251
|
Takaki S, Watts JD, Forbush KA, Nguyen NT, Hayashi J, Alberola-Ila J, Aebersold R, Perlmutter RM. Characterization of Lnk. An adaptor protein expressed in lymphocytes. J Biol Chem 1997; 272:14562-70. [PMID: 9169414 DOI: 10.1074/jbc.272.23.14562] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of the T cell antigen receptor (TCR) activates a set of non-receptor protein tyrosine kinases that assist in delivering signals to the cell interior. Among the presumed substrates for these kinases, adaptor proteins, which juxtapose effector enzyme systems with the antigen receptor complex, figure prominently. Previous studies suggested that Lnk, a 38-kDa protein consisting of a single SH2 domain and a region containing potential tyrosine phosphorylation sites, might serve to join Grb2, phospholipase C-gamma1, and phosphatidylinositol 3-kinase to the TCR. To elucidate the physiological roles of Lnk in T cell signal transduction, we isolated the mouse Lnk cDNA, characterized the structure of the mouse Lnk gene, and generated transgenic mice that overproduce Lnk in thymocytes. Here we report that although Lnk becomes phosphorylated during T cell activation, it plays no limiting role in the TCR signaling process. Moreover, we have distinguished p38(Lnk) from the more prominent 36-kDa tyrosine phosphoproteins that appear in activated T cells. Together these studies suggest that Lnk participates in signaling from receptors other than antigen receptors in lymphocytes.
Collapse
Affiliation(s)
- S Takaki
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Schraven B, Marie-Cardine A, Koretzky G. Molecular analysis of the fyn-complex: cloning of SKAP55 and SLAP-130, two novel adaptor proteins which associate with fyn and may participate in the regulation of T cell receptor-mediated signaling. Immunol Lett 1997; 57:165-9. [PMID: 9232446 DOI: 10.1016/s0165-2478(97)00053-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B Schraven
- Institute for Immunology, Ruprechts-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
253
|
Musci MA, Latinis KM, Koretzky GA. Signaling events in T lymphocytes leading to cellular activation or programmed cell death. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1997; 83:205-22. [PMID: 9175909 DOI: 10.1006/clin.1996.4315] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M A Musci
- Interdisciplinary Graduate Program in Immunology and Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
254
|
Musci MA, Hendricks-Taylor LR, Motto DG, Paskind M, Kamens J, Turck CW, Koretzky GA. Molecular cloning of SLAP-130, an SLP-76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J Biol Chem 1997; 272:11674-7. [PMID: 9115214 DOI: 10.1074/jbc.272.18.11674] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous work has demonstrated that SLP-76, a Grb2-associated tyrosine-phosphorylated protein, augments Interleukin-2 promoter activity when overexpressed in the Jurkat T cell line. This activity requires regions of SLP-76 that mediate protein-protein interactions with other molecules in T cells, suggesting that SLP-76-associated proteins also function to regulate signal transduction. Here we describe the molecular cloning of SLAP-130, a SLP-76-associated phosphoprotein of 130 kDa. We demonstrate that SLAP-130 is hematopoietic cell-specific and associates with the SH2 domain of SLP-76. Additionally, we show that SLAP-130 is a substrate of the T cell antigen receptor-induced protein tyrosine kinases. Interestingly, we find that in contrast to SLP-76, overexpression of SLAP-130 diminishes T cell antigen receptor-induced activation of the interleukin-2 promoter in Jurkat T cells and interferes with the augmentation of interleukin-2 promoter activity seen when SLP-76 is overexpressed in these cells. These data suggest that SLP-76 recruits a negative regulator, SLAP-130, as well as positive regulators of signal transduction in T cells.
Collapse
Affiliation(s)
- M A Musci
- Graduate Program in Immunology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
Abstract
The T cell antigen receptor (TCR) initiates signal transduction by activating multiple cytoplasmic protein tyrosine kinases (PTKs). Considerable progress in the field of TCR signal transduction has been made in three areas recently: first, in understanding the structure and function of the PTK ZAP-70; second, in the elucidation of the function of the substrates and pathways downstream of the PTKs; and third, in the identification of molecules that negatively regulate TCR signalling.
Collapse
Affiliation(s)
- D Qian
- Howard Hughes Medical Institute, Department of Medicine, U426, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
256
|
Jensen WA, Pleiman CM, Beaufils P, Wegener AM, Malissen B, Cambier JC. Qualitatively distinct signaling through T cell antigen receptor subunits. Eur J Immunol 1997; 27:707-16. [PMID: 9079813 DOI: 10.1002/eji.1830270320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell antigen receptors (TCR) contain several subunits including CD3gamma, delta, and epsilon, and TCRzeta and eta which are capable of mediating signal transduction. It is unclear whether the signaling function of these subunits is completely redundant. To assess the relative signaling capabilities of TCR subunits, we compared proximal events in signal transduction by wild-type TCR complexes and TCR devoid of functional zeta subunits, as well as chimeric receptors containing the cytoplasmic domains of TCRzeta or CD3epsilon. Results demonstrate that in BW5147 wild-type TCR, tail-less zeta TCR, CD3epsilon, and TCRzeta transduce signals leading to tyrosine phosphorylation of similar sets of cellular substrates, including the receptor subunits, Fyn, ZAP-70, and phospholipase Cgamma1 (PLCgamma1). Surprisingly, unlike wild-type TCR, tail-less zeta TCR, and CD3epsilon, TCRzeta was incapable of transducing signals resulting in inositol triphosphate (IP3) generation or intracellular free calcium ([Ca2+]i) mobilization. These data indicate that tyrosine phosphorylation of PLCgamma1 is not sufficient to drive IP3 production and [Ca2+]i mobilization. Most importantly, data presented indicate that TCRzeta and CD3epsilon engage partially distinct signaling pathways.
Collapse
Affiliation(s)
- W A Jensen
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
257
|
Raab M, da Silva AJ, Findell PR, Rudd CE. Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCR zeta/CD3 induction of interleukin-2. Immunity 1997; 6:155-64. [PMID: 9047237 DOI: 10.1016/s1074-7613(00)80422-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
T cell activation stimulates p56(lck), p59(fyn), ZAP-70, Vav-SLP-76 binding, and IL-2 transcription. Major questions concern the tyrosine-kinase and relevant site(s) needed for Vav-SLP-76 complex formation and its role in IL-2 production. Here, we show that of the three kinases, only ZAP-70 phosphorylates SLP-76 at specific sites that allow Vav SH2 domain binding. Therefore, while p56(lck) regulates proximal events, ZAP-70 acts downstream on targets such as SLP-76. We also show by in vitro and in vivo analysis that two SLP-76 pYESP motifs (Y113 and Y128) mediate binding, the first being more efficient. A third pYEPP motif (Y145) failed to bind. Finally, TCR zeta CD3 ligation of T cell hybridoma DC27.10 induces IL-2 production without detectable Vav-SLP-76 binding. Therefore, despite effects of Vav-SLP-76 on IL-2 expression, Vav-SLP-76 binding per se is not essential for IL-2 production in all T cells.
Collapse
Affiliation(s)
- M Raab
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
258
|
Trüb T, Frantz JD, Miyazaki M, Band H, Shoelson SE. The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J Biol Chem 1997; 272:894-902. [PMID: 8995379 DOI: 10.1074/jbc.272.2.894] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.
Collapse
Affiliation(s)
- T Trüb
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
259
|
Hendricks-Taylor LR, Motto DG, Zhang J, Siraganian RP, Koretzky GA. SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells. J Biol Chem 1997; 272:1363-7. [PMID: 8995445 DOI: 10.1074/jbc.272.2.1363] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stimulation of the IgE high affinity receptor on rat basophilic leukemia RBL-2H3 cells results in activation of protein tyrosine kinases and rapid tyrosine phosphorylation of several substrates, many of which remain unidentified. In this report, we demonstrate that the Grb2 adapter protein, when expressed as a glutathione S-transferase fusion protein, associates with four tyrosine-phosphorylated molecules (116, 76, 36, and 31 kDa) from lysates of stimulated RBL-2H3 cells. We show further that the 76-kDa protein is SLP-76, a hematopoietic cell-specific protein first identified as a Grb2-binding protein in T cells. Upon stimulation of the high affinity receptor for IgE, SLP-76 undergoes rapid tyrosine phosphorylation and associates with two additional tyrosine phosphoproteins of 62 and 130 kDa via the SH2 domain of SLP-76. Additional studies demonstrate that the SLP-76 SH2 domain also binds a protein kinase from stimulated RBL-2H3 cell lysates. Furthermore, the phosphorylation of SLP-76 requires Syk activity but is not dependent on Ca+2 mobilization. These data, together with our previous work documenting its role in T-cell activation, suggest that SLP-76 and the proteins with which it associates may play a fundamental role in coupling signaling events in multiple cell types in the immune system.
Collapse
Affiliation(s)
- L R Hendricks-Taylor
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52246, USA
| | | | | | | | | |
Collapse
|
260
|
Alberola-Ila J, Takaki S, Kerner JD, Perlmutter RM. Differential signaling by lymphocyte antigen receptors. Annu Rev Immunol 1997; 15:125-54. [PMID: 9143684 DOI: 10.1146/annurev.immunol.15.1.125] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies performed during the past several years make plain that ligand occupancy of antigen receptors need not necessarily provoke identical responses in all instances. For example, ligation of antigen receptors may stimulate a proliferative response, induce a state of unresponsiveness to subsequent stimulation (anergy), or induce apoptosis. How does a single type of transmembrane receptor induce these very heterogeneous cellular responses? In the following pages, we outline evidence supporting the view that the nature of the ligand/receptor interaction directs the physical recruitment of signaling pathways differentially inside the lymphocyte and hence defines the nature of the subsequent immune response. We begin by providing a functional categorization of antigen receptor components, considering the ways in which these components interact with the known set of signal transduction pathways, and then review the evidence suggesting that differential signaling through the TCR is achieved by qualitative differences in the effector pathways recruited by TCR, perhaps reflecting the time required to bring complicated signal transduction elements into proximity within the cell. The time-constant of the interaction between antigen and receptor in this way determines, at least in part, the nature of the resulting response. Finally, although our review focuses substantially on T cell receptor signaling, we have included a less detailed description of B cell receptor signaling as well, simply to emphasize the parallels that exist in these two closely related systems.
Collapse
Affiliation(s)
- J Alberola-Ila
- Department of Immunology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
261
|
Schultz J, Ponting CP, Hofmann K, Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci 1997; 6:249-53. [PMID: 9007998 PMCID: PMC2143507 DOI: 10.1002/pro.5560060128] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
More than 60 previously undetected SAM domain-containing proteins have been identified using profile searching methods. Among these are over 40 EPH-related receptor tyrosine kinases (RPTK), Drosophila bicaudal-C, a p53 from Loligo forbesi, and diacyglycerol-kinase isoform delta. This extended dataset suggests that SAM is an evolutionary conserved protein binding domain that is involved in the regulation of numerous developmental processes among diverse eukaryotes. A conserved tyrosine in the SAM sequences of the EPH related RPTKs is likely to mediate cell-cell initiated signal transduction via the binding of SH2 containing proteins to phosphotyrosine.
Collapse
|
262
|
Su J, Yang LT, Sap J. Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences. J Biol Chem 1996; 271:28086-96. [PMID: 8910422 DOI: 10.1074/jbc.271.45.28086] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Receptor protein-tyrosine phosphatase RPTPalpha is found associated in vivo with the adaptor protein Grb2. Formation of this complex, which contains no detectable levels of Sos, is known to depend on a C-terminal phosphorylated tyrosine residue (Tyr798) in RPTPalpha and on the Src homology (SH) 2 domain in Grb2 (, ). We show here that association of Grb2 with RPTPalpha also involves a critical function for the C-terminal SH3 domain of Grb2. Furthermore, Grb2 SH3 binding peptides interfere with RPTPalpha-Grb2 association in vitro, and the RPTPalpha protein can dissociate the Grb2-Sos complex in vivo. These observations constitute a novel mode of Grb2 association and suggest a model in which association with a tyrosine-phosphorylated protein restricts the repertoire of SH3 binding proteins with which Grb2 can simultaneously interact. The function of the Tyr798 tyrosine phosphorylation/Grb2 binding site in RPTPalpha was studied further by expression of wild type or mutant RPTPalpha proteins in PC12 cells. In these cells, wild type RPTPalpha interferes with acidic fibroblast growth factor-induced neurite outgrowth; this effect requires both the catalytic activity and the Grb2 binding Tyr798 residue in RPTPalpha. In contrast, expression of catalytically active RPTPalpha containing a mutated tyrosine phosphorylation/Grb2 association site enhances neurite outgrowth. Our observations associate a functional effect with tyrosine phosphorylation of, and ensuing association of signaling proteins with, a receptor protein-tyrosine phosphatase and raise the possibility that RPTPalpha association may modulate Grb2 function and vice versa.
Collapse
Affiliation(s)
- J Su
- Department of Pharmacology and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, New York 10016, USA.
| | | | | |
Collapse
|
263
|
Donovan JA, Ota Y, Langdon WY, Samelson LE. Regulation of the association of p120cbl with Grb2 in Jurkat T cells. J Biol Chem 1996; 271:26369-74. [PMID: 8824292 DOI: 10.1074/jbc.271.42.26369] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The c-cbl protooncogene product (p120(cbl)) is a known substrate of multiple tyrosine kinases. It is found in complexes with critical signal transduction molecules, including the linker protein Grb2. Here, we demonstrate using an immobilized Grb2-binding peptide that the Grb2-p120(cbl) complex dissociates in vivo following engagement of the T-cell antigen receptor in Jurkat T-cells. The early kinetics of this dissociation correlate with the known time course of tyrosine phosphorylation of p120(cbl) and other substrates. This dissociation persists in vivo even when p120(cbl) becomes dephosphorylated to basal levels. However, this decreased association is not observed in protein overlay assays on nitrocellulose membranes in which a Grb2 fusion protein is used to detect p120(cbl) from stimulated or unstimulated cells. These data suggest that the tyrosine phosphorylation of p120(cbl) does not completely account for the regulation of its association with Grb2. Additionally, we used truncation mutations of p120(cbl) to map the p120(cbl)-Grb2 interaction to amino acids 481-528 of p120(cbl); this interaction is stronger in longer constructs that include additional proline-rich motifs. The in vivo regulation of the Grb2-p120(cbl) complex further supports the idea of a significant role for p120(cbl) in receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- J A Donovan
- CBMB/NICHD, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | |
Collapse
|
264
|
Onodera H, Motto DG, Koretzky GA, Rothstein DM. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J Biol Chem 1996; 271:22225-30. [PMID: 8703037 DOI: 10.1074/jbc.271.36.22225] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The CD45 family of transmembrane protein-tyrosine phosphatases plays a critical role in T cell activation signaling by regulating the tyrosine phosphorylation of protein-tyrosine kinases and their substrates. Multiple alternatively spliced CD45 isoforms, differing only in their extracellular domains, are differentially expressed by subsets of T cells with distinct functional repertoires. However, the physiological function of the various isoforms remains elusive. Using a novel panel of Jurkat T cell clones that uniquely express either the smallest (CD45(0)) or the largest (CD45(ABC)) isoform, we previously demonstrated CD45 isoform-specific differences in interleukin-2 secretion and tyrosine phosphorylation of Vav. We now demonstrate differential activation-induced tyrosine phosphorylation of a 76-kDa Vav-associated protein (pp76) by cells expressing distinct CD45 isoforms. The tyrosine phosphorylation of Vav and associated pp76 follow parallel kinetics. pp76 interacts with the SH2 and SH3 domains of Vav. We have identified pp76 as SLP-76, a recently cloned Grb2-binding protein. After activation with anti-CD3, CD45(ABC) transfectants demonstrate increased tyrosine phosphorylation and physical association of SLP-76 with Vav compared to transfectants expressing CD45(0). These results establish a novel physical link between Vav and SLP-76 that is differentially regulated by CD45 isoform expression.
Collapse
Affiliation(s)
- H Onodera
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029, USA
| | | | | | | |
Collapse
|
265
|
Affiliation(s)
- R L Wange
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
266
|
Abstract
CD28 and the related molecule cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), together with their natural ligands B7.1 and B7.2, have been implicated in the differential regulation of several immune responses. CD28 provides signals during T cell activation which are required for the production of interleukin 2 and other cytokines and chemokines, and it has also been implicated in the regulation of T cell anergy and programmed T cell death. The biochemical signals provided by CD28 are cyclosporin A-resistant and complement those provided by the T cell antigen receptor to allow full activation of T cells. Multiple signalling cascades which may be independent of, or dependent on, protein tyrosine kinase activation have been demonstrated to be activated by CD28, including activation of phospholipase C, p21ran, phosphoinositide 3-kinase, sphingomyelinase/ceramide and 5-lipoxygenase. The relative contributions of these cascades to overall CD28 signalling are still unknown, but probably depend on the state of activation of the T cell and the level of CD28 activation. The importance of these signalling cascades (in particular the phosphoinositide 3-kinase-mediated cascade) to functional indications of CD28 activation, such as interleukin 2 gene regulation, has been investigated using pharmacological and genetic manipulations. These approaches have demonstrated that CD28-activated signalling cascades regulate several transcription factors involved in interleukin 2 transcriptional activation. This review describes in detail the structure and expression of the CD28 and B7 families, the functional outcomes of CD28 ligation and the signalling events that are thought to mediate these functions.
Collapse
Affiliation(s)
- S G Ward
- Department of Pharmacology, School of Pharmacy and Pharmacology, University of Bath, U.K
| |
Collapse
|
267
|
Tuosto L, Michel F, Acuto O. p95vav associates with tyrosine-phosphorylated SLP-76 in antigen-stimulated T cells. J Exp Med 1996; 184:1161-6. [PMID: 9064333 PMCID: PMC2192766 DOI: 10.1084/jem.184.3.1161] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
p95vav, the product of the vav protooncogene, has been implicated in the T cell receptor (TCR)-mediated signaling cascade p95vav is phosphorylated on tyrosine residues after TCR stimulation by anti-TCR/CD3 antibodies and possesses a number of landmark features of signaling molecules such as a putative guanine nucleotide exchange factor domain, a pleckstrin homology domain, and an Sre homology (SH) 2 and two SH3 domains, which provide the capacity to form multimeric signaling complexes. However, the precise role of p95vav in TCR signaling remains unclear. In this work we show that physiological stimulation of T cell hybridomas with antigen presented by major histocompatibility complex class II molecules leads to a strong tyrosine phosphorylation of p95vav and its association with tyrosine-phosphorylated SLP-76. SLP-76 is a newly described SH2-containing protein that has been previously found to bind to the adapter molecule Grb2. Moreover, we provide evidence that p95vav-SI P-76 association is SH2-mediated by demonstrating that this interaction can be inhibited by a phosphopeptide containing a putative p95vav-SH2-binding motif (pYESP) present in SLP-76. Furthermore, in vitro experiments show that after antigen stimulation, phosphorylated p95vav-SLP-76 can bind to Grb2 in a complex that contains pp36/38 and pp116 proteins. Our data provide a clue to explain recent independent observations that overexpression of p95vav or SLP-76 enhances TCR-mediated gene activation.
Collapse
Affiliation(s)
- L Tuosto
- Department of Immunology, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
268
|
Bubeck Wardenburg J, Fu C, Jackman JK, Flotow H, Wilkinson SE, Williams DH, Johnson R, Kong G, Chan AC, Findell PR. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J Biol Chem 1996; 271:19641-4. [PMID: 8702662 DOI: 10.1074/jbc.271.33.19641] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.
Collapse
Affiliation(s)
- J Bubeck Wardenburg
- Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Mizuno K, Katagiri T, Hasegawa K, Ogimoto M, Yakura H. Hematopoietic cell phosphatase, SHP-1, is constitutively associated with the SH2 domain-containing leukocyte protein, SLP-76, in B cells. J Exp Med 1996; 184:457-63. [PMID: 8760799 PMCID: PMC2192711 DOI: 10.1084/jem.184.2.457] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1; previously named HCP, PTP1C, SH-PTP1, and SHP) is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. Recent data have demonstrated that the gene encoding SHP-1 is mutated in motheaten (mc) and viable motheaten (mc') mice resulting in autoimmune disease. More recently, SHP-1 has been shown to negatively regulate B cell antigen receptor (BCR)-initiated signaling. To elucidate potential mechanisms of SHP-1 action in BCR signal transduction, we studied proteins that interact with SHP-1 in B cells. Both anti-SHP-1 antibody and the two SH2 domains of SHP-1 expressed as glutathione S-transferase fusion proteins precipitated at least three phosphoproteins of approximately 75, 110, and 150 kD upon anti-immunoglobulin M stimulation of the WEHI-231 immature B cell line. Binding of SHP-1 to the 75- and 110-kD proteins appeared to be mediated mainly by the NH2-terminal SH2 domain of SHP-1, whereas both the NH2- and COOH-terminal SH2 domains are required for maximal binding to the 150-kD protein. Immunoprecipitation and Western blot analysis revealed that the SHP-1-associated 75-kD protein is the hematopoietic cell-specific, SH2-containing protein SLP-76. Further, this protein-protein association was constitutively observed and stable during the early phase of BCR signaling. However, significant tyrosine phosphorylation of SLP-76 as well as of SHP-1 was observed after BCR ligation. Constitutive association of SHP-1 with SLP-76 could also be detected in normal splenic B cells. Collectively, these results suggest possible mechanisms by which SHP-1 may modulate signals delivered by BCR engagement.
Collapse
Affiliation(s)
- K Mizuno
- Department of Microbiology and Immunology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | | | | | |
Collapse
|
270
|
Motto DG, Musci MA, Ross SE, Koretzky GA. Tyrosine phosphorylation of Grb2-associated proteins correlates with phospholipase C gamma 1 activation in T cells. Mol Cell Biol 1996; 16:2823-9. [PMID: 8649391 PMCID: PMC231274 DOI: 10.1128/mcb.16.6.2823] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ligation of the T-cell antigen receptor (TCR) results in the rapid activation of several protein tyrosine kinases, with the subsequent phosphorylation of numerous cellular proteins. We investigated the requirement for tyrosine phosphorylation of proteins which bind the Grb2 SH2 domain in TCR-mediated signal transduction by transfecting the Jurkat T-cell line with a cDNA encoding a chimeric protein designed to dephosphorylate these molecules. Stimulation of the TCR on cells expressing this engineered enzyme fails to result in sustained tyrosine phosphorylation of a 36-kDa protein likely to be the recently cloned pp36/Lnk. Interestingly, TCR ligation of the transfected cells also fails to induce soluble inositol phosphate production and intracellular calcium mobilization, although receptor-mediated tyrosine phosphorylation of phospholipase C gamma 1 still occurs. TCR-mediated Ras and mitogen-activated protein kinase activation remain intact in cells expressing the engineered phosphatase. These data demonstrate that tyrosine phosphorylation of a protein(s) which binds the SH2 domain of Grb2 correlates with phospholipase C gamma 1 activation and suggest that such a phosphoprotein(s) plays a critical role in coupling the TCR with the phosphatidylinositol second-messenger pathway.
Collapse
Affiliation(s)
- D G Motto
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
271
|
Chan AC, Shaw AS. Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr Opin Immunol 1996; 8:394-401. [PMID: 8794001 DOI: 10.1016/s0952-7915(96)80130-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The past two years have seen further clarification of the early events occurring in antigen receptor signal transduction that are mediated by the immunoreceptor tyrosine-based activation motif (ITAM). The ITAM was shown to be a specific binding site for the ZAP-70/Syk protein tyrosine kinases and the structure of this complex was solved. In addition, possible mechanisms of activation and functions for these kinases were reported. Lastly, genetic studies established the critical importance of these kinases in antigen-receptor signaling and lymphocyte development.
Collapse
Affiliation(s)
- A C Chan
- Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
272
|
Wu J, Motto DG, Koretzky GA, Weiss A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 1996; 4:593-602. [PMID: 8673706 DOI: 10.1016/s1074-7613(00)80485-9] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
T cell antigen receptor (TCR) stimulation induces tyrosine phosphorylation of many intracellular proteins, including the proto-oncogene Vav, which is expressed exclusively in hematopoietic and trophoblast cells. Vav is critical for lymphocyte development and activation. Overexpression of Vav in Jurkat T cells leads to potentiation of TCR-mediated IL-2 gene activation. However, the biochemical function of Vav is unknown. Here, we demonstrate that the major induced tyrosine phosphoprotein associated with Vav is the hematopoietic cell-specific SLP-76. The Vav SH2 domain is required for this interaction and for TCR-mediated Vav tyrosine phosphorylation. Similar to Vav, overexpression of SLP-76 markedly potentiates TCR-mediated NF-AT and IL-2 gene activation. Furthermore, overexpression of both Vav and SLP-76 synergistically induces basal and TCR-stimulated NF-AT activation. These results suggest that a signaling complex containing Vav and SLP-76 plays an important role in lymphocyte activation.
Collapse
Affiliation(s)
- J Wu
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
273
|
Tailor P, Jascur T, Williams S, von Willebrand M, Couture C, Mustelin T. Involvement of Src-homology-2-domain-containing protein-tyrosine phosphatase 2 in T cell activation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:736-42. [PMID: 8647120 DOI: 10.1111/j.1432-1033.1996.0736p.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Activation of resting T lymphocytes by ligands to the complex of T cell antigen receptor (TCR) and CD3 is initiated by a series of critical tyrosine phosphorylation and dephosphorylation events. Protein-tyrosine kinases of the Syk, Src and Csk families and the CD45 protein-tyrosine phosphatase (PTPase) are known to be involved in these early biochemical reactions. We have found that one of the two T-cell-expressed SH2-domain-containing PTPases, SHPTP2, is rapidly phosphorylated on tyrosine upon addition of anti-CD3 mAbs. This response was absent in cells lacking the Src family kinase Lck. Concomitantly with tyrosine phosphorylation, SHPTP2 co-immunoprecipitated with two unphosphorylated cellular proteins; phosphatidylinositol 3-kinase p85 and Grb2. Binding of SHPTP2 to Grb2 occurred through the SH2 domain of Grb2, while the association between SHPTP2 and p85 seemed to be mediated through Grb2 as an intermediate. In addition, many other molecules associate with Grb2 and may thereby become juxtaposed to SHPTP2. Our results indicate that SHPTP2 participates actively at an early stage in TCR signaling and that its phosphorylation on tyrosine may direct a Grb2-dependent association with selected substrates.
Collapse
Affiliation(s)
- P Tailor
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
274
|
Northrop JP, Pustelnik MJ, Lu AT, Grove JR. Characterization of the roles of SH2 domain-containing proteins in T-lymphocyte activation by using dominant negative SH2 domains. Mol Cell Biol 1996; 16:2255-63. [PMID: 8628292 PMCID: PMC231213 DOI: 10.1128/mcb.16.5.2255] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of the T-cell antigen receptor initiates a complex signaling cascade leading to changes in cytokine gene transcription. Several proteins containing Src homology 2 (SH2) domains, capable of interacting with phosphotyrosine-containing sequences within other proteins, are involved in the activation of signaling intermediates such as p2l(ras) and phospholipase Cgamma1. In this study, we used dominant negative SH2 domains to determine the importance of SH2 domain-containing proteins for T-cell activation. We show that tandem SH2 domains of either Zap70 or Syk tyrosine kinase are potent inhibitors of signaling initiated by the T-cell receptor zeta chain in vivo while individual SH2 domains are ineffective. Thus, while only the C-terminal SH2 domains appear to have significant affinity for immunoreceptor tyrosine-based activation motifs in vitro, the N-terminal SH2 domains are necessary in vivo. We find the spacing between the tandem SH2 domains of Zap70 to be critical for in vivo interactions. The SH2 domain of the adapter protein Grb2 is an effective inhibitor in our dominant negative assay, although it has little affinity for immunoreceptor tyrosine-based activation motifs. A single point mutation that abolishes phosphotyrosine binding renders the Grb2 SH2 domain incapable of this inhibition. In contrast, the SH2 domain of Shc does not inhibit this signaling cascade. We conclude that Grb2, but not Shc, is involved in T-cell receptor signaling.
Collapse
Affiliation(s)
- J P Northrop
- Affymax Research Institute, Santa Clara, California, USA
| | | | | | | |
Collapse
|
275
|
Osman N, Turner H, Lucas S, Reif K, Cantrell DA. The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T cell receptor zeta subunits and the CD3 gamma, delta and epsilon chains. Eur J Immunol 1996; 26:1063-8. [PMID: 8647168 DOI: 10.1002/eji.1830260516] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunoglobulin family tyrosine-based activation motifs (ITAM), which define the conserved signaling sequence EX2YX2L/IX7YX2L/I, couple the T cell antigen receptor (TCR) to cellular proteins including protein tyrosine kinases (PTK) and adapter molecules. The TCR is a multichain complex with four invariant chains CD3 gamma, delta and epsilon that each contain a single ITAM and the TCR zeta chain that contains three ITAM. The present study explores the protein interactions of the doubly phosphorylated CD3 gamma, delta, epsilon ITAM to determine whether they have common or unique biochemical properties. The data show that the doubly phosphorylated ITAM all bind the PTK ZAP-70, but the ITAM also variably bind the PTK p59fyn and the adapters Shc, Grb-2 and the p85 regulatory subunit of phosphoinositol 3' kinase. The CD3 and zeta ITAM display a hierarchy of ZAP-70 binding: zeta 1 = gamma = delta > zeta 3 > zeta 2 = epsilon. Shc, Grb-2 and p85 could bind the zeta ITAM and the CD3 gamma and delta ITAM, but not the CD3 epsilon ITAM. There were also subtle differences in the hierarchy of reactivity of these adapters for the CD3 gamma, delta and zeta ITAM that show that the zeta, CD3 gamma, delta and epsilon ITAM have different binding properties. The present study thus shows that the different ITAM of the TCR/CD3 complex can interact with different cytosolic effectors, indicating that differential ITAM phosphorylation during T cell activation could be a mechanism to generate signaling diversity by the TCR complex.
Collapse
MESH Headings
- Amino Acid Sequence
- CD3 Complex/chemistry
- CD3 Complex/metabolism
- Humans
- Lymphocyte Activation
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Protein Binding/immunology
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Fc/chemistry
- Receptors, Fc/metabolism
- Sulfur Radioisotopes
- T-Lymphocytes/chemistry
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- src Homology Domains/immunology
Collapse
Affiliation(s)
- N Osman
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, Great Britain
| | | | | | | | | |
Collapse
|
276
|
Abstract
The T cell antigen receptor (TCR) regulates the activation and growth of T lymphocytes. The initial membrane proximal event triggered by the TCR is activation of protein tyrosine kinases with the resultant phosphorylation of cellular proteins. This biochemical response couples the TCR to a divergent array of signal transduction molecules including enzymes that regulate lipid metabolism, GTP binding proteins, serine/threonine kinases, and adapter molecules. The ultimate aim of studies of intracellular signaling mechanisms is to understand the functional consequences of a particular biochemical event for receptor function. The control of cytokine gene expression is one of the mechanism that allows the TCR to control immune responses. Accordingly, one object of the present review is to discuss the role of the different TCR signal transduction pathways in linking the TCR to nuclear targets: the transcription factors that control the expression of cytokine genes.
Collapse
Affiliation(s)
- D Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| |
Collapse
|
277
|
Motto DG, Ross SE, Wu J, Hendricks-Taylor LR, Koretzky GA. Implication of the GRB2-associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production. J Exp Med 1996; 183:1937-43. [PMID: 8666952 PMCID: PMC2192521 DOI: 10.1084/jem.183.4.1937] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently we described the molecular cloning of SLP-76, a hematopoietic cell-specific 76-kD protein that was first identified through its association with GST/Grb2 fusion proteins. The primary sequence of SLP-76 predicts a protein of 533 amino acids comprising an amino-terminal region with numerous potential tyrosine phosphorylation sites, a central region rich in proline residues, and a single carboxy-terminal SH2 domain. Here we demonstrate formally that Grb2 associates with unphosphorylated SLP-76 and map the Grb2 binding site on SLP-76 undergoes rapid tyrosine phosphorylation and associates with tyrosine phosphoproteins of 36, 62, and 130 kD. In vitro experiments show that the SH2 domain of SLP-76 associates with the 62- and 130-kD proteins and additionally with a serine/threonine kinase. Finally, we demonstrate that transient overexpression of SLP-76 results in dramatically enhanced TCR-mediated induction of nuclear factor of activated T cells (NFAT) and interleukin (IL) 2 promoter activity; and we provide evidence that a functional SLP-76 SH2 domain is required for this effect. Our data document the in vivo associations of SLP-76 with several proteins that potentially participate in T cell activation and implicate SLP-76 itself as an important molecule in TCR-mediated IL-2 production.
Collapse
Affiliation(s)
- D G Motto
- Department of Physiology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
278
|
Buday L, Khwaja A, Sipeki S, Faragó A, Downward J. Interactions of Cbl with two adapter proteins, Grb2 and Crk, upon T cell activation. J Biol Chem 1996; 271:6159-63. [PMID: 8626404 DOI: 10.1074/jbc.271.11.6159] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several recent studies have demonstrated that Grb2, composed entirely of SH2 and SH3 domains, serves as an adaptor protein in tyrosine kinase signaling pathways. Cb1, the protein product of c-cbl proto-oncogene, has been reported to be phosphorylated on tyrosine residues upon T cell receptor (TCR) engagement. Here we show that in unstimulated Jurkat cells Cbl is co-immunoprecipitated with monoclonal antibody against Grb2. However, in lymphocytes activated through the TCR, Cbl loses its ability to bind to Grb2 precipitated either with anti-Grb2 antibody or with an immobilized tyrosine phosphopeptide, Y1068-P, derived from the epidermal growth factor receptor. In vitro studies confirm that the ability of Cb1 to bind to both SH3 domains of Grb2 is strongly reduced in activated T lymphocytes. Investigation of the time course of Cbl dissociation from Grb2 reveals that it is transient and correlates with the kinetics of tyrosine phosphorylation of Cbl. Moreover, Cb1 is co-immunoprecipitated with Crk, another SH2/SH3 domain-containing protein, upon TCR stimulation. Tyrosine-phosphorylated Cbl binds exclusively to the SH2 domain of Crk. These results suggest that different adaptor proteins may have different roles in the regulation of c-cbl proto-oncogene product.
Collapse
Affiliation(s)
- L Buday
- 1st Institute of Biochemistry, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | |
Collapse
|
279
|
Goh KC, Lim YP, Ong SH, Siak CB, Cao X, Tan YH, Guy GR. Identification of p90, a prominent tyrosine-phosphorylated protein in fibroblast growth factor-stimulated cells, as 80K-H. J Biol Chem 1996; 271:5832-8. [PMID: 8621453 DOI: 10.1074/jbc.271.10.5832] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tyrosine phosphorylation of cellular proteins occurs rapidly upon treatment of fibroblasts with acidic or basic fibroblast growth factors (aFGF, bFGF), suggesting a role for protein phosphorylation in the FGF signaling pathway. Stimulation of Swiss 3T3 cells and MRC-5 fibroblasts with bFGF results in the tyrosine phosphorylation of several proteins, of which the most prominent has been designated as p90. The phosphorylation of p90 is observed within 30 s of treating the cells with FGF but not with other growth factors. Microsequencing of p90 resolved on two-dimensional polyacrylamide gel electrophoresis indicated an N-terminal amino acid sequence which corresponded to a protein previously named as 80K-H. Polyclonal antibodies raised against the predicted C terminus of 80K-H recognized p90 on all Western blots. p90 was found to bind specifically to GRB-2-glutathione S-transferase fusion protein and to be immunoreactive with 80K-H antibody. In addition, anti-phosphotyrosine antibodies immunoprecipitated 80K-H from cell lysates of FGF-stimulated but not from control fibroblasts. The biological function of 80K-H is yet unknown. However, from this study and a previous observation of the obligatory dependence of p90 phosphorylation on FGF receptor occupation, it appears that 80K-H is involved in FGF signaling.
Collapse
Affiliation(s)
- K C Goh
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
280
|
Qian D, Mollenauer MN, Weiss A. Dominant-negative zeta-associated protein 70 inhibits T cell antigen receptor signaling. J Exp Med 1996; 183:611-20. [PMID: 8627172 PMCID: PMC2192449 DOI: 10.1084/jem.183.2.611] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Zeta-associated protein (ZAP)-70 is a cytoplasmic protein tyrosine required for T cell antigen receptor (TCR) signaling and development. Mutations in ZAP-70 result in severe combined immunodeficiency in humans. ZAP-70 interacts with the TCR by binding to tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) present in the invariant subunits of the TCR complex. Here we report that two ZAP-70 mutants devoid of kinase activity, generated either by a point mutation in the kinase domain to create an inactive kinase, or by truncation of the entire kinase domain (SH2[N+C]), functioned as dominant-negative mutants to specifically suppress TCR-mediated activation of NFAT, a nuclear factor essential for inducible interleukin 2 gene expression. Biochemical studies with the SH2(N+C) mutant showed that it also blocked early TCR signaling events, such as p95vav tyrosine phosphorylation, extracellular signal-regulated kinase 2 activation, and the association of a number of tyrosine-phosphorylated proteins with growth factor receptor-binding protein 2 (GRB2). The inhibitory effects of the SH2(N+C) mutant revealed that it requires an intact phosphotyrosine-binding site in its COOH-terminal SH2 domain. Using a CD8-zeta chimeric receptor to analyze the interaction of the SH2(N+C) mutant with ITAMs of TCR-zeta, we found that this mutant was constitutively bound to the hyperphosphorylated CD8-zeta chimera. These results indicate that tyrosine-phosphorylated ITAM is the target for the action of this dominant-negative mutant, suggesting that the assembly of a functional receptor signaling complex on ITAMs is a critical proximal TCR signaling event leading to downstream activation.
Collapse
Affiliation(s)
- D Qian
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
281
|
Nunès JA, Truneh A, Olive D, Cantrell DA. Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules. J Biol Chem 1996; 271:1591-8. [PMID: 8576157 DOI: 10.1074/jbc.271.3.1591] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study compares the biochemical responses in T cells activated with the CD28 ligands B7-1 and B7-2. The patterns of tyrosine phosphorylation induced in T cells by these two CD28 ligands are identical, but clearly different from the tyrosine phosphorylation induced by the T cell receptor (TCR). The TCR regulates protein complexes mediated by the adapter Grb2 both in vivo and in vitro. In contrast, there is no apparent regulation of in vivo Grb2 complexes in response to B7-1 or B7-2. Rather, B7-1 and B7-2 both induce tyrosine phosphorylation of a different adaptor protein, p62. The regulation of p62 is a unique CD28 response that is not shared with the TCR. These data indicate that B7-1 and B7-2 induce identical tyrosine kinase signal transduction pathways. The data show also that the TCR and CD28 couple to different adapter proteins, which could explain the divergence of TCR and CD28 signal transduction pathways during T cell activation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/isolation & purification
- Antigens, CD/physiology
- B7-1 Antigen/isolation & purification
- B7-1 Antigen/physiology
- B7-2 Antigen
- CD28 Antigens/isolation & purification
- CD28 Antigens/physiology
- Cell Line
- Chromatography, Affinity
- ErbB Receptors/metabolism
- GRB2 Adaptor Protein
- Humans
- L Cells
- Ligands
- Lymphocyte Activation
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/physiology
- Mice
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/physiology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J A Nunès
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | |
Collapse
|
282
|
Fukazawa T, Reedquist KA, Panchamoorthy G, Soltoff S, Trub T, Druker B, Cantley L, Shoelson SE, Band H. T cell activation-dependent association between the p85 subunit of the phosphatidylinositol 3-kinase and Grb2/phospholipase C-gamma 1-binding phosphotyrosyl protein pp36/38. J Biol Chem 1995; 270:20177-82. [PMID: 7544353 DOI: 10.1074/jbc.270.34.20177] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.
Collapse
Affiliation(s)
- T Fukazawa
- Department of Rheumatology and Immunology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Fukazawa T, Reedquist KA, Trub T, Soltoff S, Panchamoorthy G, Druker B, Cantley L, Shoelson SE, Band H. The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:19141-50. [PMID: 7642581 DOI: 10.1074/jbc.270.32.19141] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously, we have identified p120 as a Fyn/Lck SH3 and SH2 domain-binding protein that is tyrosine phosphorylated rapidly after T cell receptor triggering. Here, we used direct protein purification, amino acid sequence analysis, reactivity with antibodies, and two-dimensional gel analyses to identify p120 as the human c-cbl protooncogene product. We demonstrate in vivo complexes of p120cbl with Fyn tyrosine kinase, the adaptor protein Grb2, and the p85 subunit of phosphatidylinositol (PI) 3-kinase. The association of p120cbl with Fyn and the p85 subunit of PI 3-kinase (together with PI 3-kinase activity) was markedly increased by T cell activation, consistent with in vitro binding of p120cbl to their SH2 as well as SH3 domains. In contrast, a large fraction of p120cbl was associated with Grb2 prior to activation, and this association did not change upon T cell activation. In vitro, p120cbl interacted with Grb2 exclusively through its SH3 domains. These results demonstrate a novel Grb2-p120cbl signaling complex in T cells, distinct from the previously analyzed Grb2-Sos complex. The association of p120cbl with ubiquitous signaling proteins strongly suggests a general signal transducing function for this enigmatic protooncogene with established leukemogenic potential but unknown physiological function.
Collapse
Affiliation(s)
- T Fukazawa
- Department of Rheumatology and Immunology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|