251
|
Sun J, Li B, Shu C, Ma Q, Wang J. Functions and clinical significance of circular RNAs in glioma. Mol Cancer 2020; 19:34. [PMID: 32061256 PMCID: PMC7023692 DOI: 10.1186/s12943-019-1121-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
CircRNAs are a class of single-stranded RNA molecules with a covalently closed loop structure and have been characterized by high stability, abundance, conservation, and display tissue/developmental stage-specific expression, furthermore, based on the abundance in distinct body fluids or exosomes, circRNAs present novel biomarkers and targets for the diagnosis and prognosis of cancers. Recently, the regulatory mechanisms of biogenesis and molecular functions, including miRNAs and RBPs sponge, translation as well as transcriptional and splicing regulation, have been gradually uncovered, although various aspects remained to be elucidated in combination with deep-sequence and bioinformatics. Accumulating studies have indicated that circRNAs are more enriched in neuronal tissues partly due to the abundance of specific genes promoting circularization, suggesting dysregulation of circRNAs is closely related to diseases of the nervous system, including glioma. In this review, we elaborate on the biogenesis, functions, databases as well as novel advances especially involved in the molecular pathways, highlight its great value as diagnostic or therapeutic targets in glioma.
Collapse
Affiliation(s)
- Jikui Sun
- School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.,Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China
| | - Banban Li
- Qilu Hospital, Shandong University, 107 Cultural West Road, Jinan, 250012, People's Republic of China.,Department of Hematology, Taian Central Hospital, 29 Longtan Road, Taian, 271000, People's Republic of China
| | - Chang Shu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China
| | - Quanfeng Ma
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China
| | - Jinhuan Wang
- School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China. .,Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
252
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, Li X, Li G, Zeng Z, Xiong W. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer 2020; 19:22. [PMID: 32019587 PMCID: PMC6998289 DOI: 10.1186/s12943-020-1147-3] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs do not encode proteins and regulate various oncological processes. They are also important potential cancer diagnostic and prognostic biomarkers. Bioinformatics and translation omics have begun to elucidate the roles and modes of action of the functional peptides encoded by ncRNA. Here, recent advances in long non-coding RNA (lncRNA) and circular RNA (circRNA)-encoded small peptides are compiled and synthesized. We introduce both the computational and analytical methods used to forecast prospective ncRNAs encoding oncologically functional oligopeptides. We also present numerous specific lncRNA and circRNA-encoded proteins and their cancer-promoting or cancer-inhibiting molecular mechanisms. This information may expedite the discovery, development, and optimization of novel and efficacious cancer diagnostic, therapeutic, and prognostic protein-based tools derived from non-coding RNAs. The role of ncRNA-encoding functional peptides has promising application perspectives and potential challenges in cancer research. The aim of this review is to provide a theoretical basis and relevant references, which may promote the discovery of more functional peptides encoded by ncRNAs, and further develop novel anticancer therapeutic targets, as well as diagnostic and prognostic cancer markers.
Collapse
Affiliation(s)
- Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ting Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yu Zhong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
253
|
CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:522-534. [PMID: 32007626 PMCID: PMC7056934 DOI: 10.1016/j.gpb.2019.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 03/09/2019] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs), covalently closed continuous RNA loops, are generated from cognate linear RNAs through back splicing events, and alternative splicing events may generate different circRNA isoforms at the same locus. However, the challenges of reconstruction and quantification of alternatively spliced full-length circRNAs remain unresolved. On the basis of the internal structural characteristics of circRNAs, we developed CircAST, a tool to assemble alternatively spliced circRNA transcripts and estimate their expression by using multiple splice graphs. Simulation studies showed that CircAST correctly assembled the full sequences of circRNAs with a sensitivity of 85.63%–94.32% and a precision of 81.96%–87.55%. By assigning reads to specific isoforms, CircAST quantified the expression of circRNA isoforms with correlation coefficients of 0.85–0.99 between theoretical and estimated values. We evaluated CircAST on an in-house mouse testis RNA-seq dataset with RNase R treatment for enriching circRNAs and identified 380 circRNAs with full-length sequences different from those of their corresponding cognate linear RNAs. RT-PCR and Sanger sequencing analyses validated 32 out of 37 randomly selected isoforms, thus further indicating the good performance of CircAST, especially for isoforms with low abundance. We also applied CircAST to published experimental data and observed substantial diversity in circular transcripts across samples, thus suggesting that circRNA expression is highly regulated. CircAST can be accessed freely at https://github.com/xiaofengsong/CircAST.
Collapse
|
254
|
Zhang Q, Sun W, Han J, Cheng S, Yu P, Shen L, Fan M, Tong H, Zhang H, Chen J, Chen X. The circular RNA hsa_circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Commun 2020; 523:993-1000. [PMID: 31973814 DOI: 10.1016/j.bbrc.2019.12.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are a kind of closed loop endogenous non-coding RNAs have attracted increasing interest in recent years. However, the mechanism of circRNAs in the pathogenesis of multiple cardiovascular diseases, particularly myocardial ischemia, is rarely reported. In the present study, we examined a circular RNA, hsa_circ_0007623, which is highly expressed in hypoxia-induced human umbilical vein endothelial cells (HUVECs) and can act as a sponge for miR-297, which is involved in cardiac repair after acute myocardial ischemia. In hypoxia-stimulated HUVECs, the inhibition of hsa_circ_0007623 expression was found to reduce cell proliferation, migration, and angiogenesis. Further in vivo experiments confirmed the cardioprotective effect of hsa_circ_0007623 expression in isoproterenol-induced acute ischemia mice. Bioinformatics analysis predicted hsa_circ_0007623, sponge miR-297 and miR-297 directly target VEGFA, which was validated by dual-luciferase assay. Subsequently, functional experiments revealed hsa_circ_0007623 silencing could up-regulate miR-297 and down-regulate VEGFA expression, and reduce cell proliferation, migration, and angiogenesis. We concluded that hsa_circ_0007623 can bind to miR-297, promote cardiac repair after acute myocardial ischemia, and protect cardiac function.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixin Sun
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Han
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Songyi Cheng
- Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manlu Fan
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaqin Tong
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haowen Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiandong Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
255
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
256
|
Guria A, Sharma P, Natesan S, Pandi G. Circular RNAs-The Road Less Traveled. Front Mol Biosci 2020; 6:146. [PMID: 31998746 PMCID: PMC6965350 DOI: 10.3389/fmolb.2019.00146] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs are the most recent addition in the non-coding RNA family, which has started to gain recognition after a decade of obscurity. The first couple of reports that emerged at the beginning of this decade and the amount of evidence that has accumulated thereafter has, however, encouraged RNA researchers to navigate further in the quest for the exploration of circular RNAs. The joining of 5′ and 3′ ends of RNA molecules through backsplicing forms circular RNAs during co-transcriptional or post-transcriptional processes. These molecules are capable of effectively sponging microRNAs, thereby regulating the cellular processes, as evidenced by numerous animal and plant systems. Preliminary studies have shown that circular RNA has an imperative role in transcriptional regulation and protein translation, and it also has significant therapeutic potential. The high stability of circular RNA is rendered by its closed ends; they are nevertheless prone to degradation by circulating endonucleases in serum or exosomes or by microRNA-mediated cleavage due to their high complementarity. However, the identification of circular RNAs involves diverse methodologies and the delineation of its possible role and mechanism in the regulation of cellular and molecular architecture has provided a new direction for the continuous research into circular RNA. In this review, we discuss the possible mechanism of circular RNA biogenesis, its structure, properties, degradation, and the growing amount of evidence regarding the detection methods and its role in animal and plant systems.
Collapse
Affiliation(s)
- Ashirbad Guria
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Priyanka Sharma
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
257
|
Liu Q, Cai Y, Xiong H, Deng Y, Dai X. CCRDB: a cancer circRNAs-related database and its application in hepatocellular carcinoma-related circRNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5520605. [PMID: 31219565 PMCID: PMC6585150 DOI: 10.1093/database/baz063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023]
Abstract
Circular RNAs (circRNAs) are widely expressed in human cells and tissues and can form a covalently closed exon circularization, which have stable patterns and play important regulatory roles in physiological or pathological process. There is still lack of a comprehensively disease-related knowledge base for in-depth analysis of circRNAs. In this paper, a cancer circRNAs-related database (CCRDB) was established. The CCRDB’s initial circRNAs data were collected by sequencing experimental data of 10 samples from 5 patients with hepatocellular carcinoma (HCC), where a total of 11 501 circRNAs were found and can easily be expanded by collecting and analyzing external data sources such as circBASE (1). Using CCRDB, we have further studied the relationships between circRNAs and HCC and found that circRNAs (hsa_circ_ 0002130, hsa_circ_0084615, hsa_circ_0001445, hsa_circ_0001727 and hsa_circ_0001361) and the corresponding genes ID [C3 (2, 3), ASPH (4), SMARCA5 (5), ZKSCAN1 (6) and FNDC3B (7)], respectively, might be the potential biomarker targets for HCC. Furthermore, our experiment also found that some new circRNAs chromosome sites chr12:23998917 24048958 and chr16:72090429 72093087 and the corresponding genes ID (SOX5 (8) and HP (9), respectively), might be the potential biomarker targets for HCC. These results indicate that CCRDB can effectively reveal the relationships between circRNAs and HCC. As the first circRNAs database to provide analysis and comparison functions, it is of great significance for researchers to further study the rules of circRNAs, to understand the causes of circRNAs in disease discovery and to find target genes for therapeutic approaches.
Collapse
Affiliation(s)
- Qingyu Liu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanning Cai
- Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong, China
| | - Haiquan Xiong
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyun Deng
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
258
|
Chen R, Shi C, Yao J, Chen W. Online Databases and Non-coding RNAs in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:65-78. [PMID: 32285405 PMCID: PMC7153034 DOI: 10.1007/978-981-15-1671-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Cardiovascular disease is characterized by its highest morbidity and mortality. One of the main pathological basis of this disease is the dysregulation of gene expression. Non-coding RNA (ncRNA) is a kind of functional RNA, which is transcript from DNA but not translated into proteins. More and more studies have established the important roles of ncRNAs, including transcription, RNA maturation, translation, protein degradation, and their involvement in the pathogenesis of diseases such as cancer and cardiovascular diseases. This chapter will focus on the biological functions of ncRNAs and their advances in cardiovascular disease. With the development of sequencing and computer technology, more and more databases can be easily obtained on the internet. In another part of this chapter, we will summarize some commonly used non-coding RNA databases, which can be easily and quickly used for relevant research.
Collapse
Affiliation(s)
- Rui Chen
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei Chen
- Emergency Department, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
259
|
Lan W, Zhu M, Chen Q, Chen B, Liu J, Li M, Chen YPP. CircR2Cancer: a manually curated database of associations between circRNAs and cancers. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5979746. [PMID: 33181824 PMCID: PMC7661096 DOI: 10.1093/database/baaa085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
Accumulating evidences have shown that the deregulation of circRNA has close association with many human cancers. However, these experimental verified circRNA–cancer associations are not collected in any database. Here, we develop a manually curated database (circR2Cancer) that provides experimentally supported associations between circRNAs and cancers. The current version of the circR2Cancer contains 1439 associations between 1135 circRNAs and 82 cancers by extracting data from existing literatures and databases. In addition, circR2Cancer contains the information of cancer exacted from Disease Ontology and basic biological information of circRNAs from circBase. At the same time, circR2Cancer provides a simple and friendly interface for users to conveniently browse, search and download the data. It will be a useful and valuable resource for researchers to understanding the regulation mechanism of circRNA in cancers. Database URL http://www.biobdlab.cn:8000
Collapse
Affiliation(s)
- Wei Lan
- School of Computer, Electronic and Information, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China.,Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, No. 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Mingrui Zhu
- School of Computer, Electronic and Information, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, No. 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, No. 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University Plenty Rd & Kingsbury Dr, Melbourne, Vic 3086, Australia
| |
Collapse
|
260
|
Ferrero G, Licheri N, Coscujuela Tarrero L, De Intinis C, Miano V, Calogero RA, Cordero F, De Bortoli M, Beccuti M. Docker4Circ: A Framework for the Reproducible Characterization of circRNAs from RNA-Seq Data. Int J Mol Sci 2019; 21:ijms21010293. [PMID: 31906249 PMCID: PMC6982331 DOI: 10.3390/ijms21010293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/28/2019] [Indexed: 01/09/2023] Open
Abstract
Recent improvements in cost-effectiveness of high-throughput technologies has allowed RNA sequencing of total transcriptomes suitable for evaluating the expression and regulation of circRNAs, a relatively novel class of transcript isoforms with suggested roles in transcriptional and post-transcriptional gene expression regulation, as well as their possible use as biomarkers, due to their deregulation in various human diseases. A limited number of integrated workflows exists for prediction, characterization, and differential expression analysis of circRNAs, none of them complying with computational reproducibility requirements. We developed Docker4Circ for the complete analysis of circRNAs from RNA-Seq data. Docker4Circ runs a comprehensive analysis of circRNAs in human and model organisms, including: circRNAs prediction; classification and annotation using six public databases; back-splice sequence reconstruction; internal alternative splicing of circularizing exons; alignment-free circRNAs quantification from RNA-Seq reads; and differential expression analysis. Docker4Circ makes circRNAs analysis easier and more accessible thanks to: (i) its R interface; (ii) encapsulation of computational tasks into docker images; (iii) user-friendly Java GUI Interface availability; and (iv) no need of advanced bash scripting skills for correct use. Furthermore, Docker4Circ ensures a reproducible analysis since all its tasks are embedded into a docker image following the guidelines provided by Reproducible Bioinformatics Project.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Nicola Licheri
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Lucia Coscujuela Tarrero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (L.C.T.); (V.M.)
- Center for Genomic Science, Italian Institute of Technology, 20139 Milan, Italy
| | - Carlo De Intinis
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Valentina Miano
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (L.C.T.); (V.M.)
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Raffaele Adolfo Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Francesca Cordero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (L.C.T.); (V.M.)
- Correspondence:
| | - Marco Beccuti
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (G.F.); (N.L.); (C.D.I.); (F.C.); (M.B.)
| |
Collapse
|
261
|
Geng X, Jia Y, Zhang Y, Shi L, Li Q, Zang A, Wang H. Circular RNA: biogenesis, degradation, functions and potential roles in mediating resistance to anticarcinogens. Epigenomics 2019; 12:267-283. [PMID: 31808351 DOI: 10.2217/epi-2019-0295] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: This review aims to systematically describe the biogenesis and degradation of circular RNAs (circRNAs), discusses the major functions of circRNAs, introduces the mechanisms by which circRNAs play a role in cancer, comprehensively summarize the relationship between circRNAs and anticarcinogen resistance as well as underlying specific mechanisms in multiple cancers. Materials & methods: We screened and analyzed large quantity of scientific papers which associated with circRNAs, noncoding RNAs, function, cancer, drug resistance and chemoresistance, and then summarized in Figures 1 & 2 & Table 1. Results & conclusion: The biogenesis, degradation and function of circRNAs are specially compared with other noncoding RNAs, it can affect cancer pathogenesis and progression and are implicated in mediating resistance to various anticarcinogens in various types of cancer.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese & Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| | - Youchao Jia
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy & Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Liang Shi
- Endoscopy Division, Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion & Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| | - Aimin Zang
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy & Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese & Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| |
Collapse
|
262
|
Zhao J, Mu L, Wang Z, Fang X, He X, Zhang X, Xu X. The potential roles of circular RNAs in osteonecrosis of the femoral head (Review). Mol Med Rep 2019; 21:533-539. [PMID: 31974613 PMCID: PMC6947852 DOI: 10.3892/mmr.2019.10866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are categorized as non-coding RNAs that, unlike widely known canonical linear RNAs, form a covalently closed continuous loop without 5′ or 3′ polarities, which enables them to resist digestion by RNA exonucleases. Although the functions of circRNAs remain largely unknown, accumulated evidence has demonstrated that circRNAs can act as microRNA sponges, which allows them to regulate numerous biological processes and disease mechanisms, including apoptosis, angiogenesis, invasion, metastasis and stem cell differentiation. Although research into circRNAs is in its infancy, studies have identified critical roles for circRNAs in the initiation and progression of disease. The present study delineated the characteristics and functions of circRNAs, and focused on the potential relationship between circRNAs and osteonecrosis of the femoral head (ONFH). CircRNAs represent a novel avenue for studying the mechanisms underlying ONFH as well as possible treatments.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Long Mu
- Department of Orthopaedics, Harbin Fifth Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Zhengchun Wang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiangchun Fang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xuefeng He
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaofeng Zhang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xilin Xu
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
263
|
Ryu J, Kwon DH, Choe N, Shin S, Jeong G, Lim YH, Kim J, Park WJ, Kook H, Kim YK. Characterization of Circular RNAs in Vascular Smooth Muscle Cells with Vascular Calcification. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:31-41. [PMID: 31790973 PMCID: PMC6909180 DOI: 10.1016/j.omtn.2019.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are generally formed by back splicing and are expressed in various cells. Vascular calcification (VC), a common complication of chronic kidney disease (CKD), is often associated with cardiovascular disease. The relationship between circRNAs and VC has not yet been studied. Inorganic phosphate (Pi) was used to treat rat vascular smooth muscle cells to induce VC. circRNAs were identified by analyzing RNA sequencing (RNA-seq) data, and their expression change during VC was validated. The selected circRNAs, including circSamd4a, circSmoc1-1, circMettl9, and circUxs1, were resistant to RNase R digestion and mostly localized in the cytoplasm. While silencing circSamd4a promoted VC, overexpressing it reduced VC in calcium assay and Alizarin red S (ARS) staining. In addition, microRNA (miRNA) microarray, luciferase reporter assay, and calcium assay suggested that circSamd4a could act as a miRNA suppressor. Our data show that circSamd4a has an anti-calcification role by functioning as a miRNA sponge. Moreover, mRNAs that can interact with miRNAs were predicted from RNA-seq and bioinformatics analysis, and the circSamd4a-miRNA-mRNA axis involved in VC was verified by luciferase reporter assay and calcium assay. Since circSamd4a is conserved in humans, it can serve as a novel therapeutic target in resolving VC.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Geon Jeong
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Yeong-Hwan Lim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
264
|
Wang Z, Lei X, Wu FX. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning. Molecules 2019; 24:E4035. [PMID: 31703384 PMCID: PMC6891306 DOI: 10.3390/molecules24224035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are extensively expressed in cells and tissues, and play crucial roles in human diseases and biological processes. Recent studies have reported that circRNAs could function as RNA binding protein (RBP) sponges, meanwhile RBPs can also be involved in back-splicing. The interaction with RBPs is also considered an important factor for investigating the function of circRNAs. Hence, it is necessary to understand the interaction mechanisms of circRNAs and RBPs, especially in human cancers. Here, we present a novel method based on deep learning to identify cancer-specific circRNA-RBP binding sites (CSCRSites), only using the nucleotide sequences as the input. In CSCRSites, an architecture with multiple convolution layers is utilized to detect the features of the raw circRNA sequence fragments, and further identify the binding sites through a fully connected layer with the softmax output. The experimental results show that CSCRSites outperform the conventional machine learning classifiers and some representative deep learning methods on the benchmark data. In addition, the features learnt by CSCRSites are converted to sequence motifs, some of which can match to human known RNA motifs involved in human diseases, especially cancer. Therefore, as a deep learning-based tool, CSCRSites could significantly contribute to the function analysis of cancer-associated circRNAs.
Collapse
Affiliation(s)
- Zhengfeng Wang
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China;
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China;
| | - Fang-Xiang Wu
- Department of Mechanical Engineering and Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| |
Collapse
|
265
|
Jamal M, Song T, Chen B, Faisal M, Hong Z, Xie T, Wu Y, Pan S, Yin Q, Shao L, Zhang Q. Recent Progress on Circular RNA Research in Acute Myeloid Leukemia. Front Oncol 2019; 9:1108. [PMID: 31781482 PMCID: PMC6851197 DOI: 10.3389/fonc.2019.01108] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/07/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy characterized by the proliferation of abnormal and immature myeloid blasts in the bone marrow. Circular RNA (circRNA) is a novel class of long non-coding RNA with a stable circular conformation that regulates various biological processes. The aberrant expression of circRNA and its impact on AML progression has been reported by a number of studies. Despite recent advances in circRNA research, our understanding of the leukemogenic mechanism of circRNA remains very limited, and translating the current circRNA-related research into clinical practice is challenging. This review provides an update on the functional roles of and research progress on circRNAs in AML with an emphasis on mechanistic insights. The challenges and opportunities associated with circRNA-based diagonostic and therapeutic development in AML are also outlined.
Collapse
Affiliation(s)
- Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tianbao Song
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Bei Chen
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Muhammad Faisal
- Institute of Pathology, Hannover Medical School, Hanover, Germany
| | - Zixi Hong
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
266
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20:675-691. [PMID: 31395983 DOI: 10.1038/s41576-019-0158-7] [Citation(s) in RCA: 3069] [Impact Index Per Article: 511.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
Collapse
Affiliation(s)
- Lasse S Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark.
| | - Maria S Andersen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Lotte V W Stagsted
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| | - Karoline K Ebbesen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
267
|
Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol Aspects Med 2019; 70:141-152. [PMID: 31676107 DOI: 10.1016/j.mam.2019.10.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs with a closed loop structure. These RNAs are produced by pre-mRNA through variable shear processing and are highly conserved. Such highly conserved molecules play an important role in biology, especially in cancer biology. With the development of experimental techniques such as circRNA microarray screening and high-throughput sequencing technologies, the mystery of circRNAs has gradually been unveiled and the values of function and application have gradually emerged. Among them, cancer-related circRNAs are the most eye-catching. Numerous studies have shown that some circRNAs were involved in the pathogenesis of cancer. This review systematically introduced the cancer-related circRNAs and their origin, formation mechanisms, functions, and applications in the diagnosis and treatment of sixteen kinds of tumors.
Collapse
Affiliation(s)
- Jianhong Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China
| | - Dongpei Li
- Medical College of Georgia, Augusta University, Augusta, GA, 30901, USA
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
268
|
Di Liddo A, de Oliveira Freitas Machado C, Fischer S, Ebersberger S, Heumüller AW, Weigand JE, Müller-McNicoll M, Zarnack K. A combined computational pipeline to detect circular RNAs in human cancer cells under hypoxic stress. J Mol Cell Biol 2019; 11:829-844. [PMID: 31560396 PMCID: PMC6884703 DOI: 10.1093/jmcb/mjz094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is associated with several diseases, including cancer. Cells that are deprived of adequate oxygen supply trigger transcriptional and post-transcriptional responses, which control cellular pathways such as angiogenesis, proliferation, and metabolic adaptation. Circular RNAs (circRNAs) are a novel class of mainly non-coding RNAs, which have been implicated in multiple cancers and attract increasing attention as potential biomarkers. Here, we characterize the circRNA signatures of three different cancer cell lines from cervical (HeLa), breast (MCF-7), and lung (A549) cancer under hypoxia. In order to reliably detect circRNAs, we integrate available tools with custom approaches for quantification and statistical analysis. Using this consolidated computational pipeline, we identify ~12000 circRNAs in the three cancer cell lines. Their molecular characteristics point to an involvement of complementary RNA sequences as well as trans-acting factors in circRNA biogenesis, such as the RNA-binding protein HNRNPC. Notably, we detect a number of circRNAs that are more abundant than their linear counterparts. In addition, 64 circRNAs significantly change in abundance upon hypoxia, in most cases in a cell type-specific manner. In summary, we present a comparative circRNA profiling in human cancer cell lines, which promises novel insights into the biogenesis and function of circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Camila de Oliveira Freitas Machado
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Fischer
- Department of Biology, Technical University Darmstadt, Germany
| | | | - Andreas W Heumüller
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, Germany
| | - Michaela Müller-McNicoll
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
269
|
Zeng X, Zhong Y, Lin W, Zou Q. Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods. Brief Bioinform 2019; 21:1425-1436. [DOI: 10.1093/bib/bbz080] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract
Identification of disease-associated circular RNAs (circRNAs) is of critical importance, especially with the dramatic increase in the amount of circRNAs. However, the availability of experimentally validated disease-associated circRNAs is limited, which restricts the development of effective computational methods. To our knowledge, systematic approaches for the prediction of disease-associated circRNAs are still lacking. In this study, we propose the use of deep forests combined with positive-unlabeled learning methods to predict potential disease-related circRNAs. In particular, a heterogeneous biological network involving 17 961 circRNAs, 469 miRNAs, and 248 diseases was constructed, and then 24 meta-path-based topological features were extracted. We applied 5-fold cross-validation on 15 disease data sets to benchmark the proposed approach and other competitive methods and used Recall@k and PRAUC@k to evaluate their performance. In general, our method performed better than the other methods. In addition, the performance of all methods improved with the accumulation of known positive labels. Our results provided a new framework to investigate the associations between circRNA and disease and might improve our understanding of its functions.
Collapse
Affiliation(s)
- Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University
| | - Yue Zhong
- Department of Computer Science, Xiamen University
| | - Wei Lin
- Department of Computer Science, Xiamen University
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
270
|
Lei X, Fang Z, Guo L. Predicting circRNA-Disease Associations Based on Improved Collaboration Filtering Recommendation System With Multiple Data. Front Genet 2019; 10:897. [PMID: 31608124 PMCID: PMC6773885 DOI: 10.3389/fgene.2019.00897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/23/2019] [Indexed: 12/04/2022] Open
Abstract
With the development of high-throughput techniques, various biological molecules are discovered, which includes the circular RNAs (circRNAs). Circular RNA is a novel endogenous noncoding RNA that plays significant roles in regulating gene expression, moderating the microRNAs transcription as sponges, diagnosing diseases, and so on. Based on the circRNA particular molecular structures that are closed-loop structures with neither 5′-3′ polarities nor polyadenylated tails, circRNAs are more stable and conservative than the normal linear coding or noncoding RNAs, which makes circRNAs a biomarker of various diseases. Although some conventional experiments are used to identify the associations between circRNAs and diseases, almost the techniques and experiments are time-consuming and expensive. In this study, we propose a collaboration filtering recommendation system–based computational method, which handles the “cold start” problem to predict the potential circRNA–disease associations, which is named ICFCDA. All the known circRNA–disease associations data are downloaded from circR2Disease database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Based on these data, multiple data are extracted from different databases to calculate the circRNA similarity networks and the disease similarity networks. The collaboration filtering recommendation system algorithm is first employed to predict circRNA–disease associations. Then, the leave-one-out cross validation mechanism is adopted to measure the performance of our proposed computational method. ICFCDA achieves the areas under the curve of 0.946, which is better than other existing methods. In order to further illustrate the performance of ICFCDA, case studies of some common diseases are made, and the results are confirmed by other databases. The experimental results show that ICFCDA is competent in predicting the circRNA–disease associations.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Zengqiang Fang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Ling Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
271
|
Chaturvedi P, Vuković L. Structural Properties of Small Single-Stranded Circular Nucleic Acids. J Phys Chem B 2019; 123:8216-8221. [PMID: 31498637 DOI: 10.1021/acs.jpcb.9b06831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
One strategy to avoid rapid degradation of small nucleic acids in biomedical applications is to covalently link their 3'- and 5'-ends, turning them into circular nucleic acids (circNAs). Here, we examine structural properties of flexible non-base-paired circNAs, containing 6-48 nucleotides, in aqueous solution, using microsecond long molecular dynamics simulations. Analyses of conformational ensembles of circular DNA (circDNA) and RNA (circRNA) molecules of different lengths and sequences reveal how their structures and dynamics are affected by the constraints of their geometries. The circDNAs are more bent and flexible than circRNAs, with distinctly different arrangements of phosphate backbones and bases. Small circNAs can sequester counterions in conformations that resemble crown ethers for the smallest (6-8 nucleotide long) molecules examined, in contrast to their linear counterparts. At millimolar concentrations (7.9 mM), circNA molecules were observed to aggregate, adopting linear chain shapes at physiological ionic strengths.
Collapse
Affiliation(s)
- Parth Chaturvedi
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| |
Collapse
|
272
|
Shan C, Zhang Y, Hao X, Gao J, Chen X, Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer 2019; 18:136. [PMID: 31519189 PMCID: PMC6743094 DOI: 10.1186/s12943-019-1069-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumours in the world and has high morbidity and mortality. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently linked circular structures. In recent years, plentiful circRNAs have been discovered that participate in many biological processes, including the initiation and development of tumours. Increasing evidences suggest important biological functions of circRNAs, implying that circRNAs may serve as vital new biomarkers and targets for disease diagnosis and prognosis. Among these, circRNAs are tend to aberrantly expressed and are regarded as potential biomarkers in the carcinogenesis and progression of GC. This review systematically summarised the biogenesis, biological properties and functions of circRNAs, with a focus on their relationship with GC, as well as their probable clinical implications on GC. As our cognition of the relation between circRNAs and GC deepens, more molecular mechanisms of GC progression will be discovered, and new therapeutic strategies will be used for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Chan Shan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Yinfeng Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jinning Gao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
273
|
Mei M, Wang Y, Li Z, Zhang M. Role of circular RNA in hematological malignancies. Oncol Lett 2019; 18:4385-4392. [PMID: 31611947 PMCID: PMC6781753 DOI: 10.3892/ol.2019.10836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Compared with linear RNA, circular RNAs (circRNAs) form a covalently closed circular continuous loop and are highly conserved, stable and tissue-specific. In recent years, circRNAs received considerable attention in the diagnosis, classification, treatment and prognosis of hematological tumors. circRNAs function as microRNA sponges and competitive endogenous RNAs that play an essential role in the translation, regulation and interaction of proteins. The present review discussed the fundamental properties and functions of circRNAs and the latest advancements in the context of circRNAs in the clinical research of hematological malignancies, namely acute and chronic myeloid leukemia, and chronic lymphocytic leukemia. circRNAs show potential in the diagnosis and prognosis of various diseases and can be used as therapeutic targets and biomarkers for disease.
Collapse
Affiliation(s)
- Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingjun Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
274
|
Franz A, Rabien A, Stephan C, Ralla B, Fuchs S, Jung K, Fendler A. Circular RNAs: a new class of biomarkers as a rising interest in laboratory medicine. Clin Chem Lab Med 2019; 56:1992-2003. [PMID: 29804099 DOI: 10.1515/cclm-2018-0231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022]
Abstract
Circular RNAs (circRNAs) are a distinct family of RNAs derived from the non-regular process of alternative splicing. CircRNAs have recently gained interest in transcriptome research due to their potential regulatory functions during gene expression. CircRNAs can act as microRNA sponges and affect transcription through their complex involvement in regular transcriptional processes. Some early studies also suggested significant roles for circRNAs in human diseases, especially cancer, as biomarkers and potential clinical targets. Therefore, there is a great need for laboratory scientists to translate these findings into clinical tools to advance testing for human diseases. To facilitate a better understanding of the promise of circRNAs, we focus this review on selected basic aspects of circRNA research, specifically biogenesis, function, analytical issues regarding identification and validation and examples of expression data in relation to human diseases. We further emphasize the unique challenges facing laboratory medicine with regard to circRNA research, particularly in the development of robust assays for circRNA detection in different body fluids and the need to collaborate with clinicians in the design of clinical studies.
Collapse
Affiliation(s)
- Antonia Franz
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Carsten Stephan
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Fuchs
- Department of Pediatric Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Urologic Research, Schumannstr. 20/21, 10117 Berlin, Germany, Phone: +49-30-450-515041
| | - Annika Fendler
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cancer Research Program, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
275
|
Pandey PR, Munk R, Kundu G, De S, Abdelmohsen K, Gorospe M. Methods for analysis of circular RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1566. [PMID: 31489773 DOI: 10.1002/wrna.1566] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
Eukaryotic cells express a myriad of circular RNAs (circRNAs), many of them displaying tissue-specific expression patterns. They arise from linear precursor RNAs in which 5' and 3' ends become covalently ligated. Given these features, biochemical and computational approaches traditionally used to study linear RNA must be adapted for analysis of circular RNAs. Such circRNA-specific methodologies are allowing the systematic identification of circRNAs and the analysis of their biological functions. Here, we review the resources and molecular methods currently utilized to quantify circRNAs, visualize their distribution, identify interacting partners, and elucidate their function. We discuss the challenges of analyzing circRNAs and propose alternative approaches for studying this unique class of transcripts. This article is characterized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Gautam Kundu
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
276
|
Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, Wei L, Han L, He C. CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 2019; 46:D925-D929. [PMID: 29036403 PMCID: PMC5753219 DOI: 10.1093/nar/gkx863] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Circular RNA (circRNA) is a large group of RNA family extensively existed in cells and tissues. High-throughput sequencing provides a way to view circRNAs across different samples, especially in various diseases. However, there is still no comprehensive database for exploring the cancer-specific circRNAs. We collected 228 total RNA or polyA(-) RNA-seq samples from both cancer and normal cell lines, and identified 272 152 cancer-specific circRNAs. A total of 950 962 circRNAs were identified in normal samples only, and 170 909 circRNAs were identified in both tumor and normal samples, which could be further used as non-tumor background. We constructed a cancer-specific circRNA database (CSCD, http://gb.whu.edu.cn/CSCD). To understand the functional effects of circRNAs, we predicted the microRNA response element sites and RNA binding protein sites for each circRNA. We further predicted potential open reading frames to highlight translatable circRNAs. To understand the association between the linear splicing and the back-splicing, we also predicted the splicing events in linear transcripts of each circRNA. As the first comprehensive cancer-specific circRNA database, we believe CSCD could significantly contribute to the research for the function and regulation of cancer-associated circRNAs.
Collapse
Affiliation(s)
- Siyu Xia
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, Hubei, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei, China
| | - Jing Feng
- International School of Software, Wuhan University, Wuhan 430072, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanbing Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Cai
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yuxuan Jin
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yang Gao
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Linjian Xia
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Hong Chang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chunjiang He
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, Hubei, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei, China
| |
Collapse
|
277
|
Wang Y, Xiong Z, Li Q, Sun Y, Jin J, Chen H, Zou Y, Huang X, Ding Y. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC PLANT BIOLOGY 2019; 19:340. [PMID: 31382873 PMCID: PMC6683460 DOI: 10.1186/s12870-019-1944-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/25/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are known to play an important role in the regulation of gene expression in eukaryotes. Photo-thermosensitive genic male sterile (PTGMS) is a very important germplasm resource in two-line hybrid rice breeding. Although many circRNAs have been identified in rice (Oryza sativa L.), little is known about the biological roles of circRNAs in the fertility transition of the PTGMS rice line. RESULTS In the present study, RNA-sequencing libraries were constructed from the young panicles of the Wuxiang S sterile line rice (WXS (S)) and its fertile line rice (WXS (F)) at three development stages with three biological replicates. A total of 9994 circRNAs were obtained in WXS rice based on high-throughput strand-specific RNA sequencing and bioinformatic approaches, of which 5305 were known circRNAs and 4689 were novel in rice. And 14 of 16 randomly selected circRNAs were experimentally validated with divergent primers. Our results showed that 186 circRNAs were significantly differentially expressed in WXS (F) compared with WXS (S), of which 97, 87 and 60 circRNAs were differentially expressed at the pollen mother cell (PMC) formation stage (P2), the meiosis stage (P3) and the microspore formation stage (P4), respectively. Fertility specific expression patterns of eight circRNAs were analysis by qRT-PCR. Gene ontology (GO) and KEGG pathway analysis of the parental genes of differentially expressed circRNAs (DECs) revealed that they mainly participated in various biological processes such as development, response to stimulation, hormonal regulation, and reproduction. Furthermore, 15 DECs were found to act as putative miRNA sponges to involved in fertility transition in PTGMS rice line. CONCLUSION In the present study, the abundance and characteristics of circRNAs were investigated in the PTGMS rice line using bioinformatic approaches. Moreover, the expression patterns of circRNAs were different between WXS (F) and WXS (S). Our findings primarily revealed that circRNAs might be endogenous noncoding regulators of flower and pollen development, and were involved in the fertility transition in the PTGMS rice line, and guide the production and application of two-line hybrid rice.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyang Xiong
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Qian Li
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yueyang Sun
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jing Jin
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hao Chen
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yu Zou
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | | | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
278
|
Ye J, Wang L, Li S, Zhang Q, Zhang Q, Tang W, Wang K, Song K, Sablok G, Sun X, Zhao H. AtCircDB: a tissue-specific database for Arabidopsis circular RNAs. Brief Bioinform 2019; 20:58-65. [PMID: 28968841 DOI: 10.1093/bib/bbx089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 01/26/2023] Open
Abstract
Circular RNAs are widely existing in eukaryotes. However, there is as yet no tissue-specific Arabidopsis circular RNA database, which hinders the study of circular RNA in plants. Here, we used 622 Arabidopsis RNA sequencing data sets from 87 independent studies hosted at NCBI SRA and developed AtCircDB to systematically identify, store and retrieve circular RNAs. By analyzing back-splicing sites, we characterized 84 685 circular RNAs, 30 648 tissue-specific circular RNAs and 3486 microRNA-circular RNA interactions. In addition, we used a metric (detection score) to measure the detection ability of the circular RNAs using a big-data approach. By experimental validation, we demonstrate that this metric improves the accuracy of the detection algorithm. We also defined the regions hosting enriched circular RNAs as super circular RNA regions. The results suggest that these regions are highly related to alternative splicing and chloroplast. Finally, we developed a comprehensive tissue-specific database (AtCircDB) to help the community store, retrieve, visualize and download Arabidopsis circular RNAs. This database will greatly expand our understanding of circular RNAs and their related regulatory networks. AtCircDB is freely available at http://genome.sdau.edu.cn/circRNA.
Collapse
Affiliation(s)
- Jiazhen Ye
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Lin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Shuzhang Li
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qinran Zhang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qinglei Zhang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Wenhao Tang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Kai Wang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Kun Song
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Gaurav Sablok
- Climate Change Cluster (C3), University of Technology Sydney, NSW, Australia
| | - Xiaoyong Sun
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Hongwei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
279
|
Santer L, Bär C, Thum T. Circular RNAs: A Novel Class of Functional RNA Molecules with a Therapeutic Perspective. Mol Ther 2019; 27:1350-1363. [PMID: 31324392 DOI: 10.1016/j.ymthe.2019.07.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs that lack free 3' and 5' ends and, thus, exist as continuous loop RNAs. Such circular transcripts have been identified for thousands of genes, are regulated in developmental stages and pathophysiological conditions, and are often expressed in a tissue- or cell-type-specific manner. For a long time, circular transcripts were considered as aberrant splicing by-products. However, high-throughput transcriptome sequencing and focused molecular characterization of individual circRNAs uncovered their ubiquity. Evidence emerges suggesting circRNAs are functional molecules. In this review, we illustrate the current knowledge of circRNA formation and circRNA detection methods. We summarize different molecular mechanisms of action and highlight circRNAs with specific roles in cardiovascular disease. Finally, we describe a number of tools for circRNA manipulation, which may be exploited for circRNA-based therapeutic interventions in the future.
Collapse
Affiliation(s)
- Laura Santer
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
280
|
Feng J, Xiang Y, Xia S, Liu H, Wang J, Ozguc FM, Lei L, Kong R, Diao L, He C, Han L. CircView: a visualization and exploration tool for circular RNAs. Brief Bioinform 2019; 19:1310-1316. [PMID: 29106456 DOI: 10.1093/bib/bbx070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) are novel rising stars of noncoding RNAs, which are highly abundant and evolutionarily conserved across species. Number of publications related to circRNAs increased sharply in recent years, representing emerging focuses in the field. Therefore, tools, pipelines and databases have been developed to identify and store circRNAs. However, there is no existing tool to visualize and explore circRNAs. Therefore, we introduce CircView, a user-friendly visualization tool for circRNAs detected from existing tools. CircView enables users to visualize circRNAs and to quantify number of samples with detected circRNAs. CircView allows users to explore circRNAs detected by unique or multiple tools. Furthermore, CircView allows users to view the regulatory elements, such as microRNA response elements and RNA-binding protein binding sites. CircView is a unique tool to visualize and explore circRNAs, which helps users to better understand potential functions of circRNAs and design the functional experiments.
Collapse
Affiliation(s)
- Jing Feng
- International School of Software, Wuhan University
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School
| | - Siyu Xia
- School of Basic Medical Sciences, Wuhan University
| | - Huan Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences
| | - Jun Wang
- School of Basic Medical Sciences, Wuhan University
| | - Fatma Muge Ozguc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School
| | - Lijun Lei
- School of Basic Medical Sciences, Wuhan University
| | - Ruoshan Kong
- International School of Software, Wuhan University
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Chunjiang He
- School of Basic Medical Sciences and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School
| |
Collapse
|
281
|
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne RF, Zhang XD, Hu W, Wu M. CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. Cell Metab 2019; 30:157-173.e7. [PMID: 31155494 DOI: 10.1016/j.cmet.2019.05.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
We report that circACC1, a circular RNA derived from human ACC1, plays a critical role in cellular responses to metabolic stress. CircACC1 is preferentially produced over ACC1 in response to serum deprivation by the transcription factor c-Jun. It functions to stabilize and promote the enzymatic activity of the AMPK holoenzyme by forming a ternary complex with the regulatory β and γ subunits. The cellular levels of circACC1 modulate both fatty acid β-oxidation and glycolysis, resulting in profound changes in cellular lipid storage. In a tumor xenograft model, silencing or enforced expression of circACC1 resulted in growth inhibition and enhancement, respectively. Moreover, increased AMPK activation in colorectal cancer tissues was frequently associated with elevated circACC1 expression. We conclude that circACC1 serves as an economic means to elicit AMPK activation and moreover propose that cancer cells exploit circACC1 during metabolic reprogramming.
Collapse
Affiliation(s)
- Qidong Li
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Yichun Wang
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Shuang Wu
- Department of Immunology, Anhui Medical University, Hefei 230027, China
| | - Zhong Zhou
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Xiaojuan Ding
- Department of Immunology, Anhui Medical University, Hefei 230027, China
| | - Ronghua Shi
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; School of Environmental & Life Sciences, University of Newcastle, Newcastle, NSW 2258, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Wanglai Hu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Department of Immunology, Anhui Medical University, Hefei 230027, China.
| | - Mian Wu
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.
| |
Collapse
|
282
|
Ragusa M, Barbagallo D, Chioccarelli T, Manfrevola F, Cobellis G, Di Pietro C, Brex D, Battaglia R, Fasano S, Ferraro B, Sellitto C, Ambrosino C, Roberto L, Purrello M, Pierantoni R, Chianese R. CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biol 2019; 16:1237-1248. [PMID: 31135264 DOI: 10.1080/15476286.2019.1624469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have a critical role in the control of gene expression. Their function in spermatozoa (SPZ) is unknown to date. Twenty-eight genes, involved in SPZ/testicular and epididymal physiology, were given in circBase database to find which of them may generate circular transcripts. We focused on circNAPEPLDiso1, one of the circular RNA isoforms of NAPEPLD transcript, because expressed in human and murine SPZ. In order to functionally characterize circNAPEPLDiso1 as potential microRNA (miRNA) sponge, we performed circNAPEPLDiso1-miR-CATCH and then profiled the expression of 754 miRNAs, by using TaqMan® Low Density Arrays. Among them, miRNAs 146a-5p, 203a-3p, 302c-3p, 766-3p and 1260a (some of them previously shown to be expressed in the oocyte), resulted enriched in circNAPEPLDiso1-miR-CATCHed cell lysate: the network of interactions generated from their validated targets was centred on a core of genes involved in the control of cell cycle. Moreover, computational analysis of circNAPEPLDiso1 sequence also showed its potential translation in a short form of NAPEPLD protein. Interestingly, the expression analysis in murine-unfertilized oocytes revealed low and high levels of circNAPEPLDiso1 and circNAPEPLDiso2, respectively. After fertilization, circNAPEPLDiso1 expression significantly increased, instead circNAPEPLDiso2 expression appeared constant. Based on these data, we suggest that SPZ-derived circNAPEPLDiso1 physically interacts with miRNAs primarily involved in the control of cell cycle; we hypothesize that it may represent a paternal cytoplasmic contribution to the zygote and function as a miRNA decoy inside the fertilized oocytes to regulate the first stages of embryo development. This role is proposed here for the first time.
Collapse
Affiliation(s)
- Marco Ragusa
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy.,b Oasi Research Institute - IRCCS , Troina , Italy
| | - Davide Barbagallo
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Teresa Chioccarelli
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Francesco Manfrevola
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Gilda Cobellis
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Cinzia Di Pietro
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Duilia Brex
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Rosalia Battaglia
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Silvia Fasano
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Bruno Ferraro
- d UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise , Caserta , Italy
| | - Carolina Sellitto
- d UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise , Caserta , Italy
| | - Concetta Ambrosino
- e Dipartimento di Scienze e Tecnologie, Università del Sannio , Benevento , Italy
| | - Luca Roberto
- f IRGS, Biogem , Ariano Irpino, Avellino , Italy
| | - Michele Purrello
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Riccardo Pierantoni
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Rosanna Chianese
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| |
Collapse
|
283
|
Wang J, Wang L. Deep learning of the back-splicing code for circular RNA formation. Bioinformatics 2019; 35:5235-5242. [DOI: 10.1093/bioinformatics/btz382] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/14/2019] [Accepted: 05/01/2019] [Indexed: 01/03/2023] Open
Abstract
Abstract
Motivation
Circular RNAs (circRNAs) are a new class of endogenous RNAs in animals and plants. During pre-RNA splicing, the 5′ and 3′ termini of exon(s) can be covalently ligated to form circRNAs through back-splicing (head-to-tail splicing). CircRNAs can be conserved across species, show tissue- and developmental stage-specific expression patterns, and may be associated with human disease. However, the mechanism of circRNA formation is still unclear although some sequence features have been shown to affect back-splicing.
Results
In this study, by applying the state-of-art machine learning techniques, we have developed the first deep learning model, DeepCirCode, to predict back-splicing for human circRNA formation. DeepCirCode utilizes a convolutional neural network (CNN) with nucleotide sequence as the input, and shows superior performance over conventional machine learning algorithms such as support vector machine and random forest. Relevant features learnt by DeepCirCode are represented as sequence motifs, some of which match human known motifs involved in RNA splicing, transcription or translation. Analysis of these motifs shows that their distribution in RNA sequences can be important for back-splicing. Moreover, some of the human motifs appear to be conserved in mouse and fruit fly. The findings provide new insight into the back-splicing code for circRNA formation.
Availability and implementation
All the datasets and source code for model construction are available at https://github.com/BioDataLearning/DeepCirCode.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|
284
|
Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology 2019; 44:1043-1054. [PMID: 30786269 PMCID: PMC6461776 DOI: 10.1038/s41386-019-0348-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) are a covalently closed subclass of non-coding RNA molecules formed by back splicing of linear precursor RNA. These molecules are relatively stable and particularly abundant in the mammalian brain and therefore may participate in neural development and function. With the emergence of circRNAs activity in gene regulation, these molecules have been implicated in several biological processes, including synaptic plasticity, and we therefore suspect they may have a role in neurobehavioral disorders. Here, we profile cortical circRNAs expression in 35 postmortem cortical gray matter (BA46) schizophrenia and a non-psychiatric comparison group, using circRNA enrichment sequencing. While more than 90,000 circRNAs species were identified in the dorsolateral prefrontal cortex (DLPFC), we observed lower complexity and substantial depletion in subjects with the disorder. Although circRNAs expression was independent of their host gene transcription, alternative splicing rates were lower in samples from cases compared to controls. Gene set analysis of differentially expressed circRNAs host genes revealed significant enrichment of neural functions and neurological disorders. Many of these depleted circRNAs are also predicted to sequester miRNAs that were shown previously to be increased in the disorder, potentially exacerbating the functional impact of their dysregulation through posttranscriptional gene silencing. While this is the first reported exploration of circRNAs in schizophrenia, there is significant potential for dysregulation more broadly in other major mental illnesses and behavioral disorders. Given their capacity for modulating miRNA function, circRNA may play a significant role in the pathophysiology of disease and even be targeted for therapeutic manipulation.
Collapse
|
285
|
Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol 2019; 16:899-905. [PMID: 31023147 DOI: 10.1080/15476286.2019.1600395] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) represent a new type of regulatory RNA which forms a covalently closed continuous loop from back-splicing events, a process in which the downstream 5' splice site and the 3' splice site are covalently linked. Emerging evidence indicates that circRNAs exert a new layer of transcriptional and post-transcriptional regulation of gene expression. However, there is no standard nomenclature of circRNA, although the study of circRNAs has exploded in the past few years. Here we present circbank ( www.circbank.cn ), a comprehensive database for human circRNAs, where a novel naming system of circRNAs based on the host genes of circRNAs was implemented. In addition to the new naming system, circbank collected other five features of circRNAs including the miRNA binding site, conservation of circRNAs, m6A modification of circRNAs, mutation of circRNAs and protein-coding potential of circRNAs. Circbank is publicly available and allows users to query, browse and download circRNAs with all six features we provided, based on different search criteria. The database may serve as a resource to facilitate the research of function and regulation of circRNAs.
Collapse
Affiliation(s)
- Ming Liu
- a Department of Bioinformatics , ATCGene Inc , Guangzhou , China
| | - Qian Wang
- b Department of Computer Science and Information Engineering , Guangdong Vocational College of Industry and Commerce , Guangzhou , China
| | - Jian Shen
- a Department of Bioinformatics , ATCGene Inc , Guangzhou , China
| | - Burton B Yang
- c Sunnybrook Research Institute , Sunnybrook Health Sciences Centre , Toronto , Canada.,d Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada
| | - Xiangming Ding
- a Department of Bioinformatics , ATCGene Inc , Guangzhou , China
| |
Collapse
|
286
|
Li A, Sun Y, Drummer C, Lu Y, Yu D, Zhou Y, Li X, Pearson SJ, Johnson C, Yu C, Yang WY, Mastascusa K, Jiang X, Sun J, Rogers T, Hu W, Wang H, Yang X. Increasing Upstream Chromatin Long-Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Front Physiol 2019; 10:433. [PMID: 31057422 PMCID: PMC6482593 DOI: 10.3389/fphys.2019.00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that form covalently closed continuous loops, and act as gene regulators in physiological and disease conditions. To test our hypothesis that proatherogenic lipid lysophosphatidylcholine (LPC) induce a set of circRNAs in human aortic endothelial cell (HAEC) activation, we performed circRNA analysis by searching our RNA-Seq data from LPC-activated HAECs, and found: (1) LPC induces significant modulation of 77 newly characterized cirRNAs, among which 47 circRNAs (61%) are upregulated; (2) 34 (72%) out of 47 upregulated circRNAs are upregulated when the corresponding mRNAs are downregulated, suggesting that the majority of circRNAs are upregulated presumably via LPC-induced “abnormal splicing” when the canonical splicing for generation of corresponding mRNAs is suppressed; (3) Upregulation of 47 circRNAs is temporally associated with mRNAs-mediated LPC-upregulated cholesterol synthesis-SREBP2 pathway and LPC-downregulated TGF-β pathway; (4) Increase in upstream chromatin long-range interaction sites to circRNA related genes is associated with preferred circRNA generation over canonical splicing for mRNAs, suggesting that shifting chromatin long-range interaction sites from downstream to upstream may promote induction of a list of circRNAs in lysoPC-activated HAECs; (5) Six significantly changed circRNAs may have sponge functions for miRNAs; and (6) 74% significantly changed circRNAs contain open reading frames, suggesting that putative short proteins may interfere with the protein interaction-based signaling. Our findings have demonstrated for the first time that a new set of LPC-induced circRNAs may contribute to homeostasis in LPC-induced HAEC activation. These novel insights may lead to identifications of new therapeutic targets for treating metabolic cardiovascular diseases, inflammations, and cancers.
Collapse
Affiliation(s)
- Angus Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Xinyuan Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Simone J Pearson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine Yu
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Philadelphia University - Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
287
|
Tan H, Gan L, Fan X, Liu L, Liu S. Diagnostic value of circular RNAs as effective biomarkers for cancer: a systematic review and meta-analysis. Onco Targets Ther 2019; 12:2623-2633. [PMID: 31114221 PMCID: PMC6497823 DOI: 10.2147/ott.s197537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Increasing evidence has identified circular RNAs (circRNAs) as ideal molecular biomarkers for cancer diagnosis, therapy, and prognosis. However, the overall diagnostic efficiency of circRNAs remains unclear. Thus, this meta-analysis aimed to comprehensively evaluate the diagnostic accuracy of circRNA expression profiles for cancer. Methods: A literature search of online databases was conducted to identify all eligible studies. The quality of the studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. All statistical analyses were executed using STATA 14.0, Meta-DiSc 1.4, and Review Manager 5.2 software. Results: A total of 32 studies, involving 2,400 cases and 2,295 controls, were included in the diagnostic meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve were 0.79 (95% CI: 0.73–0.84), 0.73 (95% CI: 0.67–0.79), 2.9 (95% CI: 2.5–3.5), 0.29 (95% CI: 0.24–0.36), 10 (95% CI: 8–13), and 0.83 (95% CI: 0.79–0.86), respectively. The overall analysis suggested that circRNAs are useful diagnostic biomarkers for cancer. Subgroup analysis indicated that plasma samples had a better diagnostic performance than cancer tissue samples for cancer detection. Studies involving ≥100 cases or gastric cancer showed higher sensitivities than those including <100 cases or other cancers. Conclusion: This meta-analysis revealed that circRNAs were significantly correlated with cancer diagnosis. In addition, circRNAs had good diagnostic accuracy and might serve as effective diagnostic biomarkers for cancer.
Collapse
Affiliation(s)
- Hong Tan
- Department of General Surgery, Chengdu Integrated TCM & Western Medicine Hospital (Chengdu First People's Hospital), Chengdu, 610041, China
| | - Li Gan
- School of Medicine, University of Electronic Science and Technology of China, Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Xiaoming Fan
- Department of Laboratory Medicine, Affiliated Hospital of University of Electronic Science and Technology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Limin Liu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochou University, Institute of Blood and Marrow Transplantation, Suzhou, 215006, China
| | - Shan Liu
- Department of Laboratory Medicine, Affiliated Hospital of University of Electronic Science and Technology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| |
Collapse
|
288
|
|
289
|
Wang H, Feng C, Wang M, Yang S, Wei F. Circular RNAs: Diversity of Functions and a Regulatory Nova in Oral Medicine: A Pilot Review. Cell Transplant 2019; 28:819-830. [PMID: 30945569 PMCID: PMC6719493 DOI: 10.1177/0963689719837917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oral diseases, such as cancers, inflammation, loss of bone/tooth/soft tissues, are serious threats to human health since some can cause systemic disease and effective treatments are limited. Thus, discovering promising biomarkers for physiological and pathological processes in oral medicine, and identifying novel targets for therapy have become a most critical issue. Recently, circular RNAs (circRNAs), which were once thought to be a class of non-coding RNAs (ncRNAs), are found to be of coding potential. CircRNAs are highly present in the cytoplasm of eukaryotic cells and are key elements in the physiological and biological processes of various pathological conditions, and are also reflected in oral development and progress. Previous studies have indicated that circRNAs are involved in the initiation and development of different types of diseases and tissues (e.g., cancers, cardiovascular diseases, neural development, growth and development, wood healing, liver regeneration). Moreover, growing evidence demonstrates that circRNAs play vital roles in oral cancers and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Here, we focus on the biological characteristics of circRNAs, beginning with an overview of previous studies on the functional roles of circRNAs as diagnostic biomarkers and therapeutic targets in oral medicine. We hope this will give us a promising new comprehension of the underlying mechanisms occurring during related biological and pathological progress, and contribute to the development of effective diagnostic biomarkers and therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Hong Wang
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China.,* Both authors contributed equally
| | - Cheng Feng
- 3 Jinan Hospital of Traditional Chinese Medicine, Jinan, People's Republic of China.,* Both authors contributed equally
| | - Meng Wang
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Shuangyan Yang
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Fulan Wei
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
290
|
Zhao W, Chu S, Jiao Y. Present Scenario of Circular RNAs (circRNAs) in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:379. [PMID: 31001302 PMCID: PMC6454147 DOI: 10.3389/fpls.2019.00379] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
Circular RNAs (circRNAs) are new endogenous non-coding RNA family members that arise during pre-mRNA splicing in a reversed order in which the 3' and 5' ends are covalently closed. Compared to the comprehensive investigation of circRNAs in animals, circRNA research in plants is still in its infancy. Genome-wide identification and characterization of circRNAs have recently been performed in several plant species. CircRNAs are ubiquitously expressed and abundant in plants. The expression of circRNAs is often dependent on cell-type, tissue, and developmental stage, and it is particularly stress-inducible in plants. CircRNAs might play important roles in various biological processes in plants, including development and the response to biotic and abiotic stresses. Here, we review the current literature and provide a brief overview of circRNAs and their research status in plants, as well as the bioinformatic tools and database resources for circRNA analysis.
Collapse
Affiliation(s)
- Wei Zhao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
291
|
Braicu C, Zimta AA, Gulei D, Olariu A, Berindan-Neagoe I. Comprehensive analysis of circular RNAs in pathological states: biogenesis, cellular regulation, and therapeutic relevance. Cell Mol Life Sci 2019; 76:1559-1577. [PMID: 30805658 PMCID: PMC11105679 DOI: 10.1007/s00018-019-03016-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/14/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are members of the non-coding transcriptome; however, some of them are translated into proteins. These transcripts have important roles in both physiological and pathological mechanisms due to their ability to directly influence cellular signaling pathways. Specifically, circRNAs are regulators of transcription, translation, protein interaction, and signal transduction. An increased knowledge within their area is observed over the last few years, concomitant with the development of next-generation sequencing techniques. circRNAs are mostly tissue and disease specific with the ability of specifically changing the biological behavior of cells. The altered expression profile is currently investigated as novel minimally invasive diagnosis/prognosis tool and also therapeutic target in human disease. The diagnosis approach is based on their level modification within pathological states, especially cancer, where circRNAs' therapies are intensively explored in anti-aging strategies, diabetes, cardiovascular diseases, and malignant pathologies, and are relying on the restoration of homeostatic profiles.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| | - Andreea-Alina Zimta
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Andrei Olariu
- Nordlogic Software, 10-12, Rene Descartes Street, 400486, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
292
|
Guo Y, Yang J, Huang Q, Hsueh C, Zheng J, Wu C, Chen H, Zhou L. Circular RNAs and their roles in head and neck cancers. Mol Cancer 2019; 18:44. [PMID: 30898135 PMCID: PMC6427840 DOI: 10.1186/s12943-019-1003-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/13/2019] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs are abundant endogenous non-coding RNA with no 5′ cap and 3′ polyadenylation tail that modify liner mRNAs and have no terminal structures. Our knowledge of the biogenesis of circular RNAs has been expanded, and circular RNAs were shown to be key regulators of various diseases, especially cancers. Head and neck cancers are the sixth most popular cancers worldwide, and the overall survival rates remain unsatisfactory. Recent studies have indicated that circular RNAs are involved in the tumorigenesis, progression, invasion and chemosensitivity of head and neck cancers and that some circular RNAs could serve as diagnostic and prognostic biomarkers. In this study, we summarize research advances in the regulation of circular RNA biogenesis, their characteristics and functions, the involvement of circular RNAs in the pathophysiology of head and neck cancers and their potential clinical utilization, as well as the likely directions of future studies.
Collapse
Affiliation(s)
- Yang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jiechao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chiyao Hsueh
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Juan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chunping Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
293
|
Su W, Sun S, Wang F, Shen Y, Yang H. Circular RNA hsa_circ_0055538 regulates the malignant biological behavior of oral squamous cell carcinoma through the p53/Bcl-2/caspase signaling pathway. J Transl Med 2019; 17:76. [PMID: 30857544 PMCID: PMC6413456 DOI: 10.1186/s12967-019-1830-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common oral and maxillofacial malignant tumor with high rates of metastasis and mortality. Circular RNAs (circRNAs), a type of non-coding RNA, are involved in the development of a variety of tumors. The roles of circRNAs in OSCC are unclear; in this study, the correlation between the circRNA hsa_circ_0055538, previously identified by high-throughput sequencing, and the biological behavior of OSCC was evaluated. Methods circRNA expression was evaluated using patient tissue samples and various OSCC cell lines. The effects of overexpression and knockdown were evaluated by lentiviral infection and siRNA transfection of the SCC9 and CAL27 cell lines. Migration, invasion, apoptosis, and the expression of proteins in the p53 signaling pathway were evaluated. Infected cells were injected into nude mice to evaluate tumorigenesis. Results Low hsa_circ_0055538 expression levels were verified in tumor tissues and OSCC cell lines. Clinical data analysis showed that the expression level is related to the degree of tumor differentiation. Lentiviral infection and siRNA transfection of SCC9 and CAL27 cell lines revealed that changes in circRNA expression significantly affected the malignant biological behavior of OSCC cells. Importantly, nude mouse experiments showed that high expression of hsa_circ_0055538 inhibited tumor growth. Finally, hsa_circ_0055538 may affect the development of OSCC via the p53/Bcl-2/caspase signaling pathway. Conclusions Our results indicated that hsa_circ_0055538 is involved in OSCC via the p53 signaling pathway and may be a diagnostic and/or prognostic marker as well as a therapeutic target.
Collapse
Affiliation(s)
- Wen Su
- Clinical School, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, 518036, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
| | - Shuai Sun
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
| | - Feng Wang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
| | - Hongyu Yang
- Clinical School, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, 518036, Guangdong, China. .,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
294
|
Saleembhasha A, Mishra S. Novel molecules lncRNAs, tRFs and circRNAs deciphered from next-generation sequencing/RNA sequencing: computational databases and tools. Brief Funct Genomics 2019. [PMID: 28637169 DOI: 10.1093/bfgp/elx013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Powerful next-generation sequencing (NGS) technologies, more specifically RNA sequencing (RNA-seq), have been pivotal toward the detection and analysis and hypotheses generation of novel biomolecules, long noncoding RNAs (lncRNAs), tRNA-derived fragments (tRFs) and circular RNAs (circRNAs). Experimental validation of the occurrence of these biomolecules inside the cell has been reported. Their differential expression and functionally important role in several cancers types as well as other diseases such as Alzheimer's and cardiovascular diseases have garnered interest toward further studies in this research arena. In this review, starting from a brief relevant introduction to NGS and RNA-seq and the expression and role of lncRNAs, tRFs and circRNAs in cancer, we have comprehensively analyzed the current landscape of databases developed and computational software used for analyses and visualization for this emerging and highly interesting field of these novel biomolecules. Our review will help the end users and research investigators gain information on the existing databases and tools as well as an understanding of the specific features which these offer. This will be useful for the researchers in their proper usage thereby guiding them toward novel hypotheses generation and saving time and costs involved in extensive experimental processes in these three different novel functional RNAs.
Collapse
|
295
|
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, Robinson DR, Nesvizhskii AI, Chinnaiyan AM. The Landscape of Circular RNA in Cancer. Cell 2019; 176:869-881.e13. [PMID: 30735636 PMCID: PMC6601354 DOI: 10.1016/j.cell.2018.12.021] [Citation(s) in RCA: 1167] [Impact Index Per Article: 194.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/05/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture sequencing, we built the most comprehensive catalog of circRNA species to date: MiOncoCirc, the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic targets across cancer types.
Collapse
Affiliation(s)
- Josh N Vo
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yajia Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sudhanshu Shukla
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, 580011, India
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carl G Engelke
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Arul M Chinnaiyan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
296
|
Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer 2019; 18:6. [PMID: 30626395 PMCID: PMC6325800 DOI: 10.1186/s12943-018-0934-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/27/2018] [Indexed: 01/16/2023] Open
Abstract
Covalently closed single-stranded circular RNAs (circRNAs) consist of introns or exons and are widely present in eukaryotic cells. CircRNAs generally have low expression levels and relatively stable structures compared with messenger RNAs (mRNAs), most of which are located in the cytoplasm and often act in cell type and tissue-specific manners, indicating that they may serve as novel biomarkers. In recent years, circRNAs have gradually become a hotspot in the field of RNA and cancer research, but the functions of most circRNAs have not yet been discovered. Known circRNAs can affect the biogenesis of cancers in diverse ways, such as functioning as a microRNA (miRNA) sponges, combining with RNA binding proteins (RBPs), working as a transcription factor and translation of proteins. In this review, we summarize the characteristics and types of circRNAs, introduce the biogenesis of circRNAs, discuss the emerging functions and databases on circRNAs and present the current challenges of circRNAs studies.
Collapse
Affiliation(s)
- Qingfeng Shang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 320, Yueyang Road, Xuhui District, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
297
|
Meng X, Hu D, Zhang P, Chen Q, Chen M. CircFunBase: a database for functional circular RNAs. Database (Oxford) 2019; 2019:5306167. [PMID: 30715276 PMCID: PMC6360206 DOI: 10.1093/database/baz003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 01/26/2023]
Abstract
Increasing evidence reveals that circular RNAs (circRNAs) are widespread in eukaryotes and play important roles in diverse biological processes. However, a comprehensive functionally annotated circRNA database is still lacking. CircFunBase is a web-accessible database that aims to provide a high-quality functional circRNA resource including experimentally validated and computationally predicted functions. The current version of CircFunBase documents more than 7000 manually curated functional circRNA entries, mainly including Homo sapiens, Mus musculus etc. CircFunBase provides visualized circRNA-miRNA interaction networks. In addition, a genome browser is provided to visualize the genome context of circRNAs. As a biological information platform for circRNAs, CircFunBase will contribute for circRNA studies and bridge the gap between circRNAs and their functions.
Collapse
Affiliation(s)
- Xianwen Meng
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
- The State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Dahui Hu
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peijing Zhang
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Chen
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, the State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
298
|
Abstract
BACKGROUND Many evidences have demonstrated that circRNAs (circular RNA) play important roles in controlling gene expression of human, mouse and nematode. More importantly, circRNAs are also involved in many diseases through fine tuning of post-transcriptional gene expression by sequestering the miRNAs which associate with diseases. Therefore, identifying the circRNA-disease associations is very appealing to comprehensively understand the mechanism, treatment and diagnose of diseases, yet challenging. As the complex mechanism between circRNAs and diseases, wet-lab experiments are expensive and time-consuming to discover novel circRNA-disease associations. Therefore, it is of dire need to employ the computational methods to discover novel circRNA-disease associations. RESULT In this study, we develop a method (DWNN-RLS) to predict circRNA-disease associations based on Regularized Least Squares of Kronecker product kernel. The similarity of circRNAs is computed from the Gaussian Interaction Profile(GIP) based on known circRNA-disease associations. In addition, the similarity of diseases is integrated by the mean of GIP similarity and sematic similarity which is computed by the direct acyclic graph (DAG) representation of diseases. The kernels of circRNA-disease pairs are constructed from the Kronecker product of the kernels of circRNAs and diseases. DWNN (decreasing weight k-nearest neighbor) method is adopted to calculate the initial relational score for new circRNAs and diseases. The Kronecker product kernel based regularised least squares approach is used to predict new circRNA-disease associations. We adopt 5-fold cross validation (5CV), 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) to assess the prediction performance of our method, and compare it with other six competing methods (RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP). CONLUSION The experiment results show that DWNN-RLS reaches the AUC values of 0.8854, 0.9205 and 0.9701 in 5CV, 10CV and LOOCV, respectively, which illustrates that DWNN-RLS is superior to the competing methods RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP. In addition, case studies also show that DWNN-RLS is an effective method to predict new circRNA-disease associations.
Collapse
Affiliation(s)
- Cheng Yan
- School of Information Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
- School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000 China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9 Canada
| |
Collapse
|
299
|
Chu Q, Bai P, Zhu X, Zhang X, Mao L, Zhu QH, Fan L, Ye CY. Characteristics of plant circular RNAs. Brief Bioinform 2018; 21:135-143. [PMID: 30445438 DOI: 10.1093/bib/bby111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 11/14/2022] Open
Abstract
Circular RNA (circRNA) is a kind of covalently closed single-stranded RNA molecules that have been proved to play important roles in transcriptional regulation of genes in diverse species. With the rapid development of bioinformatics tools, a huge number (95143) of circRNAs have been identified from different plant species, providing an opportunity for uncovering the overall characteristics of plant circRNAs. Here, based on publicly available circRNAs, we comprehensively analyzed characteristics of plant circRNAs with the help of various bioinformatics tools as well as in-house scripts and workflows, including the percentage of coding genes generating circRNAs, the frequency of alternative splicing events of circRNAs, the non-canonical splicing signals of circRNAs and the networks involving circRNAs, miRNAs and mRNAs. All this information has been integrated into an upgraded online database, PlantcircBase 3.0 (http://ibi.zju.edu.cn/plantcircbase/). In this database, we provided browse, search and visualization tools as well as a web-based blast tool, BLASTcirc, for prediction of circRNAs from query sequences based on searching against plant genomes and transcriptomes.
Collapse
Affiliation(s)
- Qinjie Chu
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Panpan Bai
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xintian Zhu
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Xingchen Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Lingfeng Mao
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | | | - Longjiang Fan
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
300
|
Ma Y, Zhang X, Wang YZ, Tian H, Xu S. Research progress of circular RNAs in lung cancer. Cancer Biol Ther 2018; 20:123-129. [PMID: 30403899 DOI: 10.1080/15384047.2018.1523848] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related death worldwide. Despite encouraging results achieved with targeted therapy in recent years, the early diagnosis and treatment of lung cancer remains a major problem. Circular RNA (circRNA), a type of RNA with covalently closed continuous loop structures, has structural stability and certain tissue specificity. Recent studies have found that circRNAs have an important role in tumor development and are expected to be revealed as new targets for tumor prediction and treatment. Research on the biological functions and regulation mechanisms of circRNAs in lung cancer is in its infancy but is gathering momentum. In this review, we discuss the properties, biogenesis, biological function, and research progress of circRNAs in lung cancer to provide a theoretical foundation and new directions for studies on circRNAs in lung cancer.
Collapse
Affiliation(s)
- Yi Ma
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Xin Zhang
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Yi-Zhi Wang
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Hao Tian
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Shun Xu
- a Department of thoracic surgery , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|