251
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
252
|
Lim E, Liu Y, Chan Y, Tiinamaija T, Käräjämäki A, Madsen E, Altshuler D, Raychaudhuri S, Groop L, Flannick J, Hirschhorn J, Katsanis N, Daly M, Daly MJ. A novel test for recessive contributions to complex diseases implicates Bardet-Biedl syndrome gene BBS10 in idiopathic type 2 diabetes and obesity. Am J Hum Genet 2014; 95:509-20. [PMID: 25439097 DOI: 10.1016/j.ajhg.2014.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022] Open
Abstract
Rare-variant association studies in common, complex diseases are customarily conducted under an additive risk model in both single-variant and burden testing. Here, we describe a method to improve detection of rare recessive variants in complex diseases termed RAFT (recessive-allele-frequency-based test). We found that RAFT outperforms existing approaches when the variant influences disease risk in a recessive manner on simulated data. We then applied our method to 1,791 Finnish individuals with type 2 diabetes (T2D) and 2,657 matched control subjects. In BBS10, we discovered a rare variant (c.1189A>G [p.Ile397Val]; rs202042386) that confers risk of T2D in a recessive state (p = 1.38 × 10(-6)) and would be missed by conventional methods. Testing of this variant in an established in vivo zebrafish model confirmed the variant to be pathogenic. Taken together, these data suggest that RAFT can effectively reveal rare recessive contributions to complex diseases overlooked by conventional association tests.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
253
|
Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, Gupta VA, Sunu CM, Yu TW, Kang PB, Salih MA, Mora M, Gussoni E, Walsh CA, Manzini MC. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014; 23:5781-92. [PMID: 24925318 PMCID: PMC4189906 DOI: 10.1093/hmg/ddu296] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein whose interactions with the extracellular matrix (ECM) are necessary for normal muscle and brain development, and disruptions of its function lead to dystroglycanopathies, a group of congenital muscular dystrophies showing extreme genetic and clinical heterogeneity. Specific glycans bound to the extracellular portion of dystroglycan, α-dystroglycan, mediate ECM interactions and most known dystroglycanopathy genes encode glycosyltransferases involved in glycan synthesis. POMK, which was found mutated in two dystroglycanopathy cases, is instead involved in a glycan phosphorylation reaction critical for ECM binding, but little is known about the clinical presentation of POMK mutations or of the function of this protein in the muscle. Here, we describe two families carrying different truncating alleles, both removing the kinase domain in POMK, with different clinical manifestations ranging from Walker-Warburg syndrome, the most severe form of dystroglycanopathy, to limb-girdle muscular dystrophy with cognitive defects. We explored POMK expression in fetal and adult human muscle and identified widespread expression primarily during fetal development in myocytes and interstitial cells suggesting a role for this protein during early muscle differentiation. Analysis of loss of function in the zebrafish embryo and larva showed that pomk function is necessary for normal muscle development, leading to locomotor dysfuction in the embryo and signs of muscular dystrophy in the larva. In summary, we defined diverse clinical presentations following POMK mutations and showed that this gene is necessary for early muscle development.
Collapse
Affiliation(s)
- Stefania Di Costanzo
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | - Heather L Pond
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anete Rozkalne
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Chiara Pantaleoni
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Simona Saredi
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Vandana A Gupta
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Christine M Sunu
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Timothy W Yu
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | | | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Marina Mora
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Christopher A Walsh
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA,
| | - M Chiara Manzini
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA,
| |
Collapse
|
254
|
Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515:209-15. [PMID: 25363760 PMCID: PMC4402723 DOI: 10.1038/nature13772] [Citation(s) in RCA: 1952] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.
Collapse
|
255
|
Jiang YH, Wang Y, Xiu X, Choy KW, Pursley AN, Cheung SW. Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 2014; 51:249-62. [PMID: 24878448 PMCID: PMC5937018 DOI: 10.3109/10408363.2014.910747] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A genetic etiology for autism spectrum disorders (ASDs) was first suggested from twin studies reported in the 1970s. The identification of gene mutations in syndromic ASDs provided evidence to support a genetic cause of ASDs. More recently, genome-wide copy number variant and sequence analyses have uncovered a list of rare and highly penetrant copy number variants (CNVs) or single nucleotide variants (SNVs) associated with ASDs, which has strengthened the claim of a genetic etiology for ASDs. Findings from research studies in the genetics of ASD now support an important role for molecular diagnostics in the clinical genetics evaluation of ASDs. Various molecular diagnostic assays including single gene tests, targeted multiple gene panels and copy number analysis should all be considered in the clinical genetics evaluation of ASDs. Whole exome sequencing could also be considered in selected clinical cases. However, the challenge that remains is to determine the causal role of genetic variants identified through molecular testing. Variable expressivity, pleiotropic effects and incomplete penetrance associated with CNVs and SNVs also present significant challenges for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Division of Neurology, The Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yi Wang
- Division of Neurology, The Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xu Xiu
- Division of Child Development and Health, The Children’s Hospital of Fudan University Shanghai, People’s Republic of China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, and Joint Centre with Utrecht University Genetic core, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Amber Nolen Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau W. Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
256
|
Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol 2014; 307:F757-76. [PMID: 25080522 DOI: 10.1152/ajprenal.00306.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) has become a serious public health problem because of its associated morbidity, premature mortality, and attendant healthcare costs. The rising number of persons with CKD is linked with the aging population structure and an increased prevalence of diabetes, hypertension, and obesity. There is an inherited risk associated with developing CKD, as evidenced by familial clustering and differing prevalence rates across ethnic groups. Previous studies to determine the inherited risk factors for CKD rarely identified genetic variants that were robustly replicated. However, improvements in genotyping technologies and analytic methods are now helping to identify promising genetic loci aided by international collaboration and multiconsortia efforts. More recently, epigenetic modifications have been proposed to play a role in both the inherited susceptibility to CKD and, importantly, to explain how the environment dynamically interacts with the genome to alter an individual's disease risk. Genome-wide, epigenome-wide, and whole transcriptome studies have been performed, and optimal approaches for integrative analysis are being developed. This review summarizes recent research and the current status of genetic and epigenetic risk factors influencing CKD using population-based information.
Collapse
Affiliation(s)
- L J Smyth
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - S Duffy
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A J McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| |
Collapse
|
257
|
Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, Fowler SC, Malenka RC, Südhof TC. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 2014; 158:198-212. [PMID: 24995986 DOI: 10.1016/j.cell.2014.04.045] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/22/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
Abstract
In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Marc V Fuccillo
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Scott J Hayton
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Byung Kook Lim
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stephen C Fowler
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305, USA.
| |
Collapse
|
258
|
De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat Commun 2014; 5:4954. [PMID: 25232744 DOI: 10.1038/ncomms5954] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.
Collapse
|
259
|
Babbs C, Lloyd D, Pagnamenta AT, Twigg SRF, Green J, McGowan SJ, Mirza G, Naples R, Sharma VP, Volpi EV, Buckle VJ, Wall SA, Knight SJL, Parr JR, Wilkie AOM. De novo and rare inherited mutations implicate the transcriptional coregulator TCF20/SPBP in autism spectrum disorder. J Med Genet 2014; 51:737-47. [PMID: 25228304 PMCID: PMC4215269 DOI: 10.1136/jmedgenet-2014-102582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are common and have a strong genetic basis, yet the cause of ∼70-80% ASDs remains unknown. By clinical cytogenetic testing, we identified a family in which two brothers had ASD, mild intellectual disability and a chromosome 22 pericentric inversion, not detected in either parent, indicating de novo mutation with parental germinal mosaicism. We hypothesised that the rearrangement was causative of their ASD and localised the chromosome 22 breakpoints. METHODS The rearrangement was characterised using fluorescence in situ hybridisation, Southern blotting, inverse PCR and dideoxy-sequencing. Open reading frames and intron/exon boundaries of the two physically disrupted genes identified, TCF20 and TNRC6B, were sequenced in 342 families (260 multiplex and 82 simplex) ascertained by the International Molecular Genetic Study of Autism Consortium (IMGSAC). RESULTS IMGSAC family screening identified a de novo missense mutation of TCF20 in a single case and significant association of a different missense mutation of TCF20 with ASD in three further families. Through exome sequencing in another project, we independently identified a de novo frameshifting mutation of TCF20 in a woman with ASD and moderate intellectual disability. We did not identify a significant association of TNRC6B mutations with ASD. CONCLUSIONS TCF20 encodes a transcriptional coregulator (also termed SPBP) that is structurally and functionally related to RAI1, the critical dosage-sensitive protein implicated in the behavioural phenotypes of the Smith-Magenis and Potocki-Lupski 17p11.2 deletion/duplication syndromes, in which ASD is frequently diagnosed. This study provides the first evidence that mutations in TCF20 are also associated with ASD.
Collapse
Affiliation(s)
- Christian Babbs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK NIHR Biomedical Research Centre, Oxford, UK
| | - Deborah Lloyd
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Oxford, UK Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Joanne Green
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Simon J McGowan
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Ghazala Mirza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rebecca Naples
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Vikram P Sharma
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Emanuela V Volpi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Veronica J Buckle
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Samantha J L Knight
- NIHR Biomedical Research Centre, Oxford, UK Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jeremy R Parr
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK NIHR Biomedical Research Centre, Oxford, UK Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
260
|
Melhem NM, Lu C, Dresbold C, Middleton FA, Klei L, Wood S, Faraone SV, Vinogradov S, Tiobech J, Yano V, Roeder K, Byerley W, Myles-Worsley M, Devlin B. Characterizing runs of homozygosity and their impact on risk for psychosis in a population isolate. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:521-30. [PMID: 24980794 PMCID: PMC5058445 DOI: 10.1002/ajmg.b.32255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 11/12/2022]
Abstract
An increased abundance of runs of homozygosity (ROH) has been associated with risk for various diseases, including schizophrenia. Here we investigate the characteristics of ROH in Palau, an Oceanic population, evaluating whether these characteristics are related to risk for psychotic disorders and the nature of this association. To accomplish these aims we evaluate a sample of 203 cases with schizophrenia and related psychotic disorders-representing almost complete ascertainment of affected individuals in the population-and contrast their ROH to that of 125 subjects chosen to function as controls. While Palauan diagnosed with psychotic disorders tend to have slightly more ROH regions than controls, the distinguishing features are that they have longer ROH regions, greater total length of ROH, and their ROH tends to co-occur more often at the same locus. The nature of the sample allows us to investigate whether rare, highly penetrant recessive variants generate such case-control differences in ROH. Neither rare, highly penetrant recessive variants nor individual common variants of large effect account for a substantial proportion of risk for psychosis in Palau. These results suggest a more nuanced model for risk is required to explain patterns of ROH for this population.
Collapse
Affiliation(s)
- Nadine M. Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - Cara Dresbold
- Department of Human Genetics, University of Pittsburgh
| | | | | | - Shawn Wood
- University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University; Syracuse NY
| | | | | | - Victor Yano
- Palauan Ministry of Health, Republic of Palau
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - William Byerley
- Department of Psychiatry, University of California San Francisco
| | | | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
261
|
Shen J, Lincoln S, Miller DT. Advances in Genetic Discovery and Implications for Counseling of Patients and Families with Autism Spectrum Disorders. CURRENT GENETIC MEDICINE REPORTS 2014; 2:124-134. [PMID: 30345165 PMCID: PMC6192539 DOI: 10.1007/s40142-014-0047-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The prevalence of autism spectrum disorders (ASD) continues to increase. Genetic factors play an important role in the etiology of ASD, although specific genetic causes are identified in only a minority of cases. Recent advances have accelerated the discovery of genes implicated in ASD through convergent genomic analysis of genome-wide association studies, chromosomal microarray, exome sequencing, genome sequencing, and gene networks. Hundreds of candidate genes for ASD have been reported, yet only a handful have proven causative. Symptoms are complex and highly variable, and most cases are likely due to cumulative genetic factors, the interactions among them, as well as environmental factors. Here we summarize recent findings in genomic research regarding discovery of candidate genes, describe the major molecular processes in neural development that may be disrupted in ASD, and discuss the implication of research findings in clinical genetic diagnostic testing and counseling. Continued advances in genetic research will eventually translate into innovative approaches to prevention and treatment of ASD.
Collapse
Affiliation(s)
- Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sharyn Lincoln
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115
| | - David T Miller
- Harvard Medical School, Boston, MA 02115
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
262
|
Srivastava S, Cohen JS, Vernon H, Barañano K, McClellan R, Jamal L, Naidu S, Fatemi A. Clinical whole exome sequencing in child neurology practice. Ann Neurol 2014; 76:473-83. [PMID: 25131622 DOI: 10.1002/ana.24251] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Whole exome sequencing (WES) represents a significant breakthrough in clinical genetics as a powerful tool for etiological discovery in neurodevelopmental disorders. To better characterize the genetic landscape of neurodevelopmental disorders, we analyzed patients in our pediatric neurogenetics clinic who underwent WES. METHODS We performed a retrospective cohort study on 78 patients with various neurodevelopmental disabilities and unrevealing workup prior to WES. We characterized their molecular diagnoses, clinical features, and whether their previous treatment plan changed due to WES results. RESULTS The overall presumptive diagnostic rate for our cohort was 41% (n = 32 of 78 patients). Nineteen patients had a single autosomal dominant (AD) disorder, 11 had a single autosomal recessive (AR) disorder, 1 had an X-linked dominant disorder, and 1 had both an AD and an AR disorder. The 32 patients with pathogenic or likely pathogenic variants exhibited various neurobehavioral and neuroimaging abnormalities, including intellectual disability/developmental delay (n = 28), cerebral palsy-like encephalopathy (n = 11), autism spectrum disorder (n = 5), delayed/hypomyelination (n = 7), and cerebellar abnormalities (n = 9). The results of WES affected management for all patients with a presumptive diagnosis, triggering reproductive planning (n = 27), disease monitoring initiation (n = 4), investigation of systemic involvement of the disorder(s) (n = 6), alteration of presumed disease inheritance pattern (n = 7), changing of prognosis (n = 10), medication discontinuation (n = 5) or initiation (n = 2), and clinical trial education (n = 3). INTERPRETATION The high diagnostic yield of WES supports its use in pediatric neurology practices. It may also lead to earlier diagnosis, impacting medical management, prognostication, and family planning. WES therefore serves as a critical tool for the child neurologist.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Vandeweyer G, Helsmoortel C, Van Dijck A, Vulto-van Silfhout AT, Coe BP, Bernier R, Gerdts J, Rooms L, van den Ende J, Bakshi M, Wilson M, Nordgren A, Hendon LG, Abdulrahman OA, Romano C, de Vries BBA, Kleefstra T, Eichler EE, Van der Aa N, Kooy RF. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:315-26. [PMID: 25169753 DOI: 10.1002/ajmg.c.31413] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in ADNP were recently identified as a frequent cause of syndromic autism, characterized by deficits in social communication and interaction and restricted, repetitive behavioral patterns. Based on its functional domains, ADNP is a presumed transcription factor. The gene interacts closely with the SWI/SNF complex by direct and experimentally verified binding of its C-terminus to three of its core components. A detailed and systematic clinical assessment of the symptoms observed in our patients allows a detailed comparison with the symptoms observed in other SWI/SNF disorders. While the mutational mechanism of the first 10 patients identified suggested a gain of function mechanism, an 11th patient reported here is predicted haploinsufficient. The latter observation may raise hope for therapy, as addition of NAP, a neuroprotective octapeptide named after the first three amino acids of the sequence NAPVSPIQ, has been reported by others to ameliorate some of the cognitive abnormalities observed in a knockout mouse model. It is concluded that detailed clinical and molecular studies on larger cohorts of patients are necessary to establish a better insight in the genotype phenotype correlation and in the mutational mechanism.
Collapse
|
264
|
Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model. Neurosci Biobehav Rev 2014; 47:735-52. [PMID: 25155242 DOI: 10.1016/j.neubiorev.2014.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 07/02/2014] [Accepted: 07/12/2014] [Indexed: 11/23/2022]
Abstract
The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism.
Collapse
|
265
|
Jamuar SS, Lam ATN, Kircher M, D'Gama AM, Wang J, Barry BJ, Zhang X, Hill RS, Partlow JN, Rozzo A, Servattalab S, Mehta BK, Topcu M, Amrom D, Andermann E, Dan B, Parrini E, Guerrini R, Scheffer IE, Berkovic SF, Leventer RJ, Shen Y, Wu BL, Barkovich AJ, Sahin M, Chang BS, Bamshad M, Nickerson DA, Shendure J, Poduri A, Yu TW, Walsh CA. Somatic mutations in cerebral cortical malformations. N Engl J Med 2014; 371:733-43. [PMID: 25140959 PMCID: PMC4274952 DOI: 10.1056/nejmoa1314432] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although there is increasing recognition of the role of somatic mutations in genetic disorders, the prevalence of somatic mutations in neurodevelopmental disease and the optimal techniques to detect somatic mosaicism have not been systematically evaluated. METHODS Using a customized panel of known and candidate genes associated with brain malformations, we applied targeted high-coverage sequencing (depth, ≥200×) to leukocyte-derived DNA samples from 158 persons with brain malformations, including the double-cortex syndrome (subcortical band heterotopia, 30 persons), polymicrogyria with megalencephaly (20), periventricular nodular heterotopia (61), and pachygyria (47). We validated candidate mutations with the use of Sanger sequencing and, for variants present at unequal read depths, subcloning followed by colony sequencing. RESULTS Validated, causal mutations were found in 27 persons (17%; range, 10 to 30% for each phenotype). Mutations were somatic in 8 of the 27 (30%), predominantly in persons with the double-cortex syndrome (in whom we found mutations in DCX and LIS1), persons with periventricular nodular heterotopia (FLNA), and persons with pachygyria (TUBB2B). Of the somatic mutations we detected, 5 (63%) were undetectable with the use of traditional Sanger sequencing but were validated through subcloning and subsequent sequencing of the subcloned DNA. We found potentially causal mutations in the candidate genes DYNC1H1, KIF5C, and other kinesin genes in persons with pachygyria. CONCLUSIONS Targeted sequencing was found to be useful for detecting somatic mutations in patients with brain malformations. High-coverage sequencing panels provide an important complement to whole-exome and whole-genome sequencing in the evaluation of somatic mutations in neuropsychiatric disease. (Funded by the National Institute of Neurological Disorders and Stroke and others.).
Collapse
Affiliation(s)
- Saumya S Jamuar
- From the Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute (S.S.J., A.-T.N.L., A.M.D., B.J.B., X.Z., R.S.H., J.N.P., A.R., S.S., B.K.M., T.W.Y., C.A.W.), and the Departments of Laboratory Medicine (J.W., Y.S., B.L.W.) and Neurology (M.S., A.P.), Boston Children's Hospital, the Departments of Pediatrics (S.S.J., A.-T.N.L., A.M.D., B.J.B., X.Z., R.S.H., J.N.P., A.R., S.S., B.K.M., T.W.Y., C.A.W.), Neurology (S.S.J., A.-T.N.L., A.M.D., B.J.B., X.Z., R.S.H., J.N.P., A.R., S.S., B.K.M., T.W.Y., C.A.W., M.S., A.P.), and Pathology (Y.S., B.L.W.), Harvard Medical School, the Department of Neurology, Beth Israel Deaconess Medical Center (B.S.C.), and the Department of Neurology, Massachusetts General Hospital (T.W.Y.) - all in Boston; the Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore (S.S.J.); the Department of Genome Sciences, University of Washington, Seattle (M.K., M.B., D.A.N., J.S.); the Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai (J.W., Y.S.); the Division of Neurology, Department of Pediatrics, Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey (M.T.); the Neurogenetics Unit, Montreal Neurological Hospital and Institute, Department of Neurology and Neurosurgery (D.A., E.A.) and Department of Human Genetics (E.A.), McGill University, Montreal; the Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels (B.D.); the Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy (E.P., R.G.); the Department of Medicine, University of Melbourne, Austin Health, Heidelberg (I.E.S., S.F.B.), Department of Paediatrics, Royal Children's Hospital, University of Melbourne, and the Florey Institute of Neuroscience and Mental Health, Melbourne (I.E.S.), and the Department of Neurology, Royal Children's Hospital, Murdoch Children'
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Izumi K, Noon S, Wilkens A, Krantz ID. NKX2.5 mutation identification on exome sequencing in a patient with heterotaxy. Eur J Med Genet 2014; 57:558-61. [PMID: 25118008 DOI: 10.1016/j.ejmg.2014.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/03/2014] [Indexed: 11/28/2022]
Abstract
Exome sequencing enables us to screen most of the protein coding genes in an unbiased way, this technique represents an ideal tool to identify previously under- or unappreciated phenotypes associated with known disease genes and genetic disorders. Here we present an illustrative case that required exome sequencing to identify a genetic alteration associated with the clinical features. The phenotype of the proband included heterotaxy, double outlet right ventricle, common atrioventricular canal, total anomalous pulmonary venous connection, asplenia, failure to thrive and short stature. Exome sequencing demonstrated a frameshift mutation c.397_400del (p.P133GfsTer 42) in NKX2.5. Although a single previous case of heterotaxy was reported in a large familial case of NKX2.5, heterotaxy is not clinically appreciated to be a part of the phenotypic spectrum associated with NKX2.5 mutations. This case report demonstrates the utility of exome sequencing in expanding a phenotypic spectrum of a known Mendelian disorder. We predict that this type of unexpected identification of mutations in known-disease associated genes in patients with atypical or expanded phenotypes will occur with increasing frequency as the use of exome and genome sequencing become more common tools in diagnosing patients with syndromic and non-syndromic foms of structural birth defects.
Collapse
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | - Sarah Noon
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alisha Wilkens
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian D Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
267
|
Han G, Sun J, Wang J, Bai Z, Song F, Lei H. Genomics in neurological disorders. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:156-63. [PMID: 25108264 PMCID: PMC4411357 DOI: 10.1016/j.gpb.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
Abstract
Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder.
Collapse
Affiliation(s)
- Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiya Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
268
|
Improved variant calling accuracy by merging replicates in whole-exome sequencing studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:319534. [PMID: 25162009 PMCID: PMC4137624 DOI: 10.1155/2014/319534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/30/2022]
Abstract
In large scale population-based whole-exome sequencing (WES) studies, there are some samples occasionally sequenced two or more times due to a variety of reasons. To investigate how to efficiently utilize these duplicated sequencing data, we conducted comprehensive evaluation of variant calling strategies. 92 samples subjected to WES twice were selected from a large population study. These 92 duplicated samples were divided into two groups: group H consisting of the higher sequencing depth for each subject and group L consisting of the lower depth for each subject. The merged samples for each subject were put in a third group M. Using the GATK multisample toolkit, we compared variant calling accuracy among three strategies. Hierarchical clustering analysis indicated that the two replicates for each subject showed high homogeneity. The comparative analyses on the basis of heterozygous-homozygous ratio (Hete/Homo), transition-transversion ratio (Ti/Tv), and overlapping rate with the 1000 Genomes Project consistently showed that the data quality of the SNPs detected from the M group was more accurate than that of SNPs detected from the H and L groups. These results suggested that merging homogeneous duplicated exomes instead of using one of them could improve variant calling accuracy.
Collapse
|
269
|
Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B, Ginchat V, Roubertoux P, Barburoth M, Kovess V, Geoffray MM, Xavier J. Gene × Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014; 5:53. [PMID: 25136320 PMCID: PMC4120683 DOI: 10.3389/fpsyt.2014.00053] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 05/02/2014] [Indexed: 01/03/2023] Open
Abstract
Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - Eszter Somogyi
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Nathalie Coulon
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Solenn Kermarrec
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Guillaume Bronsard
- Laboratoire de Santé Publique (EA3279), School of Medicine of La Timone, Marseille, France
| | - Olivier Bonnot
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Catherine Weismann-Arcache
- Laboratoire Psychologie et Neurosciences de la Cognition et de l’Affectivité, Université de Rouen, Mont Saint Aignan, France
| | - Michel Botbol
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Bretagne Occidentale, CHU de Brest, Brest, France
| | - Bertrand Lauth
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Vincent Ginchat
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Pierre Roubertoux
- Laboratoire de Génétique Médicale, Génomique Fonctionnelle, INSERM U 910, Université d’Aix-Marseille 2, Marseille, France
| | - Marianne Barburoth
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Viviane Kovess
- Department of Epidemiology and Biostatistics, EHESP School for Public Health, EA 4057 University Paris Descartes, Paris, France
| | - Marie-Maude Geoffray
- Service Universitaire de Psychiatrie de l’Enfant et de l’Adolescent Hospitalier Le Vinatier, Bron, France
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| |
Collapse
|
270
|
Manzini MC, Xiong L, Shaheen R, Tambunan DE, Di Costanzo S, Mitisalis V, Tischfield DJ, Cinquino A, Ghaziuddin M, Christian M, Jiang Q, Laurent S, Nanjiani ZA, Rasheed S, Hill RS, Lizarraga SB, Gleason D, Sabbagh D, Salih MA, Alkuraya FS, Walsh CA. CC2D1A regulates human intellectual and social function as well as NF-κB signaling homeostasis. Cell Rep 2014; 8:647-55. [PMID: 25066123 PMCID: PMC4334362 DOI: 10.1016/j.celrep.2014.06.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/26/2014] [Accepted: 06/20/2014] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are often comorbid, but the extent to which they share common genetic causes remains controversial. Here, we present two autosomal-recessive "founder" mutations in the CC2D1A gene causing fully penetrant cognitive phenotypes, including mild-to-severe ID, ASD, as well as seizures, suggesting shared developmental mechanisms. CC2D1A regulates multiple intracellular signaling pathways, and we found its strongest effect to be on the transcription factor nuclear factor κB (NF-κB). Cc2d1a gain and loss of function both increase activation of NF-κB, revealing a critical role of Cc2d1a in homeostatic control of intracellular signaling. Cc2d1a knockdown in neurons reduces dendritic complexity and increases NF-κB activity, and the effects of Cc2d1a depletion can be rescued by inhibiting NF-κB activity. Homeostatic regulation of neuronal signaling pathways provides a mechanism whereby common founder mutations could manifest diverse symptoms in different patients.
Collapse
Affiliation(s)
- M Chiara Manzini
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Lan Xiong
- Department of Psychiatry, Research Centre of Montreal Mental Health University Institute, University of Montreal, Montreal, QC H1N 3V2, Canada; University of Montreal Hospital Research Centre, Montreal, QC H2L 2W5, Canada
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Dimira E Tambunan
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Stefania Di Costanzo
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa Mitisalis
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - David J Tischfield
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Antonella Cinquino
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammed Ghaziuddin
- Department of Child and Adolescent Psychiatry, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Mehtab Christian
- University of Montreal Hospital Research Centre, Montreal, QC H2L 2W5, Canada
| | - Qin Jiang
- Department of Psychiatry, Research Centre of Montreal Mental Health University Institute, University of Montreal, Montreal, QC H1N 3V2, Canada
| | - Sandra Laurent
- University of Montreal Hospital Research Centre, Montreal, QC H2L 2W5, Canada
| | - Zohair A Nanjiani
- Ma Ayesha Memorial Centre, University of Karachi, Karachi 75350, Pakistan
| | | | - R Sean Hill
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Sofia B Lizarraga
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle Gleason
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Diya Sabbagh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.
| | - Christopher A Walsh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
271
|
Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 2014; 82:773-80. [PMID: 24853937 DOI: 10.1016/j.neuron.2014.04.043] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
Abstract
Loss-of-function (LOF) (i.e., nonsense, splice site, and frameshift) variants that lead to disruption of gene function are likely to contribute to the etiology of neuropsychiatric disorders. Here, we perform a systematic investigation of the role of both de novo and inherited LOF variants in schizophrenia using exome sequencing data from 231 case and 34 control trios. We identify two de novo LOF variants in the SETD1A gene, which encodes a subunit of histone methyltransferase, a finding unlikely to have occurred by chance, and provide evidence for a more general role of chromatin regulators in schizophrenia risk. Transmission pattern analyses reveal that LOF variants are more likely to be transmitted to affected individuals than controls. This is especially true for private LOF variants in genes intolerant to functional genetic variation. These findings highlight the contribution of LOF mutations to the genetic architecture of schizophrenia and provide important insights into disease pathogenesis.
Collapse
Affiliation(s)
- Atsushi Takata
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University Medical Center, New York, NY 10032, USA
| | - J Louw Roos
- Department of Psychiatry, Pretoria University, Weskoppies Hospital, Pretoria 0001, Republic of South Africa
| | - Joseph A Gogos
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA; Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Maria Karayiorgou
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
272
|
The Nesprin family member ANC-1 regulates synapse formation and axon termination by functioning in a pathway with RPM-1 and β-Catenin. PLoS Genet 2014; 10:e1004481. [PMID: 25010424 PMCID: PMC4091705 DOI: 10.1371/journal.pgen.1004481] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. The molecular mechanisms that underpin synapse formation and axon termination are central to forming a functional, fully connected nervous system. The PHR proteins are important regulators of neuronal development that function in axon outgrowth and termination, as well as synapse formation. Here we describe the discovery of a novel, conserved pathway that is positively regulated by the C. elegans PHR protein, RPM-1. This pathway is composed of RPM-1, ANC-1 (a Nesprin family protein), and BAR-1 (a canonical β-catenin). Nesprins, such as ANC-1, regulate nuclear anchorage and positioning in multinuclear cells. We now show that in neurons, ANC-1 regulates neuronal development by positively regulating BAR-1. Thus, Nesprins are multi-functional proteins that act through β-catenin to regulate neuronal development, and link the nucleus to the actin cytoskeleton in order to mediate nuclear anchorage and positioning in multi-nuclear cells.
Collapse
|
273
|
Bacchelli E, Ceroni F, Pinto D, Lomartire S, Giannandrea M, D'Adamo P, Bonora E, Parchi P, Tancredi R, Battaglia A, Maestrini E. A CTNNA3 compound heterozygous deletion implicates a role for αT-catenin in susceptibility to autism spectrum disorder. J Neurodev Disord 2014; 6:17. [PMID: 25050139 PMCID: PMC4104741 DOI: 10.1186/1866-1955-6-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/25/2014] [Indexed: 11/14/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a highly heritable, neurodevelopmental condition showing extreme genetic heterogeneity. While it is well established that rare genetic variation, both de novo and inherited, plays an important role in ASD risk, recent studies also support a rare recessive contribution. Methods We identified a compound heterozygous deletion intersecting the CTNNA3 gene, encoding αT-catenin, in a proband with ASD and moderate intellectual disability. The deletion breakpoints were mapped at base-pair resolution, and segregation analysis was performed. We compared the frequency of CTNNA3 exonic deletions in 2,147 ASD cases from the Autism Genome Project (AGP) study versus the frequency in 6,639 controls. Western blot analysis was performed to get a quantitative characterisation of Ctnna3 expression during early brain development in mouse. Results The CTNNA3 compound heterozygous deletion includes a coding exon, leading to a putative frameshift and premature stop codon. Segregation analysis in the family showed that the unaffected sister is heterozygote for the deletion, having only inherited the paternal deletion. While the frequency of CTNNA3 exonic deletions is not significantly different between ASD cases and controls, no homozygous or compound heterozygous exonic deletions were found in a sample of over 6,000 controls. Expression analysis of Ctnna3 in the mouse cortex and hippocampus (P0-P90) provided support for its role in the early stage of brain development. Conclusion The finding of a rare compound heterozygous CTNNA3 exonic deletion segregating with ASD, the absence of CTNNA3 homozygous exonic deletions in controls and the high expression of Ctnna3 in both brain areas analysed implicate CTNNA3 in ASD susceptibility.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, Bologna 40126, Italy
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, Bologna 40126, Italy
| | - Dalila Pinto
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia Lomartire
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, Bologna 40126, Italy
| | - Maila Giannandrea
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Neuroscience, Milan 20132, Italy
| | - Patrizia D'Adamo
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Neuroscience, Milan 20132, Italy ; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Elena Bonora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Piero Parchi
- IRCCS Institute of Neurological Sciences, Bologna 40139, Italy ; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Raffaella Tancredi
- Stella Maris Clinical Research Institute for Child and Adolescent Neuropsychiatry, Calambrone, Pisa 56128, Italy
| | - Agatino Battaglia
- Stella Maris Clinical Research Institute for Child and Adolescent Neuropsychiatry, Calambrone, Pisa 56128, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, Bologna 40126, Italy
| |
Collapse
|
274
|
Abstract
MOTIVATION Discovering the transcriptional regulatory architecture of the metabolism has been an important topic to understand the implications of transcriptional fluctuations on metabolism. The reporter algorithm (RA) was proposed to determine the hot spots in metabolic networks, around which transcriptional regulation is focused owing to a disease or a genetic perturbation. Using a z-score-based scoring scheme, RA calculates the average statistical change in the expression levels of genes that are neighbors to a target metabolite in the metabolic network. The RA approach has been used in numerous studies to analyze cellular responses to the downstream genetic changes. In this article, we propose a mutual information-based multivariate reporter algorithm (MIRA) with the goal of eliminating the following problems in detecting reporter metabolites: (i) conventional statistical methods suffer from small sample sizes, (ii) as z-score ranges from minus to plus infinity, calculating average scores can lead to canceling out opposite effects and (iii) analyzing genes one by one, then aggregating results can lead to information loss. MIRA is a multivariate and combinatorial algorithm that calculates the aggregate transcriptional response around a metabolite using mutual information. We show that MIRA's results are biologically sound, empirically significant and more reliable than RA. RESULTS We apply MIRA to gene expression analysis of six knockout strains of Escherichia coli and show that MIRA captures the underlying metabolic dynamics of the switch from aerobic to anaerobic respiration. We also apply MIRA to an Autism Spectrum Disorder gene expression dataset. Results indicate that MIRA reports metabolites that highly overlap with recently found metabolic biomarkers in the autism literature. Overall, MIRA is a promising algorithm for detecting metabolic drug targets and understanding the relation between gene expression and metabolic activity. AVAILABILITY AND IMPLEMENTATION The code is implemented in C# language using .NET framework. Project is available upon request.
Collapse
Affiliation(s)
- A Ercument Cicek
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213 and Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Kathryn Roeder
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213 and Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Gultekin Ozsoyoglu
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213 and Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| |
Collapse
|
275
|
Chilamakuri CSR, Lorenz S, Madoui MA, Vodák D, Sun J, Hovig E, Myklebost O, Meza-Zepeda LA. Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 2014; 15:449. [PMID: 24912484 PMCID: PMC4092227 DOI: 10.1186/1471-2164-15-449] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent developments in deep (next-generation) sequencing technologies are significantly impacting medical research. The global analysis of protein coding regions in genomes of interest by whole exome sequencing is a widely used application. Many technologies for exome capture are commercially available; here we compare the performance of four of them: NimbleGen's SeqCap EZ v3.0, Agilent's SureSelect v4.0, Illumina's TruSeq Exome, and Illumina's Nextera Exome, all applied to the same human tumor DNA sample. RESULTS Each capture technology was evaluated for its coverage of different exome databases, target coverage efficiency, GC bias, sensitivity in single nucleotide variant detection, sensitivity in small indel detection, and technical reproducibility. In general, all technologies performed well; however, our data demonstrated small, but consistent differences between the four capture technologies. Illumina technologies cover more bases in coding and untranslated regions. Furthermore, whereas most of the technologies provide reduced coverage in regions with low or high GC content, the Nextera technology tends to bias towards target regions with high GC content. CONCLUSIONS We show key differences in performance between the four technologies. Our data should help researchers who are planning exome sequencing to select appropriate exome capture technology for their particular application.
Collapse
|
276
|
Raff M. Open questions: what has genetics told us about autism spectrum disorders? BMC Biol 2014; 12:45. [PMID: 24903674 PMCID: PMC4046436 DOI: 10.1186/1741-7007-12-45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 11/10/2022] Open
Abstract
Some of the most interesting questions in biology today, in my view, derive from the real advances in neuropsychiatry that have come largely from human genetics. Research in autism spectrum disorders (ASDs) has been leading the way, mainly because it has become especially well funded and has recently attracted many outstanding scientists. (I must make it clear that I am an outsider in this field, as I have never worked on any neuropsychiatric disorder).
Collapse
Affiliation(s)
- Martin Raff
- MRC Laboratory for Molecular and Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
277
|
Advances in Genetic Diagnosis of Autism Spectrum Disorders. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
278
|
Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry 2014; 4:e394. [PMID: 24893065 PMCID: PMC4080319 DOI: 10.1038/tp.2014.38] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The hypothetical 'AXAS' gene network model that profiles functional patterns of heterogeneous DNA variants overrepresented in autism spectrum disorder (ASD), X-linked intellectual disability, attention deficit and hyperactivity disorder and schizophrenia was used in this current study to analyze whole exome sequencing data from an Australian ASD cohort. An optimized DNA variant filtering pipeline was used to identify loss-of-function DNA variations. Inherited variants from parents with a broader autism phenotype and de novo variants were found to be significantly associated with ASD. Gene ontology analysis revealed that putative rare causal variants cluster in key neurobiological processes and are overrepresented in functions involving neuronal development, signal transduction and synapse development including the neurexin trans-synaptic complex. We also show how a complex gene network model can be used to fine map combinations of inherited and de novo variations in families with ASD that converge in the L1CAM pathway. Our results provide an important step forward in the molecular characterization of ASD with potential for developing a tool to analyze the pathogenesis of individual affected families.
Collapse
|
279
|
Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 2014; 17:764-72. [PMID: 24866042 DOI: 10.1038/nn.3703] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing technologies have begun to revolutionize neurogenetics, allowing the full spectrum of genetic variation to be better understood in relation to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy and schizophrenia provides strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on many factors, including recurrence, previous evidence of overlap with pathogenic copy number variants, the position of the mutation in the protein, the mutational burden among healthy individuals and membership of the candidate gene in disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience.
Collapse
|
280
|
Buxbaum JD, Bolshakova N, Brownfeld JM, Anney RJL, Bender P, Bernier R, Cook EH, Coon H, Cuccaro M, Freitag CM, Hallmayer J, Geschwind D, Klauck SM, Nurnberger JI, Oliveira G, Pinto D, Poustka F, Scherer SW, Shih A, Sutcliffe JS, Szatmari P, Vicente AM, Vieland V, Gallagher L. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses. Mol Autism 2014; 5:34. [PMID: 25392729 PMCID: PMC4228819 DOI: 10.1186/2040-2392-5-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 04/11/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. METHODS In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. RESULTS Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children's or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the focus is on sequencing complete trios. ASC sequencing for the first 1,000 samples (all from whole-blood DNA) is complete and data will be released in 2014. Data is being made available through NIH databases (database of Genotypes and Phenotypes (dbGaP) and National Database for Autism Research (NDAR)) with DNA released in Dist 11.0. Primary funding for the collection, genotyping, sequencing and distribution of TASC samples was provided by Autism Speaks and the NIH, including the National Institute of Mental Health (NIMH) and the National Human Genetics Research Institute (NHGRI). CONCLUSIONS TASC represents an important sample set that leverages expert sites. Similar approaches, leveraging expert sites and ongoing studies, represent an important path towards further enhancing available ASD samples.
Collapse
Affiliation(s)
- Joseph D Buxbaum
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Nadia Bolshakova
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Jessica M Brownfeld
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Richard JL Anney
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Patrick Bender
- National Institute of Mental Health (NIMH), Bethesda, MD 20892-9663, USA
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Hilary Coon
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108, USA
| | - Michael Cuccaro
- The John P Hussman Institute for Human Genomics, University of Miami, Miami, FL 33101, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Science, Child and Adolescent Psychiatry, Stanford School of Medicine, Stanford, CA, USA
| | - Daniel Geschwind
- Department of Neurology, University of California at Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Sabine M Klauck
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clinica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
- University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Dalila Pinto
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Fritz Poustka
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - Stephen W Scherer
- Department of Molecular Genetics, The Centre for Applied Genomics, Hospital for Sick Children and McLaughlin Centre and University of Toronto, Toronto, ON, Canada
| | - Andy Shih
- Autism Speaks, New York, NY 10016, USA
| | - James S Sutcliffe
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
- Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Szatmari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Astrid M Vicente
- Instituto Nacional de Saúde Dr Ricardo Jorge, 1649-016 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
- BioFIG-Center for Biodiversity, Functional & Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisboa, Portugal
| | - Veronica Vieland
- The Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Louise Gallagher
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| |
Collapse
|
281
|
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Wang Z, Vorstman JAS, Thompson A, Regan R, Pilorge M, Pellecchia G, Pagnamenta AT, Oliveira B, Marshall CR, Magalhaes TR, Lowe JK, Howe JL, Griswold AJ, Gilbert J, Duketis E, Dombroski BA, De Jonge MV, Cuccaro M, Crawford EL, Correia CT, Conroy J, Conceição IC, Chiocchetti AG, Casey JP, Cai G, Cabrol C, Bolshakova N, Bacchelli E, Anney R, Gallinger S, Cotterchio M, Casey G, Zwaigenbaum L, Wittemeyer K, Wing K, Wallace S, van Engeland H, Tryfon A, Thomson S, Soorya L, Rogé B, Roberts W, Poustka F, Mouga S, Minshew N, McInnes LA, McGrew SG, Lord C, Leboyer M, Le Couteur AS, Kolevzon A, Jiménez González P, Jacob S, Holt R, Guter S, Green J, Green A, Gillberg C, Fernandez BA, Duque F, Delorme R, Dawson G, Chaste P, Café C, Brennan S, Bourgeron T, Bolton PF, Bölte S, Bernier R, Baird G, Bailey AJ, Anagnostou E, Almeida J, Wijsman EM, Vieland VJ, Vicente AM, Schellenberg GD, Pericak-Vance M, Paterson AD, Parr JR, Oliveira G, Nurnberger JI, Monaco AP, Maestrini E, Klauck SM, Hakonarson H, Haines JL, Geschwind DH, Freitag CM, Folstein SE, Ennis S, et alPinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Wang Z, Vorstman JAS, Thompson A, Regan R, Pilorge M, Pellecchia G, Pagnamenta AT, Oliveira B, Marshall CR, Magalhaes TR, Lowe JK, Howe JL, Griswold AJ, Gilbert J, Duketis E, Dombroski BA, De Jonge MV, Cuccaro M, Crawford EL, Correia CT, Conroy J, Conceição IC, Chiocchetti AG, Casey JP, Cai G, Cabrol C, Bolshakova N, Bacchelli E, Anney R, Gallinger S, Cotterchio M, Casey G, Zwaigenbaum L, Wittemeyer K, Wing K, Wallace S, van Engeland H, Tryfon A, Thomson S, Soorya L, Rogé B, Roberts W, Poustka F, Mouga S, Minshew N, McInnes LA, McGrew SG, Lord C, Leboyer M, Le Couteur AS, Kolevzon A, Jiménez González P, Jacob S, Holt R, Guter S, Green J, Green A, Gillberg C, Fernandez BA, Duque F, Delorme R, Dawson G, Chaste P, Café C, Brennan S, Bourgeron T, Bolton PF, Bölte S, Bernier R, Baird G, Bailey AJ, Anagnostou E, Almeida J, Wijsman EM, Vieland VJ, Vicente AM, Schellenberg GD, Pericak-Vance M, Paterson AD, Parr JR, Oliveira G, Nurnberger JI, Monaco AP, Maestrini E, Klauck SM, Hakonarson H, Haines JL, Geschwind DH, Freitag CM, Folstein SE, Ennis S, Coon H, Battaglia A, Szatmari P, Sutcliffe JS, Hallmayer J, Gill M, Cook EH, Buxbaum JD, Devlin B, Gallagher L, Betancur C, Scherer SW. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 2014; 94:677-94. [PMID: 24768552 PMCID: PMC4067558 DOI: 10.1016/j.ajhg.2014.03.018] [Show More Authors] [Citation(s) in RCA: 697] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/25/2014] [Indexed: 12/15/2022] Open
Abstract
Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
Collapse
Affiliation(s)
- Dalila Pinto
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elsa Delaby
- Institut National de la Santé et de la Recherche Médicale U1130, 75005 Paris, France; Centre National de la Recherche Scientifique UMR 8246, 75005 Paris, France; Neuroscience Paris Seine, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, 75005 Paris, France
| | - Daniele Merico
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Mafalda Barbosa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison Merikangas
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bhooma Thiruvahindrapuram
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Xiao Xu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Ziman
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Zhuozhi Wang
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Jacob A S Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Ann Thompson
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Regina Regan
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland; Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Marion Pilorge
- Institut National de la Santé et de la Recherche Médicale U1130, 75005 Paris, France; Centre National de la Recherche Scientifique UMR 8246, 75005 Paris, France; Neuroscience Paris Seine, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, 75005 Paris, France
| | - Giovanna Pellecchia
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | | | - Bárbara Oliveira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; Center for Biodiversity, Functional, & Integrative Genomics, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Christian R Marshall
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tiago R Magalhaes
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland; Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Jennifer K Lowe
- Department of Neurology and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer L Howe
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - John Gilbert
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eftichia Duketis
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University, 60528 Frankfurt am Main, Germany
| | - Beth A Dombroski
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maretha V De Jonge
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Michael Cuccaro
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Emily L Crawford
- Vanderbilt Brain Institute, Center for Human Genetics Research, and Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Catarina T Correia
- Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; Center for Biodiversity, Functional, & Integrative Genomics, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Judith Conroy
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; Children's University Hospital Temple Street, Dublin 1, Ireland
| | - Inês C Conceição
- Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; Center for Biodiversity, Functional, & Integrative Genomics, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University, 60528 Frankfurt am Main, Germany
| | - Jillian P Casey
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland; Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Guiqing Cai
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christelle Cabrol
- Institut National de la Santé et de la Recherche Médicale U1130, 75005 Paris, France; Centre National de la Recherche Scientifique UMR 8246, 75005 Paris, France; Neuroscience Paris Seine, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, 75005 Paris, France
| | - Nadia Bolshakova
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Richard Anney
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, AB T6B 2H3, Canada
| | | | - Kirsty Wing
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Simon Wallace
- Department of Psychiatry, University of Oxford and Warneford Hospital, Oxford OX3 7JX, UK
| | - Herman van Engeland
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Ana Tryfon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susanne Thomson
- Vanderbilt Brain Institute, Center for Human Genetics Research, and Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Latha Soorya
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernadette Rogé
- Unité de Recherche Interdisciplinaire Octogone, Centre d'Etudes et de Recherches en Psychopathologie, Toulouse 2 University, 31058 Toulouse, France
| | - Wendy Roberts
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Fritz Poustka
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University, 60528 Frankfurt am Main, Germany
| | - Susana Mouga
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clinica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal; University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Nancy Minshew
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - L Alison McInnes
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan G McGrew
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - Catherine Lord
- NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Marion Leboyer
- FondaMental Foundation, 94010 Créteil, France; Institut National de la Santé et de la Recherche U955, Psychiatrie Génétique, 94010 Créteil, France; Faculté de Médecine, Université Paris Est, 94010 Créteil, France; Department of Psychiatry, Henri Mondor-Albert Chenevier Hospital, Assistance Publique - Hôpitaux de Paris, 94010 Créteil, France
| | - Ann S Le Couteur
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patricia Jiménez González
- Child Developmental and Behavioral Unit, Hospital Nacional de Niños Dr. Sáenz Herrera, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Suma Jacob
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, USA; Institute of Translational Neuroscience and Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard Holt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Stephen Guter
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Jonathan Green
- Institute of Brain, Behaviour, and Mental Health, University of Manchester, Manchester M13 9PL, UK; Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK
| | - Andrew Green
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, 41119 Gothenburg, Sweden
| | - Bridget A Fernandez
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clinica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal; University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Richard Delorme
- FondaMental Foundation, 94010 Créteil, France; Human Genetics and Cognitive Functions Unit, Institut Pasteur, 75015 Paris, France; Centre National de la Recherche Scientifique URA 2182 (Genes, Synapses, and Cognition), Institut Pasteur, 75015 Paris, France; Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France
| | - Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pauline Chaste
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; FondaMental Foundation, 94010 Créteil, France
| | - Cátia Café
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clinica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
| | - Sean Brennan
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas Bourgeron
- FondaMental Foundation, 94010 Créteil, France; Human Genetics and Cognitive Functions Unit, Institut Pasteur, 75015 Paris, France; Centre National de la Recherche Scientifique URA 2182 (Genes, Synapses, and Cognition), Institut Pasteur, 75015 Paris, France; University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Patrick F Bolton
- Institute of Psychiatry, King's College London, London SE5 8AF, UK; South London & Maudsley Biomedical Research Centre for Mental Health, London SE5 8AF, UK
| | - Sven Bölte
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Frankfurt, 60528 Frankfurt, Germany
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gillian Baird
- Paediatric Neurodisability, King's Health Partners, King's College London, London WC2R 2LS, UK
| | - Anthony J Bailey
- Department of Psychiatry, University of Oxford and Warneford Hospital, Oxford OX3 7JX, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, University of Toronto, Toronto, ON M4G 1R8, Canada
| | - Joana Almeida
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clinica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
| | - Ellen M Wijsman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Veronica J Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Astrid M Vicente
- Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; Center for Biodiversity, Functional, & Integrative Genomics, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Gerard D Schellenberg
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret Pericak-Vance
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Dalla Lana School of Public Health, Toronto, ON M5T 3M7, Canada
| | - Jeremy R Parr
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clinica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal; University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - John I Nurnberger
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics and Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Office of the President, Tufts University, Medford, MA 02155, USA
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sabine M Klauck
- Division of Molecular Genome Analysis, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan L Haines
- Vanderbilt Brain Institute, Center for Human Genetics Research, and Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel H Geschwind
- Department of Neurology and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University, 60528 Frankfurt am Main, Germany
| | - Susan E Folstein
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sean Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Hilary Coon
- Utah Autism Research Program, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Agatino Battaglia
- Stella Maris Clinical Research Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone, Pisa, Italy
| | - Peter Szatmari
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - James S Sutcliffe
- Vanderbilt Brain Institute, Center for Human Genetics Research, and Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Joachim Hallmayer
- Department of Psychiatry, Stanford University Medical School, Stanford, CA 94305, USA
| | - Michael Gill
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Catalina Betancur
- Institut National de la Santé et de la Recherche Médicale U1130, 75005 Paris, France; Centre National de la Recherche Scientifique UMR 8246, 75005 Paris, France; Neuroscience Paris Seine, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, 75005 Paris, France.
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
282
|
Poduri A, Sheidley BR, Shostak S, Ottman R. Genetic testing in the epilepsies-developments and dilemmas. Nat Rev Neurol 2014; 10:293-9. [PMID: 24733164 PMCID: PMC4090104 DOI: 10.1038/nrneurol.2014.60] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the past two decades, the number of genes recognized to have a role in the epilepsies has dramatically increased. The availability of testing for epilepsy-related genes is potentially helpful for clarification of the diagnosis and prognosis, selection of optimal treatments, and provision of information for family planning. For some patients, identification of a specific genetic cause of their epilepsy has important personal value, even in the absence of clear clinical utility. The availability of genetic testing also raises new issues that have only begun to be considered. These issues include the growing importance of educating physicians about when and how to test patients, the need to ensure that affected individuals and their families can make informed choices about testing and receive support after receiving the results, and the question of what the positive and negative consequences of genetic testing will be for affected individuals, their family members, and society.
Collapse
Affiliation(s)
- Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Sara Shostak
- Department of Sociology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Ruth Ottman
- Gertrude H. Sergievsky Center and Department of Neurology, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
283
|
Smith RM, Banks W, Hansen E, Sadee W, Herman GE. Family-based clinical associations and functional characterization of the serotonin 2A receptor gene (HTR2A) in autism spectrum disorder. Autism Res 2014; 7:459-67. [PMID: 24753316 DOI: 10.1002/aur.1383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 03/24/2014] [Indexed: 01/03/2023]
Abstract
The serotonin 2A receptor gene (HTR2A) harbors two functional single nucleotide polymorphisms (SNPs) that are frequent in populations of African and European descent; rs6311, which affects mRNA expression, and rs6314, which changes the amino acid sequence of the encoded protein and affects the signaling properties of the receptor. Multiple clinical associations support a role for these SNPs in cognitive and neuropsychiatric phenotypes, although studies in autism spectrum disorder (ASD) remain equivocal. Here, we tested transmission disequilibrium of rs6311 and rs6314 in a cohort of 158 ASD trios (simplex and multiplex), observing significant under-transmission of the minor "A" allele of rs6311 to offspring with ASD (permuted P = 0.0004). Consistent with our previous findings in the dorsolateral prefrontal cortex of unaffected individuals, rs6311/A decreases expression of HTR2A mRNA with an extended 5' untranslated region (UTR) in the frontopolar cortex in brain samples from 54 ASD patients and controls. Interpreting the clinical results in the context of our mRNA expression analysis, we speculate that any risk associated with rs6311 is conferred by greater expression of the long 5'UTR mRNA isoform. The current study corroborates earlier associations between rs6311 and ASD in a family study, supporting the hypothesis that rs6311 plays a modulatory role in ASD risk.
Collapse
Affiliation(s)
- Ryan M Smith
- Department of Pharmacology, OSU College of Medicine Center for Pharmacogenomics, The Ohio State University, Columbus, Ohio
| | | | | | | | | |
Collapse
|
284
|
Brazas MD, Lewitter F, Schneider MV, van Gelder CWG, Palagi PM. A quick guide to genomics and bioinformatics training for clinical and public audiences. PLoS Comput Biol 2014; 10:e1003510. [PMID: 24722068 PMCID: PMC3983038 DOI: 10.1371/journal.pcbi.1003510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Fran Lewitter
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | | | - Celia W. G. van Gelder
- Netherlands Bioinformatics Centre and Department of Bioinformatics, Radboud Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
285
|
Reading and language disorders: the importance of both quantity and quality. Genes (Basel) 2014; 5:285-309. [PMID: 24705331 PMCID: PMC4094934 DOI: 10.3390/genes5020285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023] Open
Abstract
Reading and language disorders are common childhood conditions that often co-occur with each other and with other neurodevelopmental impairments. There is strong evidence that disorders, such as dyslexia and Specific Language Impairment (SLI), have a genetic basis, but we expect the contributing genetic factors to be complex in nature. To date, only a few genes have been implicated in these traits. Their functional characterization has provided novel insight into the biology of neurodevelopmental disorders. However, the lack of biological markers and clear diagnostic criteria have prevented the collection of the large sample sizes required for well-powered genome-wide screens. One of the main challenges of the field will be to combine careful clinical assessment with high throughput genetic technologies within multidisciplinary collaborations.
Collapse
|
286
|
Loebrich S. The role of F-actin in modulating Clathrin-mediated endocytosis: Lessons from neurons in health and neuropsychiatric disorder. Commun Integr Biol 2014; 7:e28740. [PMID: 25053985 PMCID: PMC4091099 DOI: 10.4161/cib.28740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Clathrin-mediated endocytosis is one of several mechanisms for retrieving transmembrane proteins from the cell surface. This key mechanism is highly conserved in evolution and is found in any eukaryotic cell from yeast to mammals. Studies from several model organisms have revealed that filamentous actin (F-actin) plays multiple distinct roles in shaping Clathrin-mediated endocytosis. Yet, despite the identification of numerous molecules at the interface between endocytic machinery and the cytoskeleton, our mechanistic understanding of how F-actin regulates endocytosis remains limited. Key insights come from neurons where vesicular release and internalization are critical to pre- and postsynaptic function. Recent evidence from human genetics puts postsynaptic organization, glutamate receptor trafficking, and F-actin remodeling in the spotlight as candidate mechanisms underlying neuropsychiatric disorders. Here I review recent findings that connect the F-actin cytoskeleton mechanistically to Clathrin-mediated endocytosis in the central nervous system, and discuss their potential involvement in conferring risk for neuropsychiatric disorder.
Collapse
Affiliation(s)
- Sven Loebrich
- Picower Institute for Learning and Memory; Massachusetts Institute of Technology; Cambridge, MA USA
| |
Collapse
|
287
|
Luxton GWG, Starr DA. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Curr Opin Cell Biol 2014; 28:69-75. [PMID: 24704701 DOI: 10.1016/j.ceb.2014.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
Nuclear-cytoskeletal connections are central to fundamental cellular processes, including nuclear positioning and chromosome movements in meiosis. The cytoskeleton is coupled to the nucleoskeleton through conserved KASH-SUN bridges, or LINC complexes, that span the nuclear envelope. KASH proteins localize to the outer nuclear membrane where they connect the nucleus to the cytoskeleton. New findings have expanded the functional diversity of KASH proteins, showing that they interact with microtubule motors, actin, intermediate filaments, a nonconventional myosin, RanGAP, and each other. The role of KASH proteins in cellular mechanics is discussed. Genetic mutations in KASH proteins are associated with autism, hearing loss, cancer, muscular dystrophy and other diseases.
Collapse
Affiliation(s)
- G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
288
|
Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 2014; 27:75-81. [PMID: 24694749 DOI: 10.1016/j.conb.2014.03.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
The development of functional neural circuits relies upon the coordination of various cell types. In particular, astrocytes play a crucial role in orchestrating neural development by powerfully coordinating synapse formation and function, neuronal survival, and axon guidance. While astrocytes help to shape neural circuits in the developing brain, the mechanisms underlying their own development may play an equally crucial role in nervous system function. The onset of astrogenesis is a temporally regulated phenomenon that relies upon exogenously secreted cues and intrinsic chromatin changes. Defects in the mechanisms underlying astrogenesis or in astrocyte function during early development may contribute to the progression of a variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States.
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States
| |
Collapse
|
289
|
Marrale M, Albanese NN, Calì F, Romano V. Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation. PLoS One 2014; 9:e90947. [PMID: 24667286 PMCID: PMC3965395 DOI: 10.1371/journal.pone.0090947] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/06/2014] [Indexed: 12/31/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies have investigated the role of de novo Copy Number Variants (CNVs) and microRNAs as important but distinct etiological factors in ASD. We developed a novel computational procedure to assess the potential pathogenic role of microRNA genes overlapping de novo CNVs in ASD patients. Here we show that for chromosomes # 1, 2 and 22 the actual number of miRNA loci affected by de novo CNVs in patients was found significantly higher than that estimated by Monte Carlo simulation of random CNV events. Out of 24 miRNA genes over-represented in CNVs from these three chromosomes only hsa-mir-4436b-1 and hsa-mir-4436b-2 have not been detected in CNVs from non-autistic subjects as reported in the Database of Genomic Variants. Altogether the results reported in this study represent a first step towards a full understanding of how a dysregulated expression of the 24 miRNAs genes affect neurodevelopment in autism. We also propose that the procedure used in this study can be effectively applied to CNVs/miRNA genes association data in other genomic disorders beyond autism.
Collapse
Affiliation(s)
- Maurizio Marrale
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
| | | | - Francesco Calì
- U.O.C. di Genetica Medica Laboratorio di Genetica Molecolare, Associazione Oasi Maria SS. (I.R.C.C.S.), Troina, Italy
| | - Valentino Romano
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
- U.O.C. di Genetica Medica Laboratorio di Genetica Molecolare, Associazione Oasi Maria SS. (I.R.C.C.S.), Troina, Italy
- * E-mail:
| |
Collapse
|
290
|
Kim YS, State MW. Recent challenges to the psychiatric diagnostic nosology: a focus on the genetics and genomics of neurodevelopmental disorders. Int J Epidemiol 2014; 43:465-75. [PMID: 24618187 DOI: 10.1093/ije/dyu037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the genetics of neurodevelopmental disorder (NDD) have demonstrated that rare mutations play a role not only in Mendelian syndromes, but in complex, common forms of NDDs as well. Strikingly, both common polymorphisms and rare variations in a single gene or genetic locus have been found to carry risk for conditions previously considered to be clinically and aetiologically distinct. Recent developments in the methods and tools available for studying complex NDDs have led to systematic and reliable genome-wide variant discovery. Both common as well as rare, and structural as well as sequence, genetic variations have been identified as contributing to NDDs. There are multiple examples in which the identical variant had been found to contribute to a wide range of formerly distinct diagnoses, including autism, schizophrenia, epilepsy, intellectual disability and language disorders. These include variations in chromosomal structure at 16p11.2, rare de novo point mutations at the gene SCN2A, and common single nucleotide polymorphisms (SNPs) mapping near loci encoding the genes ITIH3, AS3MT, CACNA1C and CACNB2. These selected examples point to the challenges to current diagnostic approaches. Widely used categorical schema have been adequate to provide an entré into molecular mechanisms of NDDs, but there is a need to develop an alternative, more biologically-relevant nosology. Thus recent advances in gene discovery in the area of NDDs are leading to a re-conceptualization of diagnostic boundaries. Findings suggest that epidemiological samples may provide important new insights into the genetics and diagnosis of NDDs and that other areas of medicine may provide useful models for developing a new diagnostic nosology, one that simultaneously integrates categorical diagnoses, biomarkers and dimensional variables.
Collapse
Affiliation(s)
- Young Shin Kim
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA, Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea and Department of Psychiatry, University of California, San Francisco, CA, USA
| | | |
Collapse
|
291
|
Chan Y, Lim E, Sandholm N, Wang S, McKnight A, Ripke S, Daly M, Neale B, Salem R, Hirschhorn J, Daly MJ, Neale BM, Salem RM, Hirschhorn JN. An excess of risk-increasing low-frequency variants can be a signal of polygenic inheritance in complex diseases. Am J Hum Genet 2014; 94:437-52. [PMID: 24607388 DOI: 10.1016/j.ajhg.2014.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/12/2014] [Indexed: 02/05/2023] Open
Abstract
In most complex diseases, much of the heritability remains unaccounted for by common variants. It has been postulated that lower-frequency variants contribute to the remaining heritability. Here, we describe a method to test for polygenic inheritance from lower-frequency variants by using GWAS summary association statistics. We explored scenarios with many causal low-frequency variants and showed that there is more power to detect risk variants than to detect protective variants, resulting in an increase in the ratio of detected risk to protective variants (R/P ratio). Such an excess can also occur if risk variants are present and kept at lower frequencies because of negative selection. The R/P ratio can be falsely elevated because of reasons unrelated to polygenic inheritance, such as uneven sample sizes or asymmetric population stratification, so precautions to correct for these confounders are essential. We tested our method on published GWAS results and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) but not others. We also explored the shared genetic component in overlapping phenotypes related to inflammatory bowel disease (Crohn disease [CD] and ulcerative colitis [UC]) and diabetic nephropathy (macroalbuminuria and end-stage renal disease [ESRD]). Although the signal was still present when both CD and UC were jointly analyzed, the signal was lost when macroalbuminuria and ESRD were jointly analyzed, suggesting that these phenotypes should best be studied separately. Thus, our method may also help guide the design of future genetic studies of various traits and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mark J Daly
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, MA 02114, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, MA 02114, USA
| | - Rany M Salem
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joel N Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
292
|
Lesch KP. Editorial: Illuminating the dark matter of developmental neuropsychiatric genetics - strategic focus for future research in child psychology and psychiatry. J Child Psychol Psychiatry 2014; 55:201-3. [PMID: 24552481 DOI: 10.1111/jcpp.12223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research on genetic factors influencing cognitive and behavioural traits or which are central to the aetiology of neuropsychiatric diseases has been complicated by a furtive discrepancy between high heritability estimates and a scarcity of replicable gene-disorder associations. This 'missing heritability' has been either euphemised as the 'dark matter' of gene-trait association or aggravated as the 'looming crisis in behavioural genetics'. Nevertheless, in recognising the importance of this topic for our understanding of child psychiatric conditions and highlighting its commitment to the field, the Journal of Child Psychology and Psychiatry (JCPP) has for the first time appointed an editor with special responsibility for molecular (epi)genetics.
Collapse
|
293
|
Abstract
Genetics has been revolutionised by recent technologies. The latest addition to these advances is next-generation sequencing, which is set to transform clinical diagnostics in every branch of medicine. In the research arena this has already been instrumental in identifying hundreds of novel genetic syndromes, making a molecular diagnosis possible for the first time in numerous refractory cases. However, the pace of change has left many clinicians bewildered by new terminology and the implications of next-generation sequencing for their clinical practice. The rapid developments have also left many diagnostic laboratories struggling to implement these new technologies with limited resources. This review explains the basic concepts of next-generation sequencing, gives examples of its role in clinically applied research and examines the challenges of its introduction into clinical practice.
Collapse
|
294
|
Aigner S, Heckel T, Zhang JD, Andreae LC, Jagasia R. Human pluripotent stem cell models of autism spectrum disorder: emerging frontiers, opportunities, and challenges towards neuronal networks in a dish. Psychopharmacology (Berl) 2014; 231:1089-104. [PMID: 24232378 PMCID: PMC3932166 DOI: 10.1007/s00213-013-3332-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/10/2013] [Indexed: 01/29/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in language development and social cognition and the manifestation of repetitive and restrictive behaviors. Despite recent major advances, our understanding of the pathophysiological mechanisms leading to ASD is limited. Although most ASD cases have unknown genetic underpinnings, animal and human cellular models of several rare, genetically defined syndromic forms of ASD have provided evidence for shared pathophysiological mechanisms that may extend to idiopathic cases. Here, we review our current knowledge of the genetic basis and molecular etiology of ASD and highlight how human pluripotent stem cell-based disease models have the potential to advance our understanding of molecular dysfunction. We summarize landmark studies in which neuronal cell populations generated from human embryonic stem cells and patient-derived induced pluripotent stem cells have served to model disease mechanisms, and we discuss recent technological advances that may ultimately allow in vitro modeling of specific human neuronal circuitry dysfunction in ASD. We propose that these advances now offer an unprecedented opportunity to help better understand ASD pathophysiology. This should ultimately enable the development of cellular models for ASD, allowing drug screening and the identification of molecular biomarkers for patient stratification.
Collapse
Affiliation(s)
- Stefan Aigner
- Neuroscience Research and Early Clinical Development, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| | - Tobias Heckel
- Translational Technology and Bioinformatics, Non-Clinical Safety, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| | - Jitao D. Zhang
- Translational Technology and Bioinformatics, Non-Clinical Safety, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| | - Laura C. Andreae
- MRC Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL UK
| | - Ravi Jagasia
- Neuroscience Research and Early Clinical Development, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
295
|
Talkowski ME, Minikel EV, Gusella JF. Autism spectrum disorder genetics: diverse genes with diverse clinical outcomes. Harv Rev Psychiatry 2014; 22:65-75. [PMID: 24614762 PMCID: PMC9369102 DOI: 10.1097/hrp.0000000000000002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The last several years have seen unprecedented advances in deciphering the genetic etiology of autism spectrum disorders (ASDs). Heritability studies have repeatedly affirmed a contribution of genetic factors to the overall disease risk. Technical breakthroughs have enabled the search for these genetic factors via genome-wide surveys of a spectrum of potential sequence variations, from common single-nucleotide polymorphisms to essentially private chromosomal abnormalities. Studies of copy-number variation have identified significant roles for both recurrent and nonrecurrent large dosage imbalances, although they have rarely revealed the individual genes responsible. More recently, discoveries of rare point mutations and characterization of balanced chromosomal abnormalities have pinpointed individual ASD genes of relatively strong effect, including both loci with strong a priori biological relevance and those that would have otherwise been unsuspected as high-priority biological targets. Evidence has also emerged for association with many common variants, each adding a small individual contribution to ASD risk. These findings collectively provide compelling empirical data that the genetic basis of ASD is highly heterogeneous, with hundreds of genes capable of conferring varying degrees of risk, depending on their nature and the predisposing genetic alteration. Moreover, many genes that have been implicated in ASD also appear to be risk factors for related neurodevelopmental disorders, as well as for a spectrum of psychiatric phenotypes. While some ASD genes have evident functional significance, like synaptic proteins such as the SHANKs, neuroligins, and neurexins, as well as fragile x mental retardation-associated proteins, ASD genes have also been discovered that do not present a clear mechanism of specific neurodevelopmental dysfunction, such as regulators of chromatin modification and global gene expression. In its sum, the progress from genetic studies to date has been remarkable and increasingly rapid, but the interactive impact of strong-effect genetic lesions coupled with weak-effect common polymorphisms has not yet led to a unified understanding of ASD pathogenesis or explained its highly variable clinical expression. With an increasingly firm genetic foundation, the coming years will hopefully see equally rapid advances in elucidating the functional consequences of ASD genes and their interactions with environmental/experiential factors, supporting the development of rational interventions.
Collapse
Affiliation(s)
- Michael E Talkowski
- From Harvard Medical School (Drs. Talkowski and Gusella); Department of Neurology (Drs. Talkowski and Gusella), Psychiatric and Neurodevelopmental Genetics Unit (Dr. Talkowski) and Molecular Neurogenetics Unit, Center for Human Genetic Research (Drs. Talkowski and Gusella, and Mr. Minikel), Massachusetts General Hospital, Boston, MA
| | | | | |
Collapse
|
296
|
Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, Schuurs-Hoeijmakers JHM, Marcelis CL, Willemsen MH, Vissers LELM, Yntema HG, Bakshi M, Wilson M, Witherspoon KT, Malmgren H, Nordgren A, Annerén G, Fichera M, Bosco P, Romano C, de Vries BBA, Kleefstra T, Kooy RF, Eichler EE, Van der Aa N. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 2014; 46:380-4. [PMID: 24531329 PMCID: PMC3990853 DOI: 10.1038/ng.2899] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Despite a high heritability, a genetic diagnosis can only be established in a minority of patients with autism spectrum disorder (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities1. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, such as the Rett and Fragile X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next generation sequencing, for the large majority of cases no molecular diagnosis can be established 2-7. Here, we report 10 patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD genes known to date.
Collapse
Affiliation(s)
| | - Anneke T Vulto-van Silfhout
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2]
| | - Bradley P Coe
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA. [3]
| | - Geert Vandeweyer
- 1] Department of Medical Genetics, University of Antwerp, Antwerp, Belgium. [2] Biomedical informatics research center Antwerpen (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Edegem, Belgium
| | - Liesbeth Rooms
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlo L Marcelis
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madhura Bakshi
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Kali T Witherspoon
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Helena Malmgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Annerén
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Marco Fichera
- 1] Unit of Neurology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy. [2] Medical Genetics, University of Catania, Catania, Italy
| | - Paolo Bosco
- Laboratory of Cytogenetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Bert B A de Vries
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Nathalie Van der Aa
- 1] Department of Medical Genetics, University of Antwerp, Antwerp, Belgium. [2] University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
297
|
Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, Geschwind DH. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2014; 155:1008-21. [PMID: 24267887 DOI: 10.1016/j.cell.2013.10.031] [Citation(s) in RCA: 753] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/31/2013] [Accepted: 10/03/2013] [Indexed: 01/09/2023]
Abstract
Genetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility genes, raising two critical questions: (1) do these genetic loci converge on specific biological processes, and (2) where does the phenotypic specificity of ASD arise, given its genetic overlap with intellectual disability (ID)? To address this, we mapped ASD and ID risk genes onto coexpression networks representing developmental trajectories and transcriptional profiles representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that implicate distinct biological functions during human cortical development, including early transcriptional regulation and synaptic development. Bioinformatic analyses suggest that translational regulation by FMRP and transcriptional coregulation by common transcription factors connect these processes. At a circuit level, ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons. Furthermore, we show that the patterns of ASD and ID risk genes are distinct, providing a biological framework for further investigating the pathophysiology of ASD.
Collapse
Affiliation(s)
- Neelroop N Parikshak
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Treating the whole person with autism: the proceedings of the Autism Speaks National Autism Conference. Curr Probl Pediatr Adolesc Health Care 2014; 44:26-47. [PMID: 24491508 DOI: 10.1016/j.cppeds.2013.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
The identification of autism spectrum disorders has increased dramatically over the past decade, with the latest estimates indicating prevalence as high as 1 in 54 boys. There is greater awareness of medical conditions that co-occur with autism and expansion of treatment options. Closer scrutiny has led to refinement of the diagnostic criteria, and there have been advances in genetics examining potential causal factors. Transition to adulthood is an area of growing concern, and professionals and families require guidance on this issue. This article summarizes the proceedings of the Autism Speaks conference on Treating the Whole Person with Autism: Care across the Lifespan. The conference was organized with the intent of providing a forum for both families and professionals to learn about the most current research in the field. Dr. Sue Swedo provides important background information regarding the changes in the diagnostic criteria for autism spectrum disorders. She particularly deals with the concerns of individuals and families that their autism diagnosis may change. Recommendations for genetic testing and its interpretation are provided by Dr. David Miller. His discussion helps make sense of the utility of genetic testing for ASD, along with demonstration of the complexity of determining which genetic factors are doing what and through which pathways. Dr. Jeremy Veenstra-VanderWeele provides useful background information on how medicines are initially identified and for what purpose and goes on to describe the present and future treatments in pharmacology. Medical issues are addressed by Dr. Paul Carbone, especially the coordination of comprehensive services through the medical home model of care. Dr. Julie Lounds Taylor concludes with guidance on preparation for adulthood, a topic of great importance to families as their child matures and for the professionals who will help guide this transition.
Collapse
|
299
|
Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry 2014; 19:156-8. [PMID: 24342990 DOI: 10.1038/mp.2013.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 02/02/2023]
Abstract
Although inherited DNA sequences have a well-demonstrated role in psychiatric disease risk, for even the most heritable mental disorders, monozygotic twins are discordant at a significant rate. The genetic variation associated with mental disorders has heretofore been based on the search for rare or common variation in blood cells. This search is based on the premise that every somatic cell shares an identical DNA sequence, so that variation found in lymphocytes should reflect variation present in brain cells. Evidence from the study of cancer cells, stem cells and now neurons demonstrate that this premise is false. Somatic mutation is common in human cells and has been implicated in a range of diseases beyond cancer. The exuberant proliferation of cortical precursors during fetal development provides a likely environment for somatic mutation in neuronal and glial lineages. Studies of rare neurodevelopmental disorders, such as hemimegencephaly, demonstrate somatic mutations in affected cortical cells that cannot be detected in unaffected parts of the brain or in peripheral cells. This perspective argues for the need to investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins, a proximate cause of mental disorders in individuals with inherited risk, and a potential guide to novel treatment targets.
Collapse
|
300
|
Wittkowski KM, Sonakya V, Bigio B, Tonn MK, Shic F, Ascano M, Nasca C, Gold-Von Simson G. A novel computational biostatistics approach implies impaired dephosphorylation of growth factor receptors as associated with severity of autism. Transl Psychiatry 2014; 4:e354. [PMID: 24473445 PMCID: PMC3905234 DOI: 10.1038/tp.2013.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/16/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
The prevalence of autism spectrum disorders (ASDs) has increased 20-fold over the past 50 years to >1% of US children. Although twin studies attest to a high degree of heritability, the genetic risk factors are still poorly understood. We analyzed data from two independent populations using u-statistics for genetically structured wide-locus data and added data from unrelated controls to explore epistasis. To account for systematic, but disease-unrelated differences in (non-randomized) genome-wide association studies (GWAS), a correlation between P-values and minor allele frequency with low granularity data and for conducting multiple tests in overlapping genetic regions, we present a novel study-specific criterion for 'genome-wide significance'. From recent results in a comorbid disease, childhood absence epilepsy, we had hypothesized that axonal guidance and calcium signaling are involved in autism as well. Enrichment of the results in both studies with related genes confirms this hypothesis. Additional ASD-specific variations identified in this study suggest protracted growth factor signaling as causing more severe forms of ASD. Another cluster of related genes suggests chloride and potassium ion channels as additional ASD-specific drug targets. The involvement of growth factors suggests the time of accelerated neuronal growth and pruning at 9-24 months of age as the period during which treatment with ion channel modulators would be most effective in preventing progression to more severe forms of autism. By extension, the same computational biostatistics approach could yield profound insights into the etiology of many common diseases from the genetic data collected over the last decade.
Collapse
Affiliation(s)
- K M Wittkowski
- The Rockefeller University, Center for Clinical and Translational Science, New York, NY, USA
| | - V Sonakya
- The Rockefeller University, Center for Clinical and Translational Science, New York, NY, USA
| | - B Bigio
- The Rockefeller University, Center for Clinical and Translational Science, New York, NY, USA
| | - M K Tonn
- Hochschule Koblenz, RheinAhrCampus, Joseph-Rovan-Allee 2, Remagen, Germany
| | - F Shic
- Yale School of Medicine, Yale Autism Program, New Haven, CT, USA
| | - M Ascano
- Tuschl Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - C Nasca
- McEwen Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|