251
|
Jeggo PA. Genomic instability in cancer development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 570:175-97. [PMID: 18727501 DOI: 10.1007/1-4020-3764-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
252
|
Abstract
Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of replication forks, for telomere maintenance, and chromosome segregation in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR reaction is mediated by a conserved class of enzymes termed recombinases. Two recombinases, Rad51 and Dmc1, catalyze the pairing and shuffling of homologous DNA sequences in eukaryotic cells via a filamentous intermediate on ssDNA called the presynaptic filament. The assembly of the presynaptic filament is a rate-limiting process that is enhanced by recombination mediators, such as the breast tumor suppressor BRCA2. HR accessory factors that facilitate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified. Recent progress on elucidating the mechanisms of action of Rad51 and Dmc1 and their cohorts of ancillary factors is reviewed here.
Collapse
Affiliation(s)
- Joseph San Filippo
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
253
|
The Rad52 homologs Rad22 and Rti1 of Schizosaccharomyces pombe are not essential for meiotic interhomolog recombination, but are required for meiotic intrachromosomal recombination and mating-type-related DNA repair. Genetics 2008; 178:2399-412. [PMID: 18430957 DOI: 10.1534/genetics.107.085696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.
Collapse
|
254
|
Tichy ED, Stambrook PJ. DNA repair in murine embryonic stem cells and differentiated cells. Exp Cell Res 2008; 314:1929-36. [PMID: 18374918 PMCID: PMC2532524 DOI: 10.1016/j.yexcr.2008.02.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 01/06/2023]
Abstract
Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
255
|
Ko JC, Ciou SC, Cheng CM, Wang LH, Hong JH, Jheng MY, Ling ST, Lin YW. Involvement of Rad51 in cytotoxicity induced by epidermal growth factor receptor inhibitor (gefitinib, IressaR) and chemotherapeutic agents in human lung cancer cells. Carcinogenesis 2008; 29:1448-58. [DOI: 10.1093/carcin/bgn130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
256
|
Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 2008; 7:686-93. [PMID: 18243065 PMCID: PMC2430071 DOI: 10.1016/j.dnarep.2007.12.008] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 12/19/2022]
Abstract
The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.
Collapse
Affiliation(s)
- Hannah L Klein
- Department of Biochemistry, New York University School of Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
257
|
Wray J, Liu J, Nickoloff JA, Shen Z. Distinct RAD51 associations with RAD52 and BCCIP in response to DNA damage and replication stress. Cancer Res 2008; 68:2699-707. [PMID: 18413737 PMCID: PMC2744103 DOI: 10.1158/0008-5472.can-07-6505] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RAD51 has critical roles in homologous recombination (HR) repair of DNA double-strand breaks (DSB) and restarting stalled or collapsed replication forks. In yeast, Rad51 function is facilitated by Rad52 and other "mediators." Mammalian cells express RAD52, but BRCA2 may have supplanted RAD52 in mediating RAD51 loading onto ssDNA. BCCIP interacts with BRCA2, and both proteins are important for RAD51 focus formation after ionizing radiation and HR repair of DSBs. Nonetheless, mammalian RAD52 shares biochemical activities with yeast Rad52, including RAD51 binding and single-strand annealing, suggesting a conserved role in HR. Because RAD52 and RAD51 associate, and RAD51 and BCCIP associate, we investigated the colocalization of RAD51 with BCCIP and RAD52 in human cells. We found that RAD51 colocalizes with BCCIP early after ionizing radiation, with RAD52 later, and there was little colocalization of BCCIP and RAD52. RAD52 foci are induced to a greater extent by hydroxyurea, which stalls replication forks, than by ionizing radiation. Using fluorescence recovery after photo bleaching, we show that RAD52 mobility is reduced to a greater extent by hydroxyurea than ionizing radiation. However, BCCIP showed no changes in mobility after hydroxyurea or ionizing radiation. We propose that BCCIP-dependent repair of DSBs by HR is an early RAD51 response to ionizing radiation-induced DNA damage, and that RAD52-dependent HR occurs later to restart a subset of blocked or collapsed replication forks. RAD52 and BRCA2 seem to act in parallel pathways, suggesting that targeting RAD52 in BRCA2-deficient tumors may be effective in treating these tumors.
Collapse
Affiliation(s)
- Justin Wray
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Cancer Research and Treatment Center, Albuquerque, New Mexico
| | - Jingmei Liu
- Department of Radiation Oncology, University of Medicine and Dentristy of New Jersey-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Jac A. Nickoloff
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Cancer Research and Treatment Center, Albuquerque, New Mexico
| | - Zhiyuan Shen
- Department of Radiation Oncology, University of Medicine and Dentristy of New Jersey-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
258
|
The role of repair protein Rad51 in synergistic cytotoxicity and mutagenicity induced by epidermal growth factor receptor inhibitor (Gefitinib, IressaR) and benzo[a]pyrene in human lung cancer. Exp Cell Res 2008; 314:1881-91. [PMID: 18377894 DOI: 10.1016/j.yexcr.2008.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/23/2022]
Abstract
Rad51 protein is essential for homologous recombination repair of DNA damage, and is over-expressed in chemo- or radioresistant carcinomas. The polycyclic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) affects MAPKs transduction pathways. Gefitinib (IressaR, ZD1839) is a selective epidermal growth factor receptor tyrosine kinase inhibitor that blocks growth factor-mediated cell proliferation and ERK1/2 activation. We hypothesized that gefitinib enhances B[a]P-mediated cytotoxicity by decreasing ERK1/2 activation. Exposure of human lung cancer cells to gefitinib decreased B[a]P-elicited ERK1/2 activation and induced Rad51 protein expression. Gefitinib and B[a]P co-treatment decreased Rad51 protein stability by triggering degradation via a 26S proteasome-dependent pathway. Expression of constitutive active MKK1/2 vectors (MKK1/2-CA) rescues the decreased ERK1/2 activity, and restores Rad51 protein level and stability under gefitinib and B[a]P co-treatment. Gefitinib enhances B[a]P-induced growth inhibition, cytotoxicity and mutagenicity. Co-treatment with gefitinib and B[a]P can further inhibit cell growth significantly after depletion of endogenous Rad51 by siRad51 RNA transfection. Enhancement of ERK1/2 activation by MKK1-CA expression decrease B[a]P- and gefitinib-induced cytotoxicity, and B[a]P-induced mutagenicity. Rad51 protein protects lung cancer cells from synergistic cytotoxic and mutagenic effects induced by gefitinib and B[a]P. Suppression of Rad51 protein expression may be a novel lung cancer therapeutic modality to overcome drug resistance to gefitinib.
Collapse
|
259
|
Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med 2008; 54:57-74. [PMID: 18446647 DOI: 10.1080/19396360701881922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.
Collapse
Affiliation(s)
- Matthew L Sanderson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
260
|
Yang F, Eckardt S, Leu NA, McLaughlin KJ, Wang PJ. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 2008; 180:673-9. [PMID: 18283110 PMCID: PMC2265566 DOI: 10.1083/jcb.200709057] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 01/24/2008] [Indexed: 12/18/2022] Open
Abstract
During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-strand breaks (DSBs) are formed, but localization of the recombination proteins RAD51 and DMC1 to meiotic chromosomes is severely impaired. Based on these data, we propose that TEX15 regulates the loading of DNA repair proteins onto sites of DSBs and, thus, its absence causes a failure in meiotic recombination.
Collapse
Affiliation(s)
- Fang Yang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348
| | - N. Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348
| | - K. John McLaughlin
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348
| | - Peijing Jeremy Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
261
|
Renzette N, Sandler SJ. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol Microbiol 2008; 67:1347-59. [PMID: 18298444 DOI: 10.1111/j.1365-2958.2008.06130.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli. ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo. The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA-GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA(+), depending on the ratio of the two proteins. RecA4159 was unable to enter RecA(+) filaments on DNA or storage structures and was recessive to RecA(+). It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.
Collapse
Affiliation(s)
- Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
262
|
Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008; 27:589-605. [PMID: 18285820 PMCID: PMC2262034 DOI: 10.1038/emboj.2008.15] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/16/2008] [Indexed: 12/12/2022] Open
Abstract
Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.
Collapse
Affiliation(s)
- Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute/UHN, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
263
|
Abstract
Elaboration of a multicellular organism requires highly efficient coordination between proliferation and developmental processes. Accordingly, the embryonic cell cycle exhibits a high degree of plasticity; however, the mechanisms underlying its regulation in vivo remain largely unknown. The purpose of this review is to summarize the data on cell cycle regulation during the early mouse embryonic development, a period characterized by major variations in cell cycle parameters which correlate with important developmental transitions. In particular, we analyse the contribution of mutant mice to the study of in vivo cell cycle regulation during early development and discuss possible contributions of cell cycle regulators to developmental programs.
Collapse
Affiliation(s)
- Jérôme Artus
- Unité de Génétique Fonctionnelle de la souris, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
264
|
Abstract
Homologous recombination has a dual role in eukaryotic organisms. Firstly, it is responsible for the creation of genetic variability during meiosis by directing the formation of reciprocal crossovers that result in random combinations of alleles and traits. Secondly, in mitotic cells, it maintains the integrity of the genome by promoting the faithful repair of DNA double-strand breaks (DSBs). In vertebrates, it therefore plays a key role in tumour avoidance. Mutations in the tumour suppressor protein BRCA2 are associated with predisposition to breast and ovarian cancers, and loss of BRCA2 function leads to genetic instability. BRCA2 protein interacts directly with the RAD51 recombinase and regulates recombination-mediated DSB repair, accounting for the high levels of spontaneous chromosomal aberrations seen in BRCA2-defective cells. Recent observations indicate that BRCA2 also plays a critical role in meiotic recombination, this time through direct interactions with the meiosis-specific recombinase DMC1. The interactions of BRCA2 with RAD51 and DMC1 lead us to suggest that the BRCA2 tumour suppressor is a universal regulator of recombinase actions.
Collapse
|
265
|
Ishida T, Takizawa Y, Sakane I, Kurumizaka H. The Lys313 residue of the human Rad51 protein negatively regulates the strand-exchange activity. Genes Cells 2007; 13:91-103. [DOI: 10.1111/j.1365-2443.2007.01143.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
266
|
Ishida T, Takizawa Y, Sakane I, Kurumizaka H. Altered DNA binding by the human Rad51-R150Q mutant found in breast cancer patients. Biol Pharm Bull 2007; 30:1374-8. [PMID: 17666788 DOI: 10.1248/bpb.30.1374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human Rad51 protein (HsRad51) catalyzes homologous pairing and strand exchange between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) during recombinational repair of double-stranded DNA breaks. An HsRad51 mutation that results in the substitution of Gln for Arg150 (R150Q) was found in bilateral breast cancer patients; however, the consequences of this R150Q mutation have not been elucidated. To determine how this HsRad51(R150Q) mutation affects HsRad51 function, in the present study, we purified the HsRad51(R150Q) mutant. The purified HsRad51(R150Q) was completely proficient in the ATP-hydrolyzing activity. A gel filtration analysis revealed that HsRad51(R150Q) also retained the polymer formation ability. In contrast, the ssDNA- and dsDNA-binding abilities of HsRad51(R150Q) were clearly reduced, as compared to those of HsRad51. These differences in the DNA-binding properties between HsRad51(R150Q) and HsRad51 may be important to account for the tumorigenesis in breast cancer patients with the HsRad51(R150Q) mutation.
Collapse
Affiliation(s)
- Takako Ishida
- Laboratory of Structural Biology, Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
267
|
Rukść A, Birmingham EC, Baker MD. Altered DNA repair and recombination responses in mouse cells expressing wildtype or mutant forms of RAD51. DNA Repair (Amst) 2007; 6:1876-89. [PMID: 17719855 DOI: 10.1016/j.dnarep.2007.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/21/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022]
Abstract
Rad51, a homolog of Esherichia coli RecA, is a DNA-dependent ATPase that binds cooperatively to single-stranded DNA forming a nucleoprotein filament, which functions in the strand invasion step of homologous recombination. In this study, we examined DNA repair and recombination responses in mouse hybridoma cells stably expressing wildtype Rad51, or Walker box lysine variants, Rad51-K133A or Rad51-K133R, deficient in ATP binding and ATP hydrolysis, respectively. A unique feature is the recovery of stable transformants expressing Rad51-K133A. Augmentation of the endogenous pool of Rad51 by over-expression of transgene-encoded wildtype Rad51 enhances cell growth and gene targeting, but has minimal effects on cell survival to DNA damage induced by ionizing radiation (IR) or mitomycin C (MMC). Whereas expression of Rad51-K133A impedes growth, in general, neither Rad51-K133A nor Rad51-K133R significantly affected survival to IR- or MMC-induced damage, but did significantly reduce gene targeting. Expression of wildtype Rad51, Rad51-K133A or Rad51-K133R did not affect the frequency of intrachromosomal homologous recombination. However, in both gene targeting and intrachromosomal homologous recombination, wildtype and mutant Rad51 transgene expression altered the recombination mechanism: in gene targeting, wildtype Rad51 expression stimulates crossing over, while expression of Rad51-K133A or Rad51-K133R perturbs gene conversion; in intrachromosomal homologous recombination, cell lines expressing wildtype Rad51, Rad51-K133A or Rad51-K133R display increased deletion formation by intrachromosomal homologous recombination. The results suggest that ATP hydrolysis by Rad51 is more important for some homologous recombination functions than it is for other aspects of DNA repair.
Collapse
Affiliation(s)
- Ania Rukść
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
268
|
Hannay JAF, Liu J, Zhu QS, Bolshakov SV, Li L, Pisters PWT, Lazar AJF, Yu D, Pollock RE, Lev D. Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Mol Cancer Ther 2007; 6:1650-60. [PMID: 17513613 DOI: 10.1158/1535-7163.mct-06-0636] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated whether Rad51 overexpression plays a role in soft tissue sarcoma (STS) chemoresistance as well as the regulatory mechanisms underlying its expression. The studies reported here show that Rad51 protein is overexpressed in a large panel of human STS specimens. Human STS cell lines showed increased Rad51 protein expression, as was also observed in nude rat STS xenografts. STS cells treated with doxorubicin exhibited up-regulation of Rad51 protein while arrested in the S-G(2) phase of the cell cycle. Treatment with anti-Rad51 small interfering RNA decreased Rad51 protein expression and increased chemosensitivity to doxorubicin. Because we previously showed that reintroduction of wild-type p53 (wtp53) into STS cells harboring a p53 mutation led to increased doxorubicin chemosensitivity, we hypothesized that p53 participates in regulating Rad51 expression in STS. Reintroduction of wtp53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression. Using luciferase reporter assays, we showed that reconstitution of wtp53 function decreased Rad51 promoter activity. Deletion constructs identified a specific Rad51 promoter region containing a p53-responsive element but no p53 consensus binding site. Electrophoretic mobility shift assays verified activator protein 2 (AP2) binding to this region and increased AP2 binding to the promoter in the presence of wtp53. Mutating this AP2 binding site eliminated the wtp53 repressive effect. Furthermore, AP2 knockdown resulted in increased Rad51 expression. In light of the importance of Rad51 in modulating STS chemoresistance, these findings point to a potential novel strategy for molecular-based treatments that may be of relevance to patients burdened by STS.
Collapse
Affiliation(s)
- Jonathan A F Hannay
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Söderlund K, Skoog L, Fornander T, Askmalm MS. The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer. Radiother Oncol 2007; 84:242-51. [PMID: 17707537 DOI: 10.1016/j.radonc.2007.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/03/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE The breast cancer susceptibility genes BRCA1 and BRCA2 interact with Rad51, one of the central components in the homologous recombination repair pathway. This study evaluates the prognostic and predictive role of BRCA1, BRCA2 and Rad51, individually and as a complex, in breast cancer. MATERIALS AND METHODS Expression of BRCA1, BRCA2 and Rad51 was investigated using immunohistochemistry in tumours from 224 women with early breast cancer, who were randomised to receive postoperative radiotherapy or adjuvant chemotherapy (CMF). RESULTS Fifty-three percent (112/212) of the tumours had reduced expression of the BRCA1/BRCA2/Rad51 complex. Low expression correlated to high histologic grade (p=0.05). Patients with low expression of the complex developed significantly more local recurrences as compared to patients with high expression (RR=3.20, 95% CI 1.48-6.88, p=0.003). Expression of the BRCA1/BRCA2/Rad51 complex was an independent prognostic factor in multivariate analysis (p=0.03). Patients with low expression of the complex responded well to radiotherapy (RR=0.31, 95% CI 0.14-0.70, p=0.005), whereas patients with high expression had few local recurrences and no additional benefit from radiotherapy (RR=1.08, 95% CI 0.40-2.90, p=0.88). CONCLUSIONS Low expression of the BRCA1/BRCA2/Rad51 complex is a marker of poor prognosis, but predicts good response to radiotherapy in patients with early breast cancer.
Collapse
Affiliation(s)
- Karin Söderlund
- Department of Biomedicine and Surgery, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
270
|
Westerling T, Kuuluvainen E, Mäkelä TP. Cdk8 is essential for preimplantation mouse development. Mol Cell Biol 2007; 27:6177-82. [PMID: 17620419 PMCID: PMC1952144 DOI: 10.1128/mcb.01302-06] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cdk8 kinase and associated proteins form a nonessential transcriptional repressor module of the Mediator in the budding yeast Saccharomyces cerevisiae. Genetic analyses of this module have demonstrated functions ranging from environmental responses in budding yeast to organogenesis and development in worms, flies, and zebrafish. Here we have investigated the function of mammalian Cdk8 using mice harboring a gene trap insertion at the Cdk8 locus inactivating this kinase. No phenotypes were noted in heterozygote Cdk8+/- mice, but intercrossing these did not produce homozygous Cdk8-/- offspring. Developmental analysis demonstrated a requirement for Cdk8 prior to implantation at embryonic days 2.5 to 3.0. Cdk8-/- preimplantation embryos had fragmented blastomeres and did not proceed to compaction. As Cdk8 deficiency in cultured metazoan cells did not affect cell viability, the results suggest that transcriptional repression of genes critical for early-cell-fate determination underlies the requirement of Cdk8 in embryogenesis.
Collapse
Affiliation(s)
- Thomas Westerling
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | | | | |
Collapse
|
271
|
Abstract
The hereditary breast and ovarian cancer predisposition genes, BRCA1 and BRCA2, participate in the repair of DNA double strand breaks by homologous recombination. Circumstantial evidence implicates these genes in recombinational responses to DNA polymerase stalling during the S phase of the cell cycle. These responses play a key role in preventing genomic instability and cancer. Here, we review the current literature implicating the BRCA pathway in HR at stalled replication forks and explore the hypothesis that BRCA1 and BRCA2 participate in the recombinational resolution of single stranded DNA lesions termed "daughter strand gaps", generated during replication across a damaged DNA template.
Collapse
Affiliation(s)
- Ganesh Nagaraju
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Ralph Scully
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
| |
Collapse
|
272
|
Marusyk A, Wheeler LJ, Mathews CK, DeGregori J. p53 mediates senescence-like arrest induced by chronic replicational stress. Mol Cell Biol 2007; 27:5336-51. [PMID: 17515610 PMCID: PMC1952086 DOI: 10.1128/mcb.01316-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that exposure of cells to high levels of replicational stress leads to permanent proliferation arrest that does not require p53. We have examined cellular responses to therapeutically relevant low levels of replicational stress that allow limited proliferation. Chronic exposure to low concentrations of hydroxyurea, aphidicolin, or etoposide induced irreversible cell cycle arrest after several population doublings. Inhibition of p53 activity antagonized this arrest and enhanced the long-term proliferation of p53 mutant cells. p21CIP1 was found to be a critical p53 target for arrest induced by hydroxyurea or aphidicolin, but not etoposide, as judged by the ability of p21CIP1 suppression to mimic the effects of p53 disruption. Suppression of Rad51 expression, required for homologous recombination repair, blocked the ability of mutant p53 to antagonize arrest induced by etoposide, but not aphidicolin. Thus, the ability of mutant p53 to prevent arrest induced by replicational stress per se is primarily dependent on preventing p21CIP1 up-regulation. However, when replication stress is associated with DNA strand breaks (such as with etoposide), up-regulation of homologous recombination repair in response to p53 disruption becomes important. Since replicational stress leads to clonal selection of cells with p53 mutations, our results highlight the potential importance of chronic replicational stress in promoting cancer development.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
273
|
Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, Meeley RB, McElver J, Bowen B, Cande WZ, Schnable PS. Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 2007; 176:1469-82. [PMID: 17507687 PMCID: PMC1931559 DOI: 10.1534/genetics.106.062604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, Rad51p plays a central role in homologous recombination and the repair of double-strand breaks (DSBs). Double mutants of the two Zea mays L. (maize) rad51 homologs are viable and develop well under normal conditions, but are male sterile and have substantially reduced seed set. Light microscopic analyses of male meiosis in these plants reveal reduced homologous pairing, synapsis of nonhomologous chromosomes, reduced bivalents at diakinesis, numerous chromosome breaks at anaphase I, and that >33% of quartets carry cells that either lack an organized nucleolus or have two nucleoli. This indicates that RAD51 is required for efficient chromosome pairing and its absence results in nonhomologous pairing and synapsis. These phenotypes differ from those of an Arabidopsis rad51 mutant that exhibits completely disrupted chromosome pairing and synapsis during meiosis. Unexpectedly, surviving female gametes produced by maize rad51 double mutants are euploid and exhibit near-normal rates of meiotic crossovers. The finding that maize rad51 double mutant embryos are extremely susceptible to radiation-induced DSBs demonstrates a conserved role for RAD51 in the repair of mitotic DSBs in plants, vertebrates, and yeast.
Collapse
Affiliation(s)
- Jin Li
- Department of Genetics, Development and Cell Biology, Iowa State Unversity, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Saydam O, Saydam N, Glauser DL, Pruschy M, Dinh-Van V, Hilbe M, Jacobs AH, Ackermann M, Fraefel C. HSV-1 amplicon-mediated post-transcriptional inhibition of Rad51 sensitizes human glioma cells to ionizing radiation. Gene Ther 2007; 14:1143-51. [PMID: 17495946 DOI: 10.1038/sj.gt.3302967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Standard treatment for glioblastoma multiforme and other brain tumors consists of surgical resection followed by combined radio-/chemotherapy. However, radiation resistance of tumor cells limits the success of this treatment, and the tumors invariably recur. Therefore, the selective inhibition of molecular mediators of radiation resistance may provide therapeutic benefit to the patient. One of these targets is the Rad51 protein, which is a key component of the homologous recombinational repair of DNA double-strand breaks. Here, we investigated whether post-transcriptional silencing of Rad51 by herpes simplex virus-type 1 (HSV-1) amplicon vector-mediated short interfering RNA expression can enhance the antitumor effect of radiation therapy. We demonstrate that these vectors specifically and efficiently inhibited the radiation-induced recruitment of Rad51 into nuclear foci in human glioma cells. The combination of vector-mediated silencing of Rad51 expression and treatment with ionizing radiation resulted in a pronounced reduction of the survival of human glioma cells in culture. In athymyc mice, a single intratumoral injection of Rad51-specific HSV-1 amplicon vector followed by a single radiation treatment resulted in a significant decrease in tumor size. In control animals, including mice that received an intratumoral injection of Rad51-specific amplicon vector but no radiation treatment, the tumor sizes increased.
Collapse
Affiliation(s)
- O Saydam
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Frappart PO, Lee Y, Lamont J, McKinnon PJ. BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 2007; 26:2732-42. [PMID: 17476307 PMCID: PMC1888666 DOI: 10.1038/sj.emboj.7601703] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 04/05/2007] [Indexed: 11/09/2022] Open
Abstract
Defective DNA damage responses in the nervous system can result in neurodegeneration or tumorigenesis. Despite the importance of DNA damage signalling, the neural function of many critical DNA repair factors is unclear. BRCA2 is necessary for homologous recombination repair of DNA and the prevention of diseases including Fanconi Anemia and cancer. We determined the role of BRCA2 during brain development by inactivating murine Brca2 throughout neural tissues. In striking contrast to early embryonic lethality after germ-line inactivation, Brca2(LoxP/LoxP);Nestin-cre mice were viable. However, Brca2 loss profoundly affected neurogenesis, particularly during embryonic and postnatal neural development. These neurological defects arose from DNA damage as Brca2(LoxP/LoxP);Nestin-cre mice showed extensive gammaH2AX in neural tissue and p53 deficiency restored brain histology but lead to rapid formation of medulloblastoma brain tumors. In contrast, loss of the Atm kinase did not markedly attenuate apoptosis after Brca2 loss, but did partially restore cerebellar morphology, supporting a genomic surveillance function for ATM during neurogenesis. These data illustrate the importance of Brca2 during nervous system development and underscore the tissue-specific requirements for DNA repair factors.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Youngsoo Lee
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jayne Lamont
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J McKinnon
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA. Tel.: +1 901 495 2700; Fax: +1 901 526 2907; E-mail:
| |
Collapse
|
276
|
Forget AL, Loftus MS, McGrew DA, Bennett BT, Knight KL. The human Rad51 K133A mutant is functional for DNA double-strand break repair in human cells. Biochemistry 2007; 46:3566-75. [PMID: 17302439 PMCID: PMC2952636 DOI: 10.1021/bi062128k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human Rad51 protein requires ATP for the catalysis of DNA strand exchange, as do all Rad51 and RecA-like recombinases. However, understanding the specific mechanistic requirements for ATP binding and hydrolysis has been complicated by the fact that ATP appears to have distinctly different effects on the functional properties of human Rad51 versus yeast Rad51 and bacterial RecA. Here we use RNAi methods to test the function of two ATP binding site mutants, K133R and K133A, in human cells. Unexpectedly, we find that the K133A mutant is functional for repair of DNA double-strand breaks when endogenous Rad51 is depleted. We also find that the K133A protein maintains wild-type-like DNA binding activity and interactions with Brca2 and Xrcc3, properties that undoubtedly promote its DNA repair capability in the cell-based assay used here. Although a Lys to Ala substitution in the Walker A motif is commonly assumed to prevent ATP binding, we show that the K133A protein binds ATP, but with an affinity approximately 100-fold lower than that of wild-type Rad51. Our data suggest that ATP binding and release without hydrolysis by the K133A protein act as a mechanistic surrogate in a catalytic process that applies to all RecA-like recombinases. ATP binding promotes assembly and stabilization of a catalytically active nucleoprotein filament, while ATP hydrolysis promotes filament disassembly and release from DNA.
Collapse
Affiliation(s)
| | | | | | | | - Kendall L. Knight
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, 364 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
277
|
Akiyama K, Yusa K, Hashimoto H, Poonepalli A, Hande MP, Kakazu N, Takeda J, Tachibana M, Shinkai Y. Rad54 is dispensable for the ALT pathway. Genes Cells 2007; 11:1305-15. [PMID: 17054727 DOI: 10.1111/j.1365-2443.2006.01020.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some immortal cells use the alternative lengthening of telomeres (ALT) pathway to maintain their telomeres instead of telomerase. Previous studies revealed that homologous recombination (HR) contributes to the ALT pathway. To further elucidate molecular mechanisms, we inactivated Rad54 involved in HR, in mouse ALT embryonic stem (ES) cells. Although Rad54-deficient ALT ES cells showed radiosensitivity in line with expectation, cell growth and telomeres were maintained for more than 200 cell divisions. Furthermore, although MMC-stimulated sister chromatid exchange (SCE) was suppressed in the Rad54-deficient ALT ES cells, ALT-associated telomere SCE was not affected. This is the first genetic evidence that mouse Rad54 is dispensable for the ALT pathway.
Collapse
Affiliation(s)
- Koichi Akiyama
- Department of Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Rollinson S, Smith AG, Allan JM, Adamson PJ, Scott K, Skibola CF, Smith MT, Morgan GJ. RAD51 homologous recombination repair gene haplotypes and risk of acute myeloid leukaemia. Leuk Res 2007; 31:169-74. [PMID: 16890287 DOI: 10.1016/j.leukres.2006.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 04/23/2006] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
Homologous recombination (HR) is one of the main pathways for the repair of DNA double strand breaks (DSBs). To investigate whether inherited variants in genes encoding proteins that repair DSBs by HR modulate acute myeloid leukaemia (AML) risk, we have examined the frequency of two variants in the 5' untranslated region (UTR) of RAD51 (RAD51 135 G>C and the RAD51 172 G>T) in a large case-control study of acute myeloid leukaemia (AML). Inheritance of a RAD51 135 C allele was associated with a reduced risk of estimate for AML (odds ratio (OR) 0.56, 95% confidence intervals (CI), 0.38-0.83), while the RAD51 172 T allele was not associated with AML. The RAD51 135 and 172 variants were in strong linkage disequilibrium, with three out of the four possible haplotypes being observed in the population. The protective effect associated with the RAD51 135 C allele was found to be associated with inheritance of the RAD51 135-172 C-G haplotype (cases 3.9% versus controls 6.5%, OR 0.61, 95% CI 0.42-0.90). These data suggest that variants in the RAD51 HR gene may modulate genetic predisposition to AML.
Collapse
Affiliation(s)
- Sara Rollinson
- Division of Laboratory and Regenerative Medicine, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas J, Russo IH. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 2007; 15:306-42. [PMID: 16835503 DOI: 10.1097/00008469-200608000-00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. In the present work, we show evidence that the breast tissue of postmenopausal parous women has had a shifting of stem cell 1 to stem cell 2 with a genomic signature different from similar structures derived from postmenopausal nulliparous women that have stem cell 1. Those genes that are significantly different are grouped in major categories on the basis of their putative functional significance. Among them are those gene transcripts related to immune surveillance, DNA repair, transcription, chromatin structure/activators/co-activators, growth factor and signal transduction pathway, transport and cell trafficking, cell proliferation, differentiation, cell adhesion, protein synthesis and cell metabolism. From these data, it was concluded that during pregnancy there are significant genomic changes that reflect profound alterations in the basic physiology of the mammary gland that explain the protective effect against carcinogenesis. The implication of this knowledge is that when the genomic signature of protection or refractoriness to carcinogenesis is acquired by the shifting of stem cell 1 to stem cell 2, the hormonal milieu induced by pregnancy or pregnancy-like conditions is no longer required. This is a novel concept that challenges the current knowledge that a chemopreventive agent needs to be given for a long period to suppress a metabolic pathway or abrogate the function of an organ.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Nordstrand LM, Ringvoll J, Larsen E, Klungland A. Genome instability and DNA damage accumulation in gene-targeted mice. Neuroscience 2007; 145:1309-17. [PMID: 17218062 DOI: 10.1016/j.neuroscience.2006.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/29/2006] [Accepted: 10/30/2006] [Indexed: 01/02/2023]
Abstract
Six major pathways for DNA repair have been identified. These include (1) DNA repair by direct reversal, (2) base excision repair, (3) mismatch repair, (4) nucleotide excision repair, (5) homologous recombination, and (6) non-homologous end-joining. In addition, several other cellular processes influence the response to DNA damage. The generation of gene-targeted organisms is crucial for assessing the relative contribution of single DNA repair proteins and DNA repair pathways in maintaining genome stability. In particular, the accumulation of DNA damage, mutations and cancer in unexposed gene-targeted animals illuminates the spontaneous load of a particular lesion and the relative significance of a single gene in a specific pathway. Strategies for the generation of gene-targeted mice have been available for 15 years and more than 100 different genes relevant to DNA repair have been targeted. This review describes some important progress made toward understanding spontaneous DNA damage and its repair, exemplified through one, or a few, gene-targeted mice from each major DNA repair pathway.
Collapse
Affiliation(s)
- L M Nordstrand
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet HF, University of Oslo, N-0027 Oslo, Norway
| | | | | | | |
Collapse
|
281
|
Reliene R, Bishop AJR, Schiestl RH. Involvement of homologous recombination in carcinogenesis. ADVANCES IN GENETICS 2007; 58:67-87. [PMID: 17452246 DOI: 10.1016/s0065-2660(06)58003-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA alterations of every type are associated with the incidence of carcinogenesis, often on the genomic scale. Although homologous recombination (HR) is an important pathway of DNA repair, evidence is accumulating that deleterious genomic rearrangements can result from HR. It therefore follows that HR events may play a causative role in carcinogenesis. HR is elevated in response to carcinogens. HR may also be increased or decreased when its upstream regulation is perturbed or components of the HR machinery itself are not fully functional. This chapter summarizes research findings that demonstrate an association between HR and carcinogenesis. Increased or decreased frequencies of HR have been found in cancer cells and cancer-prone hereditary human disorders characterized by mutations in genes playing a role in HR, such as ATM, Tp53, BRCA, BLM, and WRN genes. Another evidence linking perturbations in HR and carcinogenesis is provided by studies showing that exposure to carcinogens results in an increased frequency of HR resulting in DNA deletions in yeast, human cells, or mice.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | | | | |
Collapse
|
282
|
|
283
|
Russo J, Balogh G, Mailo D, Russo PA, Heulings R, Russo IH. The genomic signature of breast cancer prevention. Recent Results Cancer Res 2007; 174:131-50. [PMID: 17302192 DOI: 10.1007/978-3-540-37696-5_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Early pregnancy imprints in the breast permanent genomic changes or a signature that reduces the susceptibility of this organ to cancer. The breast attains its maximum development during pregnancy and lactation. After menopause, the breast regresses in both nulliparous and parous women containing lobular structures designated Lob.1. The Lob 1 found in the breast of nulliparous women and of parous women with breast cancer never went through the process of differentiation, retaining a high concentration of epithelial cells that are targets for carcinogens and therefore susceptible to undergoing neoplastic transformation, these cell are called Stem cells 1, whereas Lob 1 structures found in the breast of early parous postmenopausal women free of mammary pathology, on the other hand, are composed of an epithelial cell population that is refractory to transformation called Stem cells 2. The degree of differentiation acquired through early pregnancy has changed the genomic signature that differentiates the Lob 1 from the early parous women from that of the nulliparous women by shifting the Stem cell 1 to a Stem cell 2, making this the postulated mechanism of protection conferred by early full-term pregnancy. The identification of a putative breast stem cell (Stem cell 1) has reached in the last decade a significant impulse and several markers also reported for other tissues have been found in the mammary epithelial cells of both rodents and humans. The data obtained thus far is supporting the concept that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland, which results in the replacement of the Stem cell 1 that is a component of the nulliparous breast epithelium with a new stem cell, called Stem cell 2, which is characterized by a specific genomic signature. The pattern of gene expression of the stem cell 2 could potentially be used as useful intermediate end points for evaluating the degree of mammary gland differentiation and for evaluating preventive agents such as human chorionic gonadotropin.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
284
|
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2006; 19:1580-94. [PMID: 17173371 PMCID: PMC2542901 DOI: 10.1021/tx060164e] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER, thus, counteract the toxic, mutagenic, and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate the elucidation of the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type-specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a radiomimetic, that is, capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if the damage is not repaired.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Basic Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
285
|
Kovalenko OV, Wiese C, Schild D. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51. Nucleic Acids Res 2006; 34:5081-92. [PMID: 16990250 PMCID: PMC1636435 DOI: 10.1093/nar/gkl665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate-specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.
Collapse
Affiliation(s)
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- To whom correspondence should be addressed. Tel: +1 510 486 6013; Fax: +1 510 486 6816;
| |
Collapse
|
286
|
Pytel D, Wysocki T, Majsterek I. Comparative study of DNA damage, cell cycle and apoptosis in human K562 and CCRF-CEM leukemia cells: role of BCR/ABL in therapeutic resistance. Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:85-92. [PMID: 16904383 DOI: 10.1016/j.cbpc.2006.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/25/2006] [Accepted: 06/26/2006] [Indexed: 11/16/2022]
Abstract
The Philadelphia translocation t(9;22) resulting in the bcr/abl fusion gene is the pathogenic principle of almost 95% of human chronic myelogenous leukemia (CML). Imatinib mesylate (STI571) is a specific inhibitor of the BCR/ABL fusion tyrosine kinase that exhibits potent antileukemic effects in CML. BCR/ABL-positive K562 and -negative CCRF-CEM human leukemia cells were investigated. MTT survival assay and clonogenic test of the cell proliferation ability were used to estimate resistance against idarubicin. DNA damage after cell treatment with the drug at the concentrations from 0.001 to 3 microM with or without STI571 pre-treatment were examined by the alkaline comet assay. We found that the level of DNA damages was lower in K562 cells after STI571 pre-treatment. It is suggested that BCR/ABL activity may promote genomic instability, moreover K562 cells were found to be resistant to the drug treatment. Further, we provided evidence of apoptosis inhibition in BCR/ABL-positive cells using caspase-3 activity colorimetric assay and DAPI nuclear staining for chromatin condensation. We suggest that these processes associated with cell cycle arrest in G2/M checkpoint detected in K562 BCR/ABL-positive compared to CCRF-CEM cells without BCR/ABL expression might promote clone selection resistance to drug treatment.
Collapse
Affiliation(s)
- Dariusz Pytel
- Department of Molecular Genetics, University of Lodz, 90-237 Lodz, Poland
| | | | | |
Collapse
|
287
|
Abstract
Homologous recombination (HR) is a ubiquitous cellular pathway that mediates transfer of genetic information between homologous or near homologous (homeologous) DNA sequences. During meiosis it ensures proper chromosome segregation in the first division. Moreover, HR is critical for the tolerance and repair of DNA damage, as well as in the recovery of stalled and broken replication forks. Together these functions preserve genomic stability and assure high fidelity transmission of the genetic material in the mitotic and meiotic cell divisions. This review will focus on the Rad54 protein, a member of the Snf2-family of SF2 helicases, which translocates on dsDNA but does not display strand displacement activity typical for a helicase. A wealth of genetic, cytological, biochemical and structural data suggests that Rad54 is a core factor of HR, possibly acting at multiple stages during HR in concert with the central homologous pairing protein Rad51.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Sections of Microbiology, University of California Davis, CA 95616-8665, USA.
| | | | | | | |
Collapse
|
288
|
Prasad TK, Yeykal CC, Greene EC. Visualizing the assembly of human Rad51 filaments on double-stranded DNA. J Mol Biol 2006; 363:713-28. [PMID: 16979659 DOI: 10.1016/j.jmb.2006.08.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/13/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Rad51 is the core component of the eukaryotic homologous recombination machinery and assembles into extended nucleoprotein filaments on DNA. To study the dynamic behavior of Rad51 we have developed a single-molecule assay that relies on a combination of hydrodynamic force and microscale diffusion barriers to align individual DNA molecules on the surface of a microfluidic sample chamber that is coated with a lipid bilayer. When visualized with total internal reflection fluorescence microscopy (TIRFM), these "molecular curtains" allow for the direct visualization of hundreds of individual DNA molecules. Using this approach, we have analyzed the binding of human Rad51 to single molecules of double-stranded DNA under a variety of different reaction conditions by monitoring the extension of the fluorescently labeled DNA, which coincides with assembly of the nucleoprotein filament. We have also generated several mutants in conserved regions of Rad51 implicated in DNA binding, and tested them for their ability to assemble into extended filaments. We show that proteins with mutations within the DNA-binding surface located on the N-terminal domain still retain the ability to form extended nucleoprotein filaments. Mutations in the L1 loop, which projects towards the central axis of the filament, completely abolish assembly of extended filaments. In contrast, most mutations within or near the L2 DNA-binding loop, which is also located near the central axis of the filament, do not affect the ability of the protein to assemble into extended filaments on double-stranded (ds)DNA. Taken together, these results demonstrate that the L1-loop plays a crucial role in the assembly of extended nucleoprotein filaments on dsDNA, but the N-terminal domain and the L2 DNA-binding loop have significantly less impact on this process. The results presented here also provide an important initial framework for beginning to study the biochemical behaviors of Rad51 nucleoprotein filaments using our novel experimental system.
Collapse
Affiliation(s)
- Tekkatte Krishnamurthy Prasad
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, Black Building Room 536, 650 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
289
|
Abstract
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD51, DMC1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.
Collapse
Affiliation(s)
- Wuxing Li
- The Department of Biology, The Intercollege Graduate Degree Program in Plant Physiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
290
|
Yoo S. Characterization of Drosophila Rad51/SpnA protein in DNA binding and embryonic development. Biochem Biophys Res Commun 2006; 348:1310-8. [PMID: 16919604 DOI: 10.1016/j.bbrc.2006.07.211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/26/2022]
Abstract
The Rad51 is a highly conserved protein throughout the eukaryotic kingdom and an essential enzyme in DNA repair and recombination. It possesses DNA binding activity and ATPase activity, and interacts with meiotic chromosomes during prophase I of meiosis. Drosophila Rad51, Spindle-A (SpnA) protein has been shown to be involved in repair of DNA damage in somatic cells and meiotic recombination in female germ cells. In this study, DNA binding activity of SpnA is demonstrated by both agarose gel mobility shift assay and restriction enzyme protection assay. SpnA is also shown to interact with meiotic chromosomes during prophase I in the primary spermatocytes of hsp26-spnA transgenic flies. In addition, SpnA is highly expressed in embryos, and the depletion of SpnA by RNA interference (RNAi) leads to embryonic lethality implying that SpnA is involved in early embryonic development. Therefore, these results suggest that Drosophila SpnA protein possesses properties similar to mammalian Rad51 homologs.
Collapse
Affiliation(s)
- Siuk Yoo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 7N321, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
291
|
Lin Z, Kong H, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A 2006; 103:10328-10333. [PMID: 16798872 PMCID: PMC1502457 DOI: 10.1073/pnas.0604232103] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial recA gene and its eukaryotic homolog RAD51 are important for DNA repair, homologous recombination, and genome stability. Members of the recA/RAD51 family have functions that have differentiated during evolution. However, the evolutionary history and relationships of these members remains unclear. Homolog searches in prokaryotes and eukaryotes indicated that most eubacteria contain only one recA. However, many archaeal species have two recA/RAD51 homologs (RADA and RADB), and eukaryotes possess multiple members (RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, and recA). Phylogenetic analyses indicated that the recA/RAD51 family can be divided into three subfamilies: (i) RADalpha, with highly conserved functions; (ii) RADbeta, with relatively divergent functions; and (iii) recA, functioning in eubacteria and eukaryotic organelles. The RADalpha and RADbeta subfamilies each contain archaeal and eukaryotic members, suggesting that a gene duplication occurred before the archaea/eukaryote split. In the RADalpha subfamily, eukaryotic RAD51 and DMC1 genes formed two separate monophyletic groups when archaeal RADA genes were used as an outgroup. This result suggests that another duplication event occurred in the early stage of eukaryotic evolution, producing the DMC1 clade with meiosis-specific genes. The RADbeta subfamily has a basal archaeal clade and five eukaryotic clades, suggesting that four eukaryotic duplication events occurred before animals and plants diverged. The eukaryotic recA genes were detected in plants and protists and showed strikingly high levels of sequence similarity to recA genes from proteobacteria or cyanobacteria. These results suggest that endosymbiotic transfer of recA genes occurred from mitochondria and chloroplasts to nuclear genomes of ancestral eukaryotes.
Collapse
Affiliation(s)
- Zhenguo Lin
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; and
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Masatoshi Nei
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
| | - Hong Ma
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
| |
Collapse
|
292
|
Rajanikant C, Kumbhakar M, Pal H, Rao BJ, Sainis JK. DNA strand exchange activity of rice recombinase OsDmc1 monitored by fluorescence resonance energy transfer and the role of ATP hydrolysis. FEBS J 2006; 273:1497-506. [PMID: 16689935 DOI: 10.1111/j.1742-4658.2006.05170.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rad51 and disrupted meiotic cDNA1 (Dmc1) are the two eukaryotic DNA recombinases that participate in homology search and strand exchange reactions during homologous recombination mediated DNA repair. Rad51 expresses in both mitotic and meiotic tissues whereas Dmc1 is confined to meiosis. DNA binding and pairing activities of Oryza sativa disrupted meiotic cDNA1 (OsDmc1) from rice have been reported earlier. In the present study, DNA renaturation and strand exchange activities of OsDmc1 have been studied, in real time and without the steps of deproteinization, using fluorescence resonance energy transfer (FRET). The extent as well as the rate of renaturation is the highest in conditions that contain ATP, but significantly less when ATP is replaced by slowly hydrolysable analogues of ATP, namely adenosine 5'-(beta,gamma-imido) triphosphate (AMP-PNP) or adenosine 5'-O-(3-thio triphosphate) (ATP-gamma-S), where the former was substantially poorer than the latter in facilitating the renaturation function. FRET assay results also revealed OsDmc1 protein concentration dependent strand exchange function, where the activity was the fastest in the presence of ATP, whereas in the absence of a nucleotide cofactor it was several fold ( approximately 15-fold) slower. Interestingly, strand exchange, in reactions where ATP was replaced with AMP-PNP or ATP-gamma-S, was somewhat slower than that of even minus nucleotide cofactor control. Notwithstanding the slow rates, the reactions with no nucleotide cofactor or with ATP-analogues did reach the same steady state level as seen in ATP reaction. FRET changes were unaffected by the steps of deproteinization following OsDmc1 reaction, suggesting that the assay results reflected stable events involving exchanges of homologous DNA strands. All these results, put together, suggest that OsDmc1 catalyses homologous renaturation as well as strand exchange events where ATP hydrolysis seems to critically decide the rates of the reaction system. These studies open up new facets of a plant recombinase function in relation to the role of ATP hydrolysis.
Collapse
|
293
|
Matsuo Y, Sakane I, Takizawa Y, Takahashi M, Kurumizaka H. Roles of the human Rad51 L1 and L2 loops in DNA binding. FEBS J 2006; 273:3148-59. [PMID: 16780572 DOI: 10.1111/j.1742-4658.2006.05323.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human Rad51 protein, a eukaryotic ortholog of the bacterial RecA protein, is a key enzyme that functions in homologous recombination and recombinational repair of double strand breaks. The Rad51 protein contains two flexible loops, L1 and L2, which are proposed to be sites for DNA binding, based on a structural comparison with RecA. In the present study, we performed mutational and fluorescent spectroscopic analyses on the L1 and L2 loops to examine their role in DNA binding. Gel retardation and DNA-dependent ATP hydrolysis measurements revealed that the substitution of the tyrosine residue at position 232 (Tyr232) within the L1 loop with alanine, a short side chain amino acid, significantly decreased the DNA-binding ability of human Rad51, without affecting the protein folding or the salt-induced, DNA-independent ATP hydrolysis. Even the conservative replacement with tryptophan affected the DNA binding, indicating that Tyr232 is involved in DNA binding. The importance of the L1 loop was confirmed by the fluorescence change of a tryptophan residue, replacing the Asp231, Ser233, or Gly236 residue, upon DNA binding. The alanine replacement of phenylalanine at position 279 (Phe279) within the L2 loop did not affect the DNA-binding ability of human Rad51, unlike the Phe203 mutation of the RecA L2 loop. The Phe279 side chain may not be directly involved in the interaction with DNA. However, the fluorescence intensity of the tryptophan replacing the Rad51-Phe279 residue was strongly reduced upon DNA binding, indicating that the L2 loop is also close to the DNA-binding site.
Collapse
Affiliation(s)
- Yusuke Matsuo
- Graduate School of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
294
|
Lose F, Lovelock P, Chenevix-Trench G, Mann GJ, Pupo GM, Spurdle AB. Variation in the RAD51 gene and familial breast cancer. Breast Cancer Res 2006; 8:R26. [PMID: 16762046 PMCID: PMC1557738 DOI: 10.1186/bcr1415] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 04/28/2006] [Accepted: 05/17/2006] [Indexed: 01/08/2023] Open
Abstract
Introduction Human RAD51 is a homologue of the Escherichia coli RecA protein and is known to function in recombinational repair of double-stranded DNA breaks. Mutations in the lower eukaryotic homologues of RAD51 result in a deficiency in the repair of double-stranded DNA breaks. Loss of RAD51 function would therefore be expected to result in an elevated mutation rate, leading to accumulation of DNA damage and, hence, to increased cancer risk. RAD51 interacts directly or indirectly with a number of proteins implicated in breast cancer, such as BRCA1 and BRCA2. Similar to BRCA1 mice, RAD51-/- mice are embryonic lethal. The RAD51 gene region has been shown to exhibit loss of heterozygosity in breast tumours, and deregulated RAD51 expression in breast cancer patients has also been reported. Few studies have investigated the role of coding region variation in the RAD51 gene in familial breast cancer, with only one coding region variant – exon 6 c.449G>A (p.R150Q) – reported to date. Methods All nine coding exons of the RAD51 gene were analysed for variation in 46 well-characterised, BRCA1/2-negative breast cancer families using denaturing high-performance liquid chromatography. Genotyping of the exon 6 p.R150Q variant was performed in an additional 66 families. Additionally, lymphoblastoid cell lines from breast cancer patients were subjected to single nucleotide primer extension analysis to assess RAD51 expression. Results No coding region variation was found, and all intronic variation detected was either found in unaffected controls or was unlikely to have functional consequences. Single nucleotide primer extension analysis did not reveal any allele-specific changes in RAD51 expression in all lymphoblastoid cell lines tested. Conclusion Our study indicates that RAD51 is not a major familial breast cancer predisposition gene.
Collapse
Affiliation(s)
- Felicity Lose
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Paul Lovelock
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Georgia Chenevix-Trench
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Graham J Mann
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gulietta M Pupo
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Amanda B Spurdle
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
295
|
Seitz EM, Kowalczykowski SC. Human Rad51 protein displays enhanced homologous pairing of DNA sequences resembling those at genetically unstable loci. Nucleic Acids Res 2006; 34:2847-52. [PMID: 16723430 PMCID: PMC1474073 DOI: 10.1093/nar/gkl355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA strand exchange, the central step of homologous recombination, is considered to occur approximately independently of DNA sequence content. However, certain prokaryotic and eukaryotic genomic loci display either an enhanced or reduced frequency of genetic exchange. Here we show that the Homo sapiens DNA strand exchange protein, HsRad51, shows a preference for binding to single-stranded DNA sequences primarily rich in G-residues and poor in A- and C-residues, and that these DNA sequences manifest enhanced HsRad51 protein-dependent homologous pairing. Both of these properties are common to all DNA strand exchange proteins examined thus far. These preferred DNA pairing sequences resemble those found at genetic loci in human cells that cause genomic instability and lead to genetic diseases.
Collapse
|
296
|
Gal I, Kimmel G, Gershoni-Baruch R, Papa MZ, Dagan E, Shamir R, Friedman E. A specific RAD51 haplotype increases breast cancer risk in Jewish non-Ashkenazi high-risk women. Eur J Cancer 2006; 42:1129-34. [PMID: 16624550 DOI: 10.1016/j.ejca.2005.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 11/20/2022]
Abstract
While the precise genes involved in determining familial breast cancer risk in addition to BRCA1/2 are mostly unknown, one strong candidate is RAD51. Jewish non-Ashkenazi women at high-risk for breast/ovarian cancer and ethnically matched controls were genotyped using four single nucleotide polymorphisms spanning the RAD51 genomic region, and the resulting haplotypes were constructed using the GERBIL algorithm. A total of 314 individuals were genotyped: 184 non-Ashkenazi high-risk women (119 with breast cancer), and 130 unaffected, average-risk ethnically matched controls. Using GEBRIL, three frequent haplotypes were constructed. One of the haplotypes (TGTA - coined haplotype 3) was present in 7.3% (19/260 haplotypes) of controls (n=130) and in 16.8% (40/238 haplotypes) of high-risk breast cancer patients (n=119, P=0.001). A specific RAD51 haplotype is more prevalent among non-Ashkenazi Jewish high-risk women than in average-risk population.
Collapse
Affiliation(s)
- Inabr Gal
- The Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | |
Collapse
|
297
|
Dray E, Siaud N, Dubois E, Doutriaux MP. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. PLANT PHYSIOLOGY 2006; 140:1059-69. [PMID: 16415210 PMCID: PMC1400560 DOI: 10.1104/pp.105.075838] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) orthologs of Brca2, a protein whose mutations are involved in breast cancer in humans, were previously shown to be essential at meiosis. In an attempt to better understand the Brca2-interacting properties, we examined four partners of the two isoforms of Brca2 identified in Arabidopsis (AtRad51, AtDmc1, and two AtDss1 isoforms). The two Brca2 and the two Dss1 isoforms are named AtBrca2(IV), AtBrca2(V), AtDss1(I), and AtDss1(V) after their chromosomal localization. We first show that both AtBrca2 proteins can interact with either AtRad51 or AtDmc1 in vitro, and that the N-terminal region of AtBrca2 is responsible for these interactions. More specifically, the BRC motifs (so called because iterated in the Brca2 protein) in Brca2 are involved in these interactions: BRC motif number 2 (BRC2) alone can interact with AtDmc1, whereas BRC motif number 4 (BRC4) recognizes AtRad51. The human Rad51 and Dmc1 proteins themselves can interact with either the complete (HsRad51) or a shorter version of AtBrca2 (HsRad51 or HsDmc1) that comprises all four BRC motifs. We also identified two Arabidopsis isoforms of Dss1, another known partner of Brca2 in other organisms. Although all four Brca2 and Dss1 proteins are much conserved, AtBrca2(IV) interacts with only one of these AtDss1 proteins, whereas AtBrca2(V) interacts with both of them. Finally, we show for the first time that an AtBrca2 protein could bind two different partners at the same time: AtRad51 and AtDss1(I), or AtDmc1 and AtDss1(I).
Collapse
Affiliation(s)
- Eloïse Dray
- Institut de Biotechnologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, Université Paris XI, Orsay, France
| | | | | | | |
Collapse
|
298
|
Orre LM, Fält S, Szeles A, Lewensohn R, Wennborg A, Flygare J. Rad51-related changes in global gene expression. Biochem Biophys Res Commun 2006; 341:334-42. [PMID: 16427610 DOI: 10.1016/j.bbrc.2005.12.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 12/22/2005] [Indexed: 11/29/2022]
Abstract
High expression of Rad51, the catalytic component in homologous recombination, has been reported to contribute to genomic instability. To elucidate biological processes related to Rad51, we performed global gene expression analysis on human fibrosarcoma cells induced to express variable Rad51 levels. The results indicate that Rad51 overexpression mediates late rather than early transcriptional responses. Using Gene Ontology analysis, we extracted functional annotations for Rad51-related changes in gene expression that were independent of general cell culture effects. High Rad51 levels conferred increased expression of genes involved in actin remodelling. These changes were accompanied by alterations in cell morphology. Moreover, core components of the mismatch repair (MMR) machinery were down-regulated in response to increased Rad51 expression. Given the role of MMR in the correction of DNA mismatches during replication and recombination, a concurrent increase in Rad51 levels and decrease in the expression of MMR genes could conceivably act synergistically towards genomic instability.
Collapse
Affiliation(s)
- Lukas M Orre
- Cancer Center Karolinska Institutet, Department of Oncology and Pathology, Division of Medical Radiation Biology, CCK R8:00 Karolinska Institute, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
299
|
Sciurano RB, Rahn MI, Pigozzi MI, Olmedo SB, Solari AJ. An azoospermic man with a double-strand DNA break-processing deficiency in the spermatocyte nuclei: case report. Hum Reprod 2006; 21:1194-203. [PMID: 16495306 DOI: 10.1093/humrep/dei479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The mechanisms of meiotic arrest in human spermatogenesis are poorly known. METHODS AND RESULTS A testicular biopsy from an azoospermic male showed complete spermatogenesis arrest at the spermatocyte stage, asynapsis, lack of formation of the XY body, partial reversion to a mitotic-like division and cell degeneration both at the prophase and at the abnormal cell divisions. Synaptonemal complex analysis showed minor segments of synapsis and mainly single axes. Fluorescent immunolocalization of meiotic proteins showed normal SYCP3, scarcity of SYCP1, null MLH1 foci, about 10 patches of gamma-H2AX, abnormal presence of BRCA1 among autosomal axes, absence of RAD51 in early and advanced spermatocytes and permanence of gamma-H2AX labelling up to the abnormal spermatocyte divisions that are the most advanced stage reached. There are at least six dominions of evenly packed chromatin resembling that of the normal XY body, but no true XY body. CONCLUSIONS The protein phenotype and the fine structure of the nuclei are compatible with a deficiency of the processing of double-strand DNA breaks in the zygotene-like spermatocytes, but the features of this defect do not agree with Spo11, Sycp1, Atm and Dmc1 null mutations, which give absence of XY body, synapsis disturbances and spermatocyte apoptosis in mice.
Collapse
Affiliation(s)
- R B Sciurano
- Facultad de Medicina, Centro de Investigaciones en Reproducción (CIR), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
300
|
Guy CP, Haldenby S, Brindley A, Walsh DA, Briggs GS, Warren MJ, Allers T, Bolt EL. Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP. J Mol Biol 2006; 358:46-56. [PMID: 16516228 DOI: 10.1016/j.jmb.2006.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/02/2006] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
The RecA family of recombinases (RecA, Rad51, RadA and UvsX) catalyse strand-exchange between homologous DNA molecules by utilising conserved DNA-binding modules and a common core ATPase domain. RadB was identified in archaea as a Rad51-like protein on the basis of conserved ATPase sequences. However, RadB does not catalyse strand exchange and does not turn over ATP efficiently. RadB does bind DNA, and here we report a triplet of residues (Lys-His-Arg) that is highly conserved at the RadB C terminus, and is crucial for DNA binding. This is consistent with the motif forming a "basic patch" of highly conserved residues identified in an atomic structure of RadB from Thermococcus kodakaraensis. As the triplet motif is conserved at the C terminus of XRCC2 also, a mammalian Rad51-paralogue, we present a phylogenetic analysis that clarifies the relationship between RadB, Rad51-paralogues and recombinases. We investigate interactions between RadB and ATP using genetics and biochemistry; ATP binding by RadB is needed to promote survival of Haloferax volcanii after UV irradiation, and ATP, but not other NTPs, induces pronounced conformational change in RadB. This is the first genetic analysis of radB, and establishes its importance for maintaining genome stability in archaea. ATP-induced conformational change in RadB may explain previous reports that RadB controls Holliday junction resolution by Hjc, depending on the presence or the absence of ATP.
Collapse
Affiliation(s)
- Colin P Guy
- Institute of Genetics School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | | | |
Collapse
|