251
|
Li L, Chen J, Mishra VK, Kurtz JA, Cao D, Klon AE, Harvey SC, Anantharamaiah GM, Segrest JP. Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity. J Mol Biol 2004; 343:1293-311. [PMID: 15491614 DOI: 10.1016/j.jmb.2004.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/24/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
We recently proposed an all-atom model for apolipoprotein (apo) A-I in discoidal high-density lipoprotein in which two monomers form stacked antiparallel helical rings rotationally aligned by interhelical salt-bridges. The model can be derived a priori from the geometry of a planar bilayer disc that constrains the hydrophobic face of a continuous amphipathic alpha helix in lipid-associated apoA-I to a plane inside of an alpha-helical torus. This constrains each apoA-I monomer to a novel conformation, that of a slightly unwound, curved, planar amphipathic alpha 11/3 helix (three turns per 11 residues). Using non-denaturing gradient gel electrophoresis, we show that dimyristoylphosphocholine discs containing two apoA-I form five distinct particles with maximal Stokes diameters of 98 A (R2-1), 106 A (R2-2), 110 A (R2-3), 114 A (R2-4) and 120 A (R2-5). Further, we show that the Stokes diameters of R2-1 and R2-2 are independent of the N-terminal 43 residues (the flexible domain) of apoA-I, while the flexible domain is necessary and sufficient for the formation of the three larger complexes. On the basis of these results, the conformation of apoA-I on the R2-2 disc can be modeled accurately as an amphipathic helical double belt extending the full length of the lipid-associating domain with N and C-terminal ends in direct contact. The smallest of the discs, R2-1, models as the R2-2 conformation with an antiparallel 15-18 residue pairwise segment of helixes hinged off the disc edge. The conformations of full-length apoA-I on the flexible domain-dependent discs (R2-3, R2-4 and R2-5) model as the R2-2 conformation extended on the disc edge by one, two or three of the 11-residue tandem amphipathic helical repeats (termed G1, G2 and G3), respectively, contained within the flexible domain. Although we consider these results to favor the double belt model, the topographically very similar hairpin-belt model cannot be ruled out entirely.
Collapse
Affiliation(s)
- Ling Li
- Department of Medicine, UAB Medical Center, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Murphy CL, Wang S, Weaver K, Gertz MA, Weiss DT, Solomon A. Renal apolipoprotein A-I amyloidosis associated with a novel mutant Leu64Pro. Am J Kidney Dis 2004; 44:1103-9. [PMID: 15558533 DOI: 10.1053/j.ajkd.2004.08.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apolipoprotein A-I amyloidosis (Apo A-I) is an inherited systemic disease that results from the pathologic deposition in tissues throughout the body of fibrils composed of Apo A-I-related molecules. This disorder has been linked to mutations occurring within the coding region of the Apo A-I gene and, to date, 11 such substitutions have been documented. In 4 of these cases, the kidney was the target organ of the disease process. The authors report their studies on a patient with renal amyloidosis and a heretofore undescribed alteration in the amyloidogenic precursor protein. Analyses of genomic DNA evidenced a transition in the second base of codon 64 (T-->C) in one Apo A-I allele that resulted in the replacement of leucine by proline at position 64 (Leu64Pro). Additionally, fibrils extracted from the kidney and characterized chemically were found to be composed almost exclusively of an approximately 96-residue N-terminal Apo A-I fragment that contained the Leu64Pro substitution. These studies have provided further evidence for Apo A-I amyloidogenicity and the propensity of certain mutants to deposit in renal parenchyma.
Collapse
Affiliation(s)
- Charles L Murphy
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | | | | | | | | | | |
Collapse
|
253
|
Abstract
Although more than 20 different proteins are now associated with the amyloidoses, the fibrils share many properties. Despite disparity in primary and tertiary structures of the subunit proteins, assembled fibrils exhibit similar morphology, binding of Congo red, interaction with Thioflavine T, formation of complexes with serum amyloid P component, apolipoprotein E, several glycosaminoglycans, the receptor for advanced glycation endproducts and cross-recognition by some monoclonal antibodies. Thus, it is probable that the mechanism of amyloid generation involves a generic process that can be evoked by most, if not all, proteins under conditions that degrade the native conformation. As suggested by others, the beta-helix or beta-roll conformation may be the unifying element of fibril conformations. Several proteins that have evolved to form physiologically useful amyloid-like fibrils, as well as some proteins associated with pathological amyloidoses, exhibit sequence repeat patterns that may facilitate beta-roll or beta-helix formation. Threading analyses of 2 natural amyloid-forming proteins, curli and human Pmel 17, indicate compatibility of their primary structures with both beta sandwich and beta-helix conformations, suggesting a possible innate conformational pliability. In addition, these results may suggest that the misfolded form of some proteins that are associated with conformational disease may be the native conformation of other proteins to which they are linked by evolution. Finally, since many matrix and structural proteins are known to incorporate numerous tandem repeat sequence elements, we propose that the mechanism of fibril formation is fundamentally related to a general protein assembly process that is integral to the generation of cells and tissues.
Collapse
Affiliation(s)
- Fred J Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
254
|
Campos-Terán J, Mas-Oliva J, Castillo R. Interactions and Conformations of α-Helical Human Apolipoprotein CI on Hydrophilic and on Hydrophobic Substrates. J Phys Chem B 2004. [DOI: 10.1021/jp048305d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, UNAM, P.O. Box 70-243, México D. F. 04510
| | | |
Collapse
|
255
|
Shih AY, Denisov IG, Phillips JC, Sligar SG, Schulten K. Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 2004; 88:548-56. [PMID: 15533924 PMCID: PMC1305032 DOI: 10.1529/biophysj.104.046896] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human apolipoprotein A-1 (apo A-1) is the major protein component of high-density lipoproteins. The apo A-1 lipid-binding domain was used as a template for the synthesis of amphipathic helical proteins termed membrane scaffold proteins, employed to self-assemble soluble monodisperse discoidal particles called Nanodiscs. In these particles, membrane scaffold proteins surround a lipid bilayer in a belt-like fashion forming bilayer disks of discrete size and composition. Here we investigate the structure of Nanodiscs through molecular dynamics simulations in which Nanodiscs were built from scaffold proteins of various lengths. The simulations showed planar or deformed Nanodiscs depending on optimal length and alignment of the scaffold proteins. Based on mean surface area per lipid calculations, comparison of small-angle x-ray scattering curves, and the relatively planar shape of Nanodiscs made from truncated scaffold proteins, one can conclude that the first 17 to 18 residues of the 200-residue apo A-1 lipid-binding domain are not involved in formation of the protein "belts" surrounding the lipid bilayer. To determine whether the addition of an integral membrane protein has an effect on the overall structure of a Nanodisc, bacteriorhodopsin was embedded into a Nanodisc and simulated using molecular dynamics, revealing a planar disk with a slightly rectangular shape.
Collapse
Affiliation(s)
- Amy Y. Shih
- Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ilia G. Denisov
- Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - James C. Phillips
- Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephen G. Sligar
- Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
256
|
Papagrigoriou E, Gingras AR, Barsukov IL, Bate N, Fillingham IJ, Patel B, Frank R, Ziegler WH, Roberts GCK, Critchley DR, Emsley J. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J 2004; 23:2942-51. [PMID: 15272303 PMCID: PMC514914 DOI: 10.1038/sj.emboj.7600285] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 06/03/2004] [Indexed: 01/18/2023] Open
Abstract
The interaction between the cytoskeletal proteins talin and vinculin plays a key role in integrin-mediated cell adhesion and migration. We have determined the crystal structures of two domains from the talin rod spanning residues 482-789. Talin 482-655, which contains a vinculin-binding site (VBS), folds into a five-helix bundle whereas talin 656-789 is a four-helix bundle. We show that the VBS is composed of a hydrophobic surface spanning five turns of helix 4. All the key side chains from the VBS are buried and contribute to the hydrophobic core of the talin 482-655 fold. We demonstrate that the talin 482-655 five-helix bundle represents an inactive conformation, and mutations that disrupt the hydrophobic core or deletion of helix 5 are required to induce an active conformation in which the VBS is exposed. We also report the crystal structure of the N-terminal vinculin head domain in complex with an activated form of talin. Activation of the VBS in talin and the recruitment of vinculin may support the maturation of small integrin/talin complexes into more stable adhesions.
Collapse
Affiliation(s)
| | | | - Igor L Barsukov
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Neil Bate
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Ian J Fillingham
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Ronald Frank
- Department of Chemical Biology, German Research Centre for Biotechnology (GBF), Braunschweig, Germany
| | - Wolfgang H Ziegler
- Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | | | | | - Jonas Emsley
- Department of Biochemistry, University of Leicester, Leicester, UK
- Present address: Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK. Tel: +44 116 252 5143; Fax: +44 116 252 3473; E-mail: or
| |
Collapse
|
257
|
Saito H, Lund-Katz S, Phillips MC. Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Prog Lipid Res 2004; 43:350-80. [PMID: 15234552 DOI: 10.1016/j.plipres.2004.05.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Exchangeable apolipoproteins function in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. Recent findings with apoA-I and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related. Characteristically, these proteins contain a series of proline-punctuated, 11- or 22-amino acid, amphipathic alpha-helical repeats that can adopt a helix bundle conformation in the lipid-free state. The amino- and carboxyl-terminal regions form separate domains with the latter being primarily responsible for lipid binding. Interaction with lipid induces changes in the conformation of the amino-terminal domain leading to alterations in function; for example, opening of the amino-terminal four-helix bundle in apolipoprotein E upon lipid binding is associated with enhanced receptor-binding activity. The concept of a two-domain structure for the larger exchangeable apolipoproteins is providing new molecular insights into how these apolipoproteins interact with lipids and other proteins, such as receptors. The ways in which structural changes induced by lipid interaction modulate the functionality of these apolipoproteins are reviewed.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Lipid Research Group, The Children's Hospital of Philadelphia, Abramson Research Center, Suite 1102, 3615 Civic Center Boulevard, University of Pennsylvania School of Medicine, Philadelphia, 19104-4318, USA
| | | | | |
Collapse
|
258
|
Abstract
Hereditary amyloidosis is, in general, a systemic condition related to multiple organ system involvement by beta-structured protein deposits. As such, it often mimics the more common forms of systemic amyloidosis: immunoglobulin light chain (AL, primary) and reactive (AA, secondary). The challenge diagnostically is to recognize hereditary amyloidosis as a distinct entity and then to determine the specific type of genetic disease. There are several types of hereditary amyloidosis and precise diagnosis is essential for proper therapy and genetic counselling. This chapter strives to present the subject of hereditary amyloidosis in a way which facilitates understanding of the disease, of the means for diagnosis, of the present and possible future therapies, and of the importance of combined basic and medical research.
Collapse
Affiliation(s)
- Merrill D Benson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, MS-128, Indianapolis, IN 46202-5126, USA.
| |
Collapse
|
259
|
Denisov IG, Grinkova YV, Lazarides AA, Sligar SG. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 2004; 126:3477-87. [PMID: 15025475 DOI: 10.1021/ja0393574] [Citation(s) in RCA: 852] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a recently described self-assembly process (Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Nano Letters 2002, 2, 853-856), we prepared soluble monodisperse discoidal lipid/protein particles with controlled size and composition, termed Nanodiscs, in which the fragment of dipalmitoylphosphatidylcholine (DPPC) bilayer is surrounded by a helical protein belt. We have customized the size of these particles by changing the length of the amphipathic helical part of this belt, termed membrane scaffold protein (MSP). Herein we describe the design of extended and truncated MSPs, the optimization of self-assembly for each of these proteins, and the structure and composition of the resulting Nanodiscs. We show that the length of the protein helix surrounding the lipid part of a Nanodisc determines the particle diameter, as measured by HPLC and small-angle X-ray scattering (SAXS). Using different scaffold proteins, we obtained Nanodiscs with the average size from 9.5 to 12.8 nm with a very narrow size distribution (+/-3%). Functionalization of the N-terminus of the scaffold protein does not perturb their ability to form homogeneous discoidal structures. Detailed analysis of the solution scattering confirms the presence of a lipid bilayer of 5.5 nm thickness in Nanodiscs of different sizes. The results of this study provide an important structural characterization of self-assembled phospholipid bilayers and establish a framework for the design of soluble amphiphilic nanoparticles of controlled size.
Collapse
Affiliation(s)
- I G Denisov
- Departments of Biochemistry and Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
260
|
Saito H, Dhanasekaran P, Nguyen D, Deridder E, Holvoet P, Lund-Katz S, Phillips MC. α-Helix Formation Is Required for High Affinity Binding of Human Apolipoprotein A-I to Lipids. J Biol Chem 2004; 279:20974-81. [PMID: 15020600 DOI: 10.1074/jbc.m402043200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Research Center, 3625 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
261
|
Xicohtencatl-Cortes J, Mas-Oliva J, Castillo R. Phase Transitions of Phospholipid Monolayers Penetrated by Apolipoproteins. J Phys Chem B 2004. [DOI: 10.1021/jp0369443] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Xicohtencatl-Cortes
- Instituto de Fisiología Celular, UNAM, Apdo. Postal 70-243, México D. F. 04510, and Instituto de Física, UNAM, Apdo. Postal 20-364, México D. F. 01000
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, UNAM, Apdo. Postal 70-243, México D. F. 04510, and Instituto de Física, UNAM, Apdo. Postal 20-364, México D. F. 01000
| | - Rolando Castillo
- Instituto de Fisiología Celular, UNAM, Apdo. Postal 70-243, México D. F. 04510, and Instituto de Física, UNAM, Apdo. Postal 20-364, México D. F. 01000
| |
Collapse
|
262
|
Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RBG, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 2004; 11:412-9. [PMID: 15098021 DOI: 10.1038/nsmb767] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 04/05/2004] [Indexed: 11/09/2022]
Abstract
Members of the serum paraoxonase (PON) family have been identified in mammals and other vertebrates, and in invertebrates. PONs exhibit a wide range of physiologically important hydrolytic activities, including drug metabolism and detoxification of nerve agents. PON1 and PON3 reside on high-density lipoprotein (HDL, 'good cholesterol') and are involved in the prevention of atherosclerosis. We describe the first crystal structure of a PON family member, a variant of PON1 obtained by directed evolution, at a resolution of 2.2 A. PON1 is a six-bladed beta-propeller with a unique active site lid that is also involved in HDL binding. The three-dimensional structure and directed evolution studies permit a detailed description of PON1's active site and catalytic mechanism, which are reminiscent of secreted phospholipase A2, and of the routes by which PON family members diverged toward different substrate and reaction selectivities.
Collapse
Affiliation(s)
- Michal Harel
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 76 100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Wang L, Colón W. The interaction between apolipoprotein serum amyloid A and high-density lipoprotein. Biochem Biophys Res Commun 2004; 317:157-61. [PMID: 15047161 DOI: 10.1016/j.bbrc.2004.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Indexed: 11/20/2022]
Abstract
Serum amyloid A (SAA) is a small apolipoprotein that binds to high-density lipoproteins (HDLs) via its N-terminus. The murine isoform SAA2.2 forms a hexamer in solution and the N-terminus is shielded from the solvent. Therefore, it is unclear how the SAA2.2 hexamer might bind HDL. In this study, the binding of SAA2.2 to murine HDL was investigated by glutaraldehyde cross-linking and polyacrylamide gel electrophoresis. The hexamer did not bind HDL significantly at 20 degrees C. However, at temperatures between 25-30 degrees C, SAA2.2 became destabilized and its monomeric form bound to HDL. SAA2.2 binding did not significantly replace Apo A-I in HDL particles. At 37-45 degrees C SAA2.2 binds less to HDL, suggesting that its binding is weak and sensitive to physiological and pathological temperatures, and thereby, potentially modulated, in vivo, by other factors.
Collapse
Affiliation(s)
- Limin Wang
- Rensselaer Polytechnic Institute, Department of Chemistry and Chemical Biology, 110 8th street, Troy, NY 12180, USA
| | | |
Collapse
|
264
|
Bergt C, Fu X, Huq NP, Kao J, Heinecke JW. Lysine Residues Direct the Chlorination of Tyrosines in YXXK Motifs of Apolipoprotein A-I When Hypochlorous Acid Oxidizes High Density Lipoprotein. J Biol Chem 2004; 279:7856-66. [PMID: 14660678 DOI: 10.1074/jbc.m309046200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidized lipoproteins may play an important role in the pathogenesis of atherosclerosis. Elevated levels of 3-chlorotyrosine, a specific end product of the reaction between hypochlorous acid (HOCl) and tyrosine residues of proteins, have been detected in atherosclerotic tissue. Thus, HOCl generated by the phagocyte enzyme myeloperoxidase represents one pathway for protein oxidation in humans. One important target of the myeloperoxidase pathway may be high density lipoprotein (HDL), which mobilizes cholesterol from artery wall cells. To determine whether activated phagocytes preferentially chlorinate specific sites in HDL, we used tandem mass spectrometry (MS/MS) to analyze apolipoprotein A-I that had been oxidized by HOCl. The major site of chlorination was a single tyrosine residue located in one of the protein's YXXK motifs (where X represents a nonreactive amino acid). To investigate the mechanism of chlorination, we exposed synthetic peptides to HOCl. The peptides encompassed the amino acid sequences YKXXY, YXXKY, or YXXXY. MS/MS analysis demonstrated that chlorination of tyrosine in the peptides that contained lysine was regioselective and occurred in high yield if the substrate was KXXY or YXXK. NMR and MS analyses revealed that the N(epsilon) amino group of lysine was initially chlorinated, which suggests that chloramine formation is the first step in tyrosine chlorination. Molecular modeling of the YXXK motif in apolipoprotein A-I demonstrated that these tyrosine and lysine residues are adjacent on the same face of an amphipathic alpha-helix. Our observations suggest that HOCl selectively targets tyrosine residues that are suitably juxtaposed to primary amino groups in proteins. This mechanism might enable phagocytes to efficiently damage proteins when they destroy microbial proteins during infection or damage host tissue during inflammation.
Collapse
Affiliation(s)
- Constanze Bergt
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
265
|
Coriu D, Dispenzieri A, Stevens FJ, Murphy CL, Wang S, Weiss DT, Solomon A. Hepatic amyloidosis resulting from deposition of the apolipoprotein A-I variant Leu75Pro. Amyloid 2003; 10:215-23. [PMID: 14986480 DOI: 10.3109/13506120309041738] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Apolipoprotein A-I amyloidosis (AApo A-I) is an inherited systemic disease that results from pathologic deposition in tissues of fibrils composed of Apo A-I-related molecules. This disorder has been linked to mutations occurring within the coding region of the Apo A-I gene and heretofore, nine such variants had been described. Recently, a tenth alteration was found in an Italian population where the substitution of proline for leucine at position 75 (Leu75Pro) was associated with amyloid deposits in the liver. We now report our studies on a patient of different ethnicity who has hepatic amyloidosis and a similar mutation in the amyloidogenic precursor protein, as evidenced from analyses of genomic Apo A-I-encoding DNA. Additionally, fibrils extracted from the liver and characterized chemically were found to be composed almost exclusively of a approximately 96 residue N-terminal Apo A-I fragment that contained the Leu75Pro substitution. RFLP analyses revealed that the patient was heterozygous for this mutation; however, < 10% of the plasma Apo A-I consisted of the aberrant protein while the remainder had the normal (wild-type) sequence. Our findings provide further evidence that the Leu75Pro variant is associated with a predominant hepatic phenotype and can occur in individuals of diverse ethnic backgrounds.
Collapse
Affiliation(s)
- Daniel Coriu
- University of Medicine Carol Davila, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
266
|
Gudheti MV, Gonzalez YI, Lee SP, Wrenn SP. Interaction of apolipoprotein A-I with lecithin-cholesterol vesicles in the presence of phospholipase C. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:127-41. [PMID: 14729075 DOI: 10.1016/j.bbalip.2003.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here we study the anti-nucleating mechanism of apolipoprotein A-I (apo A-I) on model biliary vesicles in the presence of phospholipase C (PLC) utilizing dynamic light scattering (DLS), steady-state fluorescence spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), and UV/Vis spectroscopy. PLC induces aggregation of cholesterol-free lecithin vesicles from an initial, average size of 100 nm to a maximal size of 600 nm. The presence of apo A-I likely inhibits vesicle aggregation by shielding the PLC-generated hydrophobic moieties, which results in vesicles of an average size of 200 nm. A similar phenomenon is observed in cholesterol-enriched lecithin vesicles. Whereas PLC alone produces aggregates of 300 nm, no aggregation is observed when apo A-I is present along with PLC. However, the ability of apo A-I to inhibit aggregation is temporary, and after 8 h, a broad particle size distribution with sizes as high as 800 nm is observed. Apo A-I possibly induces the formation of small apo A-I/lecithin/cholesterol complexes of about 5-20 nm similar to the discoidal pre-HDL complexes found in blood when it can no longer effectively shield all the DAG molecules. Concomitant with formation of complexes, DAG molecules coalesce into large oil droplets, which account for the large particles observed by light scattering. Thus, apo A-I acts as an anti-nucleating agent by two mechanisms, anti-aggregation and microstructural transition. The mode of protection is dependent on the cholesterol content and the relative amounts of DAG and apo A-I present. This study supports the possibility of apo A-I solubilizing lipids in bile in a similar fashion as it does in blood and also delineates the mechanism of formation of the complexes.
Collapse
Affiliation(s)
- Manasa V Gudheti
- Department of Chemical Engineering, College of Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
267
|
Weers PMM, Ryan RO. Apolipophorin III: a lipid-triggered molecular switch. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1249-1260. [PMID: 14599497 DOI: 10.1016/j.ibmb.2003.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Apolipophorin III (apoLp-III) is a low molecular weight exchangeable apolipoprotein that plays an important role in the enhanced neutral lipid transport during insect flight. The protein exists in lipid-free and lipid-bound states. The lipid-bound state is the active form of the protein and occurs when apoLp-III associates with lipid-enriched lipophorins. ApoLp-III is well characterized in two evolutionally divergent species: Locusta migratoria and Manduca sexta. The two apolipoproteins interact in a similar manner with model phospholipid vesicles, and transform them into discoidal particles. Their low intrinsic stability in the lipid-free state likely facilitates interaction with lipid surfaces. Low solution pH also favors lipid binding interaction through increased exposure of hydrophobic surfaces on apoLp-III. While secondary structure is maintained under acidic conditions, apoLp-III tertiary structure is altered, adopting molten globule-like characteristics. In studies of apoLp-III interaction with natural lipoproteins, we found that apoLp-III is readily displaced from the surface of L. migratoria low-density lipophorin by recombinant apoLp-III proteins from either L. migratoria or M. sexta. Thus, despite important differences between these two apoLp-IIIs (amino acid sequence, presence of carbohydrate), their functional similarity is striking. This similarity is also illustrated by the recently published NMR solution structure of M. sexta apoLp-III wherein its molecular architecture closely parallels that of L. migratoria apoLp-III.
Collapse
Affiliation(s)
- Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA.
| | | |
Collapse
|
268
|
Noy D, Calhoun JR, Lear JD. Direct analysis of protein sedimentation equilibrium in detergent solutions without density matching. Anal Biochem 2003; 320:185-92. [PMID: 12927823 DOI: 10.1016/s0003-2697(03)00347-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Characterizing membrane proteins by sedimentation equilibrium is challenging because detergents and/or lipid molecules, usually required for solubilization, form a complex with the protein. The most common way to overcome this problem is Tanford and Reynolds' density matching method, which eliminates the buoyant mass contributions of detergents/lipids by adjusting the solvent density with D2O/H2O mixtures to render either detergent or lipid molecules neutrally buoyant. Unfortunately, the method is practical only for detergent densities between 1.0 (H2O) and 1.1 (D2O) g ml(-1), excluding many of the more commonly used detergents for membrane protein studies. Here, we present a modern variant of Tanford and Reynolds' method that (1) is applicable to any detergent regardless of its specific density, (2) does not compromise accuracy and precision, and (3) provides additional information about the number of detergent molecules that are bound to each protein. The new method was applied successfully to Delta(1-43)A-I, an amino-terminal deletion mutant of human apolipoprotein A-I. Interestingly, we observed a significantly lower Delta(1-43)A-I/octyl-glucoside complex partial specific volume than that expected from volume additivity rules, indicative of specific protein-detergent interactions.
Collapse
Affiliation(s)
- Dror Noy
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia PA 19104-6059, USA.
| | | | | |
Collapse
|
269
|
Bolanos-Garcia VM, Miguel RN. On the structure and function of apolipoproteins: more than a family of lipid-binding proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:47-68. [PMID: 12757750 DOI: 10.1016/s0079-6107(03)00028-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exchangeable apolipoproteins have been the subject of intense biomedical investigation for decades. However, only in recent years the elucidation of the three-dimensional structure reported for several members of the apolipoprotein family has provided insights into their functions at a molecular level for the first time. Moreover, the role of exchangeable apolipoproteins in several cellular events distinct from lipid metabolism has recently been described. This review summarizes these contributions, which have not only allowed the identification of the apolipoprotein domains that determine substrate binding specificity and/or affinity but also the plausible molecular mechanism(s) involved.
Collapse
|
270
|
Davidson WS, Hilliard GM. The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: a mass specrometry study. J Biol Chem 2003; 278:27199-207. [PMID: 12724319 DOI: 10.1074/jbc.m302764200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of human apoA-I on nascent, discoidal HDL particles has been debated extensively over the past 25 years. Recent evidence has demonstrated that the alpha-helical domains of apoA-I are arranged in a belt-like orientation with the long axis of the helices perpendicular to the phospholipid acyl chains on the disc edge. However, experimental information on the spatial relationships between apoA-I molecules on the disc is lacking. To address this issue, we have taken advantage of recent advances in mass spectrometry technology combined with cleavable cross-linking chemistry to derive a set of distance constraints suitable for testing apoA-I structural models. We generated highly homogeneous, reconstituted HDL particles containing two molecules of apoA-I. These were treated with a thiol-cleavable cross-linking agent, which covalently joined Lys residues in close proximity within or between molecules of apoA-I in the disc. The cross-linked discs were then exhaustively trypsinized to generate a discrete population of peptides. The resulting peptides were analyzed by liquid chromatography/mass spectrometry before and after cleavage of the cross-links, and resulting peaks were identified based on the theoretical tryptic cleavage of apoA-I. We identified at least 8 intramolecular and 7 intermolecular cross-links in the particle. The distance constraints are used to analyze three current models of apoA-I structure. The results strongly support the presence of the salt-bridge interactions that were predicted to occur in the "double belt" model of apoA-I, but a helical hairpin model containing the same salt-bridge docking interface is also consistent with the data.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529,
| | | |
Collapse
|
271
|
Raussens V, Slupsky CM, Sykes BD, Ryan RO. Lipid-bound structure of an apolipoprotein E-derived peptide. J Biol Chem 2003; 278:25998-6006. [PMID: 12709434 DOI: 10.1074/jbc.m301753200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E regulates plasma lipid homeostasis through its ability to interact with the low density lipoprotein (LDL) receptor family. Whereas apoE is not a ligand for receptor binding in buffer alone, interaction with lipid confers receptor recognition properties. To investigate the nature of proposed lipid binding-induced conformational changes in apoE, we employed multidimensional heteronuclear NMR spectroscopy to determine the structure of an LDL receptor-active, 58-residue peptide comprising residues 126-183 of apoE in association with the micelle-forming lipid dodecylphosphocholine (DPC). In the presence of 34 mm DPC the peptide forms a continuous amphipathic helix from Glu131 to Arg178. NMR relaxation studies of DPC-bound apoE-(126-183), in contrast to apoE-(126-183) in the presence of TFE, are consistent with an isotropically tumbling peptide in solution giving a global correlation time of approximately 12.5 ns. These data indicate that the helical peptide is curved and constrained by a lipid micelle consisting of approximately 48 DPC molecules. Although the peptide behaves as if it were tumbling isotropically, spectral density analysis reveals that residues 150-183 have more motional freedom than residues 134-149. These molecular and dynamic features are discussed further to provide insight into the structural basis for the interaction between apoE and the ligand binding repeats of the LDL receptor.
Collapse
Affiliation(s)
- Vincent Raussens
- Protein Engineering Network Centres of Excellence and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
272
|
Saito H, Dhanasekaran P, Nguyen D, Holvoet P, Lund-Katz S, Phillips MC. Domain structure and lipid interaction in human apolipoproteins A-I and E, a general model. J Biol Chem 2003; 278:23227-32. [PMID: 12709430 DOI: 10.1074/jbc.m303365200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.
Collapse
Affiliation(s)
- Hiroyuki Saito
- National Institute of Health Sciences, Osaka Branch, Osaka 540-0006, Japan
| | | | | | | | | | | |
Collapse
|
273
|
Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ. Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem 2003; 278:22530-6. [PMID: 12690114 DOI: 10.1074/jbc.m213250200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Laboratory, Hanson Institute, Adelaide, South Australia 5000, Australia.
| | | | | | | | | |
Collapse
|
274
|
Bussell R, Eliezer D. A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 2003; 329:763-78. [PMID: 12787676 DOI: 10.1016/s0022-2836(03)00520-5] [Citation(s) in RCA: 359] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used NMR spectroscopy and limited proteolysis to characterize the structural properties of the Parkinson's disease-related protein alpha-synuclein in lipid and detergent micelle environments. We show that the lipid or micelle surface-bound portion of the molecule adopts a continuously helical structure with a single break. Modeling alphaS as an ideal alpha-helix reveals a hydrophobic surface that winds around the helix axis in a right-handed fashion. This feature is typical of 11-mer repeat containing sequences that adopt right-handed coiled coil conformations. In order to bind a flat or convex lipid surface, however, an unbroken helical alphaS structure would need to adopt an unusual, slightly unwound, alpha11/3 helix conformation (three complete turns per 11 residues). The break we observe in the alphaS helix may allow the protein to avoid this unusual conformation by adopting two shorter stretches of typical alpha-helical structure. However, a quantitative analysis suggests the possibility that the alpha11/3 conformation may in fact exist in lipid-bound alphaS. We discuss how structural features of helical 11-mer repeats could play a role in the reversible lipid binding function of alpha-synuclein and generalize this argument to include the 11-mer repeat-containing apolipoproteins, which also require the ability to release readily from lipid surfaces. A search of protein sequence databases confirms that synuclein-like 11-mer repeats are present in other proteins that bind lipids reversibly and predicts such a role for a number of hypothetical proteins of unknown function.
Collapse
Affiliation(s)
- Robert Bussell
- Department of Physiology, Biophysics and Molecular Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
275
|
Yamamoto M, Morita SY, Kumon M, Kawabe M, Nishitsuji K, Saito H, Vertut-Doï A, Nakano M, Handa T. Effects of plasma apolipoproteins on lipoprotein lipase-mediated lipolysis of small and large lipid emulsions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:31-9. [PMID: 12782148 DOI: 10.1016/s1388-1981(03)00058-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large (ca. 120 nm) and small (ca. 35 nm) emulsions consisting of triolein (TO) and phosphatidylcholine (PC) were prepared as the primary protein-free models of chylomicrons and their remnants, respectively. Lipoprotein lipase (LPL)-mediated lipolysis of emulsion TO was retarded in chylomicron-free human plasma compared with the hydrolysis activated by isolated apolipoprotein C-II (apoC-II). In 30% plasma, free fatty acid (FFA) release rate was higher for large emulsions than for small ones, while both emulsions were hydrolyzed at similar rates in the presence of isolated apoC-II. Isolated apolipoprotein C-III (apoC-III) or apolipoprotein E (apoE) worked as LPL-inhibitor of the lipolysis activated by apoC-II. It was also observed that apolipoprotein A-I (apoA-I) showed distinct inhibitory effects on the lipolysis of large and small emulsions: more effective inhibition for small emulsions. Kinetic analyses showed that K(m)(app) and V(max)(app) for the lipolysis of emulsions were lower in the presence of 30% plasma than isolated apoC-II. ApoA-I also markedly decreased K(m)(app) and V(max)(app) for LPL-catalyzed hydrolysis of both emulsions. In chylomicron-free serum, the density of bound apoA-I at small emulsion surfaces was about three fold greater than large emulsion surfaces, but the binding densities of apoC-II, apoC-III and apoE were less for small emulsion surfaces than for large ones, suggesting that apoA-I preferentially binds to small particles and displaces other exchangeable apolipoproteins from particle surfaces. These results indicate that, in addition to the well known inhibitory effects of apoC-III and apoE, apoA-I in plasma regulates the lipolysis of triglyceride (TG)-rich emulsions and lipoproteins in a size-dependent manner.
Collapse
Affiliation(s)
- Mayumi Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Fan D, Zheng Y, Yang D, Wang J. NMR solution structure and dynamics of an exchangeable apolipoprotein, Locusta migratoria apolipophorin III. J Biol Chem 2003; 278:21212-20. [PMID: 12621043 DOI: 10.1074/jbc.m208486200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the NMR structure and backbone dynamics of an exchangeable apolipoprotein, apoLp-III, from the insect Locusta migratoria. The NMR structure adopts an up-and-down elongated five-helix bundle, which is similar to the x-ray crystal structure of this protein. A short helix, helix 4', is observed that is perpendicular to the bundle and fully solvent-exposed. NMR experimental parameters confirm the existence of this short helix, which is proposed to serve as a recognition helix for apoLp-III binding to lipoprotein surfaces. The L. migratoria apoLp-III helix bundle displays several characteristic structural features that regulate the reversible lipoprotein binding activity of apoLp-III. The buried hydrophilic residues and exposed hydrophobic residues readily adjust the marginal stability of apoLp-III, facilitating the helix bundle opening. Specifically, upon lipoprotein binding the locations and orientations of the buried hydrophilic residues modulate the apoLp-III helix bundle to adopt a possible opening at the hinge that is opposite the recognition short helix, helix 4'. The backbone dynamics provide additional support to the recognition role of helix 4' and this preferred conformational adaptation of apoLp-III upon lipid binding. In this case, the lipid-bound open conformation contains two lobes linked by hinge loops. One lobe contains helices 2 and 3, and the other lobe contains helices 1, 4, and 5. This preferred bundle opening is different from the original proposal on the basis of the x-ray crystal structure of this protein (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608), but it efficiently uses helix 4' as the recognition short helix. The buried interhelical H-bonds are found to be mainly located between the two lobes, potentially providing a specific driving force for the helix bundle recovery of apoLp-III from the lipid-bound open conformation. Finally, we compare the NMR structures of Manduca sexta apoLp-III and L. migratoria apoLp-III and present a united scheme for the structural basis of the reversible lipoprotein binding activity of apoLp-III.
Collapse
Affiliation(s)
- Daping Fan
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | | | | | | |
Collapse
|
277
|
Oda MN, Forte TM, Ryan RO, Voss JC. The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger. Nat Struct Mol Biol 2003; 10:455-60. [PMID: 12754494 DOI: 10.1038/nsb931] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 05/05/2003] [Indexed: 11/09/2022]
Abstract
Exchangeable apolipoproteins can convert between lipid-free and lipid-associated states. The C-terminal domain of human apolipoprotein A-I (apoA-I) plays a role in both lipid binding and self-association. Site-directed spin-label electron paramagnetic resonance spectroscopy was used to examine the structure of the apoA-I C terminus in lipid-free and lipid-associated states. Nitroxide spin-labels positioned at defined locations throughout the C terminus were used to define discrete secondary structural elements. Magnetic interactions between probes localized at positions 163, 217 and 226 in singly and doubly labeled apoA-I gave inter- and intramolecular distance information, providing a basis for mapping apoA-I tertiary and quaternary structure. Spectra of apoA-I in reconstituted HDL revealed a lipid-induced transition of defined random coils and beta-strands into alpha-helices. This conformational switch is analogous to triggered events in viral fusion proteins and may serve as a means to overcome the energy barriers of lipid sequestration, a critical step in cholesterol efflux and HDL assembly.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673, USA.
| | | | | | | |
Collapse
|
278
|
Alonso-Villaverde C, Segues T, Coll-Crespo B, Pérez-Bernalte R, Rabassa A, Gomila M, Parra S, Gozález-Esteban MA, Jiménez-Expósito MJ, Masana L. High-density lipoprotein concentrations relate to the clinical course of HIV viral load in patients undergoing antiretroviral therapy. AIDS 2003; 17:1173-8. [PMID: 12819519 DOI: 10.1097/00002030-200305230-00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether levels of HDL are associated with viral load response in HIV-treated patients, and to seek an explanation based on amino acid sequence similarity between the key apolipoprotein A1 and HIV proteins concerned in viral replication. DESIGN The major HDL lipoprotein is apolipoprotein A1, which is able to inhibit HIV-induced syncytium formation. This retrospective clinical study assessed the relationship between the response to antiretroviral treatment (time of undetectable viral load/duration of viral suppression below the limit of detection) and HDL-cholesterol levels on commencing antiretroviral treatment. PATIENTS AND METHODS HIV-treated patients with undetectable HIV viral loads were followed every 3 months for 36 months. We measured total cholesterol, HDL-cholesterol, triglycerides, previous responses to antiretroviral treatment, opportunistic infections, sex and age. These variables were assessed in relation to the time of undetectable viral load until viral rebound. Amino acid sequence alignment was performed with HIV proteins and apolipoprotein A1 to detect shared similarity. RESULTS The Cox proportional hazards model showed a significant association between HDL-cholesterol and the time of undetectable viral load. The other variables studied were not associated. There was 30% sequence similarity in an area of 50 amino acids shared between apolipoprotein A1 and p17 Gag-HIV protein. CONCLUSION High levels of HDL-cholesterol are associated with a better viral response in treated HIV patients. This association could be related to the sequence similarity and structure homology between apolipoprotein A1 and p17 Gag-HIV protein, which raises the intriguing clinical possibility that inducing an increase in HDL could assist HIV therapy.
Collapse
Affiliation(s)
- Carlos Alonso-Villaverde
- Servei de Medicina Interna of the Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Marcel YL, Kiss RS. Structure-function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr Opin Lipidol 2003; 14:151-7. [PMID: 12642783 DOI: 10.1097/00041433-200304000-00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Apolipoprotein A-I is the major structural protein of HDL. Its physicochemical properties maintain a delicate balance between maintenance of stable lipoproteins and the ability to associate with and dissociate from the lipid transported. Here we review the progress made in the last 2-3 years on the structure-function relationships of apolipoprotein A-I, including elements related to the ATP binding cassette transporter A1. RECENT FINDINGS Current evidence now supports the so-called 'belt' or 'hairpin' models for apolipoprotein A-I conformation when bound to discoidal lipoproteins. In-vivo expression of apolipoprotein A-I mutant proteins has shown that both the N- and C-terminal domains are important for lipid association as well as for the esterification reaction, particularly binding of cholesteryl esters and formation of mature alpha-migrating lipoproteins. This property is apparently quite distinct from the activation of the enzyme lecithin cholesterol acyl transferase, which requires interaction with the central helix 6. The interaction of apolipoprotein A-I with the ATP binding cassette transporter A1 has been shown to require the C-terminal domain, which is proposed to mediate the opening of the helix bundle formed by lipid-free or lipid-poor apolipoprotein A-I and allow its association with hydrophobic binding sites. SUMMARY Significant progress has been made in the understanding of the molecular mechanisms controlling the folding of apolipoprotein A-I and its interaction with lipids and various other protein factors involved in HDL metabolism.
Collapse
Affiliation(s)
- Yves L Marcel
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Room H460, 40 Ruskin Street, Ottawa, Ontario, Canada, K1Y 4W7.
| | | |
Collapse
|
280
|
Dergunov AD, Vorotnikova YY, Visvikis S, Siest G. Homo- and hetero-complexes of exchangeable apolipoproteins in solution and in lipid-bound form. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:1127-1137. [PMID: 12633731 DOI: 10.1016/s1386-1425(02)00298-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The self-association state of human plasma apolipoprotein E (apoE) in solution and in complexes with dimyristoylphosphatidylcholine (DMPC) varying in stoichiometry was studied in sub-micromolar concentration range by gel filtration, fluorescence anisotropy, fluorescence quenching and energy transfer measurements with apolipoprotein labeled with lysine-specific fluorescent dyes. Together, these results confirm the equilibrium scheme for various apoE structures in solution: oligomer (in aged preparations) <==> 'closed' tetramer <==> 'open' tetramer ('molten globule' state) <==> native or partially denatured monomer <==> fully denatured monomer. Within DMPC:apoE discoidal complex (125:1) the apolipoprotein association state seems to be intermediate between that in solution and in larger vesicular complex (1000:1); for both complexes, the degree of exposure of fluorescein chromophores into water phase decreased. Hetero-associates of apoA-I and apoC-III-1 in solution and in the complexes with DMPC appear to behave similarly to apoE. When extrapolated to native HDL particles, 'molten globule' state seems to be a structure responsible for the interaction of exchangeable apolipoproteins with phospholipid. For a first time, the location of various apolipoprotein molecules on disc periphery was confirmed. The lysine residue(s) seems to locate closely to reacting residue(s) within apolipoprotein molecules in associates, however, with different package constraints for discoidal versus vesicular complexes with phospholipid.
Collapse
Affiliation(s)
- Alexander D Dergunov
- National Research Center for Preventive Medicine, 10, Petroverigsky street, 101953 Moscow, Russia.
| | | | | | | |
Collapse
|
281
|
Lee M, Kovanen PT, Tedeschi G, Oungre E, Franceschini G, Calabresi L. Apolipoprotein composition and particle size affect HDL degradation by chymase: effect on cellular cholesterol efflux. J Lipid Res 2003; 44:539-46. [PMID: 12562834 DOI: 10.1194/jlr.m200420-jlr200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mast cell chymase, a chymotrypsin-like neutral protease, can proteolyze HDL3. Here we studied the ability of rat and human chymase to proteolyze discoidal pre beta-migrating reconstituted HDL particles (rHDLs) containing either apolipoprotein A-I (apoA-I) or apoA-II. Both chymases cleaved apoA-I in rHDL at identical sites, either at the N-terminus (Tyr18 or Phe33) or at the C-terminus (Phe225), so generating three major truncated polypeptides that remained bound to the rHDL. The cleavage sites were independent of the size of the rHDL particles, but small particles were more susceptible to degradation than bigger ones. Chymase-induced truncation of apoA-I yielded functionally compromised rHDL with reduced ability to promote cellular cholesterol efflux. In sharp contrast to apoA-I, apoA-II was resistant to degradation. However, when apoA-II was present in rHDL that also contained apoA-I, it was degraded by chymase. We conclude that chymase reduces the ability of apoA-I in discoidal rHDL particles to induce cholesterol efflux by cleaving off either its amino- or carboxy-terminal portion. This observation supports the concept that limited extracellular proteolysis of apoA-I is one pathophysiologic mechanism leading to the generation and maintenance of foam cells in atherosclerotic lesions.
Collapse
Affiliation(s)
- Miriam Lee
- Wihuri Research Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
282
|
Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M. Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein a-I. J Biol Chem 2003; 278:2444-51. [PMID: 12421824 DOI: 10.1074/jbc.m204801200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal portion of apolipoprotein A-I corresponding to the first 93 residues has been identified as the main component of apolipoprotein A-I fibrils in a form of systemic amyloidosis. We have been able to characterize the process of conformational switching and fibrillogenesis in this fragment of apolipoprotein A-I purified directly from ex vivo amyloid material. The peptide exists in an unstructured form in aqueous solution at neutral pH. The acidification of the solution provokes a collapse into a more compact, intermediate state and the transient appearance of a helical conformation that rapidly converts to a stable, mainly beta-structure in the fibrils. The transition from helical to sheet structure occurs concomitantly with peptide self-aggregation, and fibrils are detected after 72 h. The alpha-helical conformation is induced by the addition of trifluoroethanol and phospholipids. Interaction of the amyloidogenic polypeptide with phospholipids prevents the switching from helical to beta-sheet form and inhibits fibril formation. The secondary structure propensity of the apolipoprotein A-I fragment appears poised between helix and the beta-sheet. These findings reinforce the idea of a delicate balance between natively stabilizing interactions and fatally stabilizing interactions and stress the importance of cellular localization and environment in the maintenance of protein conformation.
Collapse
Affiliation(s)
- Alessia Andreola
- Department of Biochemistry and Centro Interdipartimentale di Biologia Applicata, University of Pavia, Via Taramelli 3b, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
|
284
|
Klon AE, Segrest JP, Harvey SC. Molecular dynamics simulations on discoidal HDL particles suggest a mechanism for rotation in the apo A-I belt model. J Mol Biol 2002; 324:703-21. [PMID: 12460572 DOI: 10.1016/s0022-2836(02)01143-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.
Collapse
Affiliation(s)
- Anthony E Klon
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1918 University Blvd, 552 Basic Health Sciences Bldg, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
285
|
Li HH, Lyles DS, Pan W, Alexander E, Thomas MJ, Sorci-Thomas MG. ApoA-I structure on discs and spheres. Variable helix registry and conformational states. J Biol Chem 2002; 277:39093-101. [PMID: 12167653 DOI: 10.1074/jbc.m206770200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) readily forms discoidal high density lipoprotein (HDL) particles with phospholipids serving as an ideal transporter of plasma cholesterol. In the lipid-bound conformation, apoA-I activates the enzyme lecithin:cholesterol acyltransferase stimulating the formation of cholesterol esters from free cholesterol. As esterification proceeds cholesterol esters accumulate within the hydrophobic core of the discoidal phospholipid bilayer transforming it into a spherical HDL particle. To investigate the change in apoA-I conformation as it adapts to a spherical surface, fluorescence resonance energy transfer studies were performed. Discoidal rHDL particles containing two lipid-bound apoA-I molecules were prepared with acceptor and donor fluorescent probes attached to cysteine residues located at specific positions. Fluorescence quenching was measured for probe combinations located within repeats 5 and 5 (residue 132), repeats 5 and 6 (residues 132 and 154), and repeats 6 and 6 (residue 154). Results from these experiments indicated that each of the 2 molecules of discoidal bound apoA-I exists in multiple conformations and support the concept of a "variable registry" rather than a "fixed helix-helix registry." Additionally, discoidal rHDL were transformed in vitro to core-containing particles by incubation with lecithin:cholesterol acyltransferase. Compositional analysis showed that core-containing particles contained 11% less phospholipid and 633% more cholesterol ester and a total of 3 apoA-I molecules per particle. Spherical particles showed a lowering of acceptor to donor probe quenching when compared with starting rHDL. Therefore, we conclude that as lipid-bound apoA-I adjusts from a discoidal to a spherical surface its intermolecular interactions are significantly reduced presumably to cover the increased surface area of the particle.
Collapse
Affiliation(s)
- Hui-Hua Li
- Department of Pathology, The Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
286
|
Wang G. How the lipid-free structure of the N-terminal truncated human apoA-I converts to the lipid-bound form: new insights from NMR and X-ray structural comparison. FEBS Lett 2002; 529:157-61. [PMID: 12372592 DOI: 10.1016/s0014-5793(02)03354-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray structure of the N-terminal truncated human apoA-I [Borhani et al., Proc. Natl. Acad. Sci. USA 94 (1997) 12291] and the NMR structure of intact human apoA-I [Okon et al., FEBS Lett. 517 (2002) 139] found similar repeating helices. The crystal structure is a twisted circular four-helix bundle, consisting of four molecules of apoA-I(44-243), where four copies of the lecithin:cholesterol acyltransferase (LCAT)-activating domains are located outside the ring structure, while the aromatic-rich strong lipid-binding domains are inside. This architecture suggests a lipid-binding mechanism that lipids directly enter the hole of the crystal structure. Indeed, four copies of Trp50 and Trp72 are exposed and oriented toward the center of the ring, initiating lipid binding. This is followed by the inside-out rotations of the terminal helices to make a belt with all the hydrophobic faces of the helices facing inward. Such lipid-binding induced rotations have an impact on the conformation of the lipid-free form. Indeed, the structure of residues 78-81 changes from helical (free) to disordered (bound) while the structure of residues 221-227 changes from extended to helical.
Collapse
Affiliation(s)
- Guangshun Wang
- Eppley Institute for Cancer Research, 986805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
287
|
Raussens V, Slupsky CM, Ryan RO, Sykes BD. NMR structure and dynamics of a receptor-active apolipoprotein E peptide. J Biol Chem 2002; 277:29172-80. [PMID: 12036962 DOI: 10.1074/jbc.m204043200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) is important in lipid metabolism due to its interaction with members of the low density lipoprotein (LDL) receptor family. ApoE is able to interact with the LDL receptor only when it is bound to lipid particles. To address structural aspects of this phenomenon, a receptor-active apoE peptide, encompassing the receptor-binding region of the protein, was studied by NMR in the presence of the lipid-mimicking agent trifluoroethanol. In 50% trifluoroethanol, apoE-(126-183) forms a continuous amphipathic alpha-helix over residues Thr(130)-Glu(179). Detailed NMR relaxation analysis indicates a high degree of plasticity for the residues surrounding 149-159. This intrinsic flexibility imposes a curvature to the peptide that may be important in terms of interaction of apoE with various sized lipid particles and the LDL receptor. Residues 165-179 of apoE may act as a molecular switch whereby these residues are unstructured in the absence of lipids and prevent interaction with the LDL receptor. In the presence of lipids, these residues become helical resulting in a receptor-active conformation of the protein. Furthermore, the electrostatic characteristics and geometric features of apoE-(126-183) suggest that apoE binds to the LDL receptor by interacting with more than one of the receptor ligand-binding repeats.
Collapse
Affiliation(s)
- Vincent Raussens
- Protein Engineering Network Centres of Excellence, 713 Heritage Medical Research Center, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
288
|
Sahoo D, Weers PMM, Ryan RO, Narayanaswami V. Lipid-triggered conformational switch of apolipophorin III helix bundle to an extended helix organization. J Mol Biol 2002; 321:201-14. [PMID: 12144779 DOI: 10.1016/s0022-2836(02)00618-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Apolipophorin III (ApoLp-III) from the Sphinx moth, Manduca sexta, is an 18kDa protein that binds reversibly to hydrophobic surfaces generated on metabolizing lipoprotein particles. It is comprised of amphipathic alpha-helices (H1-H5) organized in an up-and-down topology forming a helix bundle in the lipid-free state. Upon interaction with lipids, apoLp-III has been proposed to undergo a dramatic conformational change, involving helix bundle opening about putative hinge loops such that H1, H2 and H5 move away from H3 and H4. In the present study, we examine the relative spatial disposition of H1 and H5 on discoidal phospholipid complexes and spherical lipoproteins. Cysteine residues were engineered at position 8 in H1 and/or at position 138 in H5 in apoLp-III (which otherwise lacks Cys) yielding A8C-, A138C- and A8C/A138C-apoLp-III. Tethering of H1 and H5 by a disulfide bond between A8C and A138C abolished the ability of apoLp-III to transform phospholipid vesicles to discoidal particles, or to interact with lipoproteins, demonstrating that these helices are required to reposition during lipid interaction. Site-specific labeling of A8C/A138C-apoLp-III with N-(1-pyrene)maleimide in the lipid-free state resulted in intramolecular pyrene "excimer" fluorescence emission indicative of spatial proximity between these sites. Upon association with dimyristoylphosphatidylcholine (DMPC) discoidal complexes, the intramolecular excimer was replaced by intermolecular excimer fluorescence due to proximity between pyrene moieties on A8C and A138C in neighboring apoLp-III molecules on the discoidal particle. No excimer emission was observed in the case of pyrene-A8C-apoLp-III/DMPC or pyrene-A138C-apoLp-III/DMPC complexes. However, equimolar mixing of the two labeled single-cysteine mutants prior to disc formation resulted in excimer emission. In addition, intramolecular pyrene excimer formation was diminished upon binding of pyrene-A8C/A138C-apoLp-III to spherical lipoproteins. The data are consistent with repositioning of H1 away from H5 upon encountering a lipid surface, resulting in an extended conformation of apoLp-III that circumscribes the discoidal bilayer particle.
Collapse
Affiliation(s)
- Daisy Sahoo
- Department of Biochemistry, University of Alberta, Edmonton, Alta, Canada
| | | | | | | |
Collapse
|
289
|
Cushley RJ, Okon M. NMR studies of lipoprotein structure. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:177-206. [PMID: 11988467 DOI: 10.1146/annurev.biophys.31.101101.140910] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early NMR structural studies of serum lipoproteins were based on (1)H, (13)C, (31)P, and (2)H studies of lipid components. From the early studies information on composition, lipid chain dynamics and order parameters, and monolayer organization resulted. More recently, selective or complete isotopic labeling techniques, combined with multidimensional NMR spectroscopy, have resulted in structural information of apoprotein fragments. Finally, use of heteronuclear three- and four-dimensional experiments have yielded solution structures and protein-lipid interactions of intact apolipoproteins C-I, C-II, and A-I.
Collapse
Affiliation(s)
- Robert J Cushley
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada.
| | | |
Collapse
|
290
|
Liu T, Krieger M, Kan HY, Zannis VI. The effects of mutations in helices 4 and 6 of ApoA-I on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR-BI is required for efficient lipid transport. J Biol Chem 2002; 277:21576-84. [PMID: 11882653 DOI: 10.1074/jbc.m112103200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.
Collapse
Affiliation(s)
- Tong Liu
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine and Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
291
|
Okon M, Frank PG, Marcel YL, Cushley RJ. Heteronuclear NMR studies of human serum apolipoprotein A-I. Part I. Secondary structure in lipid-mimetic solution. FEBS Lett 2002; 517:139-43. [PMID: 12062424 DOI: 10.1016/s0014-5793(02)02600-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The apolipoprotein A-I (apoA-I) solution structure in the presence of sodium dodecyl sulfate (SDS) was determined by combination of chemical shift index and torsion angle likelihood obtained from shift and sequence similarity methods. ApoA-I in lipid-mimetic solution is composed of alpha-helices (residues 8-32, 45-64, 67-77, 82-86, 90-97, 100-118, 122-140, 146-162, 167-205, 210-216 and 221-239), with 2-5 residue irregular segments between helical repeats, and the irregular segment 78-81 within helical repeat 2. ApoA-I is a monomer in the SDS complex and no evidence of interhelical interactions is found. Comparison of the apoA-I and apoA-I(1-186) [Okon et al., FEBS Lett. 487 (2001) 390-396] solution structures revealed that apoA-I undergoes a conformational change around Pro121.
Collapse
Affiliation(s)
- Mark Okon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | |
Collapse
|
292
|
Abstract
The cytoplasmic face of cell contact sites comprises large macromolecular assemblies that link transmembrane cell adhesion molecules to the cytoskeleton. These assemblies are dynamic structures that are the targets of regulatory signals that control cell adhesiveness. Recent studies of the biochemistry and structure of the cadherin-catenin complex, vinculin and proteins of the ezrin/radixin/moesin family have begun to reveal the architecture of these assemblies and the mechanisms that are involved in their regulation.
Collapse
Affiliation(s)
- Sabine Pokutta
- Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive West, Stanford, California 94305, USA
| | | |
Collapse
|
293
|
Reschly EJ, Sorci-Thomas MG, Davidson WS, Meredith SC, Reardon CA, Getz GS. Apolipoprotein A-I alpha -helices 7 and 8 modulate high density lipoprotein subclass distribution. J Biol Chem 2002; 277:9645-54. [PMID: 11744719 DOI: 10.1074/jbc.m107883200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice have a monodisperse high density lipoprotein (HDL) profile, whereas humans have two major subfractions designated HDL(2) and HDL(3). Human apoA-I transgenic mice exhibit a human-like HDL profile, indicating that the amino acid sequence of apoA-I is a determinant of the HDL profile. Comparison of the primary sequence of mouse and human apoA-I and the previously designated "hinge" domain of apoA-I led us to hypothesize that alpha-helices 7 and 8 (7/8) are determinants of HDL subclass distribution. The following proteins were expressed in Escherichia coli: human apoA-I, T7-hAI; mouse apoA-I, T7-mAI; chimeric human apoA-I containing murine helices 7/8 in place of human helices 7/8, T7-hAI(m7/8); and the reciprocal chimera, T7-mAI(h7/8). The recombinant proteins were examined for their association with human plasma HDL subclasses. The results demonstrated that T7-hAI bound HDL(2) and HDL(3) equally well, whereas T7-mAI bound to HDL(2) preferentially. T7-hAI(m7/8) behaved like T7-mAI, and T7-mAI(h7/8) behaved like T7-hAI. Thus, alpha-helices 7/8 are strong contributors to the pattern of HDL subclass association. Self-association, alpha-helicity, cholesterol efflux, and lecithin-cholesterol acyltransferase activity of the recombinant proteins were also assessed. Human apoA-I self-associates more and activates human lecithin-cholesterol acyltransferase better than mouse apoA-I. These differential characteristics of human and mouse apoA-I are not dependent on helices 7/8.
Collapse
Affiliation(s)
- Erica J Reschly
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
294
|
Eberini I, Calabresi L, Wait R, Tedeschi G, Pirillo A, Puglisi L, Sirtori CR, Gianazza E. Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochem J 2002; 362:627-34. [PMID: 11879189 PMCID: PMC1222426 DOI: 10.1042/0264-6021:3620627] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atheromatous plaques contain various cell types, including macrophages, endothelial cells and smooth-muscle cells. To investigate the possible interactions between secreted matrix metalloproteinases and high-density lipoprotein (HDL) components, we tested the above cell types by culturing them for 24 h. HDL(3) (HDL subfractions with average sizes of between 8.44 nm for HDL(3A) and 7.62 nm for HDL(3C)) were then incubated in their cell-free conditioned media. Proteolytic degradation of apolipoprotein A-I was observed with macrophages, but not with endothelial-cell- or muscle-cell-conditioned supernatant. Absence of calcium or addition of EDTA to incubation media prevented all proteolytic processes. The identified apolipoprotein A-I fragments had sizes of 26, 22, 14 and 9 kDa. Two-dimensional electrophoresis and MS resolved the 26 and the 22 kDa components and identified peptides resulting from both N- and C-terminal cleavage of apolipoprotein A-I. The higher abundance of C- than N-terminally cleaved peptides agrees with data in the literature for a fully structured alpha-helix around Tyr(18) compared with an unstructured region around Gly(185) and Gly(186). The flexibility in the latter region of apolipoprotein A-I may explain its susceptibility to proteolysis. In our experimental set-up, HDL(3C) was more extensively degraded than the other HDL(3) subclasses (HDL(3A) and HDL(3B)). Proteolytic fragments produced by metalloproteinase action were shown by gel filtration and electrophoresis to be neither associated with lipids nor self-associated.
Collapse
Affiliation(s)
- Ivano Eberini
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, via G. Balzaretti, 9, I-20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
295
|
Behling Agree AK, Tricerri MA, Arnvig McGuire K, Tian SM, Jonas A. Folding and stability of the C-terminal half of apolipoprotein A-I examined with a Cys-specific fluorescence probe. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:286-96. [PMID: 11904224 DOI: 10.1016/s0167-4838(01)00317-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apolipoprotein A-I (apoA-I) has important physiologic roles in reverse cholesterol transport, as a component of HDL; however, apoA-I also exists in lipid-poor or lipid-free forms that are key intermediates in HDL metabolism and acceptors of lipids from cells. The aim of this study was to examine the structure and stability of the central and C-terminal regions of lipid-free apoA-I. To this end, five Cys mutants of proapoA-I were constructed and expressed in Escherichia coli: V119C, A124C, A154C, A190C, and A232C. These mutants were specifically labeled with 6-acryloyl-2-dimethylaminonaphthalene (acrylodan, AC) and were examined by CD spectroscopy and a variety of fluorescence methods. The results showed that the introduction of Cys residues and their covalent labeling with AC did not affect the overall structure and stability of apoA-I. However, AC fluorescence properties revealed that different segments of the central and C-terminal half of apoA-I have distinct folding and stability properties. From fluorescence energy transfer data, average distances between the N-terminal region containing Trp residues and the various AC locations were obtained. The current results, together with previously published observations, led to the construction of a three-dimensional model for the folding of lipid-free apoA-I.
Collapse
Affiliation(s)
- Andrea K Behling Agree
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, University of Illinois, 506 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
296
|
Wang J, Sykes BD, Ryan RO. Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc Natl Acad Sci U S A 2002; 99:1188-93. [PMID: 11818551 PMCID: PMC122165 DOI: 10.1073/pnas.032565999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Indexed: 11/18/2022] Open
Abstract
The high-resolution NMR structure of apolipophorin III from the sphinx moth, Manduca sexta, has been determined in the lipid-free state. We show that lipid-free apolipophorin III adopts a unique helix-bundle topology that has several characteristic structural features. These include a marginally stable, up-and-down helix bundle that allows for concerted opening of the bundle about "hinged" loops upon lipid interaction and buried polar/ionizable residues and buried interhelical H-bonds located in the otherwise hydrophobic interior of the bundle that adjust protein stability and facilitate lipid-induced conformational opening. We suggest that these structural features modulate the conformational adaptability of the lipid-free helix bundle upon lipid binding and control return of the open conformation to the original lipid-free helix-bundle state. Taken together, these data provide a structural rationale for the ability of exchangeable apolipoproteins to reversibly interact with circulating lipoprotein particles.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-4413, USA.
| | | | | |
Collapse
|
297
|
Scott BR, McManus DC, Franklin V, McKenzie AG, Neville T, Sparks DL, Marcel YL. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo. J Biol Chem 2001; 276:48716-24. [PMID: 11602583 DOI: 10.1074/jbc.m106265200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of the N terminus of apolipoprotein A-I (apoA-I) in the maturation of high density lipoproteins (HDL), two N-terminal mutants with deletions of residues 1-43 and 1-65 (referred to as Delta 1-43 and Delta 1-65 apoA-I) were studied. In vitro, these deletions had little effect on cellular cholesterol efflux from macrophages but LCAT activation was reduced by 50 and 70% for the Delta 1-43 and Delta 1-65 apoA-I mutants, respectively, relative to wild-type (Wt) apoA-I. To further define the role of the N terminus of apoA-I in HDL maturation, we constructed recombinant adenoviruses containing Wt apoA-I and two similar mutants with deletions of residues 7-43 and 7-65 (referred to as Delta 7-43 and Delta 7-65 apoA-I, respectively). Residues 1-6 were not removed in these mutants to allow proper cleavage of the pro-sequence in vivo. Following injection of these adenoviruses into apoA-I-deficient mice, plasma concentrations of both Delta 7-43 and Delta 7-65 apoA-I were reduced 4-fold relative to Wt apoA-I. The N-terminal deletion mutants, in particular Delta 7-65 apoA-I, were associated with greater proportions of pre beta-HDL and accumulated fewer HDL cholesteryl esters relative to Wt apoA-I. Wt and Delta 7-43 apoA-I formed predominantly alpha-migrating and spherical HDL, whereas Delta 7-65 apoA-I formed only pre beta-HDL of discoidal morphology. This demonstrates that deletion of the first class A amphipathic alpha-helix has a profound additive effect in vivo over the deletion of the globular domain alone (amino acids 1-43) indicating its important role in the production of mature alpha-migrating HDL. In summary, the combined in vitro and in vivo studies demonstrate a role for the N terminus of apoA-I in lecithin:cholesterol acyltransferase activation and the requirement of the first class A amphipathic alpha-helix for the maturation of HDL in vivo.
Collapse
Affiliation(s)
- B R Scott
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
298
|
Panagotopulos SE, Horace EM, Maiorano JN, Davidson WS. Apolipoprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins. J Biol Chem 2001; 276:42965-70. [PMID: 11557764 DOI: 10.1074/jbc.m106462200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein associated with high density lipoprotein (HDL), and its plasma levels have been correlated with protection against atherosclerosis. Unfortunately, the structural basis of this phenomenon is not fully understood. Over 25 years of study have produced two general models of apoA-I structure in discoidal HDL complexes. The "belt" model states that the amphipathic helices of apoA-I are aligned perpendicular to the acyl chains of the lipid bilayer, whereas the "picket fence" model argues that the helices are aligned parallel with the acyl chains. To distinguish between the two models, various single tryptophan mutants of apoA-I were analyzed in reconstituted, discoidal HDL particles composed of phospholipids containing nitroxide spin labels at various positions along the acyl chain. We have previously used this technique to show that the orientation of helix 4 of apoA-I is most consistent with the belt model. In this study, we performed additional control experiments on helix 4, and we extended the results by performing the same analysis on the remaining 22-mer helices (helices 1, 2, 5, 6, 7, 8, and 10) of human apoA-I. For each helix, two different mutants were produced that each contained a probe Trp occurring two helical turns apart. In the belt model, the two Trp residues in each helix should exhibit maximal quenching at the same nitroxide group position on the lipid acyl chains. For the picket fence model, maximal quenching should occur at two different levels in the bilayer. The results show that the majority of the helices are in an orientation that is consistent with a belt model, because most Trp residues localized to a position about 5 A from the center of the bilayer. This study corroborates a belt hypothesis for the majority of the helices of apoA-I in phospholipid discs.
Collapse
Affiliation(s)
- S E Panagotopulos
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | | | |
Collapse
|
299
|
Sigalov AB, Stern LJ. Oxidation of methionine residues affects the structure and stability of apolipoprotein A-I in reconstituted high density lipoprotein particles. Chem Phys Lipids 2001; 113:133-46. [PMID: 11687233 DOI: 10.1016/s0009-3084(01)00186-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To determine the effect of oxidative damage to lipid-bound apolipoprotein A-I (apo A-I) on its structure and stability that might be related to previously observed functional disorders of oxidized apo A-I in high density lipoproteins (HDL), we prepared homogeneous reconstituted HDL (rHDL) particles containing unoxidized apo A-I and its commonly occurring oxidized form (Met-112, 148 bis-sulfoxide). The size of the obtained discoidal rHDL particles ranged from 9.0 to 10.0 nm and did not depend upon the content of the oxidized protein. Using circular dichroism methods, no change in the secondary structure of lipid-bound oxidized apo A-I was found. Isothermal and thermal denaturation experiments showed a significant destabilization of the oxidized protein to denaturation by guanidine hydrochloride or heat. This effect was observed with and without co-reconstituted apolipoprotein A-II. Limited tryptic digestion indicated that the central region of oxidatively damaged apo A-I becomes exposed to proteolysis in the rHDL particles. Implications of these data for apolipoprotein function are discussed.
Collapse
Affiliation(s)
- A B Sigalov
- Biomedical Department, AMW Biomed, 22-1-11 Tarusskaya Street, Moscow 117588, Russia.
| | | |
Collapse
|
300
|
Dergunov AD, Dobretsov GE, Visvikis S, Siest G. Protein-lipid interactions in reconstituted high density lipoproteins: apolipoprotein and cholesterol influence. Chem Phys Lipids 2001; 113:67-82. [PMID: 11687228 DOI: 10.1016/s0009-3084(01)00176-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two fluorescent probes-cis- and trans-parinaric acids were used to study the dimensions, lipid dynamics and apolipoprotein location in the reconstituted discoidal high density lipoproteins (rHDL). The rHDL particles made from apolipoprotein A-I (apoA-I), dipalmitoylphosphatidylcholine (DPPC), with or without cholesterol (Chol) were compared with the analogous particles with two other apolipoproteins-apoE and apoA-II. The data obtained for apoA-I-containing rHDL were as follows: (1) the inclusion of 8 mol.% of cholesterol did not significantly change the particle dimensions (13+/-1 nm) or the mean distance between apoA-I and the disc axis; (2) the phospholipid domains-boundary lipid region in the close vicinity to apoA-I molecule and the remaining part of the bilayer-existed at temperatures both lower and above DPPC transition temperature T(t); (3) at T<T(t) Chol molecules preferentially accumulated in the central area with a radius of 2.8 nm that conserved partially after DPPC phase transition; (4) inhomogeneous cholesterol distribution was assumed to exist within these domains. A hydrophobic matching concept was used to compare protein-lipid interactions in rHDL particles. For complexes with all three apolipoproteins studied, at T<T(t) the probe mobility in the lipid phase of rHDL was significantly higher compared to pure DPPC bilayer. After temperature-induced transition, mobility increased significantly still being lower in rHDL. The comparative study of lipid dynamics in apoA-I-, apoE- and apoA-II-containing complexes revealed the presence of boundary lipid in all three complexes without cholesterol. The degree of cholesterol exclusion from the boundary lipid region seems to increase in the order A-I<E<A-II for Chol-containing complexes, the exclusion being an inherent property of the particular apolipoprotein molecule.
Collapse
Affiliation(s)
- A D Dergunov
- National Research Centre for Preventive Medicine, 10, Petroverigsky Street, 101953 Moscow, Russia.
| | | | | | | |
Collapse
|