251
|
Abstract
Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.
Collapse
Affiliation(s)
- Karsten Zengler
- Bioengineering Department, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
252
|
Information processing and signal integration in bacterial quorum sensing. Mol Syst Biol 2009; 5:325. [PMID: 19920810 PMCID: PMC2795473 DOI: 10.1038/msb.2009.79] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/28/2009] [Indexed: 11/23/2022] Open
Abstract
Bacteria communicate using secreted chemical signaling molecules called autoinducers in a process known as quorum sensing. The quorum-sensing network of the marine bacterium Vibrio harveyi uses three autoinducers, each known to encode distinct ecological information. Yet how cells integrate and interpret the information contained within these three autoinducer signals remains a mystery. Here, we develop a new framework for analyzing signal integration on the basis of information theory and use it to analyze quorum sensing in V. harveyi. We quantify how much the cells can learn about individual autoinducers and explain the experimentally observed input–output relation of the V. harveyi quorum-sensing circuit. Our results suggest that the need to limit interference between input signals places strong constraints on the architecture of bacterial signal-integration networks, and that bacteria probably have evolved active strategies for minimizing this interference. Here, we analyze two such strategies: manipulation of autoinducer production and feedback on receptor number ratios.
Collapse
|
253
|
Eberhardt A, Wu LJ, Errington J, Vollmer W, Veening JW. Cellular localization of choline-utilization proteins inStreptococcus pneumoniaeusing novel fluorescent reporter systems. Mol Microbiol 2009; 74:395-408. [DOI: 10.1111/j.1365-2958.2009.06872.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
254
|
Ducret A, Maisonneuve E, Notareschi P, Grossi A, Mignot T, Dukan S. A microscope automated fluidic system to study bacterial processes in real time. PLoS One 2009; 4:e7282. [PMID: 19789641 PMCID: PMC2748647 DOI: 10.1371/journal.pone.0007282] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/08/2009] [Indexed: 11/19/2022] Open
Abstract
Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level.
Collapse
Affiliation(s)
- Adrien Ducret
- Aix Marseille Université - Laboratoire de Chimie Bactérienne (UPR 9043) - Institut de Microbiologie de la Méditerranée (IFR 88) - CNRS, 31, Chemin Joseph Aiguier, Marseille, France
| | - Etienne Maisonneuve
- Aix Marseille Université - Laboratoire de Chimie Bactérienne (UPR 9043) - Institut de Microbiologie de la Méditerranée (IFR 88) - CNRS, 31, Chemin Joseph Aiguier, Marseille, France
| | - Philippe Notareschi
- Aix Marseille Université - Laboratoire de Chimie Bactérienne (UPR 9043) - Institut de Microbiologie de la Méditerranée (IFR 88) - CNRS, 31, Chemin Joseph Aiguier, Marseille, France
| | - Alain Grossi
- Aix Marseille Université - Laboratoire de Chimie Bactérienne (UPR 9043) - Institut de Microbiologie de la Méditerranée (IFR 88) - CNRS, 31, Chemin Joseph Aiguier, Marseille, France
| | - Tâm Mignot
- Aix Marseille Université - Laboratoire de Chimie Bactérienne (UPR 9043) - Institut de Microbiologie de la Méditerranée (IFR 88) - CNRS, 31, Chemin Joseph Aiguier, Marseille, France
- * E-mail: (TM); (SD)
| | - Sam Dukan
- Aix Marseille Université - Laboratoire de Chimie Bactérienne (UPR 9043) - Institut de Microbiologie de la Méditerranée (IFR 88) - CNRS, 31, Chemin Joseph Aiguier, Marseille, France
- * E-mail: (TM); (SD)
| |
Collapse
|
255
|
Abstract
Bacterial autolysis has recently been identified as a key mechanism that regulates different phases of biofilm development including microcolony formation and dispersal. However such autolytic measures are limited to a subfraction of cells within the entire biofilm population. Here we speculate on the role biofilm heterogeneity plays in limiting autolysis within biofilms and further describe the molecular regulation of suicidal and fratricidal mechanisms in biofilm development of Staphylococcus aureus and Enterococcus faecalis.
Collapse
|
256
|
Veening JW, Murray H, Errington J. A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. Genes Dev 2009; 23:1959-70. [PMID: 19684115 DOI: 10.1101/gad.528209] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coordination of DNA replication with cellular development is a crucial problem in most living organisms. Bacillus subtilis cells switch from vegetative growth to sporulation when starved. Sporulation normally occurs in cells that have stopped replicating DNA and have two completed chromosomes: one destined for the prespore and the other for the mother cell. It has long been recognized that there is a sensitive period in the cell cycle during which the initiation of spore development can be triggered, presumably to allow for the generation of exactly two complete chromosomes. However, the mechanism responsible for this has remained unclear. Here we show that the sda gene, previously identified as a checkpoint factor preventing sporulation in response to DNA damage, exerts cell cycle control over the initiation of sporulation. Expression of sda occurs in a pulsatile manner, with a burst of expression each cell cycle at the onset of DNA replication. Up-regulation of the intrinsically unstable Sda protein, which is dependent on the active form of the DNA replication initiator protein, DnaA, transiently inhibits the initiation of sporulation. This regulation avoids the generation of spore formers with replicating chromosomes, which would result in diploid or polyploid spores that we show have reduced viability.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | |
Collapse
|
257
|
Abstract
Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.
Collapse
|
258
|
Lindner AB, Demarez A. Protein aggregation as a paradigm of aging. Biochim Biophys Acta Gen Subj 2009; 1790:980-96. [PMID: 19527771 DOI: 10.1016/j.bbagen.2009.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 12/23/2022]
Abstract
The process of physiological decline leading to death of the individual is driven by the deteriorating capacity to withstand extrinsic and intrinsic hazards, resulting in damage accumulation with age. The dynamic changes with time of the network governing the outcome of misfolded proteins, exemplifying as intrinsic hazards, is considered here as a paradigm of aging. The main features of the network, namely, the non-linear increase of damage and the presence of amplifying feedback loops within the system are presented through a survey of the different components of the network and related cellular processes in aging and disease.
Collapse
Affiliation(s)
- Ariel B Lindner
- INSERM U571, Paris Descartes University, Paris, F-75015, France.
| | | |
Collapse
|
259
|
Abstract
Cell division in bacteria is carried out by about a dozen proteins which assemble at midcell and form a complex known as the divisome. To study the dynamics and temporal hierarchy of divisome assembly in Bacillus subtilis, we have examined the in vivo localization pattern of a set of division proteins fused to green fluorescent protein in germinating spores and vegetative cells. Using time series and time-lapse microscopy, we show that the FtsZ ring assembles early and concomitantly with FtsA, ZapA, and EzrA. After a time delay of at least 20% of the cell cycle, a second set of division proteins, including GpsB, FtsL, DivIB, FtsW, Pbp2B, and DivIVA, are recruited to midcell. Together, our data provide in vivo evidence for two-step assembly of the divisome. Interestingly, overproduction of FtsZ advances the temporal assembly of EzrA but not of DivIVA, suggesting that a signal different from that of FtsZ polymerization drives the assembly of late divisome proteins. Microarray analysis shows that FtsZ depletion or overexpression does not significantly alter the transcription of division genes, supporting the hypothesis that cell division in B. subtilis is mainly regulated at the posttranscriptional level.
Collapse
|
260
|
Gordon AJE, Halliday JA, Blankschien MD, Burns PA, Yatagai F, Herman C. Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol 2009; 7:e44. [PMID: 19243224 PMCID: PMC2652393 DOI: 10.1371/journal.pbio.1000044] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 01/12/2009] [Indexed: 01/11/2023] Open
Abstract
Bistable epigenetic switches are fundamental for cell fate determination in unicellular and multicellular organisms. Regulatory proteins associated with bistable switches are often present in low numbers and subject to molecular noise. It is becoming clear that noise in gene expression can influence cell fate. Although the origins and consequences of noise have been studied, the stochastic and transient nature of RNA errors during transcription has not been considered in the origin or modeling of noise nor has the capacity for such transient errors in information transfer to generate heritable phenotypic change been discussed. We used a classic bistable memory module to monitor and capture transient RNA errors: the lac operon of Escherichia coli comprises an autocatalytic positive feedback loop producing a heritable all-or-none epigenetic switch that is sensitive to molecular noise. Using single-cell analysis, we show that the frequency of epigenetic switching from one expression state to the other is increased when the fidelity of RNA transcription is decreased due to error-prone RNA polymerases or to the absence of auxiliary RNA fidelity factors GreA and GreB (functional analogues of eukaryotic TFIIS). Therefore, transcription infidelity contributes to molecular noise and can effect heritable phenotypic change in genetically identical cells in the same environment. Whereas DNA errors allow genetic space to be explored, RNA errors may allow epigenetic or expression space to be sampled. Thus, RNA infidelity should also be considered in the heritable origin of altered or aberrant cell behaviour.
Collapse
Affiliation(s)
- Alasdair J. E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Matthew D Blankschien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip A Burns
- Pathology and Tumour Biology, Leeds Institute for Molecular Medicine, St James's University Hospital, Leeds, United Kingdom
| | - Fumio Yatagai
- Molecular Imaging Program, RIKEN Institute, Wako-shi, Saitama, Japan
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
261
|
Abstract
Many bacterial systems rely on dynamic genetic circuits to control crucial biological processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages 'wash out' crucial dynamics that are either unsynchronized between cells or are driven by fluctuations, or 'noise', in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems.
Collapse
Affiliation(s)
- James C W Locke
- Department of Applied Physics, Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
262
|
Complexity in bacterial cell-cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proc Natl Acad Sci U S A 2009; 106:6459-64. [PMID: 19380751 DOI: 10.1073/pnas.0810878106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A common form of quorum sensing in gram-positive bacteria is mediated by peptides that act as phosphatase regulators (Phr) of receptor aspartyl phosphatases (Raps). In Bacillus subtilis, several Phr signals are integrated in sporulation phosphorelay signal transduction. We theoretically demonstrate that the phosphorelay can act as a computational machine performing a sensitive division operation of kinase-encoded signals by quorum-modulated Rap signals, indicative of cells computing a "food per cell" estimate to decide whether to enter sporulation. We predict expression from the rapA-phrA operon to bifurcate as relative environmental signals change in a developing population. We experimentally observe that the rapA-phrA operon is heterogeneously induced in sporulating microcolonies. Uninduced cells sporulate rather synchronously early on, whereas the RapA/PhrA subpopulation sporulates less synchronously throughout later stationary phase. Moreover, we show that cells sustain PhrA expression during periods of active growth. Together with the model, these findings suggest that the phosphorelay may normalize environmental signals by the size of the (sub)population actively competing for nutrients (as signaled by PhrA). Generalizing this concept, the various Phrs could facilitate subpopulation communication in dense isogenic communities to control the physiological strategies followed by differentiated subpopulations by interpreting (environmental) signals based on the spatiotemporal community structure.
Collapse
|
263
|
Ward RJ, Clements KD, Choat JH, Angert ER. Cytology of terminally differentiated Epulopiscium mother cells. DNA Cell Biol 2009; 28:57-64. [PMID: 19196050 DOI: 10.1089/dna.2008.0801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epulopiscium sp. type B, a member of the Firmicutes, is a large (up to 300 microm), cigar-shaped bacterial symbiont of surgeonfish that propagates itself by forming multiple intracellular offspring. This unusual form of reproduction is an apparent modification of a developmental program used by some Firmicutes to produce an endospore. At the onset of offspring formation, the Epulopiscium cell divides at both poles. The polar cells are engulfed by the larger mother cell and grow within the mother cell. At the final stages of development, the Epulopiscium mother cell lyses. Here we describe changes in Epulopiscium cell structure, focusing on mother cell DNA replication and cell death. DNA replication was examined by labeling cells with the nucleotide analog bromodeoxyuridine. As expected, DNA replication occurs in the developing offspring. However, well after passage of genetic information from parent to offspring is complete, DNA within the mother cell continues to replicate. Using fluorescence microscopy, we found that near the end of the offspring growth cycle, mother cell DNA disintegrates. The mother cell membrane and wall deteriorate as well. DNA replication within this terminally differentiated cell indicates the importance of mother cell nucleoids in cell maintenance and the development of offspring. The synchronized timing of mother cell deterioration within a population suggests that the Epulopiscium mother cell undergoes a programmed cell death. The programmed death of the mother cell may allow for the timely release of resources accumulated in the mother cell to provide nutrients to populations of these intestinal microbes and their host.
Collapse
Affiliation(s)
- Rebekah J Ward
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
264
|
Abstract
Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability. Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-AND gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | |
Collapse
|
265
|
Kirstein J, Strahl H, Molière N, Hamoen LW, Turgay K. Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol Microbiol 2008; 70:682-94. [PMID: 18786145 PMCID: PMC2628427 DOI: 10.1111/j.1365-2958.2008.06438.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein degradation mediated by ATP-dependent proteases, such as Hsp100/Clp and related AAA+ proteins, plays an important role in cellular protein homeostasis, protein quality control and the regulation of, e.g. heat shock adaptation and other cellular differentiation processes. ClpCP with its adaptor proteins and other related proteases, such as ClpXP or ClpEP of Bacillus subtilis, are involved in general and regulatory proteolysis. To determine if proteolysis occurs at specific locations in B. subtilis cells, we analysed the subcellular distribution of the Clp system together with adaptor and general and regulatory substrate proteins, under different environmental conditions. We can demonstrate that the ATPase and the proteolytic subunit of the Clp proteases, as well as the adaptor or substrate proteins, form visible foci, representing active protease clusters localized to the polar and to the mid-cell region. These clusters could represent a compartmentalized place for protein degradation positioned at the pole close to where most of the cellular protein biosynthesis and also protein quality control are taking place, thereby spatially separating protein synthesis and degradation.
Collapse
Affiliation(s)
- Janine Kirstein
- Institut für Biologie - Mikrobiologie, FU Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
266
|
Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 2008; 4:184. [PMID: 18414485 PMCID: PMC2387230 DOI: 10.1038/msb.2008.18] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/20/2008] [Indexed: 11/30/2022] Open
Abstract
The most sophisticated survival strategy Bacillus subtilis employs is the differentiation of a subpopulation of cells into highly resistant endospores. To examine the expression patterns of non-sporulating cells within heterogeneous populations, we used buoyant density centrifugation to separate vegetative cells from endospore-containing cells and compared the transcriptome profiles of both subpopulations. This demonstrated the differential expression of various regulons. Subsequent single-cell analyses using promoter-gfp fusions confirmed our microarray results. Surprisingly, only part of the vegetative subpopulation highly and transiently expresses genes encoding the extracellular proteases Bpr (bacillopeptidase) and AprE (subtilisin), both of which are under the control of the DegU transcriptional regulator. As these proteases and their degradation products freely diffuse within the liquid growth medium, all cells within the clonal population are expected to benefit from their activities, suggesting that B. subtilis employs cooperative or even altruistic behavior. To unravel the mechanisms by which protease production heterogeneity within the non-sporulating subpopulation is established, we performed a series of genetic experiments combined with mathematical modeling. Simulations with our model yield valuable insights into how population heterogeneity may arise by the relatively long and variable response times within the DegU autoactivating pathway.
Collapse
|