5689002 DOI: 10.1261/rna.062661.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Alternative polyadenylation (APA) is a mechanism that generates multiple mRNA isoforms with different 3'UTRs and/or coding sequences from a single gene. Here, using 3' region extraction and deep sequencing (3'READS), we have systematically mapped cleavage and polyadenylation sites (PASs) in Drosophila melanogaster, expanding the total repertoire of PASs previously identified for the species, especially those located in A-rich genomic sequences. Cis-element analysis revealed distinct sequence motifs around fly PASs when compared to mammalian ones, including the greater enrichment of upstream UAUA elements and the less prominent presence of downstream UGUG elements. We found that over 75% of mRNA genes in Drosophila melanogaster undergo APA. The head tissue tends to use distal PASs when compared to the body, leading to preferential expression of APA isoforms with long 3'UTRs as well as with distal terminal exons. The distance between the APA sites and intron location of PAS are important parameters for APA difference between body and head, suggesting distinct PAS selection contexts. APA analysis of the RpII215C4 mutant strain, which harbors a mutant RNA polymerase II (RNAPII) with a slower elongation rate, revealed that a 50% decrease in transcriptional elongation rate leads to a mild trend of more usage of proximal, weaker PASs, both in 3'UTRs and in introns, consistent with the "first come, first served" model of APA regulation. However, this trend was not observed in the head, suggesting a different regulatory context in neuronal cells. Together, our data expand the PAS collection for Drosophila melanogaster and reveal a tissue-specific effect of APA regulation by RNAPII elongation rate.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Jaime Freitas
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Marta S Oliveira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Torcato Martins
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Telmo Henriques
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-013 Porto, Portugal
| |
Collapse
|
287
|
Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29152905 PMCID: PMC5815886 DOI: 10.1002/wrna.1441] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The interferon (IFN)‐γ‐activated inhibitor of translation (GAIT) system directs transcript‐selective translational control of functionally related genes. In myeloid cells, IFN‐γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3′‐untranslated regions (UTRs) of multiple inflammation‐related mRNAs, including ceruloplasmin and VEGF‐A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl‐prolyl tRNA synthetase (EPRS), NS1‐associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). A network of IFN‐γ‐stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin‐dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a ‘pre‐GAIT’ complex. Subsequently, the DAPK‐ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition‐specific regulation. An N‐terminus EPRS truncate is a dominant‐negative inhibitor ensuring a ‘translational trickle’ of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT‐like systems in proto‐chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under:
Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
288
|
Huang C, Shi J, Guo Y, Huang W, Huang S, Ming S, Wu X, Zhang R, Ding J, Zhao W, Jia J, Huang X, Xiang AP, Shi Y, Yao C. A snoRNA modulates mRNA 3' end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res 2017; 45:8647-8660. [PMID: 28911119 PMCID: PMC5587809 DOI: 10.1093/nar/gkx651] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
mRNA 3′ end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3′ processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mammalian mRNA 3′ processing complex. These snoRNAs primarily interact with Fip1, a component of cleavage and polyadenylation specificity factor (CPSF). We have functionally characterized one of these snoRNAs and our results demonstrated that the U/A-rich SNORD50A inhibits mRNA 3′ processing by blocking the Fip1-poly(A) site (PAS) interaction. Consistently, SNORD50A depletion altered the Fip1–RNA interaction landscape and changed the alternative polyadenylation (APA) profiles and/or transcript levels of a subset of genes. Taken together, our data revealed a novel function for snoRNAs and provided the first evidence that non-coding RNAs may play an important role in regulating mRNA 3′ processing.
Collapse
Affiliation(s)
- Chunliu Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Junjie Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Siqi Ming
- Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingui Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rui Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Jia
- Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Huang
- Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
289
|
Vallejos Baier R, Picao-Osorio J, Alonso CR. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System. J Mol Biol 2017; 429:3290-3300. [PMID: 28366829 PMCID: PMC5656104 DOI: 10.1016/j.jmb.2017.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system.
Collapse
Affiliation(s)
- Raul Vallejos Baier
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Joao Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
290
|
Chapat C, Chettab K, Simonet P, Wang P, De La Grange P, Le Romancer M, Corbo L. Alternative splicing of CNOT7 diversifies CCR4-NOT functions. Nucleic Acids Res 2017; 45:8508-8523. [PMID: 28591869 PMCID: PMC5737658 DOI: 10.1093/nar/gkx506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
The CCR4-associated factor CAF1, also called CNOT7, is a catalytic subunit of the CCR4–NOT complex, which has been implicated in all aspects of the mRNA life cycle, from mRNA synthesis in the nucleus to degradation in the cytoplasm. In human cells, alternative splicing of the CNOT7 gene yields a second CNOT7 transcript leading to the formation of a shorter protein, CNOT7 variant 2 (CNOT7v2). Biochemical characterization indicates that CNOT7v2 interacts with CCR4–NOT subunits, although it does not bind to BTG proteins. We report that CNOT7v2 displays a distinct expression profile in human tissues, as well as a nuclear sub-cellular localization compared to CNOT7v1. Despite a conserved DEDD nuclease domain, CNOT7v2 is unable to degrade a poly(A) tail in vitro and preferentially associates with the protein arginine methyltransferase PRMT1 to regulate its activity. Using both in vitro and in cellulo systems, we have also demonstrated that CNOT7v2 regulates the inclusion of CD44 variable exons. Altogether, our findings suggest a preferential involvement of CNOT7v2 in nuclear processes, such as arginine methylation and alternative splicing, rather than mRNA turnover. These observations illustrate how the integration of a splicing variant inside CCR4–NOT can diversify its cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Clément Chapat
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Kamel Chettab
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Pierre Simonet
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Peng Wang
- McGill University, Department of Biochemistry, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | | | - Muriel Le Romancer
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Laura Corbo
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| |
Collapse
|
291
|
Alternative Polyadenylation: Methods, Findings, and Impacts. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:287-300. [PMID: 29031844 PMCID: PMC5673674 DOI: 10.1016/j.gpb.2017.06.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA), a phenomenon that RNA molecules with different 3' ends originate from distinct polyadenylation sites of a single gene, is emerging as a mechanism widely used to regulate gene expression. In the present review, we first summarized various methods prevalently adopted in APA study, mainly focused on the next-generation sequencing (NGS)-based techniques specially designed for APA identification, the related bioinformatics methods, and the strategies for APA study in single cells. Then we summarized the main findings and advances so far based on these methods, including the preferences of alternative polyA (pA) site, the biological processes involved, and the corresponding consequences. We especially categorized the APA changes discovered so far and discussed their potential functions under given conditions, along with the possible underlying molecular mechanisms. With more in-depth studies on extensive samples, more signatures and functions of APA will be revealed, and its diverse roles will gradually heave in sight.
Collapse
|
292
|
Li W, Li W, Laishram RS, Hoque M, Ji Z, Tian B, Anderson RA. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases. Nucleic Acids Res 2017; 45:8930-8942. [PMID: 28911096 PMCID: PMC5587728 DOI: 10.1093/nar/gkx560] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3′ end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues.
Collapse
Affiliation(s)
- Weimin Li
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA.,Washington State University, Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Spokane, WA 99202, USA
| | - Wencheng Li
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA
| | - Rakesh S Laishram
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Mainul Hoque
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA
| | - Zhe Ji
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA
| | - Bin Tian
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
293
|
Routh A, Ji P, Jaworski E, Xia Z, Li W, Wagner EJ. Poly(A)-ClickSeq: click-chemistry for next-generation 3΄-end sequencing without RNA enrichment or fragmentation. Nucleic Acids Res 2017; 45:e112. [PMID: 28449108 PMCID: PMC5499544 DOI: 10.1093/nar/gkx286] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
The recent emergence of alternative polyadenylation (APA) as an engine driving transcriptomic diversity has stimulated the development of sequencing methodologies designed to assess genome-wide polyadenylation events. The goal of these approaches is to enrich, partition, capture and ultimately sequence poly(A) site junctions. However, these methods often require poly(A) enrichment, 3΄ linker ligation steps, and RNA fragmentation, which can necessitate higher levels of starting RNA, increase experimental error and potentially introduce bias. We recently reported a click-chemistry based method for generating RNAseq libraries called ‘ClickSeq’. Here, we adapt this method to direct the cDNA synthesis specifically toward the 3΄UTR/poly(A) tail junction of cellular RNA. With this novel approach, we demonstrate sensitive and specific enrichment for poly(A) site junctions without the need for complex sample preparation, fragmentation or purification. Poly(A)-ClickSeq (PAC-seq) is therefore a simple procedure that generates high-quality RNA-seq poly(A) libraries. As a proof-of-principle, we utilized PAC-seq to explore the poly(A) landscape of both human and Drosophila cells in culture and observed outstanding overlap with existing poly(A) databases and also identified previously unannotated poly(A) sites. Moreover, we utilize PAC-seq to quantify and analyze APA events regulated by CFIm25 illustrating how this technology can be harnessed to identify alternatively polyadenylated RNA.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Zheng Xia
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, TX 77030, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, TX 77030, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
294
|
Liu Y, Wu P, Zhou J, Johnson-Pais TL, Lai Z, Chowdhury WH, Rodriguez R, Chen Y. XBSeq2: a fast and accurate quantification of differential expression and differential polyadenylation. BMC Bioinformatics 2017; 18:384. [PMID: 28984183 PMCID: PMC5629564 DOI: 10.1186/s12859-017-1803-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background RNA sequencing (RNA-seq) is a high throughput technology that profiles gene expression in a genome-wide manner. RNA-seq has been mainly used for testing differential expression (DE) of transcripts between two conditions and has recently been used for testing differential alternative polyadenylation (APA). In the past, many algorithms have been developed for detecting differentially expressed genes (DEGs) from RNA-seq experiments, including the one we developed, XBSeq, which paid special attention to the context-specific background noise that is ignored in conventional gene expression quantification and DE analysis of RNA-seq data. Results We present several major updates in XBSeq2, including alternative statistical testing and parameter estimation method for detecting DEGs, capacity to directly process alignment files and methods for testing differential APA usage. We evaluated the performance of XBSeq2 against several other methods by using simulated datasets in terms of area under the receiver operating characteristic (ROC) curve (AUC), number of false discoveries and statistical power. We also benchmarked different methods concerning execution time and computational memory consumed. Finally, we demonstrated the functionality of XBSeq2 by using a set of in-house generated clear cell renal carcinoma (ccRCC) samples. Conclusions We present several major updates to XBSeq. By using simulated datasets, we demonstrated that, overall, XBSeq2 performs equally well as XBSeq in terms of several statistical metrics and both perform better than DESeq2 and edgeR. In addition, XBSeq2 is faster in speed and consumes much less computational memory compared to XBSeq, allowing users to evaluate differential expression and APA events in parallel. XBSeq2 is available from Bioconductor: http://bioconductor.org/packages/XBSeq/ Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1803-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanhang Liu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cellular and Structure Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ping Wu
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jingqi Zhou
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cornell university, Ithaca, NY, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wasim H Chowdhury
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
295
|
Alzheimer's brains show inter-related changes in RNA and lipid metabolism. Neurobiol Dis 2017; 106:1-13. [PMID: 28630030 PMCID: PMC5560656 DOI: 10.1016/j.nbd.2017.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/17/2017] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) involves changes in both lipid and RNA metabolism, but it remained unknown if these differences associate with AD's cognition and/or post-mortem neuropathology indices. Here, we report RNA-sequencing evidence of inter-related associations between lipid processing, cognition level, and AD neuropathology. In two unrelated cohorts, we identified pathway-enriched facilitation of lipid processing and alternative splicing genes, including the neuronal-enriched NOVA1 and hnRNPA1. Specifically, this association emerged in temporal lobe tissue samples from donors where postmortem evidence demonstrated AD neuropathology, but who presented normal cognition proximate to death. The observed changes further associated with modified ATP synthesis and mitochondrial transcripts, indicating metabolic relevance; accordingly, mass-spectrometry-derived lipidomic profiles distinguished between individuals with and without cognitive impairment prior to death. In spite of the limited group sizes, tissues from persons with both cognitive impairment and AD pathology showed elevation in several drug-targeted genes of other brain, vascular and autoimmune disorders, accompanied by pathology-related increases in distinct lipid processing transcripts, and in the RNA metabolism genes hnRNPH2, TARDBP, CLP1 and EWSR1. To further detect 3'-polyadenylation variants, we employed multiple cDNA primer pairs. This identified variants that showed limited differences in scope and length between the tested cohorts, yet enabled superior clustering of demented and non-demented AD brains versus controls compared to total mRNA expression values. Our findings indicate inter-related cognition-associated differences in AD's lipid processing, alternative splicing and 3'-polyadenylation, calling for pursuing the underlying psychological and therapeutics implications.
Collapse
|
296
|
Lambert CA, Garbacki N, Colige AC. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment. Int J Biochem Cell Biol 2017; 91:84-97. [PMID: 28433505 DOI: 10.1016/j.biocel.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 01/14/2023]
|
297
|
Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators? Mol Genet Genomics 2017; 293:167-186. [PMID: 28942592 DOI: 10.1007/s00438-017-1375-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.
Collapse
|
298
|
Armstrong RN, Steeples V, Singh S, Sanchi A, Boultwood J, Pellagatti A. Splicing factor mutations in the myelodysplastic syndromes: target genes and therapeutic approaches. Adv Biol Regul 2017; 67:13-29. [PMID: 28986033 DOI: 10.1016/j.jbior.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 10/25/2022]
Abstract
Mutations in splicing factor genes (SF3B1, SRSF2, U2AF1 and ZRSR2) are frequently found in patients with myelodysplastic syndromes (MDS), suggesting that aberrant spliceosome function plays a key role in the pathogenesis of MDS. Splicing factor mutations have been shown to result in aberrant splicing of many downstream target genes. Recent functional studies have begun to characterize the splicing dysfunction in MDS, identifying some key aberrantly spliced genes that are implicated in disease pathophysiology. These findings have led to the development of therapeutic strategies using splicing-modulating agents and rapid progress is being made in this field. Splicing inhibitors are promising agents that exploit the preferential sensitivity of splicing factor-mutant cells to these compounds. Here, we review the known target genes associated with splicing factor mutations in MDS, and discuss the potential of splicing-modulating therapies for these disorders.
Collapse
Affiliation(s)
- Richard N Armstrong
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Violetta Steeples
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Shalini Singh
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Andrea Sanchi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
299
|
Wang N, Guo T, Wang P, Sun X, Shao Y, Jia X, Liang B, Gong X, Ma F. MhYTP1 and MhYTP2 from Apple Confer Tolerance to Multiple Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1367. [PMID: 28824695 PMCID: PMC5543281 DOI: 10.3389/fpls.2017.01367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/21/2017] [Indexed: 05/24/2023]
Abstract
The first YTH domain-containing RNA binding protein (YTP) was found in rat, where it was related to oxidative stress. Unlike characterizations in yeast and animals, functions of plant YTPs are less clear. Malus hupehensis (Pamp.) Rehd. YTP1 and YTP2 (MhYTP1 and MhYTP2) are known to be active in leaf senescence and fruit ripening. However, no research has been published about their roles in stress responses. Here, we investigate the stress-related functions of MhYTP1 and MhYTP2 in Arabidopsis thaliana. Both of the two genes participated in salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) signaling and play roles in plant responses to oxidative stress, chilling, high temperature, high salinity, and mannitol induced physiological drought stress. Moreover, MhYTP1 plays leading roles in SA and ABA signaling, and MhYTP2 plays leading roles in JA signaling and oxidative stress responses. These results will fill a gap in our knowledge about plant YTPs and stress responses and provide a foundation for future attempts to improve stress tolerance in apple.
Collapse
|
300
|
Wang T, Wang H, Cai D, Gao Y, Zhang H, Wang Y, Lin C, Ma L, Gu L. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:684-699. [PMID: 28493303 DOI: 10.1111/tpj.13597] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 05/21/2023]
Abstract
Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably, more than 42 280 distinct splicing isoforms were derived from 128 667 intron-containing full-length FLNC reads, including a large number of AS events associated with rhizome systems. In addition, we characterized 25 069 polyadenylation sites from 11 450 genes, 6311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements within the intronic polyadenylation region. Furthermore, this study provided a quantitative atlas of poly(A) usage. Several hundred differential poly(A) sites in the rhizome-root system were identified. Taken together, these results suggest that post-transcriptional regulation may potentially have a vital role in the underground rhizome-root system.
Collapse
Affiliation(s)
- Taotao Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|