251
|
Apostolou E, Kapsogeorgou EK, Konsta OD, Giotakis I, Saridaki MI, Andreakos E, Tzioufas AG. Expression of type III interferons (IFNλs) and their receptor in Sjögren's syndrome. Clin Exp Immunol 2016; 186:304-312. [PMID: 27613139 PMCID: PMC5108072 DOI: 10.1111/cei.12865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 02/03/2023] Open
Abstract
Type III interferons (IFNs) or IFN-λs (IFN-λ1/IL29, IFN-λ2/interleukin (IL)-28A and IFN-λ3/IL-28B) consist of a recently identified group of IFNs, implicated initially in several human diseases, including cancer and autoimmunity. In this study, we sought to investigate the expression of type III IFNs and their common receptor IFN-λR1/IL-28Ra in Sjögren's syndrome (SS). Type III IFN expression was examined in minor salivary gland tissues (MSG), peripheral blood mononuclear cells (PBMCs), sera and resting or Toll-like receptor (TLR)-stimulated salivary gland epithelial cells (SGEC) from SS patients and sicca-complaining controls. All type III IFN family members were detected in ductal and acinar epithelia of MSGs from both SS patients and sicca controls. IFN-λ2/IL-28A and IFN-λ3/IL-28B were also expressed in infiltrating mononuclear cells. In SS patients with intermediate MSG lesions, the epithelial expression of IFN-λ2/IL-28A was more intense compared to sicca controls (P < 0·05). The receptor IFN-λR1/IL-28Ra was detected in all types of cells except fibroblasts, and was exceptionally strong in plasmatocytoid dendritic cells, indicating that they are susceptible to type III IFN-mediated regulation. In the periphery, only IFN-λ1/IL-29 was detected in the sera and was elevated significantly in SS patients with intermediate MSG inflammatory lesions compared to sicca controls (P = 0·0053). None of the type III IFNs was expressed constitutively in resting SGECs; they were all induced readily by TLR-3 stimulation, suggesting that the in-situ epithelial expression can be attributed to local microenvironment. Type III IFNs are expressed in MSGs in a similar pattern to type I IFNs and their expression is probably subjected to micro-environmental regulation, suggesting that they are implicated in the inflammatory processes occurring in the affected exocrine glands.
Collapse
Affiliation(s)
- E. Apostolou
- Pathophysiology DepartmentNational and Kapodistrian University of AthensAthensGreece
- Academic Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
| | - E. K. Kapsogeorgou
- Pathophysiology DepartmentNational and Kapodistrian University of AthensAthensGreece
- Academic Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
| | - O. D. Konsta
- Pathophysiology DepartmentNational and Kapodistrian University of AthensAthensGreece
- Academic Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
| | - I. Giotakis
- 2nd Otolaryngology Department, ‘Attikon’ University Hospital, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - M. I. Saridaki
- Department of ImmunologyCenter for Clinical and Translational Research, Biomedical Research Foundation Academy of AthensAthensGreece
| | - E. Andreakos
- Department of ImmunologyCenter for Clinical and Translational Research, Biomedical Research Foundation Academy of AthensAthensGreece
| | - A. G. Tzioufas
- Pathophysiology DepartmentNational and Kapodistrian University of AthensAthensGreece
- Academic Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
252
|
Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 2016; 13:711-721. [PMID: 27818489 PMCID: PMC5101451 DOI: 10.1038/cmi.2016.58] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
253
|
Luo S, Wang Y, Zhao M, Lu Q. The important roles of type I interferon and interferon-inducible genes in systemic lupus erythematosus. Int Immunopharmacol 2016; 40:542-549. [PMID: 27769023 DOI: 10.1016/j.intimp.2016.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease that causes multiple-organ dysfunction mainly affecting women in their childbearing years. Type I IFN synthesis is usually triggered by viruses, and its production is tightly regulated and limited in time in health individuals. However, many patients with systemic autoimmune diseases including SLE have signs of aberrant production of type I interferon (IFN) and display an increased expression of IFN-inducible genes. Continuous type I IFNs derived from activated plasmacytoid dendritic cells (pDCs) by interferogenic immune complexes (ICs) and migration of these cells to tissues both break immune tolerance and promote an on-going autoimmune reaction in human body. By the means of detecting type I IFNs and IFN-inducible genes, it can help with diagnosis and evaluation of SLE in early stage and more efficiently. Anti-IFN-α monoclonal antibodies in SLE patients were recently reported and is now being investigated in phase II clinical trails. In this review, we focus on recent research progress in type I IFN and IFN-inducible genes. Possible mechanisms behind the dysregulated type I IFN system in SLE and how they contribute to the development of an autoimmune process, and act as a biomarker and therapeutic target will be reviewed.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China
| | - Yunuo Wang
- Department of Endocrinology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China.
| |
Collapse
|
254
|
Heim MH, Bochud PY, George J. Host - hepatitis C viral interactions: The role of genetics. J Hepatol 2016; 65:S22-S32. [PMID: 27641986 DOI: 10.1016/j.jhep.2016.07.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN)-induced genes, and a delayed induction of adaptive immune responses. There is a strong association between genetic variants in the IFNλ (IL28B) locus with the rate of spontaneous clearance. Individuals with the ancestral IFNλ4 allele capable of producing a fully active IFNλ4 are paradoxically not able to clear HCV in the acute phase and develop chronic hepatitis C (CHC) with more than 90% probability. In the chronic phase of HCV infection, the wild-type IFNλ4 genotype is strongly associated with an induction of hundreds of classical type I/type III IFN stimulated genes in hepatocytes. However, the activation of the endogenous IFN system in the liver is ineffective in clearing HCV, and is even associated with impaired therapeutic responses to pegylated (Peg)IFNα containing treatments. While the role of genetic variation in the IFNλ locus to the outcome of CHC treatment has declined, it is clear that variation not only at this locus, but also at other loci, modulate clinically important liver phenotypes, including inflammation, fibrosis progression and the development of hepatocellular cancer. In this review, we summarize current knowledge about the role of genetics in the host response to viral hepatitis and the potential future evolution of knowledge in understanding host-viral interactions.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne-CHUV, Switzerland.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
255
|
Davidson S, McCabe TM, Crotta S, Gad HH, Hessel EM, Beinke S, Hartmann R, Wack A. IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment. EMBO Mol Med 2016; 8:1099-112. [PMID: 27520969 PMCID: PMC5009813 DOI: 10.15252/emmm.201606413] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV)‐induced severe disease is characterized by infected lung epithelia, robust inflammatory responses and acute lung injury. Since type I interferon (IFNαβ) and type III interferon (IFNλ) are potent antiviral cytokines with immunomodulatory potential, we assessed their efficacy as IAV treatments. IFNλ treatment of IAV‐infected Mx1‐positive mice lowered viral load and protected from disease. IFNα treatment also restricted IAV replication but exacerbated disease. IFNα treatment increased pulmonary proinflammatory cytokine secretion, innate cell recruitment and epithelial cell death, unlike IFNλ‐treatment. IFNλ lacked the direct stimulatory activity of IFNα on immune cells. In epithelia, both IFNs induced antiviral genes but no inflammatory cytokines. Similarly, human airway epithelia responded to both IFNα and IFNλ by induction of antiviral genes but not of cytokines, while hPBMCs responded only to IFNα. The restriction of both IFNλ responsiveness and productive IAV replication to pulmonary epithelia allows IFNλ to limit IAV spread through antiviral gene induction in relevant cells without overstimulating the immune system and driving immunopathology. We propose IFNλ as a non‐inflammatory and hence superior treatment option for human IAV infection.
Collapse
Affiliation(s)
- Sophia Davidson
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| | - Teresa M McCabe
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| | - Stefania Crotta
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GSK, Stevenage, UK
| | - Soren Beinke
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GSK, Stevenage, UK
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas Wack
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
256
|
|
257
|
Monteleone K, Scheri GC, Statzu M, Selvaggi C, Falasca F, Giustini N, Mezzaroma I, Turriziani O, d'Ettorre G, Antonelli G, Scagnolari C. IFN-stimulated gene expression is independent of the IFNL4 genotype in chronic HIV-1 infection. Arch Virol 2016; 161:3263-8. [PMID: 27558125 DOI: 10.1007/s00705-016-3016-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/12/2016] [Indexed: 01/16/2023]
Abstract
This study aimed to evaluate the association between the IFNL4 rs368234815 (ΔG/TT) dinucleotide polymorphism and the IFN response during chronic HIV-1 infection. We carried out genotyping analysis and measured the expression of IFN-stimulated genes (ISGs) (myxovirus resistance protein A [MxA], ISG15, ISG56, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like [APOBEC] 3F and APOBEC3G) on peripheral blood mononuclear cells collected from naïve and HAART-treated HIV-1-infected patients. There were no statistically significant differences in endogenous ISGs mRNA levels among HIV-1-positive patients bearing different IFNL4 genotypes, suggesting that ISG expression is independent of the IFNL4 genotype in HIV-1 infection.
Collapse
Affiliation(s)
- Katia Monteleone
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Giuseppe Corano Scheri
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Maura Statzu
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Carla Selvaggi
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Francesca Falasca
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Noemi Giustini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ivano Mezzaroma
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Sapienza University of Rome, Viale di Porta Tiburtina n° 28, 00185, Rome, Italy.
| |
Collapse
|
258
|
The Effect of Chronic Hepatitis B Virus Infection on BDCA3+ Dendritic Cell Frequency and Function. PLoS One 2016; 11:e0161235. [PMID: 27529176 PMCID: PMC4987041 DOI: 10.1371/journal.pone.0161235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection results from inadequate HBV-specific immunity. BDCA3+ dendritic cells (DCs) are professional antigen presenting cells considered to be important for antiviral responses because of specific characteristics, including high interferon-λ production. BDCA3+ DCs may thus also have a role in the immune response against HBV, and immunotherapeutic strategies aiming to activate DCs, including BDCA3+ DCs, in patient livers may represent an interesting treatment option for chronic HBV. However, neither the effect of chronic hepatitis B (CHB) infection on the frequency and function of BDCA3+ DCs in liver and blood, nor the effect of the viral surface protein (HBsAg) that is abundantly present in blood of infected individuals are known. Here, we provide an overview of BDCA3+ DC frequency and functional capacity in CHB patients. We find that intrahepatic BDCA3+ DC numbers are increased in CHB patients. BDCA3+ DCs from patient blood are not more mature at steady state, but display an impaired capacity to mature and to produce interferon-λ upon polyI:C stimulation. Furthermore, in vitro experiments exposing blood and intrahepatic BDCA3+ DCs to the viral envelope protein HBsAg demonstrate that HBsAg does not directly induce phenotypical maturation of BDCA3+ DCs, but may reduce IFN-λ production via an indirect unknown mechanism. These results suggest that BDCA3+ DCs are available in the blood and on site in HBV infected livers, but measures may need to be taken to revive their function for DC-targeted therapy.
Collapse
|
259
|
Abstract
"Rotaviruses represent the most important etiological agents of acute, severe gastroenteritis in the young of many animal species, including humans." This statement, variations of which are a common beginning in articles about rotaviruses, reflects the fact that these viruses have evolved efficient strategies for evading the innate immune response of the host and for successfully replicating in the population. In this review, we summarize what is known about the defense mechanisms that host cells employ to prevent rotavirus invasion and the countermeasures that these viruses have successfully developed to surpass cellular defenses. Rotaviruses use at least two viral multifunctional proteins to directly interact with, and prevent the activation of, the interferon system, and they use at least one other protein to halt the protein synthesis machinery and prevent the expression of most of the transcriptional antiviral program of the cell. Characterization of the confrontation between rotaviruses and their host cells has allowed us to learn about the virus-host coevolution that prevents the damaging effects of the innate immune response.
Collapse
Affiliation(s)
- Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Liliana Sánchez-Tacuba
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Joaquin Moreno
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Carlos F Arias
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| |
Collapse
|
260
|
Now H, Yoo JY. AG490 and PF431396 Sensitive Tyrosine Kinase Control the Population Heterogeneity of Basal STAT1 Activity in Ube1l Deficient Cells. PLoS One 2016; 11:e0159453. [PMID: 27427993 PMCID: PMC4948911 DOI: 10.1371/journal.pone.0159453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022] Open
Abstract
A population often contains distinct sub-populations, thereby increasing the complexity of the overall heterogeneity. However, the cellular origin and biological relevance of sub-populations in cell population have not been clearly identified. Here we demonstrated the novel roles of ISGylation, which is an IFN-induced post-translational modification, controlling heterogeneity at the population level in cultured adherent cells. Without UBE1L, an E1 enzyme of ISGylation, mouse embryonic fibroblasts (MEF) exhibited low viral resistance despite high STAT1 and ISG expression compared with the wild-type MEF. We observe that Ube1l−/− MEF populations consist of two behaviorally distinguishable sub-populations with distinct basal STAT1 activity, while wild-type MEF populations are unimodal. This population heterogeneity in Ube1l knock-out cells was perturbed by tyrosine kinase inhibitors, AG490 and PF431396. In contrast, the neutralization of type I IFN did not affect population heterogeneity. Based on these results, we concluded that UBE1L functions to adjust basal immunological states with the regulation of population heterogeneity.
Collapse
Affiliation(s)
- Hesung Now
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- * E-mail:
| |
Collapse
|
261
|
Chinnaswamy S. Gene-disease association with human IFNL locus polymorphisms extends beyond hepatitis C virus infections. Genes Immun 2016; 17:265-75. [PMID: 27278127 PMCID: PMC7091887 DOI: 10.1038/gene.2016.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/01/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Interferon (IFN) lambda (IFN-λ or type III IFN) gene polymorphisms were discovered in the year 2009 to have a strong association with spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection in human hosts. This landmark discovery also brought renewed interest in type III IFN biology. After more than half a decade since this discovery, we now have reports that show that genetic association of IFNL gene polymorphisms in humans is not limited only to HCV infections but extends beyond, to include varied diseases such as non-alcoholic fatty liver disease, allergy and several other viral diseases including that caused by the human immunodeficiency virus. Notably, all these conditions have strong involvement of host innate immune responses. After the discovery of a deletion polymorphism that leads to the expression of a functional IFN-λ4 as the prime 'functional' variant, the relevance of other polymorphisms regulating the expression of IFN-λ3 is in doubt. Herein, I seek to critically address these issues and review the current literature to provide a framework to help further understanding of IFN-λ biology.
Collapse
Affiliation(s)
- S Chinnaswamy
- National Institute of Biomedical Genomics, Kalyani, West Bengal India
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
262
|
Sang Y, Liu Q, Lee J, Ma W, McVey DS, Blecha F. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity. Sci Rep 2016; 6:29072. [PMID: 27356970 PMCID: PMC4928184 DOI: 10.1038/srep29072] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/14/2016] [Indexed: 01/12/2023] Open
Abstract
Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24–37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption.
Collapse
Affiliation(s)
- Yongming Sang
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - Qinfang Liu
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - Jinhwa Lee
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - Wenjun Ma
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA.,Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - D Scott McVey
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA.,Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Frank Blecha
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| |
Collapse
|
263
|
Paludan SR. Innate Antiviral Defenses Independent of Inducible IFNα/β Production. Trends Immunol 2016; 37:588-596. [PMID: 27345728 DOI: 10.1016/j.it.2016.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
The type I interferons (IFNs) (IFNα and IFNβ) not only have potent antiviral activities, but also have pathological functions if produced at high levels or over a long time. Recent articles have described antiviral immune mechanisms that are activated in response to virus infection at epithelial surfaces independently of IFNα and IFNβ. This may allow the host to exert rapid local antiviral activity and only induce a full-blown, and potentially pathological, type I IFN response in situations where stronger protective immunity is needed. Here, I describe the emerging understanding of early antiviral defenses, which are independent of type I IFN responses, and also discuss how this enables tissues to exert rapid antiviral activities and to limit type I IFN production.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
264
|
Saleiro D, Kosciuczuk EM, Platanias LC. Beyond autophagy: New roles for ULK1 in immune signaling and interferon responses. Cytokine Growth Factor Rev 2016; 29:17-22. [PMID: 27068414 PMCID: PMC4899287 DOI: 10.1016/j.cytogfr.2016.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
The human serine/threonine kinase ULK1 is the human homolog of the Caenorhabditis elegans Unc-51 kinase and of the Saccharomyces cerevisiae autophagy-related protein kinase Atg1. As Unc-51 and Atg1, ULK1 regulates both axon growth and autophagy, respectively, in mammalian cells. However, a novel immunoregulatory role of ULK1 has been recently described. This kinase was shown to be required for regulation of both type I interferon (IFN) production and induction of type I IFN signaling. Optimal regulation of IFN production is crucial for generation of effective IFN-immune responses, and defects in such networks can be detrimental for the host leading to uncontrolled pathogen infection, tumor growth, or autoimmune diseases. Thus, ULK1 plays a central role in IFN-dependent immunity. Here we review the diverse roles of ULK1, with special focus on its importance to type I IFN signaling, and highlight important future study questions.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA.
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
265
|
de Seixas Santos Nastri AC, de Mello Malta F, Diniz MA, Yoshino A, Abe-Sandes K, Dos Santos SEB, de Castro Lyra A, Carrilho FJ, Pinho JRR. Association of IFNL3 and IFNL4 polymorphisms with hepatitis C virus infection in a population from southeastern Brazil. Arch Virol 2016; 161:1477-84. [PMID: 26973228 DOI: 10.1007/s00705-016-2809-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/28/2016] [Indexed: 01/18/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and associated complications such as liver cirrhosis and hepatocellular carcinoma (HCC). Viral and host factors are known to be predictors for antiviral therapy. Host factors that are predictors of sustained viral response (SVR) were discovered by genome-wide association studies (GWAS), including single-nucleotide polymorphisms (SNPs) in or near the interferon lambda gene (rs8099917, rs12979860 and rs368234815). The aim of the present study was to verify the genotype frequencies of SNPs rs8099917, rs12979860 and rs368234815 and to evaluate the association between SNPs and the outcome of HCV infection, taking into account the population ancestry. In this study, there was an association of the three polymorphisms with both clinical outcome and response to treatment with PEG-IFN and RBV. The polymorphisms rs12979860 and rs368234815 were associated with increased sensitivity (97.7 %, 95 % CI 87.2-100, and 93.3 %, 95 % CI 81.3-98.3; respectively) and with a greater predictive value of a positive response to treatment. In multivariable analysis adjusted by gender, age and ancestry, the haplotype G/T/ΔG was related to non-response to treatment (OR = 21.09, 95 % CI 5.33-83.51; p < 0.001) and to a higher chance of developing chronic infection (OR = 5.46, 95 % CI 2.06-14.46; p = 0.001) when compared to the haplotype T/C/TT. These findings may help to adjust our treatment policies for HCV infection based on greater certainty in studies with populations with such genetic characteristics, as well as allowing us to get to know the genetic profile of our population for these polymorphisms.
Collapse
Affiliation(s)
- Ana Catharina de Seixas Santos Nastri
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernanda de Mello Malta
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil.
- Institute of Tropical Medicine, LIM 07, University of São Paulo, Av. Dr. Enéas Carvalho Aguiar, 500, 2nd floor IMT-II, São Paulo, SP, Brazil.
| | - Márcio Augusto Diniz
- Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alessandra Yoshino
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kiyoko Abe-Sandes
- Laboratory of Immunology, Health Sciences Institutes (ICS), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - André de Castro Lyra
- Human Genetics and Medical laboratory, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Flair José Carrilho
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - João Renato Rebello Pinho
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute of Tropical Medicine, LIM 07, University of São Paulo, Av. Dr. Enéas Carvalho Aguiar, 500, 2nd floor IMT-II, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
266
|
Lin JD, Feng N, Sen A, Balan M, Tseng HC, McElrath C, Smirnov SV, Peng J, Yasukawa LL, Durbin RK, Durbin JE, Greenberg HB, Kotenko SV. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections. PLoS Pathog 2016; 12:e1005600. [PMID: 27128797 PMCID: PMC4851417 DOI: 10.1371/journal.ppat.1005600] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets of target cells coordinately regulate antiviral defenses against heterologous or homologous rotaviruses with substantially different effectiveness. Two distinct families of interferons (IFNs), type I (IFN-α/β) and type III (IFN-λ) IFNs, are quickly produced in response to virus infection and engage distinct receptors to invoke shared rapid and broad-spectrum antiviral mechanisms against invading pathogens. However, the relative importance of type I and type III IFNs in protecting different organ systems against specific viruses or distinct strains of an individual virus remains to be fully explored. Here we demonstrated in suckling mice that neither type I nor type III IFNs are effective in blocking intestinal replication of murine rotavirus, rather, viral clearance is dependent upon adaptive immune responses. In contrast, both IFN types cooperate to control intestinal replication and extra-intestinal spread of simian rotavirus in neonatal mice. Unexpectedly, we found that although intestinal epithelial cells (IECs) respond to both types of IFNs in neonatal mice, responsiveness of IECs to type I IFNs, but not type III IFNs, is diminished in adult mice. Transcriptional analysis showed that both types of IFN receptors induced overlapping intestinal antiviral responses, which were abrogated only when both receptor types were deleted. Overall, these findings reveal a well-coordinated spatial and temporal regulation of antiviral defenses by type I and type III IFNs in the gastrointestinal tract that varies significantly depending on the viral strain examined.
Collapse
Affiliation(s)
- Jian-Da Lin
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Ningguo Feng
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Adrish Sen
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Murugabaskar Balan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Hsiang-Chi Tseng
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Constance McElrath
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Sergey V. Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Jianya Peng
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Linda L. Yasukawa
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Russell K. Durbin
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Joan E. Durbin
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
| | - Harry B. Greenberg
- Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail: (HBG); (SVK)
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey, United States of America
- * E-mail: (HBG); (SVK)
| |
Collapse
|
267
|
Ferrao R, Wallweber HJA, Ho H, Tam C, Franke Y, Quinn J, Lupardus PJ. The Structural Basis for Class II Cytokine Receptor Recognition by JAK1. Structure 2016; 24:897-905. [PMID: 27133025 DOI: 10.1016/j.str.2016.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 01/06/2023]
Abstract
JAK1 is a member of the Janus kinase (JAK) family of non-receptor tyrosine kinases that are activated in response to cytokines and interferons. Here, we present two crystal structures of the human JAK1 FERM and SH2 domains bound to peptides derived from the class II cytokine receptors IFN-λ receptor 1 and IL-10 receptor 1 (IFNLR1 and IL10RA). These structures reveal an interaction site in the JAK1 FERM that accommodates the so-called "box1" membrane-proximal receptor peptide motif. Biophysical analysis of the JAK1-IFNLR1 interaction indicates that the receptor box1 is the primary driver of the JAK1 interaction, and identifies residues conserved among class II receptors as important for binding. In addition, we demonstrate that a second "box2" receptor motif further stabilizes the JAK1-IFNLR1 complex. Together, these data identify a conserved JAK binding site for receptor peptides and elucidate the mechanism by which class II cytokine receptors interact with JAK1.
Collapse
Affiliation(s)
- Ryan Ferrao
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Heidi J A Wallweber
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hoangdung Ho
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Tam
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Quinn
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick J Lupardus
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
268
|
Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl) 2016; 94:1103-1110. [PMID: 27094810 PMCID: PMC5052287 DOI: 10.1007/s00109-016-1421-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN)-regulated genes (an IFN signature), which is caused by an ongoing production of type I IFNs by plasmacytoid dendritic cells (pDCs). The reasons behind the continuous IFN production in SLE are the presence of self-derived IFN inducers and a lack of negative feed-back signals that downregulate the IFN response. In addition, several cells in the immune system promote the IFN production by pDCs and gene variants in the type I IFN signaling pathway contribute to the IFN signature. The type I IFNs act as an immune adjuvant and stimulate T cells, B cells, and monocytes, which all play an important role in the loss of tolerance and persistent autoimmune reaction in SLE. Consequently, new treatments aiming to inhibit the activated type I IFN system in SLE are now being developed and investigated in clinical trials.
Collapse
|
269
|
Todt D, François C, Anggakusuma, Behrendt P, Engelmann M, Knegendorf L, Vieyres G, Wedemeyer H, Hartmann R, Pietschmann T, Duverlie G, Steinmann E. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication. Antimicrob Agents Chemother 2016; 60:2132-9. [PMID: 26787701 PMCID: PMC4808167 DOI: 10.1128/aac.02427-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed.
Collapse
Affiliation(s)
- Daniel Todt
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Catherine François
- EA4294, Laboratoire de Virologie, Centre Hospitalier Universitaire et Universite de Picardie Jules Verne, Amiens, France
| | - Anggakusuma
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Patrick Behrendt
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Engelmann
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Leonard Knegendorf
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Gabrielle Vieyres
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Pietschmann
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Gilles Duverlie
- EA4294, Laboratoire de Virologie, Centre Hospitalier Universitaire et Universite de Picardie Jules Verne, Amiens, France
| | - Eike Steinmann
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
270
|
Stifter SA, Bhattacharyya N, Pillay R, Flórido M, Triccas JA, Britton WJ, Feng CG. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog 2016; 12:e1005378. [PMID: 26731100 PMCID: PMC4701664 DOI: 10.1371/journal.ppat.1005378] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/09/2015] [Indexed: 01/28/2023] Open
Abstract
Host control of influenza A virus (IAV) is associated with exuberant pulmonary inflammation characterized by the influx of myeloid cells and production of proinflammatory cytokines including interferons (IFNs). It is unclear, however, how the immune system clears the virus without causing lethal immunopathology. Here, we demonstrate that in addition to its known anti-viral activity, STAT1 signaling coordinates host inflammation during IAV infection in mice. This regulatory mechanism is dependent on both type I IFN and IFN-γ receptor signaling and, importantly, requires the functional interplay between the two pathways. The protective function of type I IFNs is associated with not only the recruitment of classical inflammatory Ly6Chi monocytes into IAV-infected lungs, but also the prevention of excessive monocyte activation by IFN-γ. Unexpectedly, type I IFNs preferentially regulate IFN-γ signaling in Ly6Clo rather than inflammatory Ly6Chi mononuclear cell populations. In the absence of type I IFN signaling, Ly6Clo monocytes/macrophages, become phenotypically and functionally more proinflammatory than Ly6Chi cells, revealing an unanticipated function of the Ly6Clo mononuclear cell subset in tissue inflammation. In addition, we show that type I IFNs employ distinct mechanisms to regulate monocyte and neutrophil trafficking. Type I IFN signaling is necessary, but not sufficient, for preventing neutrophil recruitment into the lungs of IAV-infected mice. Instead, the cooperation of type I IFNs and lymphocyte-produced IFN-γ is required to regulate the tissue neutrophilic response to IAV. Our study demonstrates that IFN interplay links innate and adaptive anti-viral immunity to orchestrate tissue inflammation and reveals an additional level of complexity for IFN-dependent regulatory mechanisms that function to prevent excessive immunopathology while preserving anti-microbial functions. Influenza A virus (IAV) is a leading cause of respiratory infection and induces a strong acute inflammation manifested by the recruitment of monocytes and neutrophils as well as the production of proinflammatory cytokines in infected lungs. The interferons (IFNs) are strongly induced by IAV and are known to mediate host resistance to the infection. However, in contrast to their well-studied inhibitory effect on viral replication, the effects of IFNs on host inflammatory responses are less well understood. In this manuscript, we demonstrate that anti-viral IFN signaling is also required for the orchestration of a tissue response associated with the protection against IAV infection in mice. Importantly, we identify that type I IFNs cross-regulate and cooperate with IFN-γ to inhibit monocyte activation and neutrophil infiltration, respectively. This study also demonstrates that Ly6Clo monocytes/macrophages can potentially mediate influenza virus-induced inflammation, suggesting that IFNs dictate the homeostasis versus inflammatory function of mononuclear phagocytes in viral infection. Our study reveals a novel IFN-dependent regulatory mechanism designed to prevent the excessive immunopathology while preserving its anti-microbial functions. Moreover, these observations have particular relevance for understanding the mechanisms underlying the strong inflammatory response associated with lethal IAV strains and have implications for the development of new immunotherapies to treat influenza.
Collapse
Affiliation(s)
- Sebastian A. Stifter
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Nayan Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Roman Pillay
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Manuela Flórido
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - James A. Triccas
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Warwick J. Britton
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl G. Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
271
|
Quarleri JF, Oubiña JR. Hepatitis C virus strategies to evade the specific-T cell response: a possible mission favoring its persistence. Ann Hepatol 2016; 15:17-26. [PMID: 26626636 DOI: 10.5604/16652681.1184193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus. The number of HCV-infected individuals worldwide is estimated to be approximately 200 million. The vast majority of HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. The interaction between HCV and the host have a pivotal role in viral fitness, persistence, pathogenicity, and disease progression. The control of HCV infection requires both effective innate and adaptive immune responses. The HCV clearance during acute infection is associated with an early induction of the innate and a delayed initiation of the adaptive immune responses. However, in the vast majority of acute HCV infections, these responses are overcome and the virus persistence almost inexorably occurs. Recently, several host- and virus-related mechanisms responsible for the failure of both the innate and the adaptive immune responses have been recognized. Among the latter, the wide range of escape mutations to evade the specific-T-and B-cell responses as well as the T cell anergy and the CD8+ T cell exhaustion together with the interference with its function after prolonged virus exposure hold a pivotal role. Other HCV strategies include the modification or manipulation of molecules playing key roles in the induction of the interferon response and its induced effector proteins. In this review, we attempt to gain insights on the main T cell immune evasion strategies used by the virus in order to favor its persistence.
Collapse
Affiliation(s)
- Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Argentina
| | - José Raúl Oubiña
- Instituto de Microbiología y Parasitología Médica (IMPAM), Universidad de Buenos Aires-CONICET, Argentina
| |
Collapse
|
272
|
Roulois D, Yau HL, De Carvalho DD. Pharmacological DNA demethylation: Implications for cancer immunotherapy. Oncoimmunology 2015; 5:e1090077. [PMID: 27141349 PMCID: PMC4839380 DOI: 10.1080/2162402x.2015.1090077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 12/13/2022] Open
Abstract
Recent studies have demonstrated that DNA demethylation agents can mimic a viral infection by induction of dsRNAs. This viral mimicry leads to an antiviral response mediated by the cytosolic pattern recognition receptor MDA5, followed by MAVS (IPS1) activation, IRF7 nuclear translocation and upregulation of type III Interferon and interferon-stimulated genes.
Collapse
Affiliation(s)
- David Roulois
- Princess Margaret Cancer Center, University Health Network , Toronto, ON, Canada
| | - Helen Loo Yau
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|