251
|
Ankrah NYD, Douglas AE. Nutrient factories: metabolic function of beneficial microorganisms associated with insects. Environ Microbiol 2018. [DOI: 10.1111/1462-2920.14097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Angela E. Douglas
- Department of MicrobiologyCornell UniversityIthaca NY14853 USA
- Department of Molecular Biology and GeneticsCornell UniversityIthaca NY14853 USA
| |
Collapse
|
252
|
Synergy among Microbiota and Their Hosts: Leveraging the Hawaiian Archipelago and Local Collaborative Networks To Address Pressing Questions in Microbiome Research. mSystems 2018; 3:mSystems00159-17. [PMID: 29556540 PMCID: PMC5850080 DOI: 10.1128/msystems.00159-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Abstract
Despite increasing acknowledgment that microorganisms underpin the healthy functioning of basically all multicellular life, few cross-disciplinary teams address the diversity and function of microbiota across organisms and ecosystems. Our newly formed consortium of junior faculty spanning fields such as ecology and geoscience to mathematics and molecular biology from the University of Hawai‘i at Mānoa aims to fill this gap. Despite increasing acknowledgment that microorganisms underpin the healthy functioning of basically all multicellular life, few cross-disciplinary teams address the diversity and function of microbiota across organisms and ecosystems. Our newly formed consortium of junior faculty spanning fields such as ecology and geoscience to mathematics and molecular biology from the University of Hawai‘i at Mānoa aims to fill this gap. We are united in our mutual interest in advancing a new paradigm for biology that incorporates our modern understanding of the importance of microorganisms. As our first concerted research effort, we will assess the diversity and function of microbes across an entire watershed on the island of Oahu, Hawai‘i. Due to its high ecological diversity across tractable areas of land and sea, Hawai‘i provides a model system for the study of complex microbial communities and the processes they mediate. Owing to our diverse expertise, we will leverage this study system to advance the field of biology.
Collapse
|
253
|
Abstract
Microbiome science is revealing that the phenotype and health of animals, including humans, depend on the sustained function of their resident microorganisms. In this essay, I argue for thoughtful choice of model systems for human microbiome science. A greater variety of experimental systems, including wider use of invertebrate models, would benefit biomedical research, while systems ill-suited to experimental and genetic manipulation can be used to address very limited sets of scientific questions. Microbiome science benefits from the coordinated use of multiple systems, which is facilitated by networks of researchers with expertise in different experimental systems.
Collapse
Affiliation(s)
- Angela E. Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
254
|
Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 2018; 8:2240-2252. [PMID: 29468040 PMCID: PMC5817147 DOI: 10.1002/ece3.3830] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 01/04/2023] Open
Abstract
The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host-microbe associations under adverse environmental conditions. To gain insight into the stability of coral host-microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora-associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Marine Ecology GroupFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- Coral Reef Ecology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Tropical Marine Microbiology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Astrid Gärdes
- Tropical Marine Microbiology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Christian Wild
- Marine Ecology GroupFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- Coral Reef Ecology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Christian R. Voolstra
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
255
|
Gerhart JG, Auguste Dutcher H, Brenner AE, Moses AS, Grubhoffer L, Raghavan R. Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks. Genome Biol Evol 2018; 10:607-615. [PMID: 29385445 PMCID: PMC5804916 DOI: 10.1093/gbe/evy021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 01/14/2023] Open
Abstract
Bacterial endosymbionts of ticks are of interest due to their close evolutionary relationships with tick-vectored pathogens. For instance, whereas many ticks contain Francisella-like endosymbionts (FLEs), others transmit the mammalian pathogen Francisella tularensis. We recently sequenced the genome of an FLE present in the hard tick Amblyomma maculatum (FLE-Am) and showed that it likely evolved from a pathogenic ancestor. In order to expand our understanding of FLEs, in the current study we sequenced the genome of an FLE in the soft tick Ornithodoros moubata and compared it to the genomes of FLE-Am, Francisella persica-an FLE in the soft tick Argus (Persicargas) arboreus, Francisella sp. MA067296-a clinical isolate responsible for an opportunistic human infection, and F. tularensis, the established human pathogen. We determined that FLEs and MA067296 belonged to a sister taxon of mammalian pathogens, and contained inactivated versions of virulence genes present in F. tularensis, indicating that the most recent common ancestor shared by FLEs and F. tularensis was a potential mammalian pathogen. Our analyses also revealed that the two soft ticks (O. moubata and A. arboreus) probably acquired their FLEs separately, suggesting that the virulence attenuation observed in FLEs are not the consequence of a single acquisition event followed by speciation, but probably due to independent transitions of pathogenic francisellae into nonpathogenic FLEs within separate tick lineages. Additionally, we show that FLEs encode intact pathways for the production of several B vitamins and cofactors, denoting that they could function as nutrient-provisioning endosymbionts in ticks.
Collapse
Affiliation(s)
- Jonathan G Gerhart
- Biology Department and Center for Life in Extreme Environments, Portland State University
- Present address: Division of Parasitic Diseases and Malaria, Entomology Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - H Auguste Dutcher
- Biology Department and Center for Life in Extreme Environments, Portland State University
| | - Amanda E Brenner
- Biology Department and Center for Life in Extreme Environments, Portland State University
| | - Abraham S Moses
- Biology Department and Center for Life in Extreme Environments, Portland State University
| | - Libor Grubhoffer
- Biology Centre CAS, Institute of Parasitology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Rahul Raghavan
- Biology Department and Center for Life in Extreme Environments, Portland State University
| |
Collapse
|
256
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
257
|
Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME JOURNAL 2018; 12:898-908. [PMID: 29362506 DOI: 10.1038/s41396-017-0024-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Symbiotic interactions between organisms create new ecological niches. For example, many insects survive on plant-sap with the aid of maternally transmitted bacterial symbionts that provision essential nutrients lacking in this diet. Symbiotic partners often enter a long-term relationship in which the co-evolutionary fate of lineages is interdependent. Obligate symbionts that are strictly maternally transmitted experience genetic drift and genome degradation, compromising symbiont function and reducing host fitness unless hosts can compensate for these deficits. One evolutionary solution is the acquisition of a novel symbiont with a functionally intact genome. Whereas almost all aphids host the anciently acquired bacterial endosymbiont Buchnera aphidicola (Gammaproteobacteria), Geopemphigus species have lost Buchnera and instead contain a maternally transmitted symbiont closely related to several known insect symbionts from the bacterial phylum Bacteroidetes. A complete genome sequence shows the symbiont has lost many ancestral genes, resulting in a genome size intermediate between that of free-living and symbiotic Bacteroidetes. The Geopemphigus symbiont retains biosynthetic pathways for amino acids and vitamins, as in Buchnera and other insect symbionts. This case of evolutionary replacement of Buchnera provides an opportunity to further understand the evolution and functional genomics of symbiosis.
Collapse
|
258
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
259
|
Łukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M, Michalik A, Pessacq P, Simon C, Veloso C, McCutcheon JP. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc Natl Acad Sci U S A 2018; 115:E226-E235. [PMID: 29279407 PMCID: PMC5777040 DOI: 10.1073/pnas.1712321115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.
Collapse
Affiliation(s)
- Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
| | - Katherine Nazario
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
| | - James T Van Leuven
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Matthew A Campbell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Anna Michalik
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, 9200 Esquel, Chubut, Argentina
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, 7800003 Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
| |
Collapse
|
260
|
Queller DC. Nancy A. Moran - Recipient of the 2017 Molecular Ecology Prize. Mol Ecol 2018; 27:35-37. [DOI: 10.1111/mec.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- David C. Queller
- Spencer T. Olin Professor of Biology Washington University St. Louis; Missouri
| |
Collapse
|
261
|
The Native Hawaiian Insect Microbiome Initiative: A Critical Perspective for Hawaiian Insect Evolution. INSECTS 2017; 8:insects8040130. [PMID: 29257089 PMCID: PMC5746813 DOI: 10.3390/insects8040130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023]
Abstract
Insects associate with a diversity of microbes that can shape host ecology and diversity by providing essential biological and adaptive services. For most insect groups, the evolutionary implications of host–microbe interactions remain poorly understood. Geographically discrete areas with high biodiversity offer powerful, simplified model systems to better understand insect–microbe interactions. Hawaii boasts a diverse endemic insect fauna (~6000 species) characterized by spectacular adaptive radiations. Despite this, little is known about the role of bacteria in shaping this diversity. To address this knowledge gap, we inaugurate the Native Hawaiian Insect Microbiome Initiative (NHIMI). The NHIMI is an effort intended to develop a framework for informing evolutionary and biological studies in Hawaii. To initiate this effort, we have sequenced the bacterial microbiomes of thirteen species representing iconic, endemic Hawaiian insect groups. Our results show that native Hawaiian insects associate with a diversity of bacteria that exhibit a wide phylogenetic breadth. Several groups show predictable associations with obligate microbes that permit diet specialization. Others exhibit unique ecological transitions that are correlated with shifts in their microbiomes (e.g., transition to carrion feeding from plant-feeding in Nysius wekiuicola). Finally, some groups, such as the Hawaiian Drosophila, have relatively diverse microbiomes with a conserved core of bacterial taxa across multiple species and islands.
Collapse
|
262
|
Šochová E, Husník F, Nováková E, Halajian A, Hypša V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 2017; 5:e4099. [PMID: 29250466 PMCID: PMC5729840 DOI: 10.7717/peerj.4099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.
Collapse
Affiliation(s)
- Eva Šochová
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Filip Husník
- Department of Molecular Biology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - Václav Hypša
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
263
|
Thairu MW, Cheng S, Hansen AK. A sRNA in a reduced mutualistic symbiont genome regulates its own gene expression. Mol Ecol 2017; 27:1766-1776. [PMID: 29134727 DOI: 10.1111/mec.14424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023]
Abstract
Similar to other nutritional endosymbionts that are obligate for host survival, the mutualistic aphid endosymbiont, Buchnera, has a highly reduced genome with few regulatory elements. Until recently, it was thought that aphid hosts were primarily responsible for regulating their symbiotic relationship. However, we recently revealed that Buchnera displays differential protein regulation, but not mRNA expression. We also identified a number of conserved small RNAs (sRNAs) that are expressed among Buchnera taxa. In this study, we investigate whether differential protein regulation in Buchnera is the result of post-transcriptional gene regulation via sRNAs. We characterize the sRNA profile of two Buchnera life stages: (i) when Buchnera is transitioning from an extracellular proliferating state in aphid embryos and (ii) when Buchnera is in an intracellular nonproliferating state in aphid bacteriocytes (specialized symbiont cells). Overall, we identified 90 differentially expressed sRNAs, 97% of which were upregulated in aphid embryos. Of these sRNAs, the majority were predicted to be involved in the regulation of various metabolic processes, including arginine biosynthesis. Using a heterologous dual expression vector, we reveal for the first time that a Buchnera antisense sRNA can post-transcriptionally interact with its cognate Buchnera coding sequence, carB, a gene involved in arginine biosynthesis. These results corroborate our in vivo RNAseq and proteomic data, where the candidate antisense sRNA carB and the protein CarB are significantly upregulated in aphid embryos. Overall, we demonstrate that Buchnera may regulate gene expression independently from its host by utilizing sRNAs.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Siyuan Cheng
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Program in Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
264
|
Hartmann AC, Baird AH, Knowlton N, Huang D. The Paradox of Environmental Symbiont Acquisition in Obligate Mutualisms. Curr Biol 2017; 27:3711-3716.e3. [DOI: 10.1016/j.cub.2017.10.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
265
|
van Veelen HPJ, Falcao Salles J, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. MICROBIOME 2017; 5:156. [PMID: 29191217 PMCID: PMC5709917 DOI: 10.1186/s40168-017-0371-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/09/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Working toward a general framework to understand the role of microbiota in animal biology requires the characterisation of animal-associated microbial communities and identification of the evolutionary and ecological factors shaping their variation. In this study, we described the microbiota in the cloaca, brood patch skin and feathers of two species of birds and the microbial communities in their nest environment. We compared patterns of resemblance between these microbial communities at different levels of biological organisation (species, individual, body part) and investigated the phylogenetic structure to deduce potential microbial community assembly processes. RESULTS Using 16S rRNA gene amplicon data of woodlarks (Lullula arborea) and skylarks (Alauda arvensis), we demonstrated that bird- and nest-associated microbiota showed substantial OTU co-occurrences and shared dominant taxonomic groups, despite variation in OTU richness, diversity and composition. Comparing host species, we uncovered that sympatric woodlarks and skylarks harboured similar microbiota, dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria. Yet, compared with the nest microbiota that showed little variation, each species' bird-associated microbiota displayed substantial variation. The latter could be partly (~ 20%) explained by significant inter-individual differences. The various communities of the bird's body (cloaca, brood patch skin and feathers) appeared connected with each other and with the nest microbiota (nest lining material and surface soil). Communities were more similar when the contact between niches was frequent or intense. Finally, bird microbiota showed significant phylogenetic clustering at the tips, but not at deeper branches of the phylogeny. CONCLUSIONS Our interspecific comparison suggested that the environment is more important than phylogeny in shaping the bird-associated microbiotas. In addition, variation among individuals and among body parts suggested that intrinsic or behavioural differences among females and spatial heterogeneity among territories contributed to the microbiome variation of larks. Modest but significant phylogenetic clustering of cloacal, skin and feather microbiotas suggested weak habitat filtering in these niches. We propose that lark microbiota may be primarily, but not exclusively, shaped by horizontal acquisition from the regional bacterial pool at the breeding site. More generally, we hypothesise that the extent of ecological niche-sharing by avian (or other vertebrate) hosts may predict the convergence of their microbiota.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
266
|
McLean AHC, Parker BJ, Hrček J, Henry LM, Godfray HCJ. Insect symbionts in food webs. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0325. [PMID: 27481779 PMCID: PMC4971179 DOI: 10.1098/rstb.2015.0325] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 12/22/2022] Open
Abstract
Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’.
Collapse
Affiliation(s)
- Ailsa H C McLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Benjamin J Parker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Jan Hrček
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Lee M Henry
- Faculty of Earth and Life Sciences, University of Amsterdam, De Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
267
|
Increased Biosynthetic Gene Dosage in a Genome-Reduced Defensive Bacterial Symbiont. mSystems 2017; 2:mSystems00096-17. [PMID: 29181447 PMCID: PMC5698493 DOI: 10.1128/msystems.00096-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
Abstract
Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we describe the genome of an uncultured symbiotic bacterium that makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow a selective advantage in a hospitable host environment. Secondary metabolism genes, however, are repeated multiple times in the genome, directly demonstrating their selective advantage. This finding shows the strength of selective forces in symbiotic relationships and suggests that uncultured bacteria in such relationships should be targeted for drug discovery efforts. A symbiotic lifestyle frequently results in genome reduction in bacteria; the isolation of small populations promotes genetic drift and the fixation of deletions and deleterious mutations over time. Transitions in lifestyle, including host restriction or adaptation to an intracellular habitat, are thought to precipitate a wave of sequence degradation events and consequent proliferation of pseudogenes. We describe here a verrucomicrobial symbiont of the tunicate Lissoclinum sp. that appears to be undergoing such a transition, with low coding density and many identifiable pseudogenes. However, despite the overall drive toward genome reduction, this symbiont maintains seven copies of a large polyketide synthase (PKS) pathway for the mandelalides (mnd), cytotoxic compounds that likely constitute a chemical defense for the host. There is evidence of ongoing degradation in a small number of these repeats—including variable borders, internal deletions, and single nucleotide polymorphisms (SNPs). However, the gene dosage of most of the pathway is increased at least 5-fold. Correspondingly, this single pathway accounts for 19% of the genome by length and 25.8% of the coding capacity. This increased gene dosage in the face of generalized sequence degradation and genome reduction suggests that mnd genes are under strong purifying selection and are important to the symbiotic relationship. IMPORTANCE Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we describe the genome of an uncultured symbiotic bacterium that makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow a selective advantage in a hospitable host environment. Secondary metabolism genes, however, are repeated multiple times in the genome, directly demonstrating their selective advantage. This finding shows the strength of selective forces in symbiotic relationships and suggests that uncultured bacteria in such relationships should be targeted for drug discovery efforts. Author Video: An author video summary of this article is available.
Collapse
|
268
|
Campbell MA, Łukasik P, Simon C, McCutcheon JP. Idiosyncratic Genome Degradation in a Bacterial Endosymbiont of Periodical Cicadas. Curr Biol 2017; 27:3568-3575.e3. [DOI: 10.1016/j.cub.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/25/2022]
|
269
|
Russell JA, Oliver KM, Hansen AK. Band-aids for Buchnera and B vitamins for all. Mol Ecol 2017; 26:2199-2203. [PMID: 28419609 DOI: 10.1111/mec.14047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/23/2022]
Abstract
Evolution lacks foresight, and hence, key adaptations may produce major challenges over the long run. The natural world is rife with examples of long-term 'side effects' associated with quick-fix tinkering, including blind spots in vertebrate eyes. An important question is how nature compensates for imperfections once evolution has set a course. The symbioses associated with sap-feeding insects present a fascinating opportunity to address this issue. On one hand, the substantial diversity and biomass of sap-feeding insects are largely due to ancient acquisitions of nutrient-provisioning bacterial symbionts. Yet, the insularity and small population sizes enforced by intracellular life and strict maternal transfer inevitably result in the degradation of symbiont genomes and, often, the beneficial services that symbionts provide. Stabilization through lateral transfer of bacterial genes into the host nucleus (often from exogenous sources) or replacement of the long-standing symbiont with a new partner are potential solutions to this evolutionary dilemma (Bennett & Moran ). A third solution is adoption of a cosymbiont that compensates for specific losses in the original resident. Ancient 'co-obligate' symbiont pairs in mealybugs, leafhoppers, cicadas and spittlebugs show colocalization, codiversification, metabolite exchange and generally nonredundant nutrient biosynthesis (Bennett & Moran ). But in this issue, Meseguer et al. () report on a different flavour of cosymbiosis among conifer-feeding Cinara aphids.
Collapse
Affiliation(s)
- Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
270
|
Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch Microbiol 2017; 200:227-235. [PMID: 28983672 DOI: 10.1007/s00203-017-1432-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/09/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
Abstract
Plant sap-feeding insects of Hemiptera often form intimate symbioses with microbes to obtain nutrients. The cicada Subpsaltria yangi is the only species of the subfamily Tettigadinae known from China. Using high-throughput sequencing combined with fluorescence in situ hybridization analysis, we characterize the bacterial composition of the bacteriomes, testes, ovaries and eggs of two representative populations of this species which occur in different habitats and feed on different plant hosts. In both populations, the bacterial community diversity in the testes was significantly higher than that in other tissues. The obligate endosymbiont Candidatus Sulcia muelleri was observed in all samples and was dominant in the bacteriomes, ovaries and eggs. The usual co-resident endosymbiont Candidatus Hodgkinia cicadicola found in some other cicadas was not detected. Instead, a novel Rhizobiales bacterium which shows a ~ 81% 16S rDNA similarity to Ca. Hodgkinia cicadicola was detected. Given that the genome of Ca. Hodgkinia cicadicola exhibits rapid evolution, it is possible that this novel Rhizobiales bacterium is a related endosymbiont with beneficial trophic functions similar to that of Ca. Hodgkinia cicadicola hosted by several certain other cicadas. The presence of the novel Rhizobiales species in other cicadas and its involvement with the adaptive evolution of related cicada hosts require further investigation. Discrepancy of bacterial communities associated with testes between the two populations may be closely related to the geographic isolation and divergence of habitats and host plants. Our results are informative for further studies of evolutionary divergence of related endosymbionts hosted in cicadas.
Collapse
|
271
|
Wang Y, Xu C, Tian M, Deng X, Cen Y, He Y. Genetic diversity of Diaphorina citri and its endosymbionts across east and south-east Asia. PEST MANAGEMENT SCIENCE 2017; 73:2090-2099. [PMID: 28374537 DOI: 10.1002/ps.4582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Diaphorina citri is the vector of 'Candidatus Liberibacter asiaticus', the most widespread pathogen associated huanglongbing, the most serious disease of citrus. To enhance our understanding of the distribution and origin of the psyllid, we investigated the genetic diversity and population structures of 24 populations in Asia and one from Florida based on the mtCOI gene. Simultaneously, genetic diversity and population structures of the primary endosymbiont (P-endosymbiont) 'Candidatus Carsonella ruddii' and secondary endosymbiont (S-endosymbiont) 'Candidatus Profftella armatura' of D. citri were determined with the housekeeping genes. RESULT AMOVA analysis indicated that populations of D. citri and its endosymbionts in east and south-east Asia were genetically distinct from populations in Pakistan and Florida. Furthermore, P-endosymbiont populations displayed a strong geographical structure across east and south-east Asia, while low genetic diversity indicated the absence of genetic structure among the populations of D. citri and its S-endosymbiont across these regions. CONCLUSION The 'Ca. C. ruddii' is more diverse and structured than the D. citri and the 'Ca. P. armatura' across east and south-east Asia. Multiple introductions of the psyllid have occurred in China. Management application for controlling the pest is proposed based on the genetic information of D. citri and its endosymbionts. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjing Wang
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Changbao Xu
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Mingyi Tian
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yurong He
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| |
Collapse
|
272
|
Wernegreen JJ. In it for the long haul: evolutionary consequences of persistent endosymbiosis. Curr Opin Genet Dev 2017; 47:83-90. [PMID: 28934627 DOI: 10.1016/j.gde.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 11/30/2022]
Abstract
Phylogenetically independent bacterial lineages have undergone a profound lifestyle shift: from a free-living to obligately host-associated existence. Among these lineages, intracellular bacterial mutualists of insects are among the most intimate, constrained symbioses known. These obligate endosymbionts exhibit severe gene loss and apparent genome deterioration. Evolutionary theory provides a basis to link their unusual genomic features with shifts in fundamental mechanisms - selection, genetic drift, mutation, and recombination. This mini-review highlights recent comparative and experimental research of processes shaping ongoing diversification within these ancient associations. Recent work supports clear contributions of stochastic processes, including genetic drift and exceptionally strong mutational pressure, toward degenerative evolution. Despite possible compensatory mechanisms, genome degradation may constrain how persistent endosymbionts (and their hosts) respond to environmental fluctuations.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
273
|
Abstract
Beetles, representing the majority of the insect species diversity, are characterized by thick and hard cuticle, which plays important roles for their environmental adaptation and underpins their inordinate diversity and prosperity. Here, we report a bacterial endosymbiont extremely specialized for sustaining beetle's cuticle formation. Many weevils are associated with a γ-proteobacterial endosymbiont lineage Nardonella, whose evolutionary origin is estimated as older than 100 million years, but its functional aspect has been elusive. Sequencing of Nardonella genomes from diverse weevils unveiled drastic size reduction to 0.2 Mb, in which minimal complete gene sets for bacterial replication, transcription, and translation were present but almost all of the other metabolic pathway genes were missing. Notably, the only metabolic pathway retained in the Nardonella genomes was the tyrosine synthesis pathway, identifying tyrosine provisioning as Nardonella's sole biological role. Weevils are armored with hard cuticle, tyrosine is the principal precursor for cuticle formation, and experimental suppression of Nardonella resulted in emergence of reddish and soft weevils with low tyrosine titer, confirming the importance of Nardonella-mediated tyrosine production for host's cuticle formation and hardening. Notably, Nardonella's tyrosine synthesis pathway was incomplete, lacking the final step transaminase gene. RNA sequencing identified host's aminotransferase genes up-regulated in the bacteriome. RNA interference targeting the aminotransferase genes induced reddish and soft weevils with low tyrosine titer, verifying host's final step regulation of the tyrosine synthesis pathway. Our finding highlights an impressively intimate and focused aspect of the host-symbiont metabolic integrity via streamlined evolution for a single biological function of ecological relevance.
Collapse
|
274
|
Tanifuji G, Cenci U, Moog D, Dean S, Nakayama T, David V, Fiala I, Curtis BA, Sibbald SJ, Onodera NT, Colp M, Flegontov P, Johnson-MacKinnon J, McPhee M, Inagaki Y, Hashimoto T, Kelly S, Gull K, Lukeš J, Archibald JM. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep 2017; 7:11688. [PMID: 28916813 PMCID: PMC5601477 DOI: 10.1038/s41598-017-11866-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ugo Cenci
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Laboratory for Cell Biology, Philipps University, Marburg, Germany
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Tohoku, Japan
| | - Vojtěch David
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Morgan Colp
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jessica Johnson-MacKinnon
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Marine and Antarctic Sciences, University of Tasmania, Launceston, Australia
| | - Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada.
| |
Collapse
|
275
|
Mitigating Mitochondrial Genome Erosion Without Recombination. Genetics 2017; 207:1079-1088. [PMID: 28893855 DOI: 10.1534/genetics.117.300273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed.
Collapse
|
276
|
Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis) Reveal Differential Gene Expression in Bacteria Occupying Multiple Host Organs. G3-GENES GENOMES GENETICS 2017; 7:3073-3082. [PMID: 28705905 PMCID: PMC5592932 DOI: 10.1534/g3.117.044255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission.
Collapse
|
277
|
Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci U S A 2017; 114:9641-9646. [PMID: 28830993 PMCID: PMC5594680 DOI: 10.1073/pnas.1707186114] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many animals are inhabited by microbial symbionts that influence their hosts' development, physiology, ecological interactions, and evolutionary diversification. However, firm evidence for the existence and functional importance of resident microbiomes in larval Lepidoptera (caterpillars) is lacking, despite the fact that these insects are enormously diverse, major agricultural pests, and dominant herbivores in many ecosystems. Using 16S rRNA gene sequencing and quantitative PCR, we characterized the gut microbiomes of wild leaf-feeding caterpillars in the United States and Costa Rica, representing 124 species from 15 families. Compared with other insects and vertebrates assayed using the same methods, the microbes that we detected in caterpillar guts were unusually low-density and variable among individuals. Furthermore, the abundance and composition of leaf-associated microbes were reflected in the feces of caterpillars consuming the same plants. Thus, microbes ingested with food are present (although possibly dead or dormant) in the caterpillar gut, but host-specific, resident symbionts are largely absent. To test whether transient microbes might still contribute to feeding and development, we conducted an experiment on field-collected caterpillars of the model species Manduca sexta Antibiotic suppression of gut bacterial activity did not significantly affect caterpillar weight gain, development, or survival. The high pH, simple gut structure, and fast transit times that typify caterpillar digestive physiology may prevent microbial colonization. Moreover, host-encoded digestive and detoxification mechanisms likely render microbes unnecessary for caterpillar herbivory. Caterpillars illustrate the potential ecological and evolutionary benefits of independence from symbionts, a lifestyle that may be widespread among animals.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309;
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
278
|
Wernegreen JJ. Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry. Exp Cell Res 2017; 358:427-432. [DOI: 10.1016/j.yexcr.2017.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
279
|
Abstract
Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont—that an individual's biology is best understood as a composite of the ‘host organism’ and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity—the direct passage of microbes from parent to offspring—is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted—and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
280
|
Russell SL, Cavanaugh CM. Intrahost Genetic Diversity of Bacterial Symbionts Exhibits Evidence of Mixed Infections and Recombinant Haplotypes. Mol Biol Evol 2017; 34:2747-2761. [DOI: 10.1093/molbev/msx188] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
281
|
Mushegian AA, Walser JC, Sullam KE, Ebert D. The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. J Anim Ecol 2017; 87:400-413. [DOI: 10.1111/1365-2656.12709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
Affiliation(s)
| | - Jean-Claude Walser
- Zoological Institute; University of Basel; Basel Switzerland
- Genetic Diversity Centre; ETH Zürich; Zürich Switzerland
| | - Karen E. Sullam
- Zoological Institute; University of Basel; Basel Switzerland
| | - Dieter Ebert
- Zoological Institute; University of Basel; Basel Switzerland
| |
Collapse
|
282
|
Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun 2017; 8:15973. [PMID: 28675159 PMCID: PMC5500886 DOI: 10.1038/ncomms15973] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/15/2017] [Indexed: 11/09/2022] Open
Abstract
Organisms across the tree of life form symbiotic partnerships with microbes for metabolism, protection and resources. While some hosts evolve extreme dependence on their symbionts, others maintain facultative associations. Explaining this variation is fundamental to understanding when symbiosis can lead to new higher-level individuals, such as during the evolution of the eukaryotic cell. Here we perform phylogenetic comparative analyses on 106 unique host-bacterial symbioses to test for correlations between symbiont function, transmission mode, genome size and host dependence. We find that both transmission mode and symbiont function are correlated with host dependence, with reductions in host fitness being greatest when nutrient-provisioning, vertically transmitted symbionts are removed. We also find a negative correlation between host dependence and symbiont genome size in vertically, but not horizontally, transmitted symbionts. These results suggest that both function and population structure are important in driving irreversible dependence between hosts and symbionts.
Collapse
Affiliation(s)
- Roberta M Fisher
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands.,Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Lee M Henry
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - E Toby Kiers
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
283
|
Zhao C, Nabity PD. Plant manipulation through gall formation constrains amino acid transporter evolution in sap-feeding insects. BMC Evol Biol 2017; 17:153. [PMID: 28655293 PMCID: PMC5488444 DOI: 10.1186/s12862-017-1000-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Background The herbivore lifestyle leads to encounters with plant toxins and requires mechanisms to overcome suboptimal nutrient availability in plant tissues. Although the evolution of bacterial endosymbiosis alleviated many of these challenges, the ability to manipulate plant nutrient status has evolved in lineages with and without nutritional symbionts. Whether and how these alternative nutrient acquisition strategies interact or constrain insect evolution is unknown. We studied the transcriptomes of galling and free-living aphidomorphs to characterize how amino acid transporter evolution is influenced by the ability to manipulate plant resource availability. Results Using a comparative approach we found phylloxerids retain nearly all amino acid transporters as other aphidomorphs, despite loss of nutritional endosymbiosis. Free living species show more transporters than galling species within the same genus, family, or infraorder, indicating plant hosts influence the maintenance and evolution of nutrient transport within herbivores. Transcript profiles also show lineage specificity and suggest some genes may facilitate life without endosymbionts or the galling lifestyle. Conclusions The transcript abundance profiles we document across fluid feeding herbivores support plant host constraint on insect amino acid transporter evolution. Given amino acid uptake, transport, and catabolism underlie the success of herbivory as a life history strategy, this suggests that plant host nutrient quality, whether constitutive or induced, alters the selective environment surrounding the evolution and maintenance of endosymbiosis. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1000-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaoyang Zhao
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, 92521, USA
| | - Paul D Nabity
- Department of Botany and Plant Sciences, University of California, Riverside, 900 University Avenue, Batchelor Hall room 2140, Riverside, CA, 92521, USA.
| |
Collapse
|
284
|
Abstract
Endosymbiosis is an idea that provided a remarkable amount of explanatory power about the origins of eukaryotic organelles. But it also promoted a number of assumptions that have also been influential, but are less well-examined. Here we look at two of these to see whether or not they fit current evidence. The assumption we first address is that endosymbiotic relationships such as nutritional symbioses and eukaryotic organelles are mutualisms. We argue instead that they are more one-sided associations that can be regarded as context-dependent power struggles like any other ecological interaction. The second assumption is that during endosymbiotic interactions (such as the origin of organelles), the host genomes will acquire a great many genes from endosymbionts that assume functions in host systems (as opposed to the well-documented genes whose products are simply targeted back to the endosymbiont or organelle). The idea that these genes exist in large numbers has been influential in a number of hypotheses about organelle evolution and distribution, but in the most carefully-examined systems no such mass migration of genes is evident. Overall, we argue that both the nature and impact of endosymbiosis need to be constantly re-evaluated to fully understand what roles it really plays in both cell biology and evolution.
Collapse
|
285
|
Gupta V, Vasanthakrishnan RB, Siva-Jothy J, Monteith KM, Brown SP, Vale PF. The route of infection determines Wolbachia antibacterial protection in Drosophila. Proc Biol Sci 2017; 284:20170809. [PMID: 28592678 PMCID: PMC5474083 DOI: 10.1098/rspb.2017.0809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/12/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial symbionts are widespread among metazoans and provide a range of beneficial functions. Wolbachia-mediated protection against viral infection has been extensively demonstrated in Drosophila. In mosquitoes that are artificially transinfected with Drosophila melanogaster Wolbachia (wMel), protection from both viral and bacterial infections has been demonstrated. However, no evidence for Wolbachia-mediated antibacterial protection has been demonstrated in Drosophila to date. Here, we show that the route of infection is key for Wolbachia-mediated antibacterial protection. Drosophila melanogaster carrying Wolbachia showed reduced mortality during enteric-but not systemic-infection with the opportunist pathogen Pseudomonas aeruginosaWolbachia-mediated protection was more pronounced in male flies and is associated with increased early expression of the antimicrobial peptide Attacin A, and also increased expression of a reactive oxygen species detoxification gene (Gst D8). These results highlight that the route of infection is important for symbiont-mediated protection from infection, that Wolbachia can protect hosts by eliciting a combination of resistance and disease tolerance mechanisms, and that these effects are sexually dimorphic. We discuss the importance of using ecologically relevant routes of infection to gain a better understanding of symbiont-mediated protection.
Collapse
Affiliation(s)
- Vanika Gupta
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Jonathon Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sam P Brown
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
286
|
von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, Burke GR. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol 2017; 8:1037. [PMID: 28659877 PMCID: PMC5468457 DOI: 10.3389/fmicb.2017.01037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
Sap-sucking insects typically engage in obligate relationships with symbiotic bacteria that play nutritional roles in synthesizing nutrients unavailable or in scarce supply from the plant-sap diets of their hosts. Adelgids are sap-sucking insects with complex life cycles that involve alternation between conifer tree species. While all adelgid species feed on spruce during the sexual phase of their life cycle, each adelgid species belongs to a major lineage that feeds on a distinct genus of conifers as their alternate host. Previous work on adelgid symbionts had discovered pairs of symbionts within each host species, and unusual diversity across the insect family, but left several open questions regarding the status of bacterial associates. Here, we explored the consistency of symbionts within and across adelgid lineages, and sought evidence for facultative vs. obligate symbiont status. Representative species were surveyed for symbionts using 16S ribosomal DNA gene sequencing, confirming that different symbiont pairs were consistently present within each major adelgid lineage. Several approaches were used to establish whether symbionts exhibited characteristics of long-term, obligate mutualists. Patterns of symbiont presence across adelgid species and diversification with host insects suggested obligate relationships. Fluorescent in situ hybridization and electron microscopy localized symbionts to bacteriocyte cells within the bacteriome of each species (with one previously known exception), and detection of symbionts in eggs indicated their vertical transmission. Common characteristics of long-term obligate symbionts, such as nucleotide compositional bias and pleomorphic symbiont cell shape were also observed. Superimposing microbial symbionts on the adelgid phylogeny revealed a dynamic pattern of symbiont gains and losses over a relatively short period of time compared to other symbionts associated with sap-sucking insects, with each adelgid species possessing an older, “senior” symbiont and a younger “junior” symbiont. A hypothesis relating adelgid life cycles to relaxed constraints on symbionts is proposed, with the degradation of senior symbionts and repeated acquisition of more junior symbionts creating opportunities for repeated colonization of new alternate-conifer hosts by adelgids.
Collapse
Affiliation(s)
| | - Usha Spaulding
- Department of Biology, Utah State University, LoganUT, United States
| | - Kistie B Patch
- Department of Biology, Utah State University, LoganUT, United States
| | - Kathryn M Weglarz
- Department of Biology, Utah State University, LoganUT, United States
| | | | - Nathan P Havill
- United States Forest Service, Northern Research Station, HamdenCT, United States
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, AthensGA, United States
| |
Collapse
|
287
|
Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations. Mar Drugs 2017; 15:md15060165. [PMID: 28587290 PMCID: PMC5484115 DOI: 10.3390/md15060165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.
Collapse
|
288
|
Hoffmann AA. Rapid adaptation of invertebrate pests to climatic stress? CURRENT OPINION IN INSECT SCIENCE 2017; 21:7-13. [PMID: 28822492 DOI: 10.1016/j.cois.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
There is surprisingly little information on adaptive responses of pests and disease vectors to climatic stresses even though the short generation times and large population sizes associated with pests make rapid adaptation likely. Most evidence of adaptive differentiation has been obtained from geographic comparisons and these can directly or indirectly indicate rates of adaptation where historical data on invasions are available. There is very little information on adaptive shifts in pests detected through molecular comparisons even though the genomes of many pests are now available and can help to identify markers underlying adaptation. While the limited evidence available points to frequent rapid adaptation that can affect pest and disease vector control, constraints to adaptation are also evident and a predictive framework around the likelihood and limits of rapid adaptation is required.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
289
|
Bhattacharya T, Newton ILG, Hardy RW. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLoS Pathog 2017; 13:e1006427. [PMID: 28617844 PMCID: PMC5472326 DOI: 10.1371/journal.ppat.1006427] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila melanogaster. By leveraging the power of Drosophila genetics and a parallel, highly tractable D. melanogaster derived JW18 cell culture system, we determined that in addition to reducing infectious virus production, Wolbachia negatively influences Sindbis virus particle infectivity. This is further accompanied by reductions in viral transcript and protein levels. Interestingly, unchanged ratio of proteins to viral RNA copies suggest that Wolbachia likely does not influence the translational efficiency of viral transcripts. Additionally, expression analyses of candidate host genes revealed D. melanogaster methyltransferase gene Mt2 as an induced host factor in the presence of Wolbachia. Further characterization of viral resistance in Wolbachia-infected flies lacking functional Mt2 revealed partial recovery of virus titer relative to wild-type, accompanied by complete restoration of viral RNA and protein levels, suggesting that Mt2 acts at the stage of viral genome replication. Finally, knockdown of Mt2 in Wolbachia uninfected JW18 cells resulted in increased virus infectivity, thus demonstrating its previously unknown role as an antiviral factor against Sindbis virus. In conclusion, our findings provide evidence supporting the role of Wolbachia-modulated host factors towards RNA virus resistance in arthropods, alongside establishing Mt2's novel antiviral function against Sindbis virus in D. melanogaster.
Collapse
Affiliation(s)
- Tamanash Bhattacharya
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Richard W. Hardy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
290
|
Mao M, Yang X, Poff K, Bennett G. Comparative Genomics of the Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera: Membracidae), Provide Insight into the Origins and Evolution of an Ancient Symbiosis. Genome Biol Evol 2017; 9:1803-1815. [PMID: 28854637 PMCID: PMC5533117 DOI: 10.1093/gbe/evx134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Insect species in the Auchenorrhyncha suborder (Hemiptera) maintain ancient obligate symbioses with bacteria that provide essential amino acids (EAAs) deficient in their plant-sap diets. Molecular studies have revealed that two complementary symbiont lineages, "Candidatus Sulcia muelleri" and a betaproteobacterium ("Ca. Zinderia insecticola" in spittlebugs [Cercopoidea] and "Ca. Nasuia deltocephalinicola" in leafhoppers [Cicadellidae]) may have persisted in the suborder since its origin ∼300 Ma. However, investigation of how this pair has co-evolved on a genomic level is limited to only a few host lineages. We sequenced the complete genomes of Sulcia and a betaproteobacterium from the treehopper, Entylia carinata (Membracidae: ENCA), as the first representative from this species-rich group. It also offers the opportunity to compare symbiont evolution across a major insect group, the Membracoidea (leafhoppers + treehoppers). Genomic analyses show that the betaproteobacteria in ENCA is a member of the Nasuia lineage. Both symbionts have larger genomes (Sulcia = 218 kb and Nasuia = 144 kb) than related lineages in Deltocephalinae leafhoppers, retaining genes involved in basic cellular functions and information processing. Nasuia-ENCA further exhibits few unique gene losses, suggesting that its parent lineage in the common ancestor to the Membracoidea was already highly reduced. Sulcia-ENCA has lost the abilities to synthesize menaquinone cofactor and to complete the synthesis of the branched-chain EAAs. Both capabilities are conserved in other Sulcia lineages sequenced from across the Auchenorrhyncha. Finally, metagenomic sequencing recovered the partial genome of an Arsenophonus symbiont, although it infects only 20% of individuals indicating a facultative role.
Collapse
Affiliation(s)
- Meng Mao
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| | - Xiushuai Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| | - Kirsten Poff
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| | - Gordon Bennett
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| |
Collapse
|
291
|
Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer DJC, O'Donnell S, Koga R, Russell JA. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol 2017; 26:3808-3825. [PMID: 28393425 DOI: 10.1111/mec.14140] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 01/01/2023]
Abstract
Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16S rRNA-based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16S rRNA gene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera, Eciton, Labidus and Nomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein-coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species-specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm-founding and within-colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.
Collapse
Affiliation(s)
- Piotr Łukasik
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Justin A Newton
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jon G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
292
|
Parker BJ, Hrček J, McLean AHC, Godfray HCJ. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection. Evolution 2017; 71:1222-1231. [PMID: 28252804 PMCID: PMC5516205 DOI: 10.1111/evo.13216] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The microbial symbionts of eukaryotes influence disease resistance in many host-parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host-parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host-symbiont and symbiont-pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co-occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.
Collapse
Affiliation(s)
- Benjamin J. Parker
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUnited Kingdom
- Current Address: Department of BiologyUniversity of RochesterRochesterNY14627USA
| | - Jan Hrček
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUnited Kingdom
- Current Address: Institute of EntomologyBiology Centre CAS, Branisovska 31Ceske Budejovice37005Czech Republic
| | | | | |
Collapse
|
293
|
Sudakaran S, Kost C, Kaltenpoth M. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends Microbiol 2017; 25:375-390. [DOI: 10.1016/j.tim.2017.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 10/19/2022]
|
294
|
Valadez-Cano C, Olivares-Hernández R, Resendis-Antonio O, DeLuna A, Delaye L. Natural selection drove metabolic specialization of the chromatophore in Paulinella chromatophora. BMC Evol Biol 2017; 17:99. [PMID: 28410570 PMCID: PMC5392233 DOI: 10.1186/s12862-017-0947-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022] Open
Abstract
Background Genome degradation of host-restricted mutualistic endosymbionts has been attributed to inactivating mutations and genetic drift while genes coding for host-relevant functions are conserved by purifying selection. Unlike their free-living relatives, the metabolism of mutualistic endosymbionts and endosymbiont-originated organelles is specialized in the production of metabolites which are released to the host. This specialization suggests that natural selection crafted these metabolic adaptations. In this work, we analyzed the evolution of the metabolism of the chromatophore of Paulinella chromatophora by in silico modeling. We asked whether genome reduction is driven by metabolic engineering strategies resulted from the interaction with the host. As its widely known, the loss of enzyme coding genes leads to metabolic network restructuring sometimes improving the production rates. In this case, the production rate of reduced-carbon in the metabolism of the chromatophore. Results We reconstructed the metabolic networks of the chromatophore of P. chromatophora CCAC 0185 and a close free-living relative, the cyanobacterium Synechococcus sp. WH 5701. We found that the evolution of free-living to host-restricted lifestyle rendered a fragile metabolic network where >80% of genes in the chromatophore are essential for metabolic functionality. Despite the lack of experimental information, the metabolic reconstruction of the chromatophore suggests that the host provides several metabolites to the endosymbiont. By using these metabolites as intracellular conditions, in silico simulations of genome evolution by gene lose recover with 77% accuracy the actual metabolic gene content of the chromatophore. Also, the metabolic model of the chromatophore allowed us to predict by flux balance analysis a maximum rate of reduced-carbon released by the endosymbiont to the host. By inspecting the central metabolism of the chromatophore and the free-living cyanobacteria we found that by improvements in the gluconeogenic pathway the metabolism of the endosymbiont uses more efficiently the carbon source for reduced-carbon production. In addition, our in silico simulations of the evolutionary process leading to the reduced metabolic network of the chromatophore showed that the predicted rate of released reduced-carbon is obtained in less than 5% of the times under a process guided by random gene deletion and genetic drift. We interpret previous findings as evidence that natural selection at holobiont level shaped the rate at which reduced-carbon is exported to the host. Finally, our model also predicts that the ABC phosphate transporter (pstSACB) which is conserved in the genome of the chromatophore of P. chromatophora strain CCAC 0185 is a necessary component to release reduced-carbon molecules to the host. Conclusion Our evolutionary analysis suggests that in the case of Paulinella chromatophora natural selection at the holobiont level played a prominent role in shaping the metabolic specialization of the chromatophore. We propose that natural selection acted as a “metabolic engineer” by favoring metabolic restructurings that led to an increased release of reduced-carbon to the host. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0947-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Guanajuato, Irapuato, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe, Del. Cuajimalpa, C.P. 05348, Ciudad de Mexico, México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Coordinación de la Investigación Científica-Red de Apoyo a la Investigación (RAI), UNAM, México City, Mexico.,Instituto Nacional de Medicina Genómica (INMEGEN), 14610, México City, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Irapuato, Mexico
| | - Luis Delaye
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Guanajuato, Irapuato, Mexico.
| |
Collapse
|
295
|
Kroll S, Agler MT, Kemen E. Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:71-78. [PMID: 28235716 DOI: 10.1016/j.pbi.2017.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 05/23/2023]
Abstract
Agriculture faces many emerging challenges to sustainability, including limited nutrient resources, losses from diseases caused by current and emerging pathogens and environmental degradation. Microorganisms have great importance for plant growth and performance, including the potential to increase yields, nutrient uptake and pathogen resistance. An urgent need is therefore to understand and engineer plants and their associated microbial communities. Recent massive genomic sequencing of host plants and associated microbes offers resources to identify novel mechanisms of communal assembly mediated by the host. For example, host-microbe and microbe-microbe interactions are involved in niche formation, thereby contributing to colonization. By leveraging genomic resources, genetic traits underlying those mechanisms will become important resources to design plants selecting and hosting beneficial microbial communities.
Collapse
Affiliation(s)
- Samuel Kroll
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Matthew T Agler
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Eric Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
296
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
297
|
Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. ISME JOURNAL 2017; 11:1291-1304. [PMID: 28323281 PMCID: PMC5437351 DOI: 10.1038/ismej.2017.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
An open question in evolutionary biology is how does the selection–drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host–symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.
Collapse
|
298
|
Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nat Microbiol 2017; 2:17025. [PMID: 28263320 DOI: 10.1038/nmicrobiol.2017.25] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens1-3. In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects3-5. Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers6-8, allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.
Collapse
|
299
|
Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm EJ. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun 2017; 8:14319. [PMID: 28230052 PMCID: PMC5331214 DOI: 10.1038/ncomms14319] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022] Open
Abstract
Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution. Both host diet and phylogeny have been argued to shape mammalian microbiome communities. Here, the authors show that diet predicts the presence of ancient bacterial lineages in the microbiome, but that co-speciation between more recent bacterial lineages and their hosts may drive associations between microbiome composition and phylogeny.
Collapse
Affiliation(s)
- Mathieu Groussin
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Florent Mazel
- Laboratoire d Ecologie Alpine, CNRS, University of Grenoble Alpes, FR-38041, Grenoble Cedex 9, France
| | - Jon G Sanders
- Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, Massachusetts 02138, USA
| | - Chris S Smillie
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Broad Institute of MIT and Harvard, 415 Main Street Cambridge, Massachusetts 02142, USA
| | - Sébastien Lavergne
- Laboratoire d Ecologie Alpine, CNRS, University of Grenoble Alpes, FR-38041, Grenoble Cedex 9, France
| | - Wilfried Thuiller
- Laboratoire d Ecologie Alpine, CNRS, University of Grenoble Alpes, FR-38041, Grenoble Cedex 9, France
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Broad Institute of MIT and Harvard, 415 Main Street Cambridge, Massachusetts 02142, USA
| |
Collapse
|
300
|
Paz LC, Schramm A, Lund MB. Biparental transmission of Verminephrobacter symbionts in the earthworm Aporrectodea tuberculata (Lumbricidae). FEMS Microbiol Ecol 2017; 93:3045886. [DOI: 10.1093/femsec/fix025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
|